263 research outputs found

    Appropriate Design of Parallel Manipulators

    Get PDF
    International audienceAlthough parallel structures have found a niche market in many applications such as machine tools, telescope positioning or food packaging, they are not as successful as expected. The main reason of this relative lack of success is that the study and hardware of parallel structures have clearly not reached the same level of completeness than the one of serial structures. Among the main issues that have to be addressed, the design problem is crucial. Indeed, the performances that can be expected from a parallel robot are heavily dependent upon the choice of the mechanical structure and even more from its dimensioning. In this chapter, we show that classical design methodologies are not appropriate for such closed-loop mechanism and examine what alternatives are possible

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Dimensionally Homogeneous Jacobian using Extended Selection Matrix for Performance Evaluation and Optimization of Parallel Manipulators

    Full text link
    This paper proposes a new methodology for deriving a point-based dimensionally homogeneous Jacobian, intended for performance evaluation and optimization of parallel manipulators with mixed degrees of freedom. Optimal manipulator often rely on performance indices obtained from the Jacobian matrix. However, when manipulators exhibit mixed translational and rotational freedoms, the conventional Jacobian's inconsistency of units lead to unbalanced optimal result. Addressing this issue, a point-based dimensionally homogeneous Jacobian has appeared as a prominent solution. However, existing point-based approaches for formulating dimensionally homogeneous Jacobian are applicable to a limited variety of parallel manipulators. Moreover, they are complicated and less intuitive. This paper introduces an extended selection matrix that combines component velocities from different points to describe the entire motion of moving plate. This proposed approach enables us to formulate an intuitive point-based, dimensionally homogeneous Jacobian, which can be applied to a wide variety of constrained parallel manipulators. To prove the validity of proposed method, a numerical example is provided utilizing a four-degree-of-freedom parallel manipulator

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    A New Index for Detecting and Avoiding Type II Singularities for the Control of Non-Redundant Parallel Robots

    Full text link
    [ES] Los robots paralelos (PR por sus siglas en inglés) son mecanismos donde el efector final está unido a la base, mediante al menos dos cadenas cinemáticas abiertas. Los PRs ofrecen una gran capacidad de carga y alta precisión, lo que los hace adecuados para diversas aplicaciones, entre ellas la interacción persona-robot. Sin embargo, en las proximidades de una singularidad Tipo II (singularidad dentro del espacio de trabajo), un PR pierde el control sobre los movimientos del efector final. La pérdida de control representa un riesgo importante para los usuarios, especialmente en rehabilitación robótica. En las últimas décadas, los PR se han popularizado en la rehabilitación de miembros inferiores debido al aumento del número de personas que viven con limitaciones físicas. Así, esta tesis trata sobre la detección y evitación de singularidades de Tipo II para asegurar total control de un PR no redundante para la rehabilitación y diagnóstico de rodilla, denominado 3UPS+RPU. En la literatura, existen varios índices para detectar y medir la cercanía a una singularidad basados en métodos analíticos y geométricos. Sin embargo, algunos de estos índices carecen de significado físico y son incapaces de identificar los actuadores responsables de la pérdida de control. Esta tesis aporta dos novedosos índices para detectar y medir la proximidad a una singularidad de Tipo II, capaces de identificar el par de actuadores responsables de la singularidad. Los dos índices son los ángulos entre los componentes lineal (T_i,j) y angular (O_i,j) de dos Twist Screw de Salida (OTS por sus siglas en inglés) normalizados i,j. Una singularidad Tipo II es detectada cuando T_i,j = O_i,j = 0 y su proximidad se mide mediante los mínimos ángulos T_i,j (minT) y O_i,j (minO) para los casos plano y espacial, respectivamente. La eficacia de los índices T_i,j y O_i,j se evalúa de forma teórica y experimental en un robot 3UPS+RPU y un mecanismo de cinco barras. Además, se propone un procedimiento experimental para el adecuado establecimiento del límite de cercanía a una singularidad de Tipo II mediante la aproximación progresiva del PR a una singularidad y la medición de la última posición controlable. Posteriormente, se desarrollan dos nuevos algoritmos deterministas para liberar y evitar una singularidad de Tipo II basados en minT y minO para PR no redundantes. minT y minO se utilizan para identificar los dos actuadores a mover para liberar o evitar el PR de una singularidad. Ambos algoritmos requieren una medición precisa de la pose alcanzada por el efector final. El algoritmo para liberar un PR de una configuración singular se aplica con éxito en un controlador híbrido basado en visión artificial para el PR 3UPS+RPU. El controlador utiliza un sistema de fotogrametría para medir la pose del robot debido a la degeneración del modelo cinemático en las proximidades de una singularidad. El algoritmo de evasión de singularidades Tipo II se aplica a la planificación offline y online de trayectorias no singulares para un mecanismo de cinco barras y el PR 3UPS+RPU. Estas aplicaciones verifican el bajo coste computacional y la mínima desviación introducida en la trayectoria original por los nuevos algoritmos. La implementación directa de un controlador de fuerza/posición en el PR 3UPS+RPU es insegura porque el paciente podría llevar involuntariamente al PR a una singularidad. Por lo tanto, esta tesis concluye presentando un novedoso controlador de fuerza/posición complementado con el algoritmo de evasión de singularidades de Tipo II. El nuevo controlador se evalúa durante rehabilitación activa de una pierna de maniquí y una pierna humana no lesionada. Los resultados muestran que el nuevo controlador combinado mantiene el PR 3UPS+RPU lejos de configuraciones singulares con una desviación mínima de la trayectoria original. Por lo tanto, esta tesis habilita el 3UPS+RPU PR para la rehabilitación segura de miembros inferiores lesionados.[CAT] Els robots paral·lels (PR per les seues sigles en anglés) són mecanismes on l'efector final està unit a la base, mitjançant almenys dues cadenes cinemàtiques obertes. Els PRs ofereixen una gran capacitat de càrrega i alta precisió, la qual cosa els fa adequats per a diverses aplicacions, entre elles la interacció persona-robot. No obstant això, en les proximitats d'una singularitat Tipus II (singularitat dins de l'espai de treball), un PR perd el control sobre els moviments de l'efector final. La pèrdua de control representa un risc important per als usuaris, especialment en rehabilitació robòtica. En les últimes dècades, els PR s'han popularitzat en la rehabilitació de membres inferiors a causa de l'augment del nombre de persones que viuen amb limitacions físiques. Així, aquesta tesi tracta sobre la detecció i evació de singularitats de Tipus II per a assegurar total control d'un PR no redundant per a la rehabilitació i diagnòstic de genoll, denominat 3UPS+RPU. En la literatura, existeixen diversos índexs per a detectar i mesurar la proximitat a una singularitat basats en mètodes analítics i geomètrics. No obstant això, alguns d'aquests índexs manquen de significat físic i són incapaços d'identificar els actuadors responsables de la pèrdua de control. Aquesta tesi aporta dos nous índexs per a detectar i mesurar la proximitat a una singularitat de Tipus II, capaços d'identificar el parell d'actuadors responsables de la singularitat. Els dos índexs són els angles entre els components lineal (T_i,j) i angular (O_i,j) de dues Twist Screw d'Eixida (OTS per les seues sigles en engonals) normalitzats i,j. Una singularitat Tipus II és detectada quan T_i,j = O_i,j = 0 i la seua proximitat es mesura mitjançant els minimos angles T_i,j (minT) i O_i,j (minO) per als casos pla i espacial, respectivament. L'eficàcia dels índexs T_i,j i O_i,j es evalua de manera teòrica i experimental en un robot 3UPS+RPU i un mecanisme de cinc barres. A més, es proposa un procediment experimental per a l'adequat establiment del límit de proximitat a una singularitat de Tipus II mitjançant l'aproximació progressiva del PR a una singularitat i el mesurament de l'última posició controlable. Posteriorment, es desenvolupen dos nous algorismes deterministes per a alliberar i evadir una singularitat de Tipus II basats en minT i minO per a PR no redundants. minT i minO s'utilitzen per a identificar els dos actuadors a moure per a alliberar o evadir el PR d'una singularitat. Aquests algorismes requereixen un mesurament precís de la posa aconseguida per l'efector final. L'algorisme per a alliberar un PR d'una configuració singular s'aplica amb èxit en un controlador híbrid basat en visió artificial per al PR 3UPS+RPU. El controlador utilitza un sistema de fotogrametria per a mesurar la posa del robot a causa de la degeneració del model cinemàtic en les proximitats d'una singularitat. L'algorisme d'evació de singularitats Tipus II s'aplica a la planificació offline i en línia de trajectòries no singulars per a un mecanisme de cinc barres i el PR 3UPS+RPU. Aquestes aplicacions verifiquen el baix cost computacional i la mínima desviació introduïda en la trajectòria original pels nous algorismes. La implementació directa d'un controlador de força/posició en el PR 3UPS+RPU és insegura perquè el pacient podria portar involuntàriament al PR a una singularitat. Per tant, aquesta tesi conclou presentant un nou controlador de força/posició complementat amb l'algorisme d'evació de singularitats de Tipus II. El nou controlador s'avalua durant la rehabilitació activa d'una cama de maniquí i una cama humana no lesionada. Els resultats mostren que el nou controlador combinat manté el PR 3UPS+RPU lluny de configuracions singulars amb una desviació mínima de la trajectòria original. Per tant, aquesta tesi habilita el 3UPS+RPU PR per a la rehabilitació segura dels membres inferiors lesionats.[EN] Parallel Robots (PR)s are mechanisms where the end-effector is linked to the base by at least two open kinematics chains. The PRs offer a high payload and high accuracy, making them suitable for various applications, including human robot interaction. However, in proximity to a Type II singularity (singularity within the workspace), a PR loses control over the movements of the end-effector. The loss of control represents a major risk for users, especially in robotic rehabilitation. In the last decades, PRs have become popular in lower limb rehabilitation because of the increment in the number of people living with physical limitations. Thus, this thesis is about the detection and avoidance of Type II singularities to ensure complete control of a non-redundant PR for knee rehabilitation and diagnosis named 3UPS+RPU. In the literature, several indices exist to detect and measure the closeness to a singular configuration based on analytical and geometrical methods. However, some of these indices have no physical meaning, and they are unable to identify the actuators responsible for the loss of control. This thesis contributes two novel indices to detect and measure the proximity to a Type II singularity capable of identifying the pair of actuators responsible for the singularity. The two indices are the angles between the linear (T_i,j) and the angular (O_i,j) components of two i,j normalised Output Twist Screws (OTSs). A Type II singularity is detected when the angles T_i,j = O_i,j = 0 and its closeness is measured by the minimum T_i,j (minT) and minimum O_i,j (minO) for planar and spatial cases, respectively. The effectiveness of the indices T_i,j and O_i,j is evaluated from a theoretical and experimental perspective in a 3UPS+RPU and a five bars mechanism. Moreover, an experimental procedure is proposed for setting a proper limit of closeness to a Type II singularity by the progressive approach of the PR to singular configuration and measuring the last controllable pose. Subsequently, two novel deterministic algorithms for releasing and avoiding Type II singularities based on minT and minO are developed for non-redundant PRs. The minT and minO are used to identify the two actuators to move for release or prevent the PR from the singularity. Both algorithms require an accurate measuring of the pose reached by the end-effector. The algorithm to release a PR from a singular configuration is successfully applied in a vision-based hybrid controller for the 3UPS+RPU PR. The controller uses a photogrammetry system to measure the pose of the robot due to the degeneration of the kinematic model in the vicinity of a singularity. The Type II singularity avoidance algorithm is applied to offline and online free-singularity trajectory planning for a five-bar mechanism and the 3UPS+RPU PR. These applications verify the low computation cost and the minimum deviation introduced in the original trajectory for both novel algorithms. The direct implementation of a force/position controller in the 3UPS+RPU PR is unsafe because the patient could unintentionally drive the PR to a Type II singularity. Therefore, this thesis concludes by presenting a novel force/position controller complemented with the Type II singularity avoidance algorithm. The complemented controller is evaluated during patient-active exercises in a mannequin leg and an uninjured human limb. The results show that the novel combined controller keeps the 3UPS+RPU PR far from singular configurations with a minimum deviation on the original trajectory. Hence, this thesis enables the 3UPS+RPU PR for the safe rehabilitation of injured lower limbs.Pulloquinga Zapata, JL. (2023). A New Index for Detecting and Avoiding Type II Singularities for the Control of Non-Redundant Parallel Robots [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19427

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generadasPostprint (published version

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generada

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    corecore