4,181 research outputs found

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue length vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    A stochastic analysis of resource sharing with logarithmic weights

    Full text link
    The paper investigates the properties of a class of resource allocation algorithms for communication networks: if a node of this network has xx requests to transmit, then it receives a fraction of the capacity proportional to log⁥(1+x)\log(1+x), the logarithm of its current load. A detailed fluid scaling analysis of such a network with two nodes is presented. It is shown that the interaction of several time scales plays an important role in the evolution of such a system, in particular its coordinates may live on very different time and space scales. As a consequence, the associated stochastic processes turn out to have unusual scaling behaviors. A heavy traffic limit theorem for the invariant distribution is also proved. Finally, we present a generalization to the resource sharing algorithm for which the log⁥\log function is replaced by an increasing function. Possible generalizations of these results with J>2J>2 nodes or with the function log⁥\log replaced by another slowly increasing function are discussed.Comment: Published at http://dx.doi.org/10.1214/14-AAP1057 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Interpolation approximations for the steady-state distribution in multi-class resource-sharing systems

    Get PDF
    International audienceWe consider a single-server multi-class queue that implements relative priorities among customers of the various classes. The discipline might serve one customer at a time in a non-preemptive way, or serve all customers simultaneously. The analysis of the steady-state distribution of the queue-length and the waiting time in such systems is complex and closed-form results are available only in particular cases. We therefore set out to develop approximations for the steady-state distribution of these performance metrics. We first analyze the performance in light traffic. Using known results in the heavy-traffic regime, we then show how to develop an interpolation-based approximation that is valid for any load in the system. An advantage of the approach taken is that it is not model dependent and hence could potentially be applied to other complex queueing models. We numerically assess the accuracy of the interpolation approximation through the first and second moments

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue length vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    Paying for Express Checkout: Competition and Price Discrimination in Multi-Server Queuing Systems

    Get PDF
    We model competition between two firms selling identical goods to customers who arrive in the market stochastically. Shoppers choose where to purchase based upon both price and the time cost associated with waiting for service. One seller provides two separate queues, each with its own server, while the other seller has a single queue and server. We explore the market impact of the multi-server seller engaging in waiting cost-based-price discrimination by charging a premium for express checkout. Specifically, we analyze this situation computationally and through the use of controlled laboratory experiments. We find that this form of price discrimination is harmful to sellers and beneficial to consumers. When the two-queue seller offers express checkout for impatient customers, the single queue seller focuses on the patient shoppers thereby driving down prices and profits while increasing consumer surplus

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the discriminatory processor-sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue-length vector in heavy traffic. The result shows that in the limit, the queue-length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta [Rege, K. M., B. Sengupta. 1996. Queue length distribution for the discriminatory processor-sharing queue. Oper. Res. 44(4) 653-657], who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue-length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability-generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue, we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically independent and distributed according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for dk/E(B fwd k) obtain a larger share of the capacity, where dk is the cost associated to class k, and E(B fwd k) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    Heavy-traffic analysis of a non-preemptive multi-class queue with relative priorities

    Get PDF
    International audienceWe study the steady-state queue-length vector in a multi-class single-server queue with relative priorities. Upon service completion, the probability that the next customer to be served is from class k is controlled by class- dependent weights. Once a customer has started service, it is served without interruption until completion. This is a generalization of the random-order-of-service discipline. We investigate the system in a heavy-traffic regime. We first establish a state-space collapse for the scaled queue length vector, that is, in the limit the scaled queue length vector is distributed as the product of an exponentially distributed random variable and a deterministic vector. As a direct consequence, we obtain that the scaled number of customers in the system reduces as classes with smaller mean service requirement obtain relatively larger weights. We then show that the scaled waiting time of a class-k customer is distributed as the product of two exponentially distributed random variables. This allows us to determine the value of the weights that minimize the m-th moment of the scaled waiting time for a customer of arbitrary class. We simulate a system with two different classes of customers in order to numerically verify some of the analytical results
    • 

    corecore