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Abstract

We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-
traffic setting. Customers present in the system are served simultaneously at rates controlled by a
vector of weights. We assume that customers have phase-type distributed service requirements and
allow that customers have different weights in various phases of their service.

In our main result we establish a state-space collapse for the queue length vector in heavy traf-
fic. The result shows that in the limit, the queue length vector is the product of an exponen-
tially distributed random variable and a deterministic vector. This generalizes a previous result by
Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service re-
quirements. Their analysis was based on obtaining all moments of the queue length distributions by
solving systems of linear equations. We undertake a more direct approach by showing that the prob-
ability generating function satisfies a partial differential equation that allows a closed-form solution
after passing to the heavy-traffic limit.

Making use of the state-space collapse result, we derive interesting properties in heavy traffic:
(i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the
residual service requirements are asymptotically independent and distributed according to the forward
recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic
performance of the system. In particular, for the DPS queue we show that the scaled holding cost
reduces as classes with a higher value for dy/FE (B,’:wd) obtain a larger share of the capacity, where
dy, is the cost associated to class k, and E(B,{wd) is the forward recurrence time of the class-k
service requirement. The applicability of this result for a moderately loaded system is investigated
by numerical experiments.

Keywords: Discriminatory processor sharing; heavy traffic; phase-type service requirements; residual
service requirements; scheduling

1 Introduction

The Discriminatory Processor Sharing (DPS) model, introduced in Kleinrock (1967), is a versatile gen-
eralization of the celebrated (Egalitarian) Processor Sharing (PS) model. DPS allows class-based differ-
entiation by assigning different weights to customers of different classes. (In this paper we adopt the
traditional queueing theoretic terminology; often “customers” are abstract entities such as jobs, flows,
packets, etc.) The processing resources are then distributed among all customers, in proportion to their
relative weights. As new customers join the system and others leave after having completed their service
requirement, the actual resource allocation to each customer fluctuates dynamically over time.

The asymmetric and dynamic fluctuation of the service rates give rise to complex behavior of the stochastic
processes describing the numbers of customers in the system and their respective service completion times.
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of NWO (Netherlands Organization for Scientific Research).



The literature devoted to the analysis of DPS has been significantly extended over the past decade, as
renewed interest in DPS arose due to its relevance in communication networks with distributed control,
in particular the Internet, Altman et al. (2004). An extensive survey of the DPS literature can be found
in Altman et al. (2006).

The seminal paper Fayolle et al. (1980) provided the first analysis of the mean sojourn time conditioned on
the service requirement, by solving a system of integro-differential equations. As a by-product, the mean
queue lengths of the various classes were shown to depend on the entire service requirement distributions,
of all customer classes. This as opposed to the egalitarian PS model, where the marginal queue lengths
have a geometric distribution that only depends on the average loads of all classes, thus exhibiting
a desirable insensitivity among the various classes. Although not strictly insensitive towards higher
moments of service requirement distributions, the DPS model was shown to have finite mean queue lengths
irrespective of any higher-order characteristics, Avrachenkov et al. (2005). This is further illustrated by
the heavy-traffic bounds on the mean queue lengths reported in Aalto et al. (2007), which only depend on
the service weights and the mean traffic loads. Partial insensitivity results have also been demonstrated
for other performance criteria such as the class-dependent mean sojourn time conditioned on the service
requirement (Avrachenkov et al. (2005)), and the tail index of the sojourn time distribution (Borst et al.
(2006)).

Several papers have analyzed (discriminatory) processor sharing mechanisms assuming overload condi-
tions with general service requirement distributions. Altman et al. (2004) determine the queue length
growth rates of the standard DPS model by a fixed-point equation, generalizing the analogous result
for egalitarian processor sharing, Jean-Marie and Robert (1994). More recently, further extensions to
bandwidth-sharing networks (Egorova et al. (2007)) and a network setting similar to ours (Ben Tahar and Jean-Marie
(2009)) have been obtained. In all these references the transient behavior of the queue lengths is studied
under overload conditions, while we investigate the convergence of the (scaled) steady-state distribution
as the critical load is approached.

In the present paper, we assume that all customer classes have phase-type service requirement distri-
butions and study the heavy-traffic behavior of a generalization of the DPS model, allowing customers
to have different weights in various phases of their service. This extension allows for example to incor-
porate sophisticated scheduling techniques that give preferential treatment to customers that are close
to service completion, thus reducing the numbers of customers in the system and their mean response
times, cf. Righter and Shanthikumar (1989). Similar generalizations of DPS were previously considered
by Ben Tahar and Jean-Marie (2009), Grishechkin (1992), Haviv and van der Wal (2008). The analysis
in Grishechkin (1992) is particularly relevant for the present study. There, the generalized DPS model
was investigated assuming finite second moments of the service times. Through appropriate choices for
quite a general functional of the queue length process, Grishechkin (1992) determined the heavy-traffic
distributions of the marginal queue lengths and response times (after scaling). Our results are comple-
mentary to those: On one hand we restrict the focus to the queue lengths, and on the other hand we study
the joint queue length distribution. Doing so, we establish a state-space collapse for the queue length
vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an
exponentially distributed random variable and a deterministic vector. The reduction of dimensionality
of a multi-dimensional stochastic process under heavy-traffic scaling has been demonstrated previously
in other queueing models, see for example Bell and Williams (2001), Stolyar (2004), Kang et al. (2009).
Our work is inspired by the heavy-traffic analysis for the traditional DPS model with exponentially
distributed service requirements in Rege and Sengupta (1996). After developing a procedure to determine
all moments of the queue length distributions from systems of linear equations, Rege and Sengupta (1996)
show that the variability of the queue length vector is of a lower order than the mean queue lengths,
which directly leads to state space collapse of the multi-dimensional queue length vector. In Kessel et al.
(2004) it was indicated that a similar approach as in Rege and Sengupta (1996) could be followed for
the heavy-traffic analysis of the DPS queue with phase-type distributions. Here we follow a different and
more direct approach by investigating the joint probability generating function of the queue lengths. The
probability generating function is shown to satisfy a partial differential equation, which takes a convenient
form after passing to the heavy-traffic limit, allowing a closed-form solution in that case. This approach
allows an elegant heavy-traffic analysis for the case of phase-type distributions.

As phase-type distributions lie dense in the class of all probability distributions, in practice the restriction
to this class is not seen as being essential. In the present study, an important caveat must be accounted
for, though. Since all phase-type distributions (with a finite number of phases) have a finite second
moment, this restriction is implicit in our modeling approach. We do believe, however, that our results



extend to general service requirements.

Allowing the relative service weights of customers to change over time as they acquire service, effectively
opens up a way to implement size-based scheduling by assigning relatively high weights in service phases
that are more likely to lead to a quick service completion. A classical result in the size-based literature
states that the so-called cu-rule minimizes the mean holding cost in an (i) M/G/1-queue among all non-
preemptive work-conserving disciplines (Gelenbe and Mitrani (1980)) and in a (ii) G/M/1-queue among
all preemptive non-anticipating disciplines (Buyukkoc et al. (1985), Nain and Towsley (1994)). We recall
that the cp-rule is the discipline that gives strict priority in descending order of ¢y, where ¢ and gy,
refer to a cost and the inverse of the mean service requirement, respectively, of class k. The optimality of
the cp-rule can be understood from the fact that for both systems (i) and (ii), in addition to being the
original mean service requirement, 1/u also coincides with the expected remaining service requirement
of a class-k customer at a scheduling decision epoch. Our analysis extends the cu-rule to DPS-like policies:
In heavy traffic we show that the scaled holding cost reduces as more preference is given to customers in
service phases with a small weighted expected remaining service requirement.

For the case of the standard DPS queue with phase-type service requirement distributions, we show that
in the heavy-traffic setting, conditioned on the number of customers present in each class, the remaining
service requirements of the various customers are independent, and distributed according to the forward
recurrence times, a result that is well known for Egalitarian PS (see for example Cohen (1979), Kelly
(1979)). In addition, we derive that the scaled holding cost in a DPS queue reduces as more preference
is given to classes according to the cost of a class divided by its mean forward recurrence time. This
provides a useful guideline to schedule a multi-class queue close to saturation for the cases not covered
by the cu-rule.

The paper is organized as follows. In Section 2 we introduce the Markovian framework studied in the
paper and state the main result, which establishes a state-space collapse of the joint queue length vector.
As a preparation for the proof of the main result, the functional equation for the generating function of
the joint queue length vector is studied in Section 3 and, under the heavy-traffic scaling, in Section 4.
The proof of the main result is given in Section 5. Section 6 discusses size-based scheduling. Section 7
applies the state-space collapse result to the standard DPS queue with phase-type distributed service
requirements. In addition, it presents the implications for residual service requirements and monotonicity
properties of the holding cost. Concluding remarks can be found in Section 8.

2 Markovian framework and main result

We consider a Markovian system with J customer types. Customers arrive according to a Poisson
arrival process with rate A, and an arriving customer is of type ¢ with probability pg;, i = 1,...,J.
Customers of type i have an exponentially distributed service requirement with mean +. After service
completion, they become of type j with probability p;;, 7 = 1,...,J, and leave the system with probability
Dio = 1—2;.]:1 pij. Let P be a Jx J matrix with P = (p;;), 4,5 =1,...,J. We assume that all customers
eventually leave the system. This implies lim, _,o, P® = 0, and hence, (I — P)~! is well defined. In
addition, we assume that none of the J types are redundant (i.e., eventually all types are observed); this
assumption is formalized following equation (1) below.

The J customer types share a common resource of capacity one. There are strictly positive weights
g1, ---,9s associated with each of the types. Whenever there are ¢; type-i customers, i = 1,...,J,
present in the system, each type-j customer is served at rate

9
J b
Zi:l 9i4;

We denote the number of type-j customers in the system by Q);.

The above-described framework is a generalization of the standard DPS queue with phase-type distributed
service requirements: It represents an M/PH/1 DPS queue where customers may have different weights
in various phases of their service. In Section 7 we specify how the standard DPS queue fits into our
representation.

We let R; denote the remaining service requirement until departure for a customer that is now of type <.
Note that this includes service in all subsequent stages as the customer changes from one type to another.
Since the service time of each type is exponentially distributed, the expected remaining service require-
ments can be interpreted as absorption times in an appropriate Markov chain and therefore satisfy the

j=1,...,J.



following system of linear equations: E(R;) = - + ijl pi;E(R;). Let E(R) = (E(Ry),...,E(R;))T and

i
m = (1/p1,...,1/pus)T, so that we can write

E(R) = (I — P)" 1.
Denote the total traffic load by

J
p = A ZPOJE(RJ)
j=1

Let ; represent the expected number of times a customer is of type ¢ during its visit in the network.
Hence, 71, ...,7y satisfy the following equations

J
’Yi:p0i+2'7jpjia i=1,...,J, (1)

=1

ie, 1 = pd (I — P)~1, with ¥ = (v1,...,75)T and po = (po1, - - -, pos)T. Our assumption that none of
the J types is redundant, entails that « is a vector with strictly positive elements. Note that 1t represents
the expected cumulative amount of service a customer requires while being of type 4 duringf its visit in
the network. We denote the load corresponding to customers while they are of type i by

pi 1= AL
i

Hence, for the total traffic load p we may equivalently write
J J - J
p=XY_ poE(R;) = Ay E(R) = Apy (I — P) ' = M= A ,TJ => pj. (2)
j=1 j=1"7 j=1

Our main result shows that the steady-state distribution of the queue length vector takes a rather simple
form when the system is near saturation, i.e., p 7 1, which is commonly referred to as the heavy-traffic
regime. This regime can be obtained by fixing the py, P and m, and letting

< 1

)\T)\Z:W, (3)

since then p = A\p¢ (I — P)~1 1 1. Although approaching heavy traffic in this way is natural, the results
remain valid for any other sequence of parameters (belonging to stable systems) that reaches heavy traffic
in the limit. In heavy traffic, we denote by

the load corresponding to customers while they are of type i (Z}]ﬂ p; =1).

We can now state our main result, which establishes a state-space collapse for the queue length vector in
the heavy-traffic regime. We note that, throughout the paper, we do not explicitly reflect the dependence
of the queue length processes on the traffic load p, in order to keep notation compact.

Proposition 2.1 Consider the general Markovian framework. When scaled by 1 — p, the queue length
vector has a proper limiting distribution as (p1,...,p7) = (p1,...,p1), sSuch that p 11,

d (A A A d p1 P2 Py
(]' _p)(QhQQu"'?QJ) — (QlaQ?v"‘aQ]) =X (77"'7) 3 (4)
g1 92 g7
where % denotes convergence in distribution and X is an exponentially distributed random variable with

mean J
Zj:l ﬁj]E(Rj)

EX)=—F/—""-——"-
) Y1 ZE(R;)

: (5)



The proof will be given in Section 5. Here we give some intuition for the result. Proposition 2.1 shows
that in heavy traffic, the multi-dimensional queue length process essentially reduces to a one-dimensional
random process: it can be expressed as a random variable X times a deterministic vector. Given this
reduced variability of the process, the value of the deterministic vector can be understood as follows.
When the queue is stable, the rate conservation law (see for example (Sigman 1991, Theorem 2.1))

implies that
pj =E 7Jngj L1 s | (6)
Zi:l Qi =t

since the expression within the expectation operator reflects the capacity allocated to type j. Here
the function 14 denotes the indicator function, i.e., 14 = 1 if A is true, and 0 otherwise. Using that
the process reduces to one dimension in heavy traffic, in the limit we may replace Q;/Q; by a ratio of
constants a;/a;. Together with (6) and the fact that the scaled queue length will be strictly positive in

heavy traffic, this implies
J R
pi
a; = (Y giar)=L.
i=1 9i

The pre-factor ), g;a; is common to all a;, which explains the appearance of the vector (
in Proposition 2.1.
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Numerical illustration of Proposition 2.1: We consider two types of customers and choose g1 = 2,92 = 1,
1 = 2,9 = 5,p01 = 0.6,po2 = 0.4,p12 = 0.3,p21 = 0.1. In Figure 1 we plot the joint queue length
probabilities (obtained by simulation) for loads p = 0.8 (p1 ~ 0.59, p2 ~ 0.21), p = 0.90 (p1 = 0.66, po ~
0.24) and p = 0.99 (p1 =~ 0.73,p2 = 0.26), respectively. The horizontal and vertical axes correspond
to @1 and @2, respectively. As a consequence of the state-space collapse stated in Proposition 2.1, in
heavy traffic the probabilities will lie on a straight line with slope %ﬁ—z =~ 0.72, starting from the origin.
In Figure 1 we see that as the load increases, the likely states indee(i] tend to concentrate more around
this line. For load p = 0.99, this effect is clearly visible; the likely queue length states are strongly
concentrated around the line with slope 0.72.
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Figure 1: Joint queue length probabilities for load p = 0.8 (left), p = 0.90 (center) and p = 0.99 (right),
respectively.

3 Functional equation

Before focusing on the heavy-traffic regime, we derive a functional equation for the generating function
of the joint queue length process.
Denote by @ and ¢ the vectors (Q1, Qs, ...,Q) > 0and (g1, ¢2,.-.,qs) > 0, respectively. The equilibrium

—

distribution 7(q) := P(Q = §) satisfies

J
>\7T(6) = Z ipiom(€:), (7)
i=1



and for ¢ # 0,

E 9iqilbi J J q 4 1

1 — JE

A+ 71 w(q) = Z Apoilg, (¢ — €;) + Z Jz ‘ - Wipiom (G + €;) (8)

Zm% =1 =13 954 + gi

i=1 7j=1

J J
gi(qi +1 oo o
+ E Z(qu C ilas ) Wipim(§ + € — €5),

i=1j=1 Z ImAm + 9i — gj
m

where §; = 1 if ¢ > 0, and §; = 0 otherwise, and with €; the i-th unit vector. It will be notationally
convenient to use the following transformation:

R =0 and R(q) = f@ , for q+#0.

'21 9545

Also, let p(Z) and r(%) denote the generating functions of n(g§) and R(q), respectively, where z =
(#1,...,25) and |z| <lfori=1,...,J:

p(2) = E(lelzJ Z Zz .. ’7(q),

q1=0 q7=0

z?lz?’ > =
OIS B DRt D 0.1}
> Qigi @w=0 ;=0
i=1
Note that or(2)
r(Z Qi
YiZi—g — = Z %Zih 27 m(). (9)

’ Qg0 oy 4 >0 =1 934

Multiplying (8) by z{" ...z%’, summing both sides over ¢1,¢s, ..., ¢s and adding equation (7), we obtain
from (9) that

+ Z Z HigiPii % =5 - E)~ (10)

=1 5=1

?) + Z ulgm Z Apoizip(2) + Z Nzgzpzo

Since 7(0) = 1 — p, it follows from (9) that

J
}: ) 11 p=p(a). (11)

Together with (10) this gives the following partial differential equation for r(2):

J J 7
)(1— ;pmzz‘) = Z 1i9i(Pio + Zpiij — Agizi(1 ZPO;ZJ ZZ) (12)

i=1 j=1

This equation turns out to be very useful to analyze the joint queue length distribution in heavy traffic, as
it allows for an explicit solution in that asymptotic regime. That is the topic of the next two sections. Note
that Equation (12) was derived in Rege and Sengupta (1996) for the case of exponentially distributed
service requirements.



4 Heavy-traffic scaling

It will be convenient to use the change of variables z; = e with s; > 0, ¢ = 1,...,J. Denote
5= (*917 ceey SJ) and 67(171))‘? = (ef(lfp)'sl’ L ,e*(lfp)s_;). 1If
limp(e”177%) = limE(e~(1—P=1@1. . e=(1=n)ss@) (13)
ptl ptl

exists, then there is a (possibly defective) random vector (Ql, Qs, ..., Q;) such that (1—p)(Q1,Q2, ..., Q)
converges in distribution to (Ql, Qg, cee QJ) and the distribution of (Ql, QQ, cee QJ) is uniquely deter-
mined by the limit in (13) (cf. the Continuity theorem, see Feller (1971)). For now, we assume that the
limit exists; we come back to this assumption in Section 5. In this section we give two lemmas that
describe properties of lim, p(e’(lfp)g). In particular, in Lemma 4.2 we obtain a partial differential
equation, which will be the key element in the proof of the main result stated in Proposition 2.1.

In order to describe the behavior of the generating function, we define

1— efleAl . .e*SJQJ
f(é’)—]E( MR ey 0)
Zj:l Qig; (X521 Q5>0)

The “1”7 in the numerator is to ensure that the expression between brackets remains bounded when the
Q;’s are all near zero. We can now state the following lemma.

Lemma 4.1 Iflim,y p(e”(1=7)%) exists, then it satisfies:

J
_5 OF(8)
1 —(=p)s) = : 14
lim p(e ) ; B, (14)
Proof: From (11) we have
J
1 (1=p)5) =] : 1
im0 =m0 72, 1)
By definition of (2) we can write
221297
. or(?) . ok (23'11 Qg5 1(23']:1 Qj>0)>
lim = lim
ptl Oz lz=e—(-p)3 P11 0z; F=e—(1-p)F
wE Q; e~ (1=p)s1Q1 . | o—(1—p)ssQy
= lim 7 . “(1—p)s; -1 I Q>0
P\ X Q95 em(1=p)ss (2522520
— Qi —SlQl —S Q
]:
07(5)
= e (16)
In the third step we used that Z"?ng cem(@=psi@Qr . o= (1-p)ssQu . 1(5~7_ g,>0) is upper bounded
j=1%39i Jj=
by ﬁ(sz-)’ and, cf. the continuous mapping theorem (Billingsley (1999)), converges in distribution to
% R R A 1(E‘f=1 0, >0y From (15) and (16) we obtain (14). O

In the following lemma we show that the partial differential equation as given in (12) simplifies consid-
erably in the heavy-traffic regime.

Lemma 4.2 If lim 4 p(e=(1=P)%) egists, then the function 7#(5) satisfies the following partial differential
equation:

0= ROG < F) vi), vz



where F(3) = (F1(5),...,Fy(5)), and
Fi(8) = gi [ pi(=si + > _pijs;) +AD pojsi |, i=1,...,J, (17)
j=1 j=1
with X as defined in (3).

Proof: Taking Z equal to e~(1=2)% in (12), dividing both sides by 1 — p and taking the limit of p 1 1, this
gives

0=
J
J 1 — e (A=p)si Z Dij (e—(l—/?)sj -1) (s .
lim Higi = — Agie~ (17 ZPOJ L-e @) |zme—-n7
Pl 1—p 0z;

J J
= gi {palsi =Y _pijsy) )\ZPO]SJ : 834)' (18)
i=1 j=1 E

In the second step we used (16) and the fact that lim Ill__;l = In(x). O

5 Proof of the main result

This section contains the proof of the main result stated in Proposition 2.1. It consists of two steps,
which will be treated separately. First we show in Subsection 5.1 that

(Q17Q27"‘7Q.])i(&vga"'vﬂ)'Xv (19)
g1 92 g7

for some random variable X. Second, we demonstrate in Section 5.2 that X is exponentially distributed
with mean as given in (5).
With these two partial results, the proof can be completed as follows: In Section 4 we assumed that
lim 11 p(e~(1=7)%) exists, thereby showing in Subsections 5.1 and 5.2 that there is a unique limit. From
tightness of the scaled queue-lengths (which follows from tightness of the scaled workload, see Section 5.2)
we obtain that there exists a subsequence of p such that (1—p)Q; converges in distribution, cf. Prohorov’s
theorem (Billingsley (1999)), and hence for this subsequence lim,4; p(e~(17P)%) exists. Because for any
converging subsequence we obtain the same limit, this implies that the limit itself exists, (see corollary

Page 59 in Billingsley (1999)). This establishes the state-space collapse (1 — p)(Q1,Q2,...,Q) LA
(Ql7 Qs, ..., Q]) with (Q1,Qa,...,Q ) taking only values on the line described in (19).

5.1 State-space collapse

In this section we give the proof of (19). The proof is based on the fact that the probability generating
function satisfies the partial differential equation as described in Lemma 4.2. From this partial differential
equation it can be derived that the function #(3) is constant on the (J — 1)-dimensional hyperplane

J
={3>0: Z

as will be shown in Lemma 5.2. From this it follows that the function #(3) depends on § only through

Zj 1 ZJ sj, so there exists a function #* : R — R such that 7(35) = f*(z;] 1y

‘b>

sj = ¢},

bi SJ) From Lemma 4.1 and



we then obtain

0s; gi dv - ;,=1 %- ]a

_y d f )

E e E;:l 8i Qi — hm 1 p)S A -
( ) 11 p Z Z pl dU b
i=1 =1 Z] 1 qJ Sj
4t
dv v= ZJ 1 ij
which again depends on § only through Z =1 g sj Equivalently, we can write
E(e™ > 37Q7) = E(e” Ql E ‘;»s, a2 P2(92 %Qﬂ . .e—sJ%(;’;—jQ]—g—in)).
Since this only depends on Z bi o Si it implies that g? Qi = %Qj almost surely for all 7,7, and we
Pi ]

obtain

(Q17Q2a-~-,QJ)=(pl,m,...,m) 9 1, almost surely,
g1 g2 g9J 12}

or equivalently

A A Ay d [P P2 pJ
(Q17Q27"'7QJ):(77"'a)'Xa
g1 92 9J

with X distributed as %Ql.

Before we proceed to prove that the generating function #(S) is constant on the hyperplane H,. we first
give a geometric interpretation for this fact in the particular case of J = 3. In Figure 2 (left) we depict
the hyperplane H, for J = 3. For a given 5y € H., we draw a flow curve f(u)7 u > 0, defined such that
the tangent at every point is precisely f’(u) = ﬁ(f(u)) and f(O) = 5y € H.. We will see in the proof
of Lemma 5.2 that the vector ﬁ(é’) is parallel to the hyperplane H., for all s € H,, thus the flow f(u)
stays in the hyperplane H, for all v > 0. By Lemma 4.2, the vector ﬁ(éj and the gradient 77(3) are
perpendicular, for all &, so f'(u) = F(f(u)) L v#(f(u)). Thus the function # has the same value in every
point on a given flow f (u). In Figure 2 (right) we draw several flows in the hyperplane H.. In the proof
of Lemma 5.2 we will see that all flows starting in the hyperplane H. converge to one common point
¢- §. Since the function #(-) is continuous and constant on each flow trajectory, it follows that 7(5) is
constant on the whole hyperplane H,, or equivalently, 77(s) L H..

53

Figure 2: Geometrical interpretation of the proof of Lemma 5.2 for the case J = 3.

The following technical lemma is used in the proof of Lemma 5.2.



Lemma 5.1 Consider the matrixz

g1 (—Ml + pp1 + 5\1001> g1 <M1P12 + 5\]902) .- g1l papigs + 5\poLI
g2 (M2p21 + 5\p01> 92 (—M2 + p2p22 + j\poz) e g2\ pep2s + 5\1901
A= , ' , , (20)
g (MJPJ1 + 5\2701) gJ (MJPJQ + 3\1702) cee gg (—,uJ + pypys + 5\]90])

where X is as defined in (3). One eigenvalue of A is 0 (with multiplicity 1), and all the other eigenvalues
have a strictly negative real part. In addition, there exists a vector i > 0 with ijl n; =1 such that 5*
with s := %';Wj is an eigenvector of A corresponding to the eigenvalue 0, and §* € H;.

Proof: Define D as the diagonal matrix diag[dy,ds, . ..,ds] with d; = %, and let S be the matrix

g1 (-m + pipin + 5\]901) ﬁ1%§ (M1p12 + 5\11702) e ﬁl% p1p1s + Apos
§.— DAD-! P25 (szm + 5\1901) 92 (—M2 + p2pa2 + 5\p02) o P23t (pep2s + Apos
P (/upn + 5\p01) prL (/upn - 5\1)02) S (—m +paprs + XPOJ)

The matrix A is similar to S and therefore A, S and ST have the same eigenvalues. Using Equation (1),
it follows that

J J
—pipi+ Y pi(Ripji + Apoi) = A=vi +poi + D_ipii) =0, i=1,...,J. (21)
j=1 j=1

Hence, the sum of each row in ST (sum of each column in S) is equal to 0, and the off-diagonal elements
in ST are all positive. This implies that the matrix S is a generator corresponding to a finite-state
continuous-time Markov chain. This Markov chain is irreducible, as will be shown at the end of the
proof, and hence has a unique equilibrium distribution 7, i.e., 7S = 0 and Zj:l n; = 1. This implies
that 0 is an eigenvalue with multiplicity 1 of the matrix ST, and, cf. (Asmussen 2003, Proposition 6.2),
the real parts of all other eigenvalues are strictly negative. Since the eigenvalues of A and ST coincide,
the same holds for the matrix A. The eigenvector of A corresponding to the eigenvalue 0 is given by
§ = D1, since As* = D"'DAD 'ij= D187 = 0.

It remains to be shown that the Markov chain corresponding to the generator S7 is irreducible. Let
Jo:={j=1,...,J : po; > 0}, denote the non-empty set of types that receive external arrivals, and let

Tn = {j =1,...,J: there exist 30y - -y Jn—1 with Pojo “ Pjoj1 "+ -+ " Pin_1j > 0},

n=1,...,J —1, denote the set of types such that there is a strictly positive probability that a customer
becomes of this type after n steps. Since J < oo and eventually all types are observed, we have that
Ul 5T ={1,..., J}.

Since 7; > 0, also p; > 0 for all 4 = 1,...,J. Now consider the J x J matrix ST. If j € Jy, then the
(4,1)-th element of ST, ﬁiz—é(uipij + Xpoj), is strictly positive for all ¢ # j. Thus, in the Markov chain
corresponding to the generator ST, from any state in Jy one can reach all other states. In order to prove
irreducibility it is now sufficient to show that from any state in {1,..., J}\Jy, some state in Jy can be
reached.

Assume j € J;. By definition, there exists an i € Jy such that p;; > 0. Hence, the (j,7)-th element of
the matrix ST, ﬁi%;(ﬂipij + 5\p0j), is strictly positive. This implies that from every state in Ji, a state
in Jy can be reached. Now consider a state j € Jo. By definition, there exists a state i € J; such that
pi; > 0. Similarly to the previous case, this implies that the (j,)-th element of ST is strictly positive,
and we can conclude that from every state in J5, a state in J; can be reached. Proceeding along these

lines, it can be shown that from every state in 7, a state in J,,_1 can be reached, n =1,...,J —1. Since
U;{;éjn ={1,...,J}, we obtain that from any state outside Jy, some state in Jy can be reached, which
concludes the proof. O

The following lemma shows that the generating function 7(8) is constant on the hyperplane H..
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Lemma 5.2 For any ¢ > 0, the function 7(S) is constant on H,.

Proof: From (21) it follows that

J J J
Z —Si+zpij8j)+5\2p0j8j
i=1 j=1 j=1

< ‘b>
I

]~
S)

N
Il
_

[
Mk

( /szz + ij HjiPji + )‘pOz)) Si
Jj=1

—_

This implies that for all € H,, the vector f(é) is parallel to the hyperplane H.. Since Fis C1, for each
state §> 0 there exists a unique flow fw) = (fi(u),..., fs(u)), parametrized by u > 0, such that

d{;iu) = Fi( _’(u)), for all 4 and u > 0. (22)

f(0)=35 and

—

Since F(3) is parallel to H, for all § € H,, when started in H,, the flow f(u) will stay in H,. Another
important property of this flow f(u) is that

J .
Z du 'as:)

which follows from the chain rule, Lemma 4.2, and Equation (22). Hence, along each flow f(u), which

~»

=0,

F=f(u)

lies in H,, the function 7( f (u)) is constant. We will now show that each flow in H. converges to a certain
point ¢- §* > 0 as u — oo.

Relation (22) can be written as f(0) = § and f’(u) = Af(u), with A as defined in (20), see (17). In
Lemma 5.1 it is proved that one eigenvalue of A is 0 with eigenvector § > 0, §* € Hy, and all the other
eigenvalues have a strictly negative real part. Hence, the solution of f (u)=A f (u) with f (0) € H, can
be written as f(u) = ¢ 8 + §(u), where lim,_,o §(u ) =0 and 5 > 0. This implies that all the flows in

the hyperplane H. converge to one common point ¢ - §* > 0.
Since the continuous function 7(5) is constant along each flow, and all flows in the hyperplane H. converge
to ¢- § € H., we obtain that the function #(3) is constant on H.. |

5.2 Determining the common factor

In the previous section we showed that (Ql,Qg, .. .,QJ) 4 (’;—i, ’;—2, e 5’%) - X, with X some random
variable. In this section we determine the distribution of X. In order to do so, we consider the total

workload in the network, denoted by W. When scaled with (1 — p) the total workload has a proper
distribution as p 1 1, see Kingman (1961):

where W is exponentially distributed with mean

J
= Z HiE(R;). (23)

The total workload can be represented as

Qj

J
W=> Y R,

j=1h=1



with R; 5 the remaining service requirement of the h-th type-j customer. Note that the remaining service
requirements of all customers in phase j are i.i.d. and have the same phase-type distribution independent

of Q, more precisely, R; p, 2 R; for all h. Hence,

J
Qj Qj =
E(e*") = E(c* DD DA Riny = R( | I E(e®Xnii flin|G))
j=1

J
= E(JJE(eR)%) = E(eXi-1 @ InEE )y
j=1

for s > 0. For the scaled workload we can therefore write

. n(E(e—(1=P)sR;
Ee ") = lmE@E ") =lmE( jor M (1= )sQy
P P

= E(e* iy ]E(Rj)Qj)7 (24)
n@Ee” PRy ) .
7 (1=P)5Qi s hounded by 1 and converges in dis-

where in the last step we used that e~s=! (a=p)s
A —(1—p)sR;
tribution to e* 29=1 E(R)Q  The latter follows from 2EC ") —E(R;) as p 1 1. From (24) we

(1-p)s
obtain that J
A d A~
W £ E(R)Q;,
j=1
and together with (19) this gives
J 4
i d pj
WX E(R;). (25)

Since W is exponentially distributed, the same is true for X. Taking expectations in (25), from (23) we
obtain

> hE(R))

which concludes the proof of Proposition 2.1.

6 Size-based scheduling

Allowing the relative service weights of customers to change over time as they acquire service, opens
up a way to implement size-based scheduling by assigning relatively high weights in service phases that
are more likely to lead to a quick service completion. In this section we investigate how the choice of
the weights influences the performance of the system. With each type of customers we associate a cost
¢; >0,5=1,...,J. As performance measure we take the holding cost ijl c;Q;.

Recall that we consider the general Markovian framework where type-j customers have weight g;. In

this section we will write Q§g ) (Qgg )} instead of Q; (Q;) to emphasize the dependence on the weights

J

g1,---,97. From Proposition 2.1 we obtain that the scaled holding cost, (1 — p) ijl ch§g), converges

in distribution to an exponentially distributed random variable with mean

J
: Z piE(R;), (26)

as p T 1. Using this expression, we obtain the following monotonicity result in the heavy-traffic regime:

The holding cost decreases “stochastically” as more preference is given to customers of types with a large

value of ﬁ.

Proposition 6.1 Consider the general Markovian framework and consider two policies with weights

(91,---,95) and (g1, ...,§s), respectively. Let c; >0, j=1,...,J. Without loss of generality we assume
C1

that the types are ordered such that TN > % > ... > %.
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ng

gj+1 — 9

,forallj—l .,J —1, then

hml— ZCQ() sthml— ZCJQ(Q)

where >4 denotes the usual stochastic ordering, i.e., X >4 Y if and only if P(X > z) > P(Y > z) for
all z.

Proof: We have that (1—p) Z CJQ(‘Q ) converges in distribution to an exponentially distributed random
variable with mean as stated in ( 6). Hence it only remains to check that

Z] CiPj ZJ cjbj
Jj=1 g; > Jj=1 g,

Y BE(R) T Y ZE(R;)

This holds since

J . J . J
cipj o 1
SSYA) (S bRy = Y pjpi( —E(R;) + — C,E(Rﬂ) +3 2 ——cE(R;)
= 9 =9 gt 9;39i i9j =1 939
J
~ a1 |
> 3 pini(o G E(R) + ——GE(R))) + 35— E(R;)
= 9i9; 959i — 9i9;
Jyij7i Jj=1
J . J .
= (X7 (X e
= = j
Here we used that ¢;E(R;)(=% — 1) > ¢;E(R;)(=% — -L-), which follows from the fact that £ < i
1/Ngig;  959i J 9i95  9i9i 9j Jj
andE(R)ZE( , for i < 7. O

As mentioned in the Introduction, the cu-rule minimizes the mean holding cost in an (i) M/G/1-queue
among all non-preemptive work-conserving disciplines as well as in an (ii) G/M/1-queue among all pre-
emptive non-anticipating disciplines. In both systems the expected remaining service requirement of a
class-k customer at a scheduling decision epoch is precisely 1/u. Hence, the cu-rule gives priority accord-
ing to the cost ¢ divided by the expected remaining service requirement of a class-k customer. Proposi-
tion 6.1 can be seen as an extension of the cu-rule for DPS-based disciplines in the heavy-traffic regime:
the performance improves as larger weights are assigned according to the values of ﬁéﬂ, j=1,...,J. In
particular, we obtain that a policy that gives lowest priority to type ¢ = argmin;—; . minimizes
the scaled holding cost in heavy traffic among all DPS-based policies.

<)
-~ E(Ry)

7 The standard DPS queue in heavy traffic

In this section we specialize the results obtained so far to the standard DPS queue with phase-type
distributed service requirements. In order to show how this queue fits into the Markovian framework of
Section 2, let us give a brief description of the standard DPS queue.

We consider a single-server system with capacity one and Poisson arrivals with rate A. With probability
pr an arrival is a class-k customer. Class-k customers have phase-type distributed service requirements,
By, with a finite number of phases. In particular, this implies that the second moment of By is finite.
Let

ok = AprE(By)

be the load associated with class-k customers. The capacity is shared among the customers of the various
classes in accordance with the DPS discipline. When there are ny, class-k customers present in the system,
k=1,..., K, each class-k customer is served at rate

Wk

Zfil winy

13



where wy, is the weight associated with class k. It is important to note that the weight for a class-k
customer is independent of the current phase of its service requirement. Denote by N, the number of
class-k customers in the DPS queue in steady state.

We now describe how the DPS queue with phase-type distributed service requirements fits into the Marko-
vian framework as described in Section 2. Within each customer class of the DPS queue, we distinguish
between customers residing in different service phases, and represent them in the general framework as
different customer types. Denoting the number of phases of the class-k phase-type distribution with Jg,

K
the total number of types is J := Y Ji. With slight abuse of terminology, we also refer to a class-k
k=1

customer in the j* service phase as being of type Z;:ll Ji+j. We use k(j) to denote the customer class
to which type-j customers belong. If types ¢ and j belong to the same customer class, then they are
associated the same weight, i.e., g; = g; = wy(;) when k(i) = k(j). The po; in the general framework is
taken such that for I = k(j), po;/pi is the probability that a class-I customer starts with service phase j.
In the DPS queue, no transitions are possible between types belonging to different customer classes,
hence for the general framework this implies that p;; = 0 if k(i) # k(j). If a class-k(7) customer finishes
phase i, then p;; is the probability that it continues in phase j (with k(¢) = k(j)). The number of class-
customers in the DPS model can be written as Ny =31y @;-

The mean service requirement of a class-l customer may be written as E(B)) = >, )= %E(Rj).
Hence, the load in class I can be expressed by '
o= EB)=X > pyE(R;). (27)

Jik(j)=l

For the DPS queue, the set of equations as given in (1) simplify: per class there is a set of equations that
can be solved independently. For class [, the corresponding ~;’s can be found from the following set of
equations:
Vi = poi + Z v;pi, forall ¢ st. k(i) =L
3k (5)=l

Applying the same reasoning as we followed to obtain Equation (2), it follows that an equivalent repre-

sentation of o; is
v
a=x D>, =D a (28)

gk@)=t" k()=
Note that the total load in the DPS queue equals leil o = Z{il Zj:k(j):l pj =: p, i.e., it coincides
indeed with the total load in the general framework.
Before proceeding with the main result of this section, we first give expressions for the forward recurrence
time of the service requirements. For class [, we denote this random variable by Blf wd " From renewal
theory we know that the associated distribution is

T

w 1
PB{™ < 0) = o / B(B > y)dy. (29)
y:

and hence IE(Blf wdy — %é)j). Alternatively we can write

BB <a)= 3 PLR(R <), (30)
. X 1
J:k(3)=l

see (Asmussen 2003, Chapter III, Corollary 5.3). Intuitively Relation (30) can be explained as follows:
Note that lj represents the expected number of visits to phase j during the lifetime of the random
variable B;, with k(j) = l. As a consequence, v;/(pij;) is the expected time spent in phase j. Thus,

with probability
ol
PL ljij Z _ &

Zi:k(i):l ﬁ Zi:k(i):l pi o
the residual life time equals the residual service requirement starting in phase j, and this gives Rela-
tion (30). Combining (29) and (30), we obtain that the mean forward recurrence time of B; satisfies

14



E((B1)?) _ Bl Pi g(R,
2E(B;) Jk%; 0 ' (81)

We now show the state-space collapse for the standard DPS queue with phase-type distributed service
requirements. When passing p 1 1 as described in Section 2, we actually fix the service requirement dis-
tributions and the class probabilities py, while increasing the arrival rate. In particular, the heavy-traffic

. —1
scaling as considered in Section 2, A T A :(ﬁg(l - P)*lﬁi) , is equivalent with A 1 (>, nEB)) ",
since Zfil mE(B;) = Z;‘I=1 po; E(R;) = pg (I — P)~'m. We denote the limiting loads of all classes by
0 = }plE(Bl), l=1,...,K (or equivalently, g; = Zj:k(j):l Pi)-

Proposition 7.1 Assume phase-type distributed service requirements, and consider a standard DPS

queue with weights wy, ..., wg. When scaled by 1 — p, the queue length vector has a proper distribu-
tion as p T 1,
d 7 Gy d 01 0 0
(1—p)(Ny,Noy...,Ng) % (N, Ny, Ng) £ X (=5, 2 25, (32)
wy w2 WK

where % denotes convergence in distribution and X is an exponentially distributed random variable with

e  SemE((BYY)
B = = (B fur

which is equal to 1 when wy, =1 for all k, i.e., in the case of a standard PS queue.

(33)

Remark 7.2 In the case of exponentially distributed service requirements, in Kang et al. (2009) a related
result is proved. The authors consider a sequence of systems indexed by r such that o), — 0, p" =

Z,If:l op 11, and \/r(1—p") = 1, as r — oo, and obtain that (1 — p")N"(rt) converges in distribution to

WO b o

Qk w""7w )
Zk 1 wipr 1 K

(34)

with W( t) the diffusion-scaled workload process, being equal to a reflected Brownian motion with negative
drift. The stationary distribution of the latter process is exponential with mean Zk 1% Q’“ Hence, for
exponentially distributed service requirements, the stationary limit of (34) coincides with the heavy-traffic
limit of the steady-state queue lengths (32) as derived in Proposition 7.1. Interestingly, this shows that
the heavy-traffic limit and the steady-state limit commute in the case of exponentially distributed service
requirements.

Proof of Proposition 7.1. Recall that the DPS queue with phase-type distributed service requirements
is a special case of the general framework of Section 2 when the parameters are chosen as described in
the beginning of this section. In particular, recall that g; = g; = w; when k(i) = k(j) = [. Since
Ni= 3 ni)=t @is 00 = X j.4(j)=1 Pi (see (28)), and since for the general framework Relation (4) holds,
Relation (32) follows directly where X is an exponentially distributed random variable with mean as
given in (5). We are left with showing that (5) reduces to (33).

From (27) and (31), and since type-j customers belong to class k(j) and have weight g; = wy(;), we
obtain that

K

J ) K
;ZE(Rj)Zﬁ 3 ZJE ;

=1 j:k(3)=l

(35)

S\rc

K
Z Ap B
—

Similarly, we have that

J X . o 2
;Pj]E(Rj) = ; Q Ligr;) = ; Qz% = ; /\pl@. (36)

jkGy=t %



Obviously, Equations (35) and (36) remain valid in heavy traffic. Equation (33) follows after substitut-
ing (35) and (36) into (5). O

Note that, although the limiting distribution depends on the second moments of the service requirement
distributions through E(X), the impact of the second moment on E(X) is uniformly bounded, and in
particular

mkinwk <E(X) < max wk,

cf. Aalto et al. (2007).

The state-space collapse as demonstrated above, allows us to show further interesting properties for
the DPS queue in heavy traffic. In Section 7.1 we obtain heavy-traffic results for the residual service
requirements of the customers in the various classes. In Section 7.2, monotonicity in the weights of the
standard DPS policy is investigated.

7.1 Residual service requirements

The distribution of the residual service requirement of a customer, without having knowledge of the
current phase of its service requirement, depends on the used scheduling discipline. For example, in a
First Come First Served queue the residual service requirement for customers waiting to be served is given
by their original service requirement. In case of a standard PS queue, the residual service requirements
are independent random variables distributed according to the forward recurrence times of the service
requirements. Given that there are ny class-k customers in the system, let By , denote the remaining
service requirement of the h-th class-k customer, £k = 1,..., K, h = 1,...,ng. The following result is
known for PS:

Nk

K
P(Bj, < @pp, Ne=npk=1,... . Kh=1,..n) =P(Ny =m, bk =1,...,K) [ [[PBL"" < 2,
k=1h=1

with x5, > 0. The joint distribution of the numbers of customers is of product form: P(Ny, = ng, k =
,....,K)=(1- ,0)M Hle o0,*, see for example Cohen (1979), Kelly (1979). In this section we

[ !
show that in a heavyrf‘éféiﬂ{lckéetting a similar result holds for the DPS queue.
Obviously, in the heavy-traffic limit, there will be an infinite number of customers present in the system.
Therefore, we concentrate on the first y; < oo class-k customers, k = 1,..., K. In the following propo-
sition we show that the scaled numbers of customers in the various classes and the remaining service
requirements of any finite subset of customers are independent in a heavy-traffic setting. In particular,
the remaining service requirement of a class-k customer is distributed according to the forward recurrence

time of its service requirement By. It will be convenient to set By , = 0 whenever h > Ny, k=1,... K.

Proposition 7.3 Assume phase-type distributed service requirements, and consider a standard DPS
queue with weights w1, ..., wg. Then,

1

H E (efslvthfM> )

>

lIimE (e* iy s(l=p)Ni—2, L, Slvh'BlT,h) =FE (e* =K, 511\71) )
pT1

I=1h=1
foryy€{0,1,...} and sy p,51>0,1=1,..., K, h=1,...,y.
Recall that (]\71, No, ... ,NK) 4x. (5}—11, 5—";, R Sf;) , where X is exponentially distributed with mean

E(X) = S pE((BY)?)

= SR (B w cf. Proposition 7.1.

Proof of Proposition 7.3: It will be convenient to first analyze the conditional expectation
E <e_ PUEP IR SlvhBlihr‘Q’). In order to do so, we condition on the type of the h-th class-I customer,
which we denote by I; j, and takes values in {i : k(i) = [}. For convenience, if h > Zj:k(j):l Qj, then I,

has no significance. Let I = (i, iy Ik, - - Ik yy ), which takes values in the set

To={i:k(i11)=1,..., k(iry,) =1, ..., k(ix1) = K, ..., k(ixy.) = K}.
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Conditioning on the types of the customers, we can write

) S E ( — T, S s B,

i€l

E (e* DIHEDIHINTS nBi

I=7 Q) P(I =1G). (37)
Define the random variable Y] as
Y =min(y, Y Q) =min(y,N), I=1,... K,
Jik(5)=l

and note that P(Y; = y;) = P(Zj:k(j):l Q; > y) = 1as p 11, cf. Proposition 2.1. Since y; is a
deterministic value, this implies convergence of Y; to y; in probability. By definition, if the h-th class-I
customer is of type i; p, then the corresponding residual service requirement has the same distribution as

R;,,, h=1,...,y. Hence,
K Y
( iz Tie o hB” ;; H) = HHE(G_Sl,hRil,h)’
1=1h=1
Y1
— HHE(—Glhth)’ asp/]\l’ (38)
I=1h=1

where the convergence holds in probability (since the conditional expectation on the left-hand side con-
verges to a deterministic value).

Given the population vector Q, the first chosen class-l customer is of type i, k(i) = [, with probability
Qi Qj—1ii=j

Sron @ The next chosen class-l customer is of type j, k(j) = [, with probability S0 0T etc.
So we obtain
Yi—1
(f ﬂ@) Qi . Qi = L(iy=ir ) . . Qilv”l —2n=1 Lein=iny) .
Zj:k(j):l Qj Zj:k(j):l Qj -1 Zj:k(j):l Qj - -1)
Yre—1
QiK,l . QiK,2 - l(i}(71=i}(v2) . . QiK,YK - hil l(iK,;LZiz(,yK)
Yiki=k @i 2jm(=x @i —1 =k @i — Yk — 1)
The latter converges in probability to
K Yt ~
HHp’llh7 as PTI
1=1h=1

where we used that (1 — p)(Q1,...,QJ) 4 X (p1/g1,---,p5/9s) (see Proposition 2.1), the fact that Y;
converges in probability to y;, the continuous mapping theorem, g;, , = wy(;, ,) = wi, and (28). Together
with (30), (37) and (38) we now obtain

Q) S (em) < [T 3 Zoos(er)

iez I=1h=1 =1 h=14; p:k(i1,n)=l
K u

_ Bfwd
~IITE ()
I=1h=1

in probability as p T 1. By the law of total expectation we therefore have

( lezh 15lhBlh

mE (e— YDREICETOIOTED DHD DHUN sz,hB;h> — limE (e— Sl si(-0)Qig (e— SIS sun BT,
pT1 pT1

7))
—E (o729 ﬁH]E( B (39)

I=1h=1
The result now follows by setting s; = 35(;), j = 1,...,J, in Equation (39) and noting that Zj:k(j):l Qj =
N;. O
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7.2 Monotonicity in the weights

In this section, we investigate how the choice of the weights influences the holding cost for the standard
DPS queue. We denote by dj the cost associated with a class-k customer. Note that this is a different
setting compared to Section 6, where a cost was assigned per type. As we will see in the proposition
below, the scaled holding cost stochastically decreases when relatively larger weights are assigned to
classes according to the values of dk/IE(B,{wd), k=1,...,K. From Proposition 7.3 it follows that the
expected residual service requirement of a class-k customer is E(B}) = E(B,fwd) in heavy traffic. Hence,
in order to decrease the holding cost in heavy traffic, priority should be given according to the cost
dy, divided by the expected residual service requirement of a class-k customer. This agrees with the
celebrated cu-rule, see also Section 6.

Proposition 7.4 Assume phase-type distributed service requirements and consider two standard DPS
queues with weights (w1, ..., wg) and (W1, ..., W0k). Letdy, >0, k=1,..., K. Without loss of generality

we assume that the classes are ordered such that dy JE(B{"®) > ... > dK/E(Bfwd)
fw’:il < w':’“ ,forallk=1,...,K — 1, then
- S(w) (@)
lim(1 — AN, > lim(1 - p AN, "
pT1 ( P) kzzl k ; k

where >4 denotes the usual stochastic ordering, and N,fps(w) denotes the number of class-k customers
in the DPS queue with weights w1, ..., wk.

Proof: From Proposition 7.1 we obtain that (1 — p) Zszl de,f)PS(w) converges in distribution to an
exponentially distributed random variable with mean

Z d 0k
it wk Zpk]E Bk a

>k PRE((Bg)?
hence we need to check that
Y s %
Zk:l %Eg(]?;kk);) - 25:1 %Egékk);) '
This follows using similar arguments as in the proof of Proposition 6.1 and noting that Eéé?gi? =
E(B{"%). O

When the service requirements are exponentially distributed, it holds that dy, /E(B,J:Wd) = dj - Hence,
the cp-rule can be obtained in the limit from a DPS policy by letting the ratios wg /wg41, k= 1,..., K —1,
all go to oo.

Remark 7.5 In Kim and Kim (2006) it was conjectured that, in the case of exponentially distributed
service requirements, a result similar to Proposition 7.4 holds outside heavy traffic, see also (Verloop et al.
2009, Section 6.1).

Remark 7.6 In (Coffman and Denning 1973, p. 188-199) it was conjectured that I‘E/(‘Eg)]fg < 1lisa
sufficient condition to ensure that the queue length under PS has a smaller mean than under the Least
Attained Service discipline (denoted by LAS or FB), which gives service to the customers that have re-
ceived the least amount of service. In Wierman et al. (2004) the authors found a counterexample to this
conjecture, and it was later shown in Aalto and Ayesta (2006) that a stronger condition is needed in order
to compare the performance of LAS and PS, to be specific, the distribution needs to have an “Increas-
ing Mean Residual Life”. This result is in concordance with the intuition behind size-based scheduling:
queue lengths can be reduced by prioritizing customers that (are likely to) have smaller residual service
requirements. The same intuition also explains the conditions in Proposition 7.4 which are based on

E(ngd) = Ez(]éﬁgzz;) =1 (Vggéf)") + E(Bk)) Customers belonging to classes with highly variable service

distributions are likely to have longer service requirements. The variance also appears in the criteria
conjectured in Coffman and Denning (1973).
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Figure 3: Total mean number of customers under a DPS policy with weights w; = 1 and wy = r. Class-
1 service requirements are hyper-exponentially distributed (with parameters u1; = 0.1, pu12 = 10) and
class-2 service requirements are exponentially distributed (with pe = 1). The load p = g1 + 02 equals 0.6,
0.8, 0.9 and 0.999, respectively.

Although the monotonicity of the weight structure in Proposition 7.4 is only proved in the heavy-traffic
limit, it is actually a good rule of thumb for systems operating close to saturation as well. We conclude
this section with a numerical example where the behavior of the DPS queue is numerically investigated
for different values of the total load.

Numerical evaluation of Proposition 7.4: We consider a DPS queue with two classes. Class-1 customers
have hyper-exponentially distributed service requirements, i.e., with a certain probability p a class-1
customer has an exponentially distributed service requirement with mean 1/u17 and with probability
1 — p it has an exponentially distributed service requirement with mean 1/u15. Class-2 customers have
exponentially distributed service requirements with mean 1/pus. Furthermore, we assume the load is
equally distributed between classes 1 and 2, i.e., 91 = p2. We are interested in the total number of
customers in the system, hence we set d; = ds = 1. Note that

2 2
w +(1_p)/:u’ wd
R(Bfwd :p/:ull 12 .nd F(BS -1 )
( 1 ) p/M11+(1—p)/M12 ( 2 ) //J“2

Without loss of generality we set wy = 1 and we = r, with » > 0. Proposition 7.4 states that in a
heavily-loaded system the steady-state scaled total number of customers is stochastically increasing in r
when E(B{"?) < E(BJ"%), is constant in r when E(B{"“%) = E(B{"?), and is stochastically decreasing
in 7 when E(B{"?) > E(BJ"?). Note that when r = 1, the policy reduces to standard PS, and in that

case the total mean number of customers is given by £ -
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In Figure 3 we plot the total mean number of customers as a function of the weight parameter r (denoted
by E(NDPS(”))). We consider the case p11 = 0.1, 412 = 10 and py = 1, while choosing several values
for f := E(B{"")/E(BJ“%). The total mean number of customers is obtained by solving a system of
linear equations as described in Fayolle et al. (1980). For p = g1 + g2 we chose the following values:
0.6, 0.8, 0.9 and 0.999. We see that in the latter case, a heavily-loaded system, the total mean number
of customers indeed exhibits the above-described phenomena depending on whether f < 1 (increasing),
f =1 (constant) or f > 1 (decreasing). As the total load decreases, the monotonicity no longer necessarily
holds. This can be explained as follows. Since 1111 < p2 < 12, the cu-rule suggests to prioritize class-1
customers in phase 2, while the class-1 customers in phase 1 should receive lowest priority. In the DPS
queue no differentiation can be made between customers residing in different phases. Therefore, the way
the weight r affects the total mean number of customers depends on the typical mix of numbers of class-1
customers residing in the two phases. In heavy traffic, this mix is characterized by the loads corresponding
to the work of class 1 residing in phases 1 and 2, cf. Proposition 2.1, and is hence independent of r.
However, away from heavy traffic, this mix may itself be influenced by r, leading to the observed non-
monotonic behavior in the figures.

8 Conclusion

We have studied a multiple-phase network of which the DPS queue with phase-type distributed service
requirements is a special case. In our main result we have shown that, in heavy-traffic conditions, the
queue length vector exhibits a so-called state-space collapse: The multi-dimensional vector describing
the numbers of customers in the various classes converges in distribution to a one-dimensional random
vector. Based on this result, we found that the DPS model in heavy traffic inherits several well known
properties of PS (not necessarily in heavy traffic). For example, in the limit, the (scaled) number of
customers present in a DPS model is exponentially distributed, which is the continuous analogue of the
geometric queue length distribution of the PS queue. In addition, in a heavy-traffic regime the residual
service requirements are independent and distributed according to the forward recurrence times, which
is true for PS as well.

We have investigated the performance of a DPS queue as a function of the weights and showed that the
scaled holding cost reduces as customers with smaller weighted residual service requirements get larger
weights. This property can be understood from the standard intuition of the cu-rule.
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