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Heavy-traffic analysis of a multiple-phase network 
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ABSTRACT 
We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-
traffic setting. Customers present in the system are served simultaneously at rates controlled by 
a vector of weights. We assume that customers have phase-type distributed service 
requirements and allow that customers have different weights in various phases of their service. 
In our main result we establish a state-space collapse for the queue length vector in heavy 
traffic. The result shows that in the limit, the queue length vector is the product of an 
exponentially distributed random variable and a deterministic vector. This generalizes a 
previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially 
distributed service requirements. Their analysis was based on obtaining all moments of the 
queue length distributions by solving systems of linear equations. We undertake a more direct 
approach by showing that the probability generating function satisfies a partial differential 
equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of 
the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS 
queue we obtain that, conditioned on the number of customers in the system, the residual 
service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We 
then investigate how the choice for the weights influences the asymptotic performance of the 
system. In particular, for the DPS queue we show that the scaled holding cost reduces as 
classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k 
is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k 
service requirement. The applicability of this result for a moderately loaded system is 
investigated by numerical experiments. 
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Abstract

We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-
traffic setting. Customers present in the system are served simultaneously at rates controlled by a
vector of weights. We assume that customers have phase-type distributed service requirements and
allow that customers have different weights in various phases of their service.

In our main result we establish a state-space collapse for the queue length vector in heavy traf-
fic. The result shows that in the limit, the queue length vector is the product of an exponentially
distributed random variable and a deterministic vector. This generalizes a previous result by [26]
who considered a DPS queue with exponentially distributed service requirements. Their analysis
was based on obtaining all moments of the queue length distributions by solving systems of linear
equations. We undertake a more direct approach by showing that the probability generating func-
tion satisfies a partial differential equation that allows a closed-form solution after passing to the
heavy-traffic limit.

Making use of the state-space collapse result, we derive interesting properties in heavy traffic:
(i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the
residual service requirements are asymptotically i.i.d. according to the forward recurrence times.
(ii) We then investigate how the choice for the weights influences the asymptotic performance of the
system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with
a higher value for dk/E(Bfwd

k ) obtain a larger share of the capacity, where dk is the cost associated

to class k, and E(Bfwd
k ) is the forward recurrence time of the class-k service requirement. The

applicability of this result for a moderately loaded system is investigated by numerical experiments.

Keywords: Discriminatory processor sharing; heavy traffic; phase-type service requirements; residual
service requirements; scheduling

1 Introduction

The Discriminatory Processor Sharing (DPS) model, introduced in [24], is a versatile generalization
of the celebrated (Egalitarian) Processor Sharing (PS) model. DPS allows class-based differentiation by
assigning different weights to customers1 of different classes. The processing resources are then distributed
among all customers, in proportion to their relative weights. As new customers join the system and others
leave after having completed their service requirement, the actual resource allocation to each customer
fluctuates dynamically over time.

The asymmetric and dynamic fluctuation of the service rates give rise to complex behavior of the
stochastic processes describing the numbers of customers in the system and their respective service

∗This work was initiated during a visit of Dr. U. Ayesta to The Netherlands, financially supported by Grant B 62-640
of NWO (Netherlands Organization for Scientific Research).

1In this paper we adopt the traditional queueing theoretic terminology; often “customers” are abstract entities such as
jobs, flows, packets, etc.
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completion times. The literature devoted to the analysis of DPS has been significantly extended over
the past decade, as renewed interest in DPS arose due to its relevance in communication networks with
distributed control, in particular the Internet [4]. An extensive survey of the DPS literature can be
found in [3]. The seminal paper [14] provided the first analysis of the mean sojourn time conditioned on
the service requirement, by solving a system of integro-differential equations. As a by-product, the mean
queue lengths of the various classes were shown to depend on the entire service requirement distributions,
of all customer classes. This as opposed to the egalitarian PS model, where the marginal queue lengths
have a geometric distribution that only depends on the average loads of all classes, thus exhibiting
a desirable insensitivity among the various classes. Although not strictly insensitive towards higher
moments of service requirement distributions, the DPS model was shown to have finite mean queue
lengths irrespective of any higher-order characteristics [6]. This is further illustrated by the heavy-traffic
bounds on the mean queue lengths reported in [2], which only depend on the service weights and the mean
traffic loads. Partial insensitivity results have also been demonstrated for other performance criteria such
as the class-dependent mean sojourn time conditioned on the service requirement [6], and the tail index
of the sojourn time distribution [9].

Several papers have analyzed the (discriminatory) processor sharing model assuming overload conditions
with general service requirement distributions. In [4] the authors determine the queue length growth
rates of the standard DPS model, generalizing the analogous result for egalitarian processor sharing [19].
Further extensions to bandwidth-sharing networks [13] and a network setting similar to ours [8], have
been obtained more recently. In these references the transient behavior of the queue lengths is studied
under overload conditions, while we investigate the convergence of the (scaled) steady-state distribution
as the critical load is approached.

In the present paper, we assume that all customer classes have phase-type service requirement distri-
butions and study the heavy-traffic behavior of a generalization of the DPS model, allowing customers
to have different weights in various phases of their service. This extension allows for example to incor-
porate sophisticated scheduling techniques that give preferential treatment to customers that are close
to service completion, thus reducing the numbers of customers in the system and their mean response
times, cf. [27]. Similar generalizations of DPS were previously considered by [8, 17, 18]. The analysis
in [17] is particularly relevant for the present study. There, the generalized DPS model was investigated
assuming heavy traffic conditions (and finite second moments of the service times), by using a direct
relationship with critical Crump-Mode-Jagers branching processes. Through appropriate choices for a
quite general functional of the queue length process, [17] determines the heavy-traffic distributions of the
marginal queue lengths and response times (after scaling). Our results are complementary to those: On
one hand we restrict the focus to the queue lengths, and on the other hand we study the joint queue
length distribution. Doing so, we establish a state-space collapse for the queue length vector in heavy
traffic. The result shows that in the limit, the queue length vector is the product of an exponentially dis-
tributed random variable and a deterministic vector. The reduction of dimensionality of a multi-variate
stochastic process under asymptotic (heavy-traffic) scaling has been demonstrated previously in other
queueing models, see for example [7, 28, 20].

Our work is inspired by the heavy-traffic analysis of the traditional DPS model with exponential service
requirement distributions in [26]. After developing a procedure to determine all moments of the queue
length distributions from systems of linear equations, [26] show that the variability of the queue length
vector is of a lower order than the mean queue lengths, which directly leads to state space collapse of
the multi-dimensional queue length process. In [22] it was indicated that a similar approach as in [26]
could be followed for the heavy-traffic analysis of the DPS queue with phase-type distributions. Here we
follow a different and more direct approach, by investigating the joint probability generating function of
the queue lengths. The probability generating function is shown to satisfy a partial differential equation,
which takes a convenient form after passing to the heavy-traffic limit, allowing a closed-form solution in
that case. This approach allows an elegant heavy-traffic analysis for the case of phase-type distributions.

As phase-type distributions lie dense in the class of all probability distributions, in practice the re-
striction to this class is not seen as being essential. In the present study, an important caveat must
be accounted for, though. Our analysis relies on heavy-traffic scaling techniques which typically require
finiteness of second moments of the service requirements in many queueing models [7]. Since all phase-
type distributions (with a finite number of phases) have a finite second moment, this restriction is implicit
in our modeling approach. Indeed, our results show that the second moments appear in a natural fashion
in the heavy-traffic limit. We believe that our results do extend to all distributions with a finite second
moment, but we do not investigate this here.
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Allowing the relative service weights of customers to change over time as they acquire service, effectively
opens a way to implement size-based scheduling by assigning relatively high weights in service phases
that are more likely to lead to a quick service completion. A classical result in the size-based literature
states that the so-called cμ-rule minimizes the mean holding cost in an (i) M/G/1-queue among all non-
preemptive disciplines and in a (ii) G/M/1-queue among all preemptive non-anticipating disciplines, see
for example [16, 10, 25]. We recall that the cμ-rule is the discipline that gives strict priority in descending
order of ckμk, where ck and μk refer to a cost and the inverse of the mean service requirement, respectively,
of class k. The optimality of the cμ-rule can be understood from the fact that for both systems (i) and
(ii), in addition to being the original mean service requirement, 1/μk also coincides with the expected
remaining service requirement of a class-k customer at a scheduling decision epoch. Our analysis extends
the cμ-rule to DPS-like policies: In heavy traffic we show that the scaled holding cost reduces as more
preference is given to customers in service phases with a small weighted expected remaining service
requirement.

For the case of the standard DPS-queue with phase-type service requirement distributions, we show
that in the heavy-traffic setting, conditioned on the number of customers present in the queue, the
remaining service requirements of the various customers are i.i.d., and distributed according to the forward
recurrence time, a result that is well known for Egalitarian PS (see for example [12, 21]). In addition,
we show that the holding cost in a DPS queue reduces as more preference is given to classes according
to the cost of a class divided by its mean forward recurrence time. This provides a useful guideline to
schedule a multi-class queue close to saturation for the cases not covered by the cμ-rule.

The paper is organized as follows. In Section 2 we introduce the general Markovian framework and
state the main result of the paper, which establishes a state-space collapse of the joint queue length
vector. As a preparation for the proof of the main result, the functional equation for the generating
function of the joint queue length process is studied in Section 3 and, under the heavy-traffic scaling, in
Section 4. The proof of the main result is given in Section 5. Section 6 discusses size-based scheduling
for the general model. Section 7 applies the state-space collapse result to the standard DPS queue with
phase-type distributed service requirements. In addition, it discusses the optimal choice of the weights,
and shows that residual service requirements are asymptotically i.i.d., and have the same distribution as
the forward recurrence times. Concluding remarks can be found in Section 8.

2 General framework and main result

We consider a general Markovian system with J customer types. Customers arrive according to a Poisson
arrival process with rate λ, and an arriving customer is of type i with probability p0i. Customers of type i
have an exponentially distributed service requirement with mean 1

μi
. After service completion, customers

of type i become of type j with probability pij , and leave the system with probability pi0 := 1−∑J
j=1 pij .

We denote the number of type-j customers in the system by Qj and the workload in type j by Wj . The J
customer types share a common resource of capacity one. There are positive weights g1, . . . , gJ associated
with each of the types. Whenever there are qi type-i customers, i = 1, . . . , J , present in the system, each
type-j customer is served at rate

gj∑J
i=1 giqi

, j = 1, . . . , J.

We let Ri denote the remaining service requirement until departure for a customer that is now of
type i. Note that this includes service in all subsequent stages as the customer changes from one type to
another. Since the service time of each type is exponentially distributed, the expected remaining service
requirements can be interpreted as absorption times in an appropriate Markov chain and therefore satisfy
the following system of linear equations: E(Ri) = 1

μi
+
∑J

j=1 pijE(Rj). Let E(R̄) = (E(R1), . . . , E(RJ ))T

and let P be a J ×J matrix with P = (pij), i, j = 1, . . . , J . Since P is a sub-stochastic matrix, (I −P )−1

is well defined and we can write

E(R̄) = (I − P )−1m̄, with m̄ = (1/μ1, . . . , 1/μJ)T .

Denote the total traffic load by

ρ := λ

J∑
j=1

p0jE(Rj).
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Let γi represent the expected number of times a customer is of type i during its visit in the network.
Hence, γ1, . . . , γJ , satisfy the following equations

γi = p0i +
J∑

j=1

γjpji, i = 1, . . . , J, (1)

i.e., γ̄T = p̄T
0 (I − P )−1, with γ̄ = (γ1, . . . , γJ)T and p̄0 = (p01, . . . , p0J)T . Note that γi

μi
represents the

expected cumulative amount of service a customer requires while being of type i during its visit in the
network. We denote the load corresponding to type-i customers by

ρi := λ
γi

μi
.

Hence, for the total traffic load ρ we may equivalently write

ρ = λ

J∑
j=1

p0jE(Rj) = λp̄T
0 E(R̄) = λp̄T

0 (I − P )−1m̄ = λγ̄T m̄ = λ

J∑
j=1

γj

μj
=

J∑
j=1

ρj . (2)

Our main result shows that the steady-state distribution of the multi-dimensional queue length process
takes a rather simple form when the system is near saturation, i.e., ρ ↑ 1, which is commonly referred to
as the heavy-traffic regime. This regime can be accomplished by fixing the p̄0, P and m̄, and letting

λ ↑ λ̂ :=
1

p̄T
0 (I − P )−1m̄

, (3)

since then ρ = λp̄T
0 (I −P )−1m̄ ↑ 1. Although approaching heavy traffic in this way is natural, the results

remain valid for any other sequence of parameters (belonging to stable systems) that reaches heavy traffic
in the limit. In heavy traffic, we denote by

ρ̂i = λ̂
γi

μi

the load corresponding to type-i customers (
∑J

j=1 ρ̂j = 1).
We will now state our main result, which establishes a state-space collapse for the queue length vector

in the heavy-traffic regime.

Proposition 2.1 Consider the general Markovian framework. When scaled with 1− ρ, the queue length
vector has a proper limiting distribution as (ρ1, . . . , ρJ) → (ρ̂1, . . . , ρ̂J ), such that ρ ↑ 1,

(1 − ρ)(Q1, Q2, . . . , QJ) d→ (Q̂1, Q̂2, . . . , Q̂J) d= X ·
(

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

)
, (4)

where d→ denotes convergence in distribution and X is an exponentially distributed random variable with
mean

E(X) =

∑J
j=1 ρ̂jE(Rj)∑J
j=1

ρ̂j

gj
E(Rj)

. (5)

The proof will be given in Section 5. Here we give some intuition for the result. Proposition 2.1 shows
that in heavy traffic, the multi-dimensional queue length process essentially reduces to a one dimensional
random process: it can be expressed as a random variable X times a deterministic vector. Given this
reduced variability of the process, the value of the deterministic vector can be understood as follows.
Note that, in general

ρj = E

(
gjQj∑J
i=1 giQi

· 1(
PJ

i=1 Qi>0)

)
, (6)

since the expression within the expectation operator reflects the capacity share of class j. Here the
function 1A denotes the indicator function, i.e., 1A = 1 if A is true, and 0 otherwise. Using that the
process reduces to one dimension in heavy traffic, in the limit we may replace Qj/Qi by a ratio of

4



constants aj/ai. Together with (6) and the fact that the scaled queue length will be strictly positive in
heavy traffic, this indicates that

aj = (
J∑

i=1

giai)
ρ̂j

gj
.

The pre-factor
∑

i giai is common to all aj , which explains the appearance of the vector ( ρ̂1
g1

, ρ̂2
g2

, . . . , ρ̂J

gJ
)

in Proposition 2.1.

Numerical illustration of Proposition 2.1: We consider two types of customers and choose g1 = 2, g2 = 1,
μ1 = 2, μ2 = 5, p12 = 0.3, p21 = 0.1, and we take different values for the loads. In Figure 1, the
horizontal and vertical axes correspond to Q1 and Q2 respectively. We plot the joint queue length
probabilities for loads ρ = 0.8 (ρ1 = 0.5872, ρ2 = 0.2128), ρ = 0.90 (ρ1 = 0.6605, ρ2 = 0.2394) and
ρ = 0.99 (ρ1 = 0.7266, ρ2 = 0.2634), respectively. As a consequence of the state-space collapse stated in
Proposition 2.1, in heavy traffic the probabilities will lie on a straight line with slope g1

ρ̂1

ρ̂2
g2

, starting from
the origin. In Figure 1 we see that as the load increases, the probable states indeed tend to concentrate
more around this line. For load ρ = 0.99, this effect is clearly visible; the probable queue length states
are strongly concentrated around the line with slope g1

ρ1

ρ2
g2

≈ 0.73.
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Figure 1: Joint queue length probabilities for load ρ = 0.8 (left), ρ = 0.90 (center) and ρ = 0.99 (right),
respectively.

3 Functional equation

Before focusing on the heavy traffic regime, we derive a functional equation for the generating function
of the joint queue length process.

Denote by Q̄ and q̄ the vectors (Q1, Q2, . . . , QJ) ≥ 0̄ and (q1, q2, . . . , qJ) ≥ 0̄, respectively. The
equilibrium distribution π(q̄) := P(Q̄ = q̄) satisfies

λπ(0̄) =
J∑

i=1

μipi0π(ēi), (7)

and for q̄ �= 0̄,

⎛
⎜⎜⎝λ +

J∑
i=1

giqiμi

J∑
i=1

giqi

⎞
⎟⎟⎠π(q̄) =

J∑
i=1

λp0iδqiπ(q̄ − ēi) +
J∑

i=1

gi(qi + 1)
J∑

j=1

gjqj + gi

· μipi0π(q̄ + ēi) (8)

+
J∑

i=1

J∑
j=1

δqj ·
gi(qi + 1)

J∑
m=1

gmqm + gi − gj

· μipijπ(q̄ + ēi − ēj),

where δq = 1 if q > 0, and δq = 0 otherwise, and with ēi the i-th unit vector. It will be notationally
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convenient to use the following transformation:

R(0̄) = 0 and R(q̄) =
π(q̄)

J∑
j=1

gjqj

, for q̄ �= 0̄.

Also, let p(z̄) and r(z̄) denote the generating functions of π(q̄) and R(q̄), respectively, where z̄ =
(z1, . . . , zJ) and |zi| < 1 for i = 1, . . . , J :

p(z̄) = E(zQ1
1 · . . . · zQJ

J ) =
∞∑

q1=0

· · ·
∞∑

qJ=0

zq1
1 · . . . · zqJ

J π(q̄),

r(z̄) = E

⎛
⎜⎜⎝zQ1

1 · . . . · zQJ

J
J∑

i=1

Qigi

· 1(
PJ

j=1 Qj>0)

⎞
⎟⎟⎠ =

∞∑
q1=0

· · ·
∞∑

qJ=0

zq1
1 · . . . · zqJ

J R(q̄).

Note that
gizi

∂r(z̄)
∂zi

=
∑

q1,...,qJ :
PJ

j=1 qj>0

giqi∑J
j=1 gjqj

zq1
1 · . . . · zqJ

J π(q̄). (9)

Multiplying (8) by zq1
1 . . . zqJ

J , summing both sides over q1, q2, . . . , qJ and adding equation (7), we obtain
from (9) that

λp(z̄) +
J∑

i=1

μigizi
∂r(z̄)
∂zi

=
J∑

i=1

λp0izip(z̄) +
J∑

i=1

μigipi0
∂r(z̄)
∂zi

+
J∑

i=1

J∑
j=1

μigipijzj
∂r(z̄)
∂zi

. (10)

Since π(0̄) = 1 − ρ, it follows from (9) that

J∑
i=1

gizi
∂r(z̄)
∂zi

+ 1 − ρ = p(z̄). (11)

Together with (10) this gives the following partial differential equation for r(z̄):

λ(1 − ρ)(1 −
J∑

i=1

p0izi) =
J∑

i=1

⎛
⎝μigi(pi0 +

J∑
j=1

pijzj − zi)− λgizi(1 −
J∑

j=1

p0jzj)

⎞
⎠ ∂r

∂zi
. (12)

This equation turns out to be very useful to analyze the joint queue length distribution in heavy traffic,
as it allows for an explicit solution in that asymptotic regime. That is the topic of the next two sections.
Note that Equation (12) was derived in [26] for the case of exponentially distributed service requirements.

4 Heavy-traffic scaling

It will be convenient to use the change of variables zi = e−si with si > 0, i = 1, . . . , J . Denote by
s̄ = (s1, . . . , sJ) and we will use the short hand notation e−(1−ρ)s̄ = (e−(1−ρ)s1 , . . . , e−(1−ρ)sJ ). If

lim
ρ↑1

p(e−(1−ρ)s̄) = lim
ρ↑1

E(e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sJQJ ) (13)

exists, then there is a (possibly defective) random vector (Q̂1, Q̂2, . . . , Q̂J) such that (1−ρ)(Q1, Q2, . . . , QJ)
converges in distribution to (Q̂1, Q̂2, . . . , Q̂J), and the distribution of (Q̂1, Q̂2, . . . , Q̂J) is uniquely deter-
mined by the limit in (13) (cf. the Continuity theorem [15]). For now, we assume that the limit exists and
come back to this assumption in Section 5. In this section we give two lemma’s that describe properties
of limρ↑1 p(e−(1−ρ)s̄). In particular, in Lemma 4.2 we obtain a partial differential equation, which will be
the key element in the proof of the main result stated in Proposition 2.1.
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In order to describe the behavior of the generating function, we define

r̂(s̄) = E

(
1 − e−s1Q̂1 · . . . · e−sJ Q̂J∑J

j=1 Q̂jgj

· 1(
PJ

j=1 Q̂j>0)

)
.

The “1” in the numerator is to ensure that the expression between brackets remains bounded when the
Q̂j ’s are all near zero. We can now state the following lemma.

Lemma 4.1 If limρ↑1 p(e−(1−ρ)s̄) exists, then it satisfies:

lim
ρ↑1

p(e−(1−ρ)s̄) =
J∑

i=1

gi
∂r̂(s̄)
∂si

. (14)

Proof: From (11) we have

lim
ρ↑1

p(e−(1−ρ)s̄) = lim
ρ↑1

J∑
i=1

gi
∂r(z̄)
∂zi

∣∣∣
z̄=e−(1−ρ)s̄

. (15)

By definition of r(z̄) we can write

lim
ρ↑1

∂r(z̄)
∂zi

∣∣∣
z̄=e−(1−ρ)s̄

= lim
ρ↑1

∂E

(
z

Q1
1 ·...·zQJ

JP
J
j=1 Qjgj

· 1(
PJ

j=1 Qj>0)

)
∂zi

∣∣∣
z̄=e−(1−ρ)s̄

= lim
ρ↑1

E

(
Qi∑J

j=1 Qjgj

· e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sJ QJ

e−(1−ρ)si
· 1(

P
J
j=1 Qj>0)

)

= E

(
Q̂i∑J

j=1 Q̂jgj

· e−s1Q̂1 · . . . · e−siQ̂i · . . . · e−sJ Q̂J · 1(
PJ

j=1 Q̂j>0)

)

=
∂r̂(s̄)
∂si

, (16)

where in the third step we used that the function QiPJ
j=1 Qjgj

· e−(1−ρ)s1Q1 · . . . · e−(1−ρ)s1QJ · 1(
PJ

j=1 Qj>0)

is uniform integrable (since it is upper bounded by 1
minj(gj)

), and converges in distribution to Q̂iP
J
j=1 Q̂jgj

·
e−s1Q̂1 · . . . · e−s1Q̂J · 1(

PJ
j=1 Q̂j>0). From (15) and (16) we obtain (14). �

In the following lemma we show that the partial differential equation as given in (12) simplifies consid-
erably in the heavy-traffic regime.

Lemma 4.2 If limρ↑1 p(e−(1−ρ)s̄) exists, then the function r̂(s̄) satisfies the following partial differential
equation:

0 =
J∑

i=1

Fi(s̄)
∂r̂(s̄)
∂si

= F̄ (s̄) · �r̂(s̄), ∀ s̄ ≥ 0,

where F̄ (s̄) = (F1(s̄), . . . , FJ(s̄)), and

Fi(s̄) = gi

⎛
⎝μi(−si +

J∑
j=1

pijsj) + λ̂

J∑
j=1

p0jsj

⎞
⎠ , (17)

with λ̂ as defined in (3).

Proof: Taking z̄ equal to e−(1−ρ)s̄ in (12), dividing both sides by 1− ρ and taking the limit of ρ ↑ 1, this
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gives

0 =

lim
ρ↑1

J∑
i=1

⎛
⎜⎜⎜⎝μigi

1 − e−(1−ρ)si +
J∑

j=1

pij(e−(1−ρ)sj − 1)

1 − ρ
− λgie−(1−ρ)si

J∑
j=1

p0j
1 − e−(1−ρ)sj

1 − ρ

⎞
⎟⎟⎟⎠ ∂r(z̄)

∂zi
|z̄=e−(1−ρ)s̄

=
J∑

i=1

gi

⎛
⎝μi(si −

J∑
j=1

pijsj) − λ̂
J∑

j=1

p0jsj

⎞
⎠ ∂r̂(s̄)

∂si
, (18)

where in the second step we used equation (16) and the fact that limρ↑1 x1−ρ−1
1−ρ = ln(x). The result now

follows. �

5 Proof of the main result

This section contains the proof of the main result stated in Proposition 2.1. It consists of two steps,
which will be treated separately. First we show in Subsection 5.1 that

(Q̂1, Q̂2, . . . , Q̂J) d= (
ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ
) · X, (19)

for some random variable X . Second, we find in Section 5.2 that X is exponentially distributed with
mean as given in (5).

With these two partial results, the proof can be completed as follows: In Section 4 we assumed that
limρ↑1 p(e−(1−ρ)s̄) exists, thereby showing in Subsections 5.1 and 5.2 that there is a unique limit. For any
converging subsequence this analysis can be performed, in particular for the lim sup and lim inf, which im-
plies that the limit itself exists. This formally establishes the state-space collapse (1−ρ)(Q1, Q2, . . . , QJ) d→
(Q̂1, Q̂2, . . . , Q̂J) with (Q̂1, Q̂2, . . . , Q̂J) taking only values on the line described in (19).

5.1 State-space collapse

In this section we give the proof of (19). The proof is based on the fact that the probability generating
function satisfies the partial differential equation of Lemma 4.2. From this partial differential equation it
can be derived that the function r̂(s̄) is constant on the J − 1 dimensional set

Hc := {s̄ ≥ 0̄ :
J∑

j=1

ρ̂j

gj
sj = c}, c > 0,

as will be shown in Lemma 5.2. Hence, the function r̂(s̄) depends only on s̄ through
∑J

j=1
ρ̂j

gj
sj , so

there is a function r̂∗ : R → R such that r̂(s̄) = r̂∗(
∑J

j=1
ρ̂j

gj
sj). From Lemma 4.1 and ∂r̂(s̄)

∂si
=

ρ̂i

gi

dr̂∗(v)
dv

∣∣∣
v=

PJ
j=1

ρ̂j
gj

sj

, we then obtain

E(e−
PJ

i=1 siQ̂i) = lim
ρ↑1

p(e−(1−ρ)s̄) =
J∑

i=1

gi
∂r̂(s̄)
∂si

=
J∑

i=1

ρ̂i
dr̂∗(v)

dv

∣∣∣∣
v=

P
J
j=1

ρ̂j
gj

sj

=
dr̂∗(v)

dv

∣∣∣∣
v=

P
J
j=1

ρ̂j
gj

sj

,

which again depends only on s̄ through
∑J

j=1
ρ̂j

gj
sj . Equivalently, we can write

E(e−
PJ

i=1 siQ̂i) = E(e−
g1
ρ̂1

Q̂1
PJ

i=1
ρ̂i
gi

si · e−s2
ρ̂2
g2

(
g2
ρ̂2

Q̂2− g1
ρ̂1

Q̂1) · . . . · e−sJ
ρ̂J
gJ

(
gJ
ρ̂J

Q̂J− g1
ρ̂1

Q̂1)).
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Since this only depends on
∑J

j=1
ρ̂j

gj
sj , it implies that gi

ρ̂i
Q̂i = gj

ρ̂j
Q̂j almost surely for all i, j, and we

obtain:

(Q̂1, Q̂2, . . . , Q̂J) =
(

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

)
· g1

ρ̂1
Q̂1, almost surely,

or equivalently

(Q̂1, Q̂2, . . . , Q̂J) d=
(

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

)
· X,

with X distributed as g1
ρ̂1

Q̂1.

Before we proceed to prove that the generating function r̂(s̄) is constant on the plane Hc we first give
a geometric interpretation for this fact in the particular case of J = 3. In Figure 2 (left) we depict the
plane Hc for J = 3. For a given s0 ∈ Hc, we draw a flow curve f̄(u), u ≥ 0, defined such that the tangent
at every point is precisely f̄ ′(u) := F̄ (f̄(u)) and f̄(0) = s̄0 ∈ Hc. We will see in the proof of Lemma 5.2
that the vector F̄ (s̄) is parallel to the plane Hc, for all s̄ ∈ Hc, thus the flow f̄(u) stays in the plane Hc

for all u ≥ 0. By Lemma 4.2, the vector F̄ (s̄) and the gradient �r̂(s̄) are perpendicular, for all s̄, so
f̄ ′(u) = F̄ (f̄(u)) ⊥ �r̂(f̄(u)). Thus the function r̂ has the same value in every point on a given flow f̄(u).
In Figure 2 (right) we draw several flows in the plane Hc. In the proof of Lemma 5.2 we will see that all
flows starting in the plane Hc go through one common point c · s̄∗. Since the function r̂ is continuous and
constant on each flow trajectory, it follows that r̂(s̄) is constant on the whole plane Hc, or equivalently,
�r̂(s̄) ⊥ Hc.

Plane Hc

s1

s2

s3

F̄ (s̄0)

�r̂(s̄0)

F̄ (f̄(u1))

�r̂(f̄(u2))

�r̂(f̄(u1))

F̄ (f̄(u2))

f̄(0) = s̄0

Flow f̄(u)

Plane Hc

s1

s2

s3

�r̂(c · s̄∗)

c · s̄∗

�r̂(s̄0)

Figure 2: Geometrical interpretation of the proof of Lemma 5.2 for the case J = 3.

The following technical lemma is used in the proof of Lemma 5.2.

Lemma 5.1 Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

g1

(
−μ1 + μ1p11 + λ̂p01

)
g1

(
μ1p12 + λ̂p02

)
. . . g1

(
μ1p1J + λ̂p0J

)
g2

(
μ2p21 + λ̂p01

)
g2

(
−μ2 + μ2p22 + λ̂p02

)
. . . g2

(
μ2p2J + λ̂p0J

)
...

...
. . .

...
gJ

(
μJpJ,1 + λ̂p01

)
gJ

(
μJpJ,2 + λ̂p02

)
. . . gJ

(
−μJ + μJpJJ + λ̂p0J

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)

where λ̂ is as defined in (3). One eigenvalue of A is 0 (with multiplicity 1), and all the other eigenvalues
have a strictly negative real part. The eigenvector corresponding to the eigenvalue 0 is equal to s̄∗ with
s∗j := gj

ρ̂j
ηj , for a certain η̄ ≥ 0 with

∑J
j=1 ηj = 1. In addition, s̄∗ ∈ H1.
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Proof: Define D as the diagonal matrix diag[d1, d2, . . . , dJ ] with di = ρ̂i

gi
, and let S be the matrix

S := DAD−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

g1

(
−μ1 + μ1p11 + λ̂p01

)
ρ̂1

g2
ρ̂2

(
μ1p12 + λ̂p02

)
. . . ρ̂1

gJ

ρ̂J

(
μ1p1J + λ̂p0J

)
ρ̂2

g1
ρ̂1

(
μ2p21 + λ̂p01

)
g2

(
−μ2 + μ2p22 + λ̂p02

)
. . . ρ̂2

gJ

ρ̂J

(
μ2p2J + λ̂p0J

)
...

...
. . .

...
ρ̂J

g1
ρ̂1

(
μJpJ,1 + λ̂p01

)
ρ̂J

g2
ρ̂2

(
μJpJ,2 + λ̂p02

)
. . . gJ

(
−μJ + μJpJJ + λ̂p0J

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix A is similar to S and therefore A, S and ST have the same eigenvalues. Using Equation (1),
it follows that

−μiρ̂i +
J∑

j=1

ρ̂j(μjpji + λ̂p0i) = λ̂(−γi + p0i +
J∑

j=1

γjpji) = 0, (21)

Hence, the sum of each row in ST (sum of each column in S) is equal to 0, and the off-diagonal elements
in ST are all positive. This implies that the matrix ST is a generator corresponding to a finite-state
continuous-time Markov chain. This Markov chain is irreducible and hence has a unique equilibrium
distribution η̄, i.e., η̄ST = 0 and

∑J
j=1 ηj = 1. In addition, 0 is an eigenvalue of the matrix ST with

multiplicity 1, and the real parts of all other eigenvalues are strictly negative, cf. Perron-Frobenius the-
orem, [5]. By similarity the same holds for the matrix A. The eigenvector of A corresponding to the
eigenvalue 0 is given by s̄∗ = D−1η̄, since As̄∗ = D−1DAD−1η̄ = D−1Sη̄ = 0. �

The following lemma shows that the generating function r̂(s̄) is constant on the plane Hc.

Lemma 5.2 For any c > 0, the function r̂(s̄) is constant on Hc.

Proof: From (21) it follows that

J∑
i=1

ρ̂i

gi
· Fi(s̄) =

J∑
i=1

ρ̂i ·
⎛
⎝μi(−si +

J∑
j=1

pijsj) + λ̂

J∑
j=1

p0jsj

⎞
⎠

=
J∑

i=1

(−μiρ̂i +
J∑

j=1

ρ̂j(μjpji + λ̂p0i))si

= 0.

This implies that for all s̄ ∈ Hc, the vector F̄ (s̄) lies in the same plane Hc. Since F̄ is C1, for each state
s̄ ≥ 0̄ there exists a unique flow f̄(u) = (f1(u), . . . , fJ(u)), parametrized by u ≥ 0, such that

f̄(0) = s̄ and
dfi(u)

du
= Fi(f̄(u)), for all i and u ≥ 0. (22)

Since F̄ (s̄) lies in Hc for all s̄ ∈ Hc, when started in Hc, the flow f̄(u) will stay in Hc. Another important
property of this flow f̄(u) is that

dr̂(f̄(u))
du

=
J∑

i=1

dfi(u)
du

· ∂r̂(s̄)
∂si

∣∣∣∣
s̄=f̄(u)

= 0,

which follows from the chain rule, Lemma 4.2, and Equation (22). Hence, along each flow f̄(u), which
lies in Hc, the function r̂(f̄(u)) is constant. We will now show that each flow in Hc converges to a certain
point c · s̄∗ ≥ 0 as u → ∞.

Relation (22) can be written as f̄(0) = s̄ and f̄ ′(u) = Af̄(u), with A as defined in (20), see (17). In
Lemma 5.1 it is proved that one eigenvalue of A is 0 with eigenvector s̄∗ ≥ 0, s̄∗ ∈ H1, and all the other
eigenvalues have a strictly negative real part. Hence, the solution of f̄ ′(u) = Af̄(u) with f̄(0) ∈ Hc can
be written as f̄(u) = c · s̄∗ + ḡ(u), where limu→∞ ḡ(u) = 0 and s̄∗ ≥ 0. This implies that all the flows in
the plane Hc go through one common point c · s̄∗ ≥ 0.

Since the function r̂(s̄) is constant along one flow, and all flows in the plane Hc go through the common
point c · s̄∗ ≥ 0, we obtain that the function r̂(s̄) is constant on the plane Hc. �
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5.2 Determining the common factor

In the previous section we showed that (Q̂1, Q̂2, . . . , Q̂J) d= ( ρ̂1
g1

, ρ̂2
g2

, . . . , ρ̂J

gJ
) · X, with X some random

variable. In this section we determine the distribution of X . In order to do so, we consider the total
workload in the network, W . When scaled with (1 − ρ) the total workload has a proper distribution as
ρ ↑ 1, see [23]:

(1 − ρ)W d→ Ŵ ,

and Ŵ is exponentially distributed with mean

E(Ŵ ) =
J∑

j=1

ρ̂jE(Rj). (23)

The total workload can be represented as

W =
J∑

j=1

Qj∑
h=1

Rj,h,

with Rj,h the residual service requirement of the h-th type-j customer. Note that the remaining service

requirements of all customers in phase j are i.i.d. and have the same phase-type distribution, i.e., Rj,h
d=

Rj for all h. Hence,

E(e−sW ) = E(e−s
PJ

j=1
PQj

h=1 Rj,h) = E(
J∏

j=1

E(e−s
PQj

h=1 Rj,h |Q̄))

= E(
J∏

j=1

(E(e−sRj ))Qj ) = E(e
PJ

j=1 Qj ln(E(e−sRj ))).

For the scaled workload we can write

E(e−sŴ ) = lim
ρ↑1

E(e−(1−ρ)sW ) = lim
ρ↑1

E(e
PJ

j=1
ln(E(e−(1−ρ)sRj ))

(1−ρ)s (1−ρ)sQj )

= E(e−s
PJ

j=1 E(Rj)Q̂j ), (24)

where in the last step we used that e
PJ

j=1
ln(E(e

−(1−ρ)sRj ))
(1−ρ)s (1−ρ)sQj is bounded by 1 and converges in dis-

tribution to e−s
PJ

j=1 E(Rj)Q̂j . The latter follows from ln(E(e−(1−ρ)sRj ))
(1−ρ)s → −E(Rj) as ρ ↑ 1. From (24) we

obtain that

Ŵ
d=

J∑
j=1

E(Rj)Q̂j ,

and together with (19) this gives

Ŵ
d= X ·

J∑
j=1

ρ̂j

gj
E(Rj). (25)

Since Ŵ is exponentially distributed, the same is true for X . Taking expectations in (25), from (23) we
obtain

E(X) =

∑J
j=1 ρ̂jE(Rj)∑J
j=1

ρ̂j

gj
E(Rj)

,

which concludes the proof of Proposition 2.1.
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6 Size-based scheduling

Allowing the relative service weights of customers to change over time as they acquire service, opens a
way to implement size-based scheduling by assigning relatively high weights in service phases that are
more likely to lead to a quick service completion. In this section we investigate how the choice for the
weights influences the performance of the system. To each type of customers we associate a cost cj ≥ 0,
j = 1, . . . , J . As performance measure we take the holding cost

∑J
j=1 cjQj .

Recall that we consider the general Markovian framework where type-j customers have weight gj . In
this section we will write Q

(g)
j (Q̂(g)

j ) instead of Qj (Q̂j) to emphasize the dependence on the weights

g1, . . . , gJ . From Proposition 2.1 we obtain that the scaled holding cost, (1 − ρ)
∑J

j=1 cjQ
(g)
j , converges

in distribution to an exponentially distributed random variable with mean

J∑
j=1

cjE(Q̂(g)
j ) =

∑J
j=1

ρ̂j

gj
· cj∑J

j=1
ρ̂j

gj
· E(Rj)

·
J∑

j=1

ρ̂jE(Rj), (26)

as ρ ↑ 1. Using this expression, we obtain the following monotonicity result in the heavy traffic regime:
The holding cost decreases “stochastically” as more preference is given to customers of types with a large
value for ci

E(Ri)
.

Proposition 6.1 Consider the general Markovian framework and consider two policies with weights
(g1, . . . , gJ) and (g̃1, . . . , g̃J), respectively. Let cj ≥ 0, j = 1, . . . , J . Without loss of generality we assume
that the types are ordered such that c1

E(R1)
≥ c2

E(R2)
≥ . . . ≥ cJ

E(RJ ) .

If gj

gj+1
≤ g̃j

g̃j+1
, for all j = 1, . . . , J − 1, then

lim
ρ↑1

(1 − ρ)
J∑

j=1

cjQ
(g)
j ≥st lim

ρ↑1
(1 − ρ)

J∑
j=1

cjQ
(g̃)
j ,

where ≥st denotes the usual stochastic ordering, i.e., X ≥st Y if and only if P(X ≥ z) ≥ P(Y ≥ z) for
all z.

Proof: We have that (1−ρ)
∑J

j=1 cjQ
(g)
j converges in distribution to an exponentially distributed random

variable with mean as stated in (26). Hence, it only remains to check that∑J
j=1

cj ρ̂j

gj∑J
j=1

ρ̂j

gj
E(Rj)

≥
∑J

j=1
cj ρ̂j

g̃j∑J
j=1

ρ̂j

g̃j
E(Rj)

.

This holds since⎛
⎝ J∑

j=1

cj ρ̂j

gj

⎞
⎠ ·

⎛
⎝ J∑

j=1

ρ̂j

g̃j
E(Rj)

⎞
⎠ =

∑
j,i:j �=i

ρ̂j ρ̂i

( 1
gj g̃i

cjE(Ri) +
1

gig̃j
ciE(Rj)

)
+

J∑
j=1

ρ̂2
j

1
gj g̃j

cjE(Rj)

≥
∑

j,i:j �=i

ρ̂j ρ̂i

( 1
gig̃j

cjE(Ri) +
1

gj g̃i
ciE(Rj)

)
+

J∑
j=1

ρ̂2
j

1
gj g̃j

cjE(Rj)

=

⎛
⎝ J∑

j=1

cj ρ̂j

g̃j

⎞
⎠ ·

⎛
⎝ J∑

j=1

ρ̂j

gj
E(Rj)

⎞
⎠ .

Here we used that ciE(Rj)( 1
gig̃j

− 1
gj g̃i

) ≥ cjE(Ri)( 1
gig̃j

− 1
gj g̃i

), which follows from the fact that gi

gj
≤ g̃i

g̃j

and ci

E(Ri)
≥ cj

E(Rj)
, for i ≤ j. �

As mentioned in the Introduction, the so-called cμ-rule minimizes the mean holding cost in an (i)
M/G/1-queue among all non-preemptive disciplines as well as in an (ii) G/M/1-queue among all preemp-
tive non-anticipating disciplines. In both systems the expected remaining service requirement of a class-k
customer at a scheduling decision epoch is precisely 1/μk. Hence, the cμ-rule gives priority according to
the cost ck divided by the expected remaining service requirement of a class-k customer. Proposition 6.1
can be seen as an extension of the cμ-rule for DPS-based disciplines in the heavy-traffic regime: the
performance improves as more preference is given according to the values of ci

E(Ri)
, i = 1, . . . , J .
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7 The standard DPS queue in heavy traffic

In this section we specialize the results obtained so far to the standard DPS queue with phase-type
distributed service requirements. In order to show how this queue fits into the Markovian framework of
Section 2, let us give a brief description of the standard DPS queue.

We consider a single-server system with capacity one and Poisson arrivals with rate λ. With probability
pk an arrival is a class-k customer. Class-k customers have phase-type distributed service requirements,
Bk, with a finite number of phases. In particular, this implies that the second moment of Bk is finite.
Let

	k := λpkE(Bk)

be the load associated to class-k customers. The capacity is shared among the customers of the various
classes in accordance with the Discriminatory Processor Sharing (DPS) discipline. When there are nk

class-k customers present in the system, k = 1, . . . , K, each class-k customer is served at rate
wk∑K

l=1 wlnl

,

where wk is the weight associated to class k. It is important to note that the weight for a class-k
customer is independent of the current phase of its service requirement. Denote by Nk the number of
class-k customers in the DPS queue.

We now describe how the DPS queue with phase-type distributed service requirements fits into the
Markovian framework as described in Section 2. Within each customer class of the DPS queue, we
distinguish between customers residing in different service phases, and represent them in the general
framework as different customer types. Denoting the number of phases of the class-k phase-type distri-

bution with Jk, the total number of types is J :=
K∑

k=1

Jk. With slight abuse of terminology, we also refer

to a class-k customer in the jth service phase as being of type
∑k−1

l=1 Jl + j. We use k(j) to denote the
customer class to which type-j customers belong. If types i and j belong to the same customer class they
are associated the same weight, i.e., gi = gj = wk(j) when k(i) = k(j). The p0j in the general frame-
work is taken such that for l = k(j), p0j/pl is the probability that a class-l customer starts with service
phase j. In the DPS queue, no transitions are possible between types belonging to different customer
classes, hence for the general framework this implies that pij = 0 if k(i) �= k(j). If a class-k(i) customer
finishes phase i, then pij is the probability that it continues in phase j (with k(i) = k(j)). The number
of class-l customers in the DPS model can be written as Nl =

∑
j:k(j)=l Qj .

The mean service requirement of a class-l customer may be written as E(Bl) =
∑

j:k(j)=l
p0j

pl
E(Rj).

Hence, the load in class l can be expressed by

	l = λplE(Bl) = λ
∑

j:k(j)=l

p0jE(Rj). (27)

For the DPS queue, the set of equations as given in (1) simplify: per class there is a set of equations that
can be solved independently. For class l, the corresponding γi’s can be found from the following set of
equations:

γi = p0i +
J∑

j:k(j)=l

γjpji, for all i s.t. k(i) = l.

Applying the same reasoning as we did to obtain equation (2), it follows that an equivalent representation
of 	l is

	l = λ
∑

j:k(j)=l

γj

μj
=

∑
j:k(j)=l

ρj . (28)

Note that the total load in the DPS queue equals
∑K

l=1 	l =
∑K

l=1

∑
j:k(j)=l ρj =: ρ, i.e., it coincides

indeed with the total load in the general framework.
Before proceeding with the main result of this section, we first characterize the forward recurrence time

of the service requirements. For class l, we denote this random variable by Bfwd
l . From renewal theory

we know that the associated distribution is

P(Bfwd
l ≤ x) :=

1
EBl

∫ x

y=0

P(Bl > y)dy, (29)
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and hence E(Bfwd
l ) = E((Bl)

2)
2E(Bl)

. Alternatively we can write

P(Bfwd
l ≤ x) =

∑
j:k(j)=l

ρj

	l
· P(Rj ≤ x), (30)

see [5, Chapter III, Corollary 5.3]. Intuitively Relation (30) can be explained as follows: Note that γj

pl

represents the expected number of visits to phase j during the lifetime of the random variable Bl, with
k(j) = l. As a consequence, γj/(plμj) is the expected time spent in phase j. Thus, with probability

γj

plμj∑
i:k(i)=l

γi

plμi

=
ρj∑

i:k(i)=l ρi
=

ρj

	l
,

the residual life time equals the residual service requirement starting in phase j, and this gives Rela-
tion (30). Combining (29) and (30), we obtain that the mean forward recurrence time of Bl satisfies

E((Bl)2)
2E(Bl)

= E(Bfwd
l ) =

∑
j:k(j)=l

ρj

	l
· E(Rj). (31)

We now show the state-space collapse for the standard DPS queue with phase-type distributed service
requirements. When passing ρ → 1 as described in Section 2, we actually fix the service requirement dis-
tributions and the class probabilities pk, while increasing the arrival rate. In particular, the heavy-traffic

scaling as considered in Section 2, λ ↑ λ̂ =
(
p̄T
0 (I − P )−1m̄

)−1

, is equivalent with λ ↑ (
∑

l plE(Bl))
−1,

since
∑K

l=1 plE(Bl) =
∑J

j=1 p0jE(Rj) = p̄T
0 (I − P )−1m̄. We will denote the limiting loads of all classes

by 	̂l = λ̂plE(Bl), l = 1, . . . , K (or equivalently, 	̂l =
∑

j:k(j)=l ρ̂j).

Proposition 7.1 Assume phase-type distributed service requirements, and consider a standard DPS
queue with weights w1, . . . , wK . When scaled with 1 − ρ, the queue length vector has a proper distri-
bution as ρ → 1,

(1 − ρ)(N1, N2, . . . , NK) d→ (N̂1, N̂2, . . . , N̂K) d= X · ( 	̂1

w1
,
	̂2

w2
, . . . ,

	̂K

wK
), (32)

where d→ denotes convergence in distribution and X is an exponentially distributed random variable with
mean

E(X) =
∑

k pkE((Bk)2)∑
k pkE((Bk)2)/wk

, (33)

which is equal to 1 when wk = 1 for all k, i.e., in the case of a standard PS queue.

Proof: Recall that the DPS queue with phase-type distributed service requirements is a special case
of the general framework of Section 2 when the parameters are chosen as described in the beginning of
this section. In particular, recall that gi = gj = wl when k(i) = k(j) = l. Since Nl =

∑
j:k(j)=l Qj ,

	̂l =
∑

j:k(j)=l ρ̂j (see (28)), and since for the general framework Relation (4) holds, Relation (32) follows
directly where X is an exponentially distributed random variable with mean as given in (5). We are left
with showing that (5) reduces to (33).

From (27) and (31), and since type-j customers belong to class k(j) and have weight gj = wk(j), we
obtain that

J∑
j=1

ρj

gj
E(Rj) =

K∑
l=1

	l

wl

∑
j:k(j)=l

ρj

	l
E(Rj) =

K∑
l=1

	l

wl

E(B2
l )

2E(Bl)
=

K∑
l=1

λpl

wl

E(B2
l )

2
. (34)

Similarly, we have that

J∑
j=1

ρjE(Rj) =
K∑

l=1

	l

∑
j:k(j)=l

ρj

	l
E(Rj) =

K∑
l=1

	l
E((Bl)2)
2E(Bl)

=
K∑

l=1

λpl
E((Bl)2)

2
. (35)
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Obviously, Equations (34) and (35) remain valid in heavy traffic. Equation (33) follows after substitut-
ing (34) and (35) into (5). �

Note that, although the limiting distribution depends on the second moment of the service requirement
distributions through E(X), the impact of the second moment on E(X) is uniformly bounded , and in
particular

min
k

wk ≤ E(X) ≤ max
k

wk,

cf. [2]. Similar partial insensitivity results have also been proved for the mean sojourn time conditioned
on the service requirement, [6], and the tail index of the sojourn time distribution, [9].

The state-space collapse as demonstrated above, allows us to show further interesting properties for
the DPS queue in heavy traffic. In Section 7.1 we obtain heavy-traffic results on the residual service
requirements of the customers in the various classes. In Section 7.2, monotonicity in the weights of the
DPS policy is investigated.

7.1 Residual service requirements

The distribution of the residual service requirement of a customer depends on the used scheduling disci-
pline. For example, in a First Come First Served queue the residual service requirement for customers
waiting to be served is given by their original service requirement. In case of a standard PS queue,
the residual service requirements are independent random variables distributed according to the forward
recurrence times of the service requirements. Given that there are nk class-k customers in the system, let
Br

k,h denote the remaining service requirement of the h-th class-k customer in the PS queue, k = 1, . . . , K,
h = 1, . . . , nk. The following result is known for PS:

P(Br
k,h ≤ xk,h, Nk = nk, k = 1, . . . , K, h = 1, . . . , nk) = P(Nk = nk, k = 1, . . . , K)

K∏
k=1

nk∏
h=1

P(Bfwd
k ≤ xk,h),

with xk,h ≥ 0. The joint distribution of the numbers of customers is of product form: P(Nk = nk, k =
1, . . . , K) = (1 − ρ) (n1+...+nK)!

n1!·...·nK !

∏K
k=1 	nk

k , see for example [12, 21]. In this section we show that in a
heavy-traffic setting a similar result as for the PS queue is true for the DPS queue.

Obviously, in the heavy-traffic limit, there will be an infinite number of customers present in the
system. Therefore, we concentrate on the first yk < ∞ class-k customers, k = 1, . . . , K. In the following
proposition we show that the scaled number of customers in the various classes and the remaining service
requirements of any finite subset of customers are independent in a heavy traffic setting. In particular, the
remaining service requirement of a class-k customer is distributed according to the forward recurrence time
of its service requirement Bk. It will be convenient to define Br

k,h = 0 whenever h > Nk, k = 1, . . . , K.

Proposition 7.2 Assume phase-type distributed service requirements, and consider a standard DPS
queue with weights w1, . . . , wK . Then,

lim
ρ↑1

E

(
e−

PK
l=1 sl(1−ρ)Nl−

PK
l=1

Pyl
h=1 sl,hBr

l,h

)
= E

(
e−

PK
l=1 slN̂l

)
·

K∏
l=1

yl∏
h=1

E

(
e−sl,hBfwd

l

)
,

for yl ∈ {0, 1, . . .} and sl,h, sl > 0, l = 1, . . . , K, h = 1, . . . , yl.

Recall that (N̂1, N̂2, . . . , N̂K) d= X ·
(

�̂1
w1

, �̂2
w2

, . . . , �̂K

wK

)
, where X is an exponentially distributed random

variable with mean E(X) =
PK

l=1 plE((Bl)
2)

PK
l=1 plE((Bl)2)/wl

, cf. Proposition 7.1.

Proof of Proposition 7.2: It will be convenient to first analyze the conditional expectation
E

(
e−

PK
l=1

Pyl
h=1 sl,hBr

l,h

∣∣∣Q̄). In order to do so, we condition on the type of the h-th class-l customer,
which we denote by Il,h and takes values in {i : k(i) = l}. For convenience, if h >

∑
j:k(j)=l Qj, then Il,h

has no interpretation. Let Ī = (I1,1, . . . , I1,y1 , . . . , IK,1, . . . , IK,yK ), which takes values in the set

I := {ī : k(i1,1) = 1, . . . , k(i1,y1) = 1, . . . , k(iK,1) = K, . . . , k(iK,yK ) = K}.
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Conditioning on the types of the customers, we can write

E

(
e−

PK
l=1

Pyl
h=1 sl,hBr

l,h

∣∣∣Q̄) =
∑
ī∈I

E

(
e−

PK
l=1

Pyl
h=1 sl,hBr

l,h

∣∣∣Ī = ī, Q̄
)
· P(Ī = ī|Q̄). (36)

Define the random variable Yl as

Yl = min(yl,
∑

j:k(j)=l

Qj) = min(yl, Nl), l = 1, . . . , K,

and note that P(Yl = yl) = P(
∑

j:k(j)=l Qj > yl) → 1 as ρ ↑ 1, cf. Proposition 2.1. By definition, if the
h-th class-l customer is of type il,h, then the corresponding residual service requirement has the same
distribution as Ril,h

, h = 1, . . . , yl. Hence,

E

(
e−

PK
l=1

Pyl
h=1 sl,hBr

l,h

∣∣∣Ī = ī, Q̄
)

=
K∏

l=1

Yl∏
h=1

E

(
e−sl,hRil,h

)
,

→
K∏

l=1

yl∏
h=1

E

(
e−sl,hRil,h

)
, as ρ ↑ 1, (37)

where the convergence holds in probability.
Given the population vector Q̄, the first chosen class-l customer is of type i, k(i) = l, with probability

QiP
j:k(j)=l Qj

. The next chosen class-l customer is of type j, k(j) = l, with probability Qj−1(i=j)P
j:k(j)=l Qj−1 , etc.

So we obtain

P(Ī = ī|Q̄) =
Qi1,1∑

j:k(j)=1 Qj
· Qi1,2 − 1(i1,1=i1,2)∑

j:k(j)=1 Qj − 1
· . . . · Qi1,Y1

−∑Y1−1
h=1 1(i1,h=i1,Y1 )∑

j:k(j)=1 Qj − (Y1 − 1)
· . . . ·

QiK,1∑
j:k(j)=K Qj

· QiK,2 − 1(iK,1=iK,2)∑
j:k(j)=K Qj − 1

· . . . · QiK,YK
−∑YK−1

h=1 1(iK,h=iK,YK
)∑

j:k(j)=K Qj − (YK − 1)
.

The latter converges in probability to

K∏
l=1

yl∏
h=1

ρ̂il,h

	̂l
, as ρ ↑ 1,

where we used that (1 − ρ)(Q1, . . . , QJ) d→ X · (ρ̂1/g1, . . . , ρ̂J/gJ) (see Proposition 2.1), the fact that Yl

converges in probability to yl, and gil,h
= wk(il,h) = wl. Together with (30), (36) and (37) this gives that

E

(
e−

PK
l=1

Pyl
h=1 sl,hBr

l,h

∣∣∣Q̄)→
∑
ī∈I

K∏
l=1

yl∏
h=1

ρ̂il,h

	̂l
· E

(
e−sl,hRil,h

)
=

K∏
l=1

yl∏
h=1

∑
il,h:k(il,h)=l

ρ̂il,h

	̂l
E

(
e−sl,hRil,h

)

=
K∏

l=1

yl∏
h=1

E

(
e−sl,hBfwd

l

)
,

in probability as ρ ↑ 1. By the law of total expectation we therefore have

lim
ρ↑1

E

(
e−

PJ
j=1 sj(1−ρ)Qj−

PK
l=1

Pyl
h=1 sl,hBr

l,h

)
= lim

ρ↑1
E

(
e−

PJ
j=1 sj(1−ρ)Qj E

(
e−

PK
l=1

Pyl
h=1 sl,hBr

l,h

∣∣∣Q̄))

= E

(
e−

PJ
j=1 sjQ̂j

)
·

K∏
l=1

yl∏
h=1

E

(
e−sl,hBfwd

l

)
. (38)

The result now follows by setting sj = s̃k(j) in Equation (38) and noting that
∑

j:k(j)=l Q̂j = N̂l. �
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7.2 Monotonicity in the weights

In Section 6 we showed monotonicity in the holding cost. In this section, we investigate the implications
for the standard DPS queue, assigning a cost per class instead of per type. So the cost dk ≥ 0 represents
the cost associated to a class-k customer. As we will see in the proposition below, the scaled holding
cost stochastically decreases when relatively larger weights are assigned to customers of classes according
to the values of dk/E(Bfwd

k ), k = 1, . . . , K. From Proposition 7.2 it follows that the expected residual
service requirement of a class-k customer is E(Br

k) = E(Bfwd
k ) in heavy traffic. Hence, so as to decrease

queue lengths in heavy traffic, priority should be given according to the cost dk divided by the expected
residual service requirement of a class-k customer. This agrees with the celebrated cμ-rule, see also
Section 6. Indeed, in the particular case of exponentially distributed service requirements it holds that
dk/E(Bfwd

k ) = dkμk.

Proposition 7.3 Assume phase-type distributed service requirements and consider two standard DPS
queues with weights (w1, . . . , wK) and (w̃1, . . . , w̃K). Let dk ≥ 0, k = 1, . . . , K. Without loss of generality
we assume that the classes are ordered such that d1/E(Bfwd

1 ) ≥ . . . ≥ dK/E(Bfwd
K ).

If wk

wk+1
≤ w̃k

w̃k+1
, for all k = 1, . . . , K − 1, then

lim
ρ↑1

(1 − ρ)
K∑

k=1

dkN
DPS(w)
k ≥st lim

ρ↑1
(1 − ρ)

K∑
k=1

dkN
DPS(w̃)
k ,

where ≥st denotes the usual stochastic ordering, and N
DPS(w)
k denotes the number of class-k customers

in the DPS queue with weights w1, . . . , wK .

Proof: From Proposition 7.1 we obtain that (1 − ρ)
∑K

k=1 dkN
DPS(w)
k converges in distribution to an

exponentially distributed random variable with mean

∑K
k=1

dk�̂k

wk∑
k pkE((Bk)2)/wk

·
∑

k

pkE((Bk)2),

hence we need to check that ∑K
k=1

dk�̂k

wk∑K
k=1

�̂k

wk

E((Bk)2)
E(Bk)

≥
∑K

k=1
dk�̂k

w̃k∑K
k=1

�̂k

w̃k

E((Bk)2)
E(Bk)

.

This follows using similar arguments as in the proof of Proposition 6.1 and noting that E((Bk)2)
2E(Bk) =

E(Bfwd
k ). �

Remark 7.4 In [11, p. 188–199] it was conjectured that V ar(B)
E((B)2) < 1 is a sufficient condition to ensure

that the queue length under PS has a smaller mean than under the Least Attained Service discipline
(denoted by LAS or FB), which gives service to the customers that have received the least amount of
service. In [29] the authors found a counterexample to this conjecture, and it was later shown in [1] that
a stronger condition is needed in order to compare the performance of LAS and PS, to be specific, the
distribution needs to have an “Increasing Mean Residual Life”. This result is in concordance with the
intuition behind size-based scheduling: queue lengths can be reduced by prioritizing customers that (are
likely to) have smaller residual service requirements. The same intuition also explains the conditions in
Proposition 7.3 which are based on E(Bfwd

k ) = E((Bk)2)
2E(Bk) = 1

2

(
V ar(Bk)

E(Bk) + E(Bk)
)
. Customers belonging

to classes with highly variable service distributions are likely to have longer service requirements. The
variance also appears in the criteria conjectured in [11].
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Figure 3: Total mean number of customers under a DPS policy with weights w1 = 1 and w2 = r. Class-
1 service requirements are hyper-exponentially distributed (with parameters μ11 = 0.1, μ12 = 10) and
class-2 service requirements are exponentially distributed (with μ2 = 1). The load ρ = 	1 +	2 equals 0.6,
0.8, 0.9 and 0.999, respectively.

Although the monotonicity of the weight structure in Proposition 7.3 is only proved in the heavy traffic
limit, it is actually a good rule of thumb for systems operating close to saturation as well. We conclude
this section with a numerical example where the behavior of the holding cost is numerically investigated
for different values of the total load.

Numerical evaluation of Proposition 7.3: We consider a DPS queue with two classes. Class-1 customers
have hyper-exponentially distributed service requirements, i.e., with a certain probability p a class-1
customer has an exponentially distributed service requirement with mean 1/μ11 and with probability
1 − p it has an exponentially distributed service requirement with mean 1/μ12. Class-2 customers have
exponentially distributed service requirements with mean 1/μ2. Furthermore, we assume the load is
equally distributed between classes 1 and 2, i.e., 	1 = 	2. We will be interested in the total number of
customers in the system, hence we set d1 = d2 = 1. Note that

E(Bfwd
1 ) =

p/μ2
11 + (1 − p)/μ2

12

p/μ11 + (1 − p)/μ12
and E(Bfwd

2 ) = 1/μ2.

Without loss of generality we take the weight for class 1 as w1 = 1, and that of class 2 as w2 = r, with
r > 0. Proposition 7.3 states that in a heavily-loaded system the steady-state total number of customers
is stochastically increasing in r when E(Bfwd

1 ) < E(Bfwd
2 ), is constant in r when E(Bfwd

1 ) = E(Bfwd
2 ),

and is stochastically decreasing in r when E(Bfwd
1 ) > E(Bfwd

2 ). Note that when r = 1, the policy reduces
to standard PS, and in that case the total mean number of users is given by ρ

1−ρ .
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In Figure 3 we plot the mean total number of customers (denoted by E(NDPS(r))) as a function of the
weight parameter r. We consider the case μ11 = 0.1, μ12 = 10 and μ2 = 1, while choosing several values
for f := E(Bfwd

1 )/E(Bfwd
2 ). The total mean number of customers was obtained by solving a system of

linear equations as described in [14]. For ρ = 	1 + 	2 we chose the following values: 0.6, 0.8, 0.9 and
0.999. We see that in the latter case, a heavily-loaded system, the total mean number of customers indeed
exhibits the above described phenomena depending on whether f < 1 (increasing), f = 1 (constant) or
f > 1 (decreasing). As the total load decreases, the monotonicity no longer necessarily holds. This can be
explained as follows. Since μ11 < μ2 < μ12, the cμ-rule suggests to prioritize class-1 customers in phase 2,
while the class-1 customers in phase 1 should receive lowest priority. In the DPS queue no differentiation
can be made between customers residing in different phases. Therefore, the way the weight r affects the
mean total number of users depends on the typical mix of numbers of class-1 customers residing in the
two phases. In heavy traffic, this mix is characterized by the loads corresponding to the work of class 1
residing in phases 1 and 2, cf. Proposition 2.1, and is hence independent of r. However, away from heavy
traffic, this mix may itself be influenced by r, leading to the observed non-monotonic behavior in the
figures.

8 Conclusion

We have studied a multiple-phase network of which the Discriminatory Processor Sharing (DPS) queue
with phase-type distributed service requirements is a special case. In our main result we have shown
that, under heavy traffic conditions, the queue length process exhibits a so-called state-space collapse:
The multidimensional vector describing the numbers of customers in the various classes converges in
distribution to a one-dimensional random vector. Based on this result, we have seen that the DPS
model in heavy traffic inherits several well known properties of the standard PS queue (not necessarily
in heavy traffic). For example, in the limit, the (scaled) number of customers present in a DPS queue
is exponentially distributed, which is the continuous analogue of the geometric queue length distribution
of the PS queue. In addition, we showed that (again, in a heavy-traffic regime) the residual service
requirements are i.i.d. and distributed according to the forward recurrence times, which is true for PS as
well.

We have investigated the performance of a DPS queue as a function of the weights and showed that
the performance improves as customers with lower variability in their service requirements get larger
weights. This property can be understood from the standard intuition of size-based scheduling: Customers
belonging to classes with highly variable service distributions are likely to have longer residual service
requirements and should therefore be given lower priority.
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[22] G. van Kessel, R. Núñez-Queija, and S.C. Borst. Asymptotic regimes and approximations for dis-
criminatory processor sharing. Performance Evaluation Review, 32:44–46, 2004.

[23] J.F.C. Kingman. The single server queue in heavy traffic. Proc. Cambridge Philos., 57:902–904,
1961.

[24] L. Kleinrock. Time-shared systems: A theoretical treatment. Journal of the ACM, 14:242–261, 1967.

[25] P. Nain and D. Towsley. Optimal scheduling in a machine with stochastic varying processing rate.
IEEE Transactions on Automatic Control, 39:1853–1855, 1994.

[26] K.M. Rege and B. Sengupta. Queue length distribution for the discriminatory processor-sharing
queue. Operations Research, 44:653–657, 1996.

[27] R. Righter and J.G. Shanthikumar. Scheduling multiclass single server queueing systems to stochasti-
cally maximize the number of successful departures. Probability in the Engineering and Informational
Sciences, 3:323–333, 1989.

[28] A.L. Stolyar. Maxweight scheduling in a generalized switch: State space collapse and workload
minimization in heavy traffic. Annals of Applied Probability, 14:1–53, 2004.

[29] A. Wierman, N. Bansal, and M. Harchol-Balter. A note comparing response times in the M/GI/1/FB
and M/GI/1/PS queues. Operations Research Letters, 32:73–76, 2004.

20



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Shift: none
     Normalise (advanced option): 'improved'
      

        
     32
            
       D:20090331084131
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     1
     0
     Full
     1106
     333
    
     None
     Down
     8.5039
     0.0000
            
                
         Both
         19
         AllDoc
         20
              

       CurrentAVDoc
          

     Uniform
     14.1732
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0c
     Quite Imposing Plus 2
     1
      

        
     19
     20
     19
     20
      

   1
  

 HistoryList_V1
 qi2base



