17 research outputs found

    Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation

    Full text link
    We study a damped semi-linear wave equation in a bounded domain with smooth boundary. It is proved that any sufficiently smooth solution can be stabilised locally by a finite-dimensional feedback control supported by a given open subset satisfying a geometric condition. The proof is based on an investigation of the linearised equation, for which we construct a stabilising control satisfying the required properties. We next prove that the same control stabilises locally the non-linear problem.Comment: 29 page

    Numerical controllability of the wave equation through primal methods and Carleman estimates

    Get PDF
    This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute an approximation of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not use in this work duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null controls a functional involving weighted integrals of the state and of the control. The optimality conditions show that both the optimal control and the associated state are expressed in terms of a new variable, the solution of a fourth-order elliptic problem defined in the space-time domain. We first prove that, for some specific weights determined by the global Carleman inequalities for the wave equation, this problem is well-posed. Then, in the framework of the finite element method, we introduce a family of finite-dimensional approximate control problems and we prove a strong convergence result. Numerical experiments confirm the analysis. We complete our study with several comments

    Global controllability and stabilization for the nonlinear Schrodinger equation on an interval

    Get PDF
    We prove global internal controllability in large time for the nonlinear Schrodinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother

    Weak observability estimates for 1-D wave equations with rough coefficients

    Get PDF
    In this paper we prove observability estimates for 1-dimensional wave equations with non-Lipschitz coefficients. For coefficients in the Zygmund class we prove a "classical" observability estimate, which extends the well-known observability results in the energy space for BVBV regularity. When the coefficients are instead log-Lipschitz or log-Zygmund, we prove observability estimates "with loss of derivatives": in order to estimate the total energy of the solutions, we need measurements on some higher order Sobolev norms at the boundary. This last result represents the intermediate step between the Lipschitz (or Zygmund) case, when observability estimates hold in the energy space, and the H\"older one, when they fail at any finite order (as proved in \cite{Castro-Z}) due to an infinite loss of derivatives. We also establish a sharp relation between the modulus of continuity of the coefficients and the loss of derivatives in the observability estimates. In particular, we will show that under any condition which is weaker than the log-Lipschitz one (not only H\"older, for instance), observability estimates fail in general, while in the intermediate instance between the Lipschitz and the log-Lipschitz ones they can hold only admitting a loss of a finite number of derivatives. This classification has an exact counterpart when considering also the second variation of the coefficients.Comment: submitte

    Internal control of the Schrödinger equation

    Get PDF
    In this paper, we intend to present some already known results about the internal controllability of the linear and nonlinear Schrödinger equation. After presenting the basic properties of the equation, we give a self contained proof of the controllability in dimension 11 using some propagation results. We then discuss how to obtain some similar results on a compact manifold where the zone of control satisfies the Geometric Control Condition. We also discuss some known results and open questions when this condition is not satisfied. Then, we present the links between the controllability and some resolvent estimates. Finally, we discuss the new difficulties when we consider the Nonlinear Schrödinger equation

    Controllability under positivity constraints of multi-d wave equations

    Full text link
    We consider both the internal and boundary controllability problems for wave equations under non-negativity constraints on the controls. First, we prove the steady state controllability property with nonnegative controls for a general class of wave equations with time-independent coefficients. According to it, the system can be driven from a steady state generated by a strictly positive control to another, by means of nonnegative controls, when the time of control is long enough. Secondly, under the added assumption of conservation and coercivity of the energy, controllability is proved between states lying on two distinct trajectories. Our methods are described and developed in an abstract setting, to be applicable to a wide variety of control systems

    Exact controllability for quasi-linear perturbations of KdV

    Get PDF
    We prove that the KdV equation on the circle remains exactly controllable in arbitrary time with localized control, for sufficiently small data, also in presence of quasi-linear perturbations, namely nonlinearities containing up to three space derivatives, having a Hamiltonian structure at the highest orders. We use a procedure of reduction to constant coefficients up to order zero, classical Ingham inequality and HUM method to prove the controllability of the linearized operator. Then we prove and apply a modified version of the Nash-Moser implicit function theorems by H\"ormander.Comment: 39 page

    Controllability of quasi-linear Hamiltonian NLS equations

    Get PDF
    We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash-Moser-H\"ormander implicit function theorem as a black box
    corecore