38,624 research outputs found

    Analysis of power consumption in heterogeneous virtual machine environments

    Get PDF
    Reduction of energy consumption in Cloud computing datacenters today is a hot a research topic, as these consume large amounts of energy. Furthermore, most of the energy is used inefficiently because of the improper usage of computational resources such as CPU, storage and network. A good balance between the computing resources and performed workload is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep alive virtual machines or to move data around without performing useful computation. Moreover, heterogeneity of resources increases the difficulty degree, when trying to achieve energy efficiency. Power consumption optimization requires identification of those inefficiencies in the underlying system and applications. Based on the relation between server load and energy consumption, we study the efficiency of data-intensive applications, and the penalties, in terms of power consumption, that are introduced by different degrees of heterogeneity of the virtual machines characteristics in a cluster

    Analysis of power consumption in heterogeneous virtual machine environments

    Get PDF
    Reduction of energy consumption in Cloud computing datacenters today is a hot a research topic, as these consume large amounts of energy. Furthermore, most of the energy is used inefficiently because of the improper usage of computational resources such as CPU, storage and network. A good balance between the computing resources and performed workload is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep alive virtual machines or to move data around without performing useful computation. Moreover, heterogeneity of resources increases the difficulty degree, when trying to achieve energy efficiency. Power consumption optimization requires identification of those inefficiencies in the underlying system and applications. Based on the relation between server load and energy consumption, we study the efficiency of data-intensive applications, and the penalties, in terms of power consumption, that are introduced by different degrees of heterogeneity of the virtual machines characteristics in a cluster

    EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud

    Full text link
    Cloud computing has become more popular in provision of computing resources under virtual machine (VM) abstraction for high performance computing (HPC) users to run their applications. A HPC cloud is such cloud computing environment. One of challenges of energy efficient resource allocation for VMs in HPC cloud is tradeoff between minimizing total energy consumption of physical machines (PMs) and satisfying Quality of Service (e.g. performance). On one hand, cloud providers want to maximize their profit by reducing the power cost (e.g. using the smallest number of running PMs). On the other hand, cloud customers (users) want highest performance for their applications. In this paper, we focus on the scenario that scheduler does not know global information about user jobs and user applications in the future. Users will request shortterm resources at fixed start times and non interrupted durations. We then propose a new allocation heuristic (named Energy-aware and Performance per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS per Watt). Using information from Feitelson's Parallel Workload Archive to model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF can reduce significant total energy consumption in comparison with state of the art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced Computing and Applications, Journal of Science and Technology, Vietnamese Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    corecore