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FPGAs (Altera, Xilinx), integrating CPUs with FPGAs (Xilinx), 
and coupling FPGAs and CPUs in the same package (IBM–Altera, 
Intel–Altera). Heterogeneity aims to solve the problems associated 
with the end of Moore’s Law by incorporating more specialized 
compute units in the system hardware and by utilizing the most 
efficient compute unit for each computation. However, while 
software-stack support for heterogeneity is relatively well 
developed for performance, it is severely lacking for power- and 
energy-efficient computing. Given that the ICT sector is 
responsible for ~5% of global electricity consumption [2], software 
ACM Microsoft Word template stack support for energy-efficient 
heterogeneous computing is critical to the future growth of the ICT 
industry. The primary ambition of the LEGaTO project is to 
address this challenge by starting with a Made-in-Europe mature 
software stack and by optimizing this stack to support energy-
efficient computing on a commercial cutting-edge European-
developed CPU–GPU–FPGA heterogeneous hardware substrate 
[3] and FPGA-based Dataflow Engines (DFE), which will lead to
an order of magnitude increase in energy efficiency. The LEGaTO
project will utilize a completely integrated software system stack
supporting generalized tasks for low-energy, secure and reliable
parallel computing. We foresee that optimization opportunities for
low-energy computing can be maximized through the task
abstraction.
The mature software stack that will be the baseline for development
of the project is a task-based programming model family with a
dataflow-based runtime. These task-based programming models,
OmpSs [4] and XiTAO [5], are precursors and testing grounds for
future versions of the popular OpenMP programming model.
Although the task-based programming model is by itself good for
energy-efficient computing on heterogeneous substrates, we aim to
further enrich the programming model and runtime for explicit
support for energy-efficiency. The main idea is to attach resource
requirements to parts of the computation and to execute them on
dynamically constructed hardware places consisting of collections
of cores and memories matching the resource annotations. Each
piece of the computation is a generalized task that manages its own

ABSTRACT 
LEGaTO is a three-year EU H2020 project which started in 
December 2017. The LEGaTO project will leverage task-based 
programming models to provide a software ecosystem for Made-
in-Europe heterogeneous hardware composed of CPUs, GPUs, 
FPGAs and dataflow engines. The aim is to attain one order of 
magnitude energy savings from the edge to the converged 
cloud/HPC. 

1 INTRODUCTION 
In the last couple of decades, technological advances in the ICT 
sector have been the dominant factors in global economic growth, 
not to mention an increase in the quality of life for billions of 
people. At the heart of this advance lies Moore’s Law, which states 
that the number of transistors in an integrated chip will double 
every 18 to 24 months with each step in the silicon manufacturing 
technology node. However, due to fundamental limitations of 
scaling at the atomic scale, coupled with heat density problems of 
packing an ever-increasing number of transistors in a unit area, 
Moore’s Law has slowed down in the last two years or so and will 
soon stop altogether [1]. The implication is that, in the future, the 
number of transistors that could be incorporated in a processor chip 
will not increase. This development threatens the future of the ICT 
sector as a whole. As a solution to this challenge, there recently 
have been dramatically increased efforts toward heterogeneous 
computing, including integration of heterogeneous cores on die 
(ARM), utilizing general-purpose GPUs (NVIDIA), combining 
CPUs and GPUs on the same die (Intel, AMD, ARM), leveraging 
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control flow via an embedded scheduler. Resource requirements 
describe the needs of the application, such as number of cores, 
power, reliability, and security. The tasks are annotated with the 
resource requirements and with their input and output structures. 
These annotations are propagated through the system stack for 
seamless integration of the software with heterogeneous hardware 
consisting of CPUs, FPGAs, DFEs and/or GPUs, to identify the 
energy-optimal execution of the task at runtime. In order to achieve 
this goal, the project will develop tools to determine resources 
based on metrics such as FLOPS/Byte, reuse distance, power 
consumption, etc. for individual tasks. Furthermore, the project will 
develop support in the programming model and runtime for 
heterogeneity. This will be achieved by adding topology 
information at the task level allowing us to select appropriate 
accelerators and also compute nodes in scale-out environments. A 
task-based programming model with a dataflow runtime is a good 
match for low-power hardware since tasking seamlessly enables the 
dispatching of processing operations close to data, while the 
dataflow runtime execution model is well adapted for streaming 
accelerators such as FPGAs or DFEs. For DFEs, the programming 
model currently explicitly defines where DFE execution takes 
place. Adding dynamic runtime support will be compelling for 
reasons of productivity and energy efficiency. 
Finally, the LEGaTO project will apply this energy-efficient 
software toolset for heterogeneous hardware to three use cases. The 
first use case will be healthcare. The project will not only 
demonstrate a decrease in energy consumption in the healthcare 
sector; it will also show that the toolset will increase healthcare 
application resilience and security; both of which are critical 
requirements in this area. As a second use case, the project will 
demonstrate ease of programming and energy savings possible 
through the use of the LEGaTO project software–hardware 
framework for IoT, smart homes, and smart cities applications. 
Sensitive sensor information and actuator instructions can be 
received and sent via the developed secure IoT gateway. A third 
use case will be based on machine learning (ML), where the project 
will demonstrate how to improve energy efficiency by employing 
accelerators and tuning the accuracy of computations at runtime. 
This use case will explore object detection using Convolutional 
Neural Networks (CNNs) for automated driving systems and CNN- 
and Long Short-Term Memory (LSTM)–based methods for 
realistic rendering of graphics for gaming and multi-camera 
systems. In addition, the machine learning use case will be used to 
further optimize the energy efficiency in the two other use cases, as 
well as within the runtime. 
It is important to balance the advantage of a low-energy 
heterogeneous CPU/FPGA/GPU hardware platform with security 
and resilience challenges. We are therefore working on ensuring 
the resilience of the software stack running on this hardware, while 
simultaneously optimizing for performance and low power. For 
fault tolerance we would like to exploit the unique characteristics 
of the heterogeneous CPU/GPU/FPGA platform in the runtime; for 
example by replicating tasks intelligently on diverse processing 
elements exploiting the spatial/temporal slack; additionally, we 
will investigate energy-efficient selective replication where only 

the most reliability-critical tasks will be replicated. Furthermore, 
we will leverage the task programming model for detecting error 
propagation across task boundaries and walking the task 
dependency graph at runtime, which will help with failure root 
cause analysis. Finally, we will use the properties of the task model 
to design application-level energy-efficient checkpointing where 
only the necessary and sufficient data (declared at the task entry) 
will be checkpointed. For security, we will develop energy-efficient 
security-by-design by leveraging instruction-level hardware 
support for security (SGX in x86 and TrustZone in ARM) to 
accelerate software-based security implementations. 
In the rest of the paper, we will detail the LEGaTO hardware 
platform which is composed of CPUs (both X86 and big.LITTLE 
heterogeneous ARM processors), GPUs and FPGAs. Then, we will 
do a deep-dive on LEGaTO programming models and on how they 
can increase programmer efficiency and application performance 
on FPGAs, first we will report first results for OmpSs@FPGA, and 
discuss the advantages of the DFiant Hardware Description 
Language for FPGAs. Then we will follow up with first directions 
in the LEGaTO runtimes, in particular the heterogeneity-aware 
OmpSs and XiTAO schedulers with emphasis on energy for the 
case of OmpSs and performance for the case of XiTAO. Finally, 
we will wrap up with two use cases, the LEGaTO smart home use 
case will discuss how taskification could be leveraged, and the 
healthcare use case will report the initial results on FPGA-based 
acceleration. 

2 HARDWARE PLATFORM 
For integration and evaluation of the tool-sets that are developed 
within LEGaTO, we will use the heterogeneous hyperscale server 
platform RECS|Box 4.0 [6]. The hardware server platform 
seamlessly integrates CPUs, GPUs, and FPGAs combined with a 
highly flexible communication infrastructure. Its modularity allows 
the RECS|Box to be scaled demand-oriented and thus adapt to 
changing requirements. Applications running on the platform can 
be optimized to distribute tasks to the most suited computing 
modules and to make use of dedicated accelerators. Cyber-physical 
systems and IoT will make a lot of data from their environment and 
their users available for new services and applications. This 
information needs to be securely stored and processed – partly 
locally and partly in the cloud. Utilizing standardized computer-on-
module (CoM) form factors enables us to deploy the same hardware 
platforms that are used in the data centers also for edge computing. 
The RECS|Box integrates microservers based on x86, 32-bit and 
64-bit ARM mobile/embedded processors and 64-bit ARM server 
processors using COM Express, Toradex Apalis and NVIDIA 
Jetson TX1/TX2 CoM formats. FPGA accelerators can be 
integrated as dedicated microservers, e.g., high-performance COM 
express boards with Intel Stratix10 SoCs are available as well as 
low-power Toradex Apalis boards with Xilinx Zynq. Additionally, 
PCIe-based accelerators with FPGAs or GPUs can be integrated 
into the platform as well as PCIe attached storage. A unique feature 
of the modular architecture is the integrated high-speed 
communication infrastructure, which is based on a dedicated high-



speed low-latency communication network. It connects to the CPU-
/GPU-based microservers via PCIe and to the FPGA-based 
microservers via their high-speed serial interfaces. Depending on 
the involved communication partners, it utilizes either integrated 
PCIe-based packet switches for host-to-host communication or 
asynchronous crosspoint switches, which allow connections 
between microservers independent of the used protocol. In addition 
to direct communication between the different microservers it also 
supports connection to storage or I/O-extensions, allowing easy 
integration of PCIe-based extension cards like GPGPUs or storage 
subsystems. Using these communication facilities, accelerators can 
be flexibly attached to different compute nodes and can be 
combined into larger, virtual units. At run-time, the communication 
topology can be reconfigured and adapted to changing application 
requirements via the middleware. Using OpenStack as a 
middleware layer allows for accessing the hardware and deploying 
the applications in a uniform way. 
All hardware components equipped which rich sensorization, 
providing fast and easy access to power, voltage, and temperature 
on device level, microserver level, as well as server level. 
Dedicated microcontrollers, integrated into the server platform, are 
used for data aggregation and data preprocessing. Combined with 
the possibility to monitor selected components with a sampling rate 
of up to 1 MSPS, the platform is an ideal reference for evaluation 
of performance and efficiency and to characterize individual tasks 
at run-time. Within LEGaTO, especially cost-efficient realizations 
for edge computing are targeted, which can be easily realized due 
to the high modularity of the RECS|Box.  
The second testbed in LEGaTO is based on Maxeler Dataflow 
Engines (DFEs). With its DFEs, Maxeler pioneers a multiscale 
dataflow computing paradigm, which fundamentally differs from 
the classical Von Neumann control-flow oriented paradigm where 
instructions are processed sequentially on a general purpose CPU. 
On a DFE, data is streamed from memory and passes through a 
pipeline of arithmetic and logic operators without any kind of 
control mechanisms. Arithmetic operations are simply carried out 
as data passes over operators in the pipeline. The entire dataflow 
structure can be deeply pipelined while maintaining an overall 
throughput of one result per clock cycle. Thousands of operations 
can be performed in parallel, dedicating all of the available chip 
area to computation. DFEs are extremely efficient for large-scale 
computations with a static compute graph. They have shown to 
deliver one to two orders of magnitude improvement in 
performance and energy efficiency over conventional CPU servers 
in a range of application domains.  
The current generation MAX5 DFEs are based on a large Xilinx 
VU9P FPGA that provides the reconfigurable substrate for creating 
the dataflow pipeline. The DFE also contains 48GB DDR4 DRAM 
and a 100 GbE networking port. DFEs are PCIe cards that can be 
integrated into a range of different products. In Maxeler MPC-C 
series systems, up to 4 DFEs are integrated into a conventional dual 
socket CPU server, combining DFEs with server-grade Intel or 
AMD CPUs. A far more flexible system architecture is provided by 
Maxeler MPC-X series systems, where eight DFEs are 
incorporated into a dense 1U chassis, forming a pure dataflow 

appliance. This system is connected to conventional CPU servers 
via an Infiniband network. Inside the MPC-X, the DFEs are also 
directly connected through MaxRing.  
A Maxeler MPC-X dataflow system has been delivered to the 
Jülich Supercomputing Centre and is available for academic users. 
Maxeler MAX5 DFEs are also compatible with Amazon EC2 F1 
instances and applications developed for MAX5 can be migrated 
seamlessly to the Amazon Cloud. 

3  LEGaTO PROGRAMMING MODELS AND 
PROGRAMMER EFFICIENCY 

3.1 OmpSs@FPGA 
The OmpSs Programming Model supports the execution of 
heterogeneous tasks written in OpenCL, CUDA (for GPUs), and 
C/C++ (for FPGAs). Both OpenCL and CUDA options require the 
programmer to provide the OpenCL or CUDA code. In the case of 
the FPGAs, the programmer provides C/C++ code to be 
transformed into Verilog/VHDL by the FPGA vendor High-Level 
Synthesis tools (HLS). In the case of the Xilinx platforms, Vivado 
HLS accomplishes this transformation. Programmers can also 
provide the particular pre-generated bitstream to be executed in the 
FPGA, just by ensuring that the interface of the bitstream 
functionality is compatible with the OmpSs@FPGA interface. 
FPGA exploitation with OmpSs consists of annotating the source 
code with OpenMP-like directives. ¡Error! No se encuentra el 
origen de la referencia. shows the code of matrix multiplication 
annotated with the OmpSs directives (target and task), in order to 
use the matrix_multiply function as a task to be transformed as an 
FPGA IP accelerator. In the matrix multiplication code, Vivado 
HLS directives provide hints to the Vivado translator to improve 
the VHDL generation, and obtain a high-performance bitstream.  

Figure 1. Matrix multiply with OmpSs and Vivado 
HLS annotations 
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3.1.1  OmpSs@FPGA Experiments 
With this benchmark, several configurations of IP cores were tested 
on the FPGA using different clock speeds. The following table 
summarizes the experiments conducted: 

IPs configuration 1*256, 3*128 Number of 
instances * size  

Frequency (MHz) 200, 250, 300 Working frequency 
of the FPGA 

Number of SMP 
cores 

SMP: 1 to 4 
FPGA: 3+1 
helper, 2+2 
helpers 

Combination of 
SMP and helper 
threads 

Number of FPGA 
helper threads 

SMP: 0; FPGA: 
1, 2 

Helper threads are 
used to manage 
tasks on the FPGA 

Number of pending 
tasks 

4, 8, 16 and 32 Number of tasks 
sent to the IP cores 
before waiting for 
their finalization 

The experimentation environment is the AXIOM board, consisting 
of the Xilinx Zynq Ultrascale+ chip, with 4 ARM Cortex-A53 
cores, and the ZU9EG FPGA. 
¡Error! No se encuentra el origen de la referencia. shows the 
evaluation in GFlops of the different alternatives of matrix 
multiplication configurations for 2048x2048 matrices using 
different block sizes:128x128 and 256x256. On the SMP cores, 
matrix multiplication used the OpenBLAS SGEMM kernel to 
multiply the matrices in parallel in the same blocked fashion as the 
application did on the FPGA. A single ARM Cortex A53 core 
delivered roughly 3 GFlops (Figure 2 “No IP” bars 1 core). 
Similarly, four ARM cores achieved 11.7 GFlops, showing good 
scalability of the OmpSs infrastructure on the SMP environment.  
When adding an IP core (performance-oriented hardware design) 
of block size 256x256 running at 200 MHz, the performance was 
boosted to 25.8 GFlops. The 200 MHz FPGA implementation of 
the 256x256 block added up to 14 GFlops.  In this latter case, one 
helper thread was used to execute FPGA tasks but also SMP tasks 
if there were not enough FPGA tasks for execution or the FPGA 
was busy, and 3 worker threads were running SMP tasks. This was 
due to the implements clause shown above, thus allowing a 
heterogeneous parallel execution of tuned tasks for both SMP and 
FPGAs. 
Starting from this point, we increased the accelerator frequency to 
250 and 300 MHz, which showed also an additional boost in 
performance. Additionally, we allowed the runtime system to 
provide up to 16 tasks to the FPGA before waiting for the previous 
tasks to be finished. Tuning this value also provided a further 
increase on performance. Specifically, for block sizes of 256x256 
elements running at 300 MHz, the performance increased from 32.9 
to 35.7 GFlops. This additional improvement was obtained from 
the reduction in the number of synchronizations needed by the 
runtime. Reducing the amount of synchronizations contributed to 
reduce the overhead of task management. 

¡Error! No se encuentra el origen de la referencia. also shows 
the performance of 3 IP cores running in parallel on the FPGA. The 
additional parallelism yielded better performance. When running at 
200 MHz, and with up to 16 pending tasks, the performance was 
equivalent to the one using a block size of 256x256 elements and 8 
pending tasks. When moving to 300 MHz, the runtime behavior 
showed that it is important to have at least 2 helper threads 
available. Otherwise, the performance would have not been 
improved at all, since having only one helper thread did not provide 
enough FPGA tasks to the accelerators.  In any case, those two 
helper threads are implemented in a hybrid way. That is, they can 
decide to run SMP tasks if the accelerators are busy, in addition to 
the two worker threads that are also executing SMP tasks. This 
combination of helper and worker threads achieved the best 
performance of the MxM. Observe that the combinations of 4x2, 
16x2, and 32x2 (pending tasks and helper threads) keep increasing 
in performance, while the alternatives of 4x1, 16x1 and 32x1, 
which used a single helper thread, did not scale anymore. 

Figure 2. Evaluation of the matrix multiplication 
benchmark on the AXIOM board 

3.2. DFIANT HDL 
DFiant [7] is a hardware description language (HDL) and one of 
the LEGaTO programming models. For a long time, the dominat- 
ing HDLs have been Verilog, System Verilog, and VHDL, and they 
all provide the same register transfer-level (RTL) hardware design 
abstraction. An RTL language burdens designers with explicitly 
clocked constructs that do not distinguish between design function- 
ality and implementation constraints (e.g., timing, target device). 
For example, VHDL and Verilog constructs require designers to 
explicitly place a register, regardless if it is part of the core 
function- ality (e.g., a state-machine state register), an artifact of 
the timing constraints (e.g, a pipeline register), or an artifact of the 
target in- terface (e.g., a synchronous protocol cycle delay). These 
semantics narrow design correctness to specific timing restrictions, 
while vendor library component instances couple the design to a 
given target device. Evidently, formulating complex portable 
designs is difficult, if not impossible. Finally, these older languages 
do not support modern programming features that enhance 
productivity and correctness such as polymorphism and type safety. 
High-level synthesis (HLS) tools such as Vivado HLS [8], and 
high-level HDLs such as Bluespec SystemVerilog [9] and Chisel 
[10] attempt to bridge the programmability gap. While these tools
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and languages tend to incorporate modern programming features, 
they still mix functionality with timing and device constraints, or 
lack hardware construction and timed synchronization control. On 
one hand, Chisel and Bluespec constructs explicitly pipeline 
designs. And on the other hand, Vivado HLS C++ constructs cannot 
directly support a simple task as toggling a led at a given rate. Such 
tools and languages, therefore, fail to deliver a clean separation 
between functionality and implementation that can yield portable 
code, while providing general purpose HDL constructs. 
Figure 3 summarizes the primary programmability pros and cons 
of RTL and HLS languages with their targeted programming 
domains, architectures and accelerators, respectively. DFiant aims 
to bridge over the programmability gaps by combining constructs 
and semantics from software, hardware and dataflow languages. 
DFiant is not an RTL language, nor is it a sequential HLS language 
such as C. Instead, the DFiant programming model accommodates 
a middle-ground approach between low-level hardware description 
and high-level sequential programming. 
DFiant is a modern HDL whose goal is to improve hardware 
programmability and designer productivity by enabling designers 
to express truly portable and composable hardware designs. DFi- 
ant decouples functionality from timing constraints (in an effort to 
end the "tyranny of the clock" [11]). DFiant offers a clean model 
for hardware construction based on its core characteristics: (i) a 
clock-agnostic dataflow model that enables implicit parallel data 
and computation scheduling; and (ii) functional register/state 
constructs accompanied by an automatic pipelining process, which 
eliminate all explicit register placements along with their direct 
clock dependency. 
DFiant is implemented as a Scala library and relies on Scala’s 
strong, extensible, and polymorphic type system to provide its own 
hardware-focused type system (e.g., bit-accurate dataflow types, 
input/output port types). The library performs two main tasks: the 
frontend compilation, which translates dataflow variable 
interactions into a dependency graph; and the backend compilation, 
which translates the graph into a pipelined RTL code and a TCL 
constraints file, followed by a hardware synthesis process using 
commercial tools. DFiant can be used in any Scala-compatible IDE, 
including the LEGaTO eclipse-based tool-chain. 

Figure 3. DFiant fills in the programmability gaps 

3.3 Maxeler MaxCompiler 
Developing applications for Maxeler DFEs requires identifying the 
computationally challenging part of the application and porting this 
part to a dataflow model. This model is developed in a Java-based 
meta-language called MaxJ. MaxJ programming adopts Java 

syntax but is in principle different from regular Java programming 
or other imperative programming paradigms. Compiling MaxJ 
code does not produce a Java application; instead, it leads to the 
generation of dataflow kernels. Both the compute kernels handling 
the data-intensive part of the application and the associated 
manager, which orchestrates data movement between kernels and 
external interfaces, are written using MaxJ. Developing a dataflow 
application therefore involves implementing three parts: 
1) A CPU host application typically written in C/C++, Matlab,
Fortran, Python, R, etc;
2) A number of dataflow kernels written in MaxJ;
3) A manager described in MaxJ.
Maxeler MaxCompiler is a comprehensive development, debug
and simulation environment for developing dataflow applications
in MaxJ. In order to provide seamless DFE integration with host
applications, Maxeler provides a Simple Live CPU (SLiC) API,
and MaxelerOS, a runtime layer between the SLiC API, the Linux
operating system and the DFE hardware. MaxIDE2.0 is an IDE
with dedicated features for developing, debugging, visualizing, and 
optimizing dataflow applications. Applications developed in MaxJ
are independent of the underlying FPGA technology and are always
forward compatible to newer DFE generations. As of version
2018.1, MaxCompiler also supports building applications for
Amazon EC2 F1 instances. MaxJ dataflow applications can be
moved from a conventional Maxeler DFE to F1 by simply changing
the build target.

4 LEGaTO RUNTIMES AND ENERGY-
PERFORMANCE-EFFICIENCY 

4.1. OmpSs Heterogeneous Task Scheduler 
Heterogeneous computing facilities such as CPUs, GPUs and 
FPGAs offer various trade-offs in terms of performance, adequacy 
to the task, potential for parallelism, power consumption, and even 
dependability and security properties. These trade-offs can vary 
depending on the application and the specific workload being 
processed. The LEGaTO Project develops a low-energy toolset for 
heterogeneous computing that includes a smart scheduler for tasks 
across different resources. To enable such smart scheduling of 
tasks, we need several components which we are developing in the 
context of the LEGaTO project. 
First, we need an appropriate programming model with fine-
granular computations, so that we can quickly launch and move 
tasks across multiple heterogeneous nodes. It must additionally 
provide support for parallel computation, as well as for cross-
cutting properties such as fault-tolerance and security. To that 
purpose, we will base our programming model on OmpSs 
(https://pm.bsc.es/ompss) and extend it with the missing features 
necessary for LEGaTO. 
Second, we need an energy model able to derive and predict the 
power consumption of tasks operating with some given input data 
on specific hardware resources. 
Third, we need a monitoring framework to measure and keep track 
of the power consumption of the tasks running in the system. 
The information produced by this framework will be used to refine 
the energy model and drive the scheduling policies based on actual 
power usage. 



Finally, and most importantly, we need an actual scheduling 
framework to orchestrate the placement and execution of tasks on 
the hardware resources. 
The scheduling strategies will use information from the monitoring 
framework evaluating the actual power usage, as well as from the 
energy model to help with prediction and take informed placement 
decisions. 
Early results with preliminary version of the monitoring framework 
reveal important differences in performance and energy 
consumption, offering interesting trade-offs for task scheduling. As 
an example, Figure 4 shows the performance results of executing 
simple workloads across different hardware architectures. This data 
tends to indicate that, by placing tasks on energy-efficient 
processor, one can obtain non-negligible energy savings with only 
limited performance penalty. 

Figure 4. Performance and energy used by the same 
program on three different machines 

Regarding the scheduling framework, we leverage experience and 
knowledge gained from previous work on energy-aware 
scheduling. We are currently extending our existing scheduler 
policies to render the framework heterogeneity- and energy-aware. 
In order to achieve this goal we rely on multiple types of power 
meters (hardware and software ones) for monitoring the running 
system and to build up and continuously update a knowledge base 
to be consulted by the scheduler. 

4.2. XiTAO Heterogeneous Task Scheduler 
The Chalmers’ High Performance Computer Architecture group 
will contribute to the LEGaTO toolchain in three directions: 
1) development of energy-efficient scheduling techniques,
2) development of portable abstractions for data locality, and
3) runtime performance monitoring and feedback.
This work will extend the work developed in the context of the
XiTAO research runtime [12]. XiTAO is a task-based runtime that
generalizes the concept of task into a parallel computation with
arbitrary (elastic) resources. This type of generalized task is called
a TAO (for Task Assembly Object). By matching task requirements
with hardware resources (cores, memory, etc) at runtime, XiTAO
targets high parallelism and provides constructive sharing and
interference freedom. Overall, this strategy improves the energy
efficiency of the computation. In addition to these, XiTAO
provides a data locality abstraction called software topology. This
abstraction allows the programmer to overlay a virtual (“software”)
topology, such as a 1D line, 2D plane or 3D cube, on top of the task 
graph, and assigns each task a location (an “address”) in this
software topology. The XiTAO runtime uses the address

information to dynamically select locality-aware schedules in a 
way that is independent of the actual hardware topology, and thus 
support dynamically reconfigurable topologies. The main goal in 
the context of LEGaTO is to extend the XiTAO technologies to 
support resource heterogeneity.  
During the early months of the project, one master thesis [13] 
developed at Chalmers has evaluated the potential of simple 
scheduling heuristics with and without knowledge of hardware 
heterogeneity. This work focused on the HiKey 960 board featuring 
the HiSilicon Kirin 960 big.LITTLE SoC. The XiTAO runtime was 
ported to this platform (thus adding support for ARM) and a set of 
microbenchmarks was developed to test if XiTAO’s resource 
elasticity can be an effective method to address heterogeneity. The 
work considered both criticality-based and weight-based 
scheduling, in which tasks were assigned to big cores when they 
were deemed to be either in the critical path (criticality-based), or 
when their relative speed-up over the LITTLE cores was larger than 
a threshold (weight-based). To assess the capabilities of each core, 
the criticality-based scheme was implemented also in a topology-
unaware way. In this case, the runtime constructs a performance 
table in which the execution time of each task is recorded 
depending on the identifier of the first core in the team and the 
amount of cores used.  
The microbenchmarks consisted of randomly generated DAGs with 
varying amount of parallelism and were evaluated compared to a 
homogeneous random work stealing strategy. Particularly for cases 
of low average parallelism (=1.62), large average speed-ups 
ranging from 1.29x to 2.79x were observed depending on the 
resources statically allocated in the homogeneous scheduler. For 
medium parallelism (=3.03) the speed-ups were slightly lower, 
ranging from 1.27x to 2.03x. Finally, in the case of high parallelism 
(=8.06) we observed speed-ups ranging from 1.1x to 1.28x. This 
behavior is expected since the higher the parallelism, the lesser the 
impact of task criticality.  The performance table proved to be 
useful to identify not only the core capabilities but also the current 
load of the system. The latter is achieved by updating the execution 
time each time a new task completed execution. This allows the 
scheme to learn about the average parallelism of the application that 
is being executed and also to understand if an interfering workload 
is currently running on some of the cores.  
In addition to novel runtime techniques for efficient scheduling, 
Chalmers’ will also develop compiler technologies to aid in the 
development of TAOs. These techniques will analyze static task 
graphs obtained from OmpSs and identify task subgraphs that can 
be encapsulated into TAOs. This will enhance productivity by 
following the LEGaTO philosophy of generating the LEGaTO 
binary fully from a single source file written in the OmpSs 
language. 

4.3. BRAM undervoltage usage in FPGA 
Usually, chip vendors are forced to add conservative voltage 
guardbands to ensure the worst-case process and environmental 
scenarios. Eliminating this voltage guardband by undervolting 
below the standard nominal level is an effective solution for 
improving power and energy efficiency in digital circuits. 



However, aggressive undervolting without accompanying 
frequency scaling leads to timing related faults, potentially 
undermining the power savings. We investigated the aggressive 
voltage underscaling to explore the power and reliability trade-offs 
for a commercial heterogeneous architecture from Xilinx, a main 
vendor, i.e., Zynq platform. More specifically, our preliminarily 
concentration is on the on-chip memories or Block RAMs 
(BRAMs) of Programmable Logic (PL) part. As can be seen in 
Figure 5; on ZC702, we experimentally observed an extremely 
conservative voltage guardband of 39% of the nominal level. It 
means that undervolting until Vmin=0.61V, while Vnominal=1V, 
no fault occur, while BRAMs power consumption is reduced by an 
order of magnitude. However, further undervolting, faults manifest 
with an exponentially increasing rate up to 172 faults per 1Mbit and 
with fully non-uniformly distributed among different BRAMs.  

Figure 5. Power and Reliability trade-off by 
undervolting ZC702 BRAMs. 

Motivated by this preliminary study on ZC702, we aim to take the 
advantage of aggressive voltage scaling on LeGaTO hardware 
platforms and apply it to our use cases, while tools of the project 
will handle the run-time voltage scaling assignments to achieve 
energy efficiency without compromising the performance and 
reliability issues. 

5     LEGaTO USE CASES 

5.1 Smart Home Use Case 
Current smart living environments are based on the simple 
automation of subsystems consisting of sensors, information 
processing, and actuators. New approaches mainly driven by large 
enterprises push big-data based approaches, collecting as much 
information about the user as possible to derive the current action 
and to anticipate future behavior. The development of assisted 
living can be seen as a move from isolated applications realized as 

simple embedded systems, towards cyber-physical systems fusing 
and processing large amounts of data from a high number of 
distributed smart devices. Additionally, the smart home has to 
process interaction of different users simultaneously; conflicting 
actions have to be recognized (e.g., one user opening a window and 
another one closing it again) and compromises can be suggested. 
Different interaction schemes can be combined adaptively, e.g., 
switching from touch to speech interaction while cooking or using 
text-based output while phoning. Providing this functionality is 
highly computational intensive. Since the collected data contains 
personal and highly sensitive information, cloud-based processing 
is undesirable. To address these privacy issues, we target resource-
efficient edge computing. The taskification of the application – 
coupled by the LEGaTO runtime, performing energy-aware load 
balancing and scheduling – leads to the most energy efficient 
execution on the heterogeneous hardware platform, combining 
CPUs, GPUs and FPGAs in an appropriate way. 
For everyday use, smart home environments require an intuitive 
and comfortable interface for user interaction. Depending on the 
desired functionality of an individual assistance system, specific 
modalities for interaction are preferred by the user, e.g., touch, 
speech, gestures, or even emotions. Within LEGaTO, a uniform 
configurable platform for distributed interaction and information 
processing in smart homes is developed. The platform can be 
configured to integrate arbitrary combinations of basic 
functionalities like face, object, and speech recognition. As an 
example implementation, this platform is used to realize a central 
human-machine interface for smart homes integrated in a wardrobe 
mirror. In addition to information and control of the state of the 
smart home environment (heating, ventilation and air conditioning 
(HVAC), security, illumination, and many more), the smart mirror 
provides cognitive abilities targeting more sophisticated assistive 
functionalities including, e.g., virtual try-on of a dress, guidance to 
tie a necktie, or interpretation of user intention.  
For the user interface, the smart mirror prototype builds upon the 
open source project “magic mirror” (https://magicmirror.builders/). 
In addition to the basic visualization provided by this environment, 
our prototype integrates compute-intensive methods for face, object 
and speech recognition. Face recognition is used to provide 
personalized content for individual users. It is realized using deep 
convolutional networks, implemented in three steps with 
TensorFlow. In the first step, a pretrained graph from 
“WIDERFace” [14] is used to find faces in the input video stream. 
Subsequently, a feature representation is computed for every 
detected face using “FaceNet” [15]. Based on the extracted 
features, a classifier is trained to determine the identity of the 
respective person using “Scikit-learn” [16].  
Speech recognition provides an easy and comfortable possibility 
for direct interaction with the smart home environment. The smart 
mirror provides a local system for speech recognition using 
“DeepSpeech” [17]. In addition to direct processing of recorded 
audio, other smart home devices can send their audio streams to the 
smart mirror, using it as an edge platform for the required 
recognition tasks. Object detection is another key feature for smart 
environments. For the proposed implementation, “YOLO” is used, 



which is capable of recognizing more than 9,000 object categories 
[18].  
As a reference implementation, the software is implemented on the 
RECS|Box using x86 processors and GPUs. For the final platform 
we target resource-efficient combinations of embedded CPUs, 
embedded GPUs, and FPGAs. The LEGaTO tool flow will be used 
to find optimized solutions for the different hardware-software 
combinations. The developed concepts used for the smart mirror 
can be easily transferred to other use cases, including entertainment 
systems, sports coaching, and cooking assistant [19]. In addition to 
the improvement of the overall user experience by enhancing 
naturalness of interaction and seamless or nearly invisible 
integration of assistive functionality, the ability of our homes to 
detect unexpected deviations from normal operation, unwanted 
behavior, or dangerous situations becomes more and more 
important. Deviation recognition enables especially elderly or 
cognitive impaired people to live a self-determined life as long as 
possible in their own home.  

5.2 Healthcare Use Case 
In order to better understand how infectious diseases spread and 
which effects vaccination strategies have, intensive simulation 
studies are needed [20]. For the analysis of real data from patients 
or mouse experiments with a limited number of samples but a large 
number of observed variables, Bayesian approaches are often better 
suited [21]. Simulation studies are computationally expensive 
because they have to be repeated very often in order to obtain 
reliable results. Bayesian inference relies on Markov chain Monte 
Carlo (MCMC) techniques in order to estimate the posterior 
distribution representing the essential outcome of a Bayesian 
analysis. MCMC techniques are computationally very expensive. 
Therefore, simulation studies as well as Bayesian analysis highly 
benefit from concurrency and special hardware that supports the 
underlying computations. A main goal of this use case within the 
LEGaTO project is to achieve a speed-up of the computations to 
enable simulations and analyses that would not be feasible with 
ordinary implementations and hardware. First prototypes have 
demonstrated that a speed-up by a factor of more than 1000 is 
possible. 

6 About LEGaTO 
The H2020 LEGaTO (Low Energy Toolset for Heterogeneous 
Computing) project, grant agreement n° 780681, is funded by the 
European Commission with a budget of more than €5 million and 
will last three years from its beginning on 1 December 2017. The 
partners of the project are Barcelona Supercomputing Center (BSC, 
Spain), Universität Bielefeld (UNIBI, Germany), Université de 
Neuchâtel (UNINE, Switzerland), Chalmers Tekniska Högskola 
AB (CHALMERS, Sweden), Machine Intelligence Sweden AB 
(MIS, Sweden), Technische Universität Dresden (TUD, Germany), 
Christmann Informationstechnik + Medien GmbH & Co. KG 
(CHR, Germany), Helmholtz-Zentrum für Infektionsforschung 
GmbH (HZI, Germany), TECHNION  Israel Institute of  

Technology (TECHNION, Israel), and Maxeler Technologies 

Limited (MAXELER, United Kingdom).  
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