
LEGaTO: First Steps Towards Energy-Efficient Toolset for
Heterogeneous Computing

Adrian Cristal, Osman S. Unsal, Xavier Martorell, Paul Carpenter, Raul De La Cruz, Leonardo Bautista, Daniel
Jimenez, Carlos Alvarez, Behzad Salami, Sergi Madonar (BSC), Miquel Pericàs, Pedro Trancoso (Chalmers),
Micha vor dem Berge, Gunnar Billung-Meyer, Stefan Krupop, Wolfgang Christmann (CHR), Frank Klawonn,
Amani Mihklafi (HZI), Tobias Becker, Georgi Gaydadjiev (Maxeler), Hans Salomonsson, Devdatt Dubhashi
(MIS), Oron Port, Elad Hadar, Yoav Etsion (Technion), Christof Fetzer (TUD), Jens Hagemeyer, Thorsten

Jungeblut, Nils Kucza, Martin Kaiser, Mario Porrmann (UBI), Marcelo Pasin, Valerio Schiavoni, Isabelly Rocha,
Christian Göttel, Pascal Felber (UniNE)

FPGAs (Altera, Xilinx), integrating CPUs with FPGAs (Xilinx),
and coupling FPGAs and CPUs in the same package (IBM–Altera,
Intel–Altera). Heterogeneity aims to solve the problems associated
with the end of Moore’s Law by incorporating more specialized
compute units in the system hardware and by utilizing the most
efficient compute unit for each computation. However, while
software-stack support for heterogeneity is relatively well
developed for performance, it is severely lacking for power- and
energy-efficient computing. Given that the ICT sector is
responsible for ~5% of global electricity consumption [2], software
ACM Microsoft Word template stack support for energy-efficient
heterogeneous computing is critical to the future growth of the ICT
industry. The primary ambition of the LEGaTO project is to
address this challenge by starting with a Made-in-Europe mature
software stack and by optimizing this stack to support energy-
efficient computing on a commercial cutting-edge European-
developed CPU–GPU–FPGA heterogeneous hardware substrate
[3] and FPGA-based Dataflow Engines (DFE), which will lead to
an order of magnitude increase in energy efficiency. The LEGaTO
project will utilize a completely integrated software system stack
supporting generalized tasks for low-energy, secure and reliable
parallel computing. We foresee that optimization opportunities for
low-energy computing can be maximized through the task
abstraction.
The mature software stack that will be the baseline for development
of the project is a task-based programming model family with a
dataflow-based runtime. These task-based programming models,
OmpSs [4] and XiTAO [5], are precursors and testing grounds for
future versions of the popular OpenMP programming model.
Although the task-based programming model is by itself good for
energy-efficient computing on heterogeneous substrates, we aim to
further enrich the programming model and runtime for explicit
support for energy-efficiency. The main idea is to attach resource
requirements to parts of the computation and to execute them on
dynamically constructed hardware places consisting of collections
of cores and memories matching the resource annotations. Each
piece of the computation is a generalized task that manages its own

ABSTRACT
LEGaTO is a three-year EU H2020 project which started in
December 2017. The LEGaTO project will leverage task-based
programming models to provide a software ecosystem for Made-
in-Europe heterogeneous hardware composed of CPUs, GPUs,
FPGAs and dataflow engines. The aim is to attain one order of
magnitude energy savings from the edge to the converged
cloud/HPC.

1 INTRODUCTION
In the last couple of decades, technological advances in the ICT
sector have been the dominant factors in global economic growth,
not to mention an increase in the quality of life for billions of
people. At the heart of this advance lies Moore’s Law, which states
that the number of transistors in an integrated chip will double
every 18 to 24 months with each step in the silicon manufacturing
technology node. However, due to fundamental limitations of
scaling at the atomic scale, coupled with heat density problems of
packing an ever-increasing number of transistors in a unit area,
Moore’s Law has slowed down in the last two years or so and will
soon stop altogether [1]. The implication is that, in the future, the
number of transistors that could be incorporated in a processor chip
will not increase. This development threatens the future of the ICT
sector as a whole. As a solution to this challenge, there recently
have been dramatically increased efforts toward heterogeneous
computing, including integration of heterogeneous cores on die
(ARM), utilizing general-purpose GPUs (NVIDIA), combining
CPUs and GPUs on the same die (Intel, AMD, ARM), leveraging

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works

control flow via an embedded scheduler. Resource requirements
describe the needs of the application, such as number of cores,
power, reliability, and security. The tasks are annotated with the
resource requirements and with their input and output structures.
These annotations are propagated through the system stack for
seamless integration of the software with heterogeneous hardware
consisting of CPUs, FPGAs, DFEs and/or GPUs, to identify the
energy-optimal execution of the task at runtime. In order to achieve
this goal, the project will develop tools to determine resources
based on metrics such as FLOPS/Byte, reuse distance, power
consumption, etc. for individual tasks. Furthermore, the project will
develop support in the programming model and runtime for
heterogeneity. This will be achieved by adding topology
information at the task level allowing us to select appropriate
accelerators and also compute nodes in scale-out environments. A
task-based programming model with a dataflow runtime is a good
match for low-power hardware since tasking seamlessly enables the
dispatching of processing operations close to data, while the
dataflow runtime execution model is well adapted for streaming
accelerators such as FPGAs or DFEs. For DFEs, the programming
model currently explicitly defines where DFE execution takes
place. Adding dynamic runtime support will be compelling for
reasons of productivity and energy efficiency.
Finally, the LEGaTO project will apply this energy-efficient
software toolset for heterogeneous hardware to three use cases. The
first use case will be healthcare. The project will not only
demonstrate a decrease in energy consumption in the healthcare
sector; it will also show that the toolset will increase healthcare
application resilience and security; both of which are critical
requirements in this area. As a second use case, the project will
demonstrate ease of programming and energy savings possible
through the use of the LEGaTO project software–hardware
framework for IoT, smart homes, and smart cities applications.
Sensitive sensor information and actuator instructions can be
received and sent via the developed secure IoT gateway. A third
use case will be based on machine learning (ML), where the project
will demonstrate how to improve energy efficiency by employing
accelerators and tuning the accuracy of computations at runtime.
This use case will explore object detection using Convolutional
Neural Networks (CNNs) for automated driving systems and CNN-
and Long Short-Term Memory (LSTM)–based methods for
realistic rendering of graphics for gaming and multi-camera
systems. In addition, the machine learning use case will be used to
further optimize the energy efficiency in the two other use cases, as
well as within the runtime.
It is important to balance the advantage of a low-energy
heterogeneous CPU/FPGA/GPU hardware platform with security
and resilience challenges. We are therefore working on ensuring
the resilience of the software stack running on this hardware, while
simultaneously optimizing for performance and low power. For
fault tolerance we would like to exploit the unique characteristics
of the heterogeneous CPU/GPU/FPGA platform in the runtime; for
example by replicating tasks intelligently on diverse processing
elements exploiting the spatial/temporal slack; additionally, we
will investigate energy-efficient selective replication where only

the most reliability-critical tasks will be replicated. Furthermore,
we will leverage the task programming model for detecting error
propagation across task boundaries and walking the task
dependency graph at runtime, which will help with failure root
cause analysis. Finally, we will use the properties of the task model
to design application-level energy-efficient checkpointing where
only the necessary and sufficient data (declared at the task entry)
will be checkpointed. For security, we will develop energy-efficient
security-by-design by leveraging instruction-level hardware
support for security (SGX in x86 and TrustZone in ARM) to
accelerate software-based security implementations.
In the rest of the paper, we will detail the LEGaTO hardware
platform which is composed of CPUs (both X86 and big.LITTLE
heterogeneous ARM processors), GPUs and FPGAs. Then, we will
do a deep-dive on LEGaTO programming models and on how they
can increase programmer efficiency and application performance
on FPGAs, first we will report first results for OmpSs@FPGA, and
discuss the advantages of the DFiant Hardware Description
Language for FPGAs. Then we will follow up with first directions
in the LEGaTO runtimes, in particular the heterogeneity-aware
OmpSs and XiTAO schedulers with emphasis on energy for the
case of OmpSs and performance for the case of XiTAO. Finally,
we will wrap up with two use cases, the LEGaTO smart home use
case will discuss how taskification could be leveraged, and the
healthcare use case will report the initial results on FPGA-based
acceleration.

2 HARDWARE PLATFORM
For integration and evaluation of the tool-sets that are developed
within LEGaTO, we will use the heterogeneous hyperscale server
platform RECS|Box 4.0 [6]. The hardware server platform
seamlessly integrates CPUs, GPUs, and FPGAs combined with a
highly flexible communication infrastructure. Its modularity allows
the RECS|Box to be scaled demand-oriented and thus adapt to
changing requirements. Applications running on the platform can
be optimized to distribute tasks to the most suited computing
modules and to make use of dedicated accelerators. Cyber-physical
systems and IoT will make a lot of data from their environment and
their users available for new services and applications. This
information needs to be securely stored and processed – partly
locally and partly in the cloud. Utilizing standardized computer-on-
module (CoM) form factors enables us to deploy the same hardware
platforms that are used in the data centers also for edge computing.
The RECS|Box integrates microservers based on x86, 32-bit and
64-bit ARM mobile/embedded processors and 64-bit ARM server
processors using COM Express, Toradex Apalis and NVIDIA
Jetson TX1/TX2 CoM formats. FPGA accelerators can be
integrated as dedicated microservers, e.g., high-performance COM
express boards with Intel Stratix10 SoCs are available as well as
low-power Toradex Apalis boards with Xilinx Zynq. Additionally,
PCIe-based accelerators with FPGAs or GPUs can be integrated
into the platform as well as PCIe attached storage. A unique feature
of the modular architecture is the integrated high-speed
communication infrastructure, which is based on a dedicated high-

speed low-latency communication network. It connects to the CPU-
/GPU-based microservers via PCIe and to the FPGA-based
microservers via their high-speed serial interfaces. Depending on
the involved communication partners, it utilizes either integrated
PCIe-based packet switches for host-to-host communication or
asynchronous crosspoint switches, which allow connections
between microservers independent of the used protocol. In addition
to direct communication between the different microservers it also
supports connection to storage or I/O-extensions, allowing easy
integration of PCIe-based extension cards like GPGPUs or storage
subsystems. Using these communication facilities, accelerators can
be flexibly attached to different compute nodes and can be
combined into larger, virtual units. At run-time, the communication
topology can be reconfigured and adapted to changing application
requirements via the middleware. Using OpenStack as a
middleware layer allows for accessing the hardware and deploying
the applications in a uniform way.
All hardware components equipped which rich sensorization,
providing fast and easy access to power, voltage, and temperature
on device level, microserver level, as well as server level.
Dedicated microcontrollers, integrated into the server platform, are
used for data aggregation and data preprocessing. Combined with
the possibility to monitor selected components with a sampling rate
of up to 1 MSPS, the platform is an ideal reference for evaluation
of performance and efficiency and to characterize individual tasks
at run-time. Within LEGaTO, especially cost-efficient realizations
for edge computing are targeted, which can be easily realized due
to the high modularity of the RECS|Box.
The second testbed in LEGaTO is based on Maxeler Dataflow
Engines (DFEs). With its DFEs, Maxeler pioneers a multiscale
dataflow computing paradigm, which fundamentally differs from
the classical Von Neumann control-flow oriented paradigm where
instructions are processed sequentially on a general purpose CPU.
On a DFE, data is streamed from memory and passes through a
pipeline of arithmetic and logic operators without any kind of
control mechanisms. Arithmetic operations are simply carried out
as data passes over operators in the pipeline. The entire dataflow
structure can be deeply pipelined while maintaining an overall
throughput of one result per clock cycle. Thousands of operations
can be performed in parallel, dedicating all of the available chip
area to computation. DFEs are extremely efficient for large-scale
computations with a static compute graph. They have shown to
deliver one to two orders of magnitude improvement in
performance and energy efficiency over conventional CPU servers
in a range of application domains.
The current generation MAX5 DFEs are based on a large Xilinx
VU9P FPGA that provides the reconfigurable substrate for creating
the dataflow pipeline. The DFE also contains 48GB DDR4 DRAM
and a 100 GbE networking port. DFEs are PCIe cards that can be
integrated into a range of different products. In Maxeler MPC-C
series systems, up to 4 DFEs are integrated into a conventional dual
socket CPU server, combining DFEs with server-grade Intel or
AMD CPUs. A far more flexible system architecture is provided by
Maxeler MPC-X series systems, where eight DFEs are
incorporated into a dense 1U chassis, forming a pure dataflow

appliance. This system is connected to conventional CPU servers
via an Infiniband network. Inside the MPC-X, the DFEs are also
directly connected through MaxRing.
A Maxeler MPC-X dataflow system has been delivered to the
Jülich Supercomputing Centre and is available for academic users.
Maxeler MAX5 DFEs are also compatible with Amazon EC2 F1
instances and applications developed for MAX5 can be migrated
seamlessly to the Amazon Cloud.

3 LEGaTO PROGRAMMING MODELS AND
PROGRAMMER EFFICIENCY

3.1 OmpSs@FPGA
The OmpSs Programming Model supports the execution of
heterogeneous tasks written in OpenCL, CUDA (for GPUs), and
C/C++ (for FPGAs). Both OpenCL and CUDA options require the
programmer to provide the OpenCL or CUDA code. In the case of
the FPGAs, the programmer provides C/C++ code to be
transformed into Verilog/VHDL by the FPGA vendor High-Level
Synthesis tools (HLS). In the case of the Xilinx platforms, Vivado
HLS accomplishes this transformation. Programmers can also
provide the particular pre-generated bitstream to be executed in the
FPGA, just by ensuring that the interface of the bitstream
functionality is compatible with the OmpSs@FPGA interface.
FPGA exploitation with OmpSs consists of annotating the source
code with OpenMP-like directives. ¡Error! No se encuentra el
origen de la referencia. shows the code of matrix multiplication
annotated with the OmpSs directives (target and task), in order to
use the matrix_multiply function as a task to be transformed as an
FPGA IP accelerator. In the matrix multiplication code, Vivado
HLS directives provide hints to the Vivado translator to improve
the VHDL generation, and obtain a high-performance bitstream.

Figure 1. Matrix multiply with OmpSs and Vivado
HLS annotations

ounsal
Rectangle

ounsal
Rectangle

ounsal
Typewriter
Figure 1

3.1.1 OmpSs@FPGA Experiments
With this benchmark, several configurations of IP cores were tested
on the FPGA using different clock speeds. The following table
summarizes the experiments conducted:

IPs configuration 1*256, 3*128 Number of
instances * size

Frequency (MHz) 200, 250, 300 Working frequency
of the FPGA

Number of SMP
cores

SMP: 1 to 4
FPGA: 3+1
helper, 2+2
helpers

Combination of
SMP and helper
threads

Number of FPGA
helper threads

SMP: 0; FPGA:
1, 2

Helper threads are
used to manage
tasks on the FPGA

Number of pending
tasks

4, 8, 16 and 32 Number of tasks
sent to the IP cores
before waiting for
their finalization

The experimentation environment is the AXIOM board, consisting
of the Xilinx Zynq Ultrascale+ chip, with 4 ARM Cortex-A53
cores, and the ZU9EG FPGA.
¡Error! No se encuentra el origen de la referencia. shows the
evaluation in GFlops of the different alternatives of matrix
multiplication configurations for 2048x2048 matrices using
different block sizes:128x128 and 256x256. On the SMP cores,
matrix multiplication used the OpenBLAS SGEMM kernel to
multiply the matrices in parallel in the same blocked fashion as the
application did on the FPGA. A single ARM Cortex A53 core
delivered roughly 3 GFlops (Figure 2 “No IP” bars 1 core).
Similarly, four ARM cores achieved 11.7 GFlops, showing good
scalability of the OmpSs infrastructure on the SMP environment.
When adding an IP core (performance-oriented hardware design)
of block size 256x256 running at 200 MHz, the performance was
boosted to 25.8 GFlops. The 200 MHz FPGA implementation of
the 256x256 block added up to 14 GFlops. In this latter case, one
helper thread was used to execute FPGA tasks but also SMP tasks
if there were not enough FPGA tasks for execution or the FPGA
was busy, and 3 worker threads were running SMP tasks. This was
due to the implements clause shown above, thus allowing a
heterogeneous parallel execution of tuned tasks for both SMP and
FPGAs.
Starting from this point, we increased the accelerator frequency to
250 and 300 MHz, which showed also an additional boost in
performance. Additionally, we allowed the runtime system to
provide up to 16 tasks to the FPGA before waiting for the previous
tasks to be finished. Tuning this value also provided a further
increase on performance. Specifically, for block sizes of 256x256
elements running at 300 MHz, the performance increased from 32.9
to 35.7 GFlops. This additional improvement was obtained from
the reduction in the number of synchronizations needed by the
runtime. Reducing the amount of synchronizations contributed to
reduce the overhead of task management.

¡Error! No se encuentra el origen de la referencia. also shows
the performance of 3 IP cores running in parallel on the FPGA. The
additional parallelism yielded better performance. When running at
200 MHz, and with up to 16 pending tasks, the performance was
equivalent to the one using a block size of 256x256 elements and 8
pending tasks. When moving to 300 MHz, the runtime behavior
showed that it is important to have at least 2 helper threads
available. Otherwise, the performance would have not been
improved at all, since having only one helper thread did not provide
enough FPGA tasks to the accelerators. In any case, those two
helper threads are implemented in a hybrid way. That is, they can
decide to run SMP tasks if the accelerators are busy, in addition to
the two worker threads that are also executing SMP tasks. This
combination of helper and worker threads achieved the best
performance of the MxM. Observe that the combinations of 4x2,
16x2, and 32x2 (pending tasks and helper threads) keep increasing
in performance, while the alternatives of 4x1, 16x1 and 32x1,
which used a single helper thread, did not scale anymore.

Figure 2. Evaluation of the matrix multiplication
benchmark on the AXIOM board

3.2. DFIANT HDL
DFiant [7] is a hardware description language (HDL) and one of
the LEGaTO programming models. For a long time, the dominat-
ing HDLs have been Verilog, System Verilog, and VHDL, and they
all provide the same register transfer-level (RTL) hardware design
abstraction. An RTL language burdens designers with explicitly
clocked constructs that do not distinguish between design function-
ality and implementation constraints (e.g., timing, target device).
For example, VHDL and Verilog constructs require designers to
explicitly place a register, regardless if it is part of the core
function- ality (e.g., a state-machine state register), an artifact of
the timing constraints (e.g, a pipeline register), or an artifact of the
target in- terface (e.g., a synchronous protocol cycle delay). These
semantics narrow design correctness to specific timing restrictions,
while vendor library component instances couple the design to a
given target device. Evidently, formulating complex portable
designs is difficult, if not impossible. Finally, these older languages
do not support modern programming features that enhance
productivity and correctness such as polymorphism and type safety.
High-level synthesis (HLS) tools such as Vivado HLS [8], and
high-level HDLs such as Bluespec SystemVerilog [9] and Chisel
[10] attempt to bridge the programmability gap. While these tools

ounsal
Rectangle

ounsal
Rectangle

ounsal
Rectangle

ounsal
Typewriter
Figure 2

ounsal
Typewriter
Figure 2

and languages tend to incorporate modern programming features,
they still mix functionality with timing and device constraints, or
lack hardware construction and timed synchronization control. On
one hand, Chisel and Bluespec constructs explicitly pipeline
designs. And on the other hand, Vivado HLS C++ constructs cannot
directly support a simple task as toggling a led at a given rate. Such
tools and languages, therefore, fail to deliver a clean separation
between functionality and implementation that can yield portable
code, while providing general purpose HDL constructs.
Figure 3 summarizes the primary programmability pros and cons
of RTL and HLS languages with their targeted programming
domains, architectures and accelerators, respectively. DFiant aims
to bridge over the programmability gaps by combining constructs
and semantics from software, hardware and dataflow languages.
DFiant is not an RTL language, nor is it a sequential HLS language
such as C. Instead, the DFiant programming model accommodates
a middle-ground approach between low-level hardware description
and high-level sequential programming.
DFiant is a modern HDL whose goal is to improve hardware
programmability and designer productivity by enabling designers
to express truly portable and composable hardware designs. DFi-
ant decouples functionality from timing constraints (in an effort to
end the "tyranny of the clock" [11]). DFiant offers a clean model
for hardware construction based on its core characteristics: (i) a
clock-agnostic dataflow model that enables implicit parallel data
and computation scheduling; and (ii) functional register/state
constructs accompanied by an automatic pipelining process, which
eliminate all explicit register placements along with their direct
clock dependency.
DFiant is implemented as a Scala library and relies on Scala’s
strong, extensible, and polymorphic type system to provide its own
hardware-focused type system (e.g., bit-accurate dataflow types,
input/output port types). The library performs two main tasks: the
frontend compilation, which translates dataflow variable
interactions into a dependency graph; and the backend compilation,
which translates the graph into a pipelined RTL code and a TCL
constraints file, followed by a hardware synthesis process using
commercial tools. DFiant can be used in any Scala-compatible IDE,
including the LEGaTO eclipse-based tool-chain.

Figure 3. DFiant fills in the programmability gaps

3.3 Maxeler MaxCompiler
Developing applications for Maxeler DFEs requires identifying the
computationally challenging part of the application and porting this
part to a dataflow model. This model is developed in a Java-based
meta-language called MaxJ. MaxJ programming adopts Java

syntax but is in principle different from regular Java programming
or other imperative programming paradigms. Compiling MaxJ
code does not produce a Java application; instead, it leads to the
generation of dataflow kernels. Both the compute kernels handling
the data-intensive part of the application and the associated
manager, which orchestrates data movement between kernels and
external interfaces, are written using MaxJ. Developing a dataflow
application therefore involves implementing three parts:
1) A CPU host application typically written in C/C++, Matlab,
Fortran, Python, R, etc;
2) A number of dataflow kernels written in MaxJ;
3) A manager described in MaxJ.
Maxeler MaxCompiler is a comprehensive development, debug
and simulation environment for developing dataflow applications
in MaxJ. In order to provide seamless DFE integration with host
applications, Maxeler provides a Simple Live CPU (SLiC) API,
and MaxelerOS, a runtime layer between the SLiC API, the Linux
operating system and the DFE hardware. MaxIDE2.0 is an IDE
with dedicated features for developing, debugging, visualizing, and
optimizing dataflow applications. Applications developed in MaxJ
are independent of the underlying FPGA technology and are always
forward compatible to newer DFE generations. As of version
2018.1, MaxCompiler also supports building applications for
Amazon EC2 F1 instances. MaxJ dataflow applications can be
moved from a conventional Maxeler DFE to F1 by simply changing
the build target.

4 LEGaTO RUNTIMES AND ENERGY-
PERFORMANCE-EFFICIENCY

4.1. OmpSs Heterogeneous Task Scheduler
Heterogeneous computing facilities such as CPUs, GPUs and
FPGAs offer various trade-offs in terms of performance, adequacy
to the task, potential for parallelism, power consumption, and even
dependability and security properties. These trade-offs can vary
depending on the application and the specific workload being
processed. The LEGaTO Project develops a low-energy toolset for
heterogeneous computing that includes a smart scheduler for tasks
across different resources. To enable such smart scheduling of
tasks, we need several components which we are developing in the
context of the LEGaTO project.
First, we need an appropriate programming model with fine-
granular computations, so that we can quickly launch and move
tasks across multiple heterogeneous nodes. It must additionally
provide support for parallel computation, as well as for cross-
cutting properties such as fault-tolerance and security. To that
purpose, we will base our programming model on OmpSs
(https://pm.bsc.es/ompss) and extend it with the missing features
necessary for LEGaTO.
Second, we need an energy model able to derive and predict the
power consumption of tasks operating with some given input data
on specific hardware resources.
Third, we need a monitoring framework to measure and keep track
of the power consumption of the tasks running in the system.
The information produced by this framework will be used to refine
the energy model and drive the scheduling policies based on actual
power usage.

Finally, and most importantly, we need an actual scheduling
framework to orchestrate the placement and execution of tasks on
the hardware resources.
The scheduling strategies will use information from the monitoring
framework evaluating the actual power usage, as well as from the
energy model to help with prediction and take informed placement
decisions.
Early results with preliminary version of the monitoring framework
reveal important differences in performance and energy
consumption, offering interesting trade-offs for task scheduling. As
an example, Figure 4 shows the performance results of executing
simple workloads across different hardware architectures. This data
tends to indicate that, by placing tasks on energy-efficient
processor, one can obtain non-negligible energy savings with only
limited performance penalty.

Figure 4. Performance and energy used by the same
program on three different machines

Regarding the scheduling framework, we leverage experience and
knowledge gained from previous work on energy-aware
scheduling. We are currently extending our existing scheduler
policies to render the framework heterogeneity- and energy-aware.
In order to achieve this goal we rely on multiple types of power
meters (hardware and software ones) for monitoring the running
system and to build up and continuously update a knowledge base
to be consulted by the scheduler.

4.2. XiTAO Heterogeneous Task Scheduler
The Chalmers’ High Performance Computer Architecture group
will contribute to the LEGaTO toolchain in three directions:
1) development of energy-efficient scheduling techniques,
2) development of portable abstractions for data locality, and
3) runtime performance monitoring and feedback.
This work will extend the work developed in the context of the
XiTAO research runtime [12]. XiTAO is a task-based runtime that
generalizes the concept of task into a parallel computation with
arbitrary (elastic) resources. This type of generalized task is called
a TAO (for Task Assembly Object). By matching task requirements
with hardware resources (cores, memory, etc) at runtime, XiTAO
targets high parallelism and provides constructive sharing and
interference freedom. Overall, this strategy improves the energy
efficiency of the computation. In addition to these, XiTAO
provides a data locality abstraction called software topology. This
abstraction allows the programmer to overlay a virtual (“software”)
topology, such as a 1D line, 2D plane or 3D cube, on top of the task
graph, and assigns each task a location (an “address”) in this
software topology. The XiTAO runtime uses the address

information to dynamically select locality-aware schedules in a
way that is independent of the actual hardware topology, and thus
support dynamically reconfigurable topologies. The main goal in
the context of LEGaTO is to extend the XiTAO technologies to
support resource heterogeneity.
During the early months of the project, one master thesis [13]
developed at Chalmers has evaluated the potential of simple
scheduling heuristics with and without knowledge of hardware
heterogeneity. This work focused on the HiKey 960 board featuring
the HiSilicon Kirin 960 big.LITTLE SoC. The XiTAO runtime was
ported to this platform (thus adding support for ARM) and a set of
microbenchmarks was developed to test if XiTAO’s resource
elasticity can be an effective method to address heterogeneity. The
work considered both criticality-based and weight-based
scheduling, in which tasks were assigned to big cores when they
were deemed to be either in the critical path (criticality-based), or
when their relative speed-up over the LITTLE cores was larger than
a threshold (weight-based). To assess the capabilities of each core,
the criticality-based scheme was implemented also in a topology-
unaware way. In this case, the runtime constructs a performance
table in which the execution time of each task is recorded
depending on the identifier of the first core in the team and the
amount of cores used.
The microbenchmarks consisted of randomly generated DAGs with
varying amount of parallelism and were evaluated compared to a
homogeneous random work stealing strategy. Particularly for cases
of low average parallelism (=1.62), large average speed-ups
ranging from 1.29x to 2.79x were observed depending on the
resources statically allocated in the homogeneous scheduler. For
medium parallelism (=3.03) the speed-ups were slightly lower,
ranging from 1.27x to 2.03x. Finally, in the case of high parallelism
(=8.06) we observed speed-ups ranging from 1.1x to 1.28x. This
behavior is expected since the higher the parallelism, the lesser the
impact of task criticality. The performance table proved to be
useful to identify not only the core capabilities but also the current
load of the system. The latter is achieved by updating the execution
time each time a new task completed execution. This allows the
scheme to learn about the average parallelism of the application that
is being executed and also to understand if an interfering workload
is currently running on some of the cores.
In addition to novel runtime techniques for efficient scheduling,
Chalmers’ will also develop compiler technologies to aid in the
development of TAOs. These techniques will analyze static task
graphs obtained from OmpSs and identify task subgraphs that can
be encapsulated into TAOs. This will enhance productivity by
following the LEGaTO philosophy of generating the LEGaTO
binary fully from a single source file written in the OmpSs
language.

4.3. BRAM undervoltage usage in FPGA
Usually, chip vendors are forced to add conservative voltage
guardbands to ensure the worst-case process and environmental
scenarios. Eliminating this voltage guardband by undervolting
below the standard nominal level is an effective solution for
improving power and energy efficiency in digital circuits.

However, aggressive undervolting without accompanying
frequency scaling leads to timing related faults, potentially
undermining the power savings. We investigated the aggressive
voltage underscaling to explore the power and reliability trade-offs
for a commercial heterogeneous architecture from Xilinx, a main
vendor, i.e., Zynq platform. More specifically, our preliminarily
concentration is on the on-chip memories or Block RAMs
(BRAMs) of Programmable Logic (PL) part. As can be seen in
Figure 5; on ZC702, we experimentally observed an extremely
conservative voltage guardband of 39% of the nominal level. It
means that undervolting until Vmin=0.61V, while Vnominal=1V,
no fault occur, while BRAMs power consumption is reduced by an
order of magnitude. However, further undervolting, faults manifest
with an exponentially increasing rate up to 172 faults per 1Mbit and
with fully non-uniformly distributed among different BRAMs.

Figure 5. Power and Reliability trade-off by
undervolting ZC702 BRAMs.

Motivated by this preliminary study on ZC702, we aim to take the
advantage of aggressive voltage scaling on LeGaTO hardware
platforms and apply it to our use cases, while tools of the project
will handle the run-time voltage scaling assignments to achieve
energy efficiency without compromising the performance and
reliability issues.

5 LEGaTO USE CASES

5.1 Smart Home Use Case
Current smart living environments are based on the simple
automation of subsystems consisting of sensors, information
processing, and actuators. New approaches mainly driven by large
enterprises push big-data based approaches, collecting as much
information about the user as possible to derive the current action
and to anticipate future behavior. The development of assisted
living can be seen as a move from isolated applications realized as

simple embedded systems, towards cyber-physical systems fusing
and processing large amounts of data from a high number of
distributed smart devices. Additionally, the smart home has to
process interaction of different users simultaneously; conflicting
actions have to be recognized (e.g., one user opening a window and
another one closing it again) and compromises can be suggested.
Different interaction schemes can be combined adaptively, e.g.,
switching from touch to speech interaction while cooking or using
text-based output while phoning. Providing this functionality is
highly computational intensive. Since the collected data contains
personal and highly sensitive information, cloud-based processing
is undesirable. To address these privacy issues, we target resource-
efficient edge computing. The taskification of the application –
coupled by the LEGaTO runtime, performing energy-aware load
balancing and scheduling – leads to the most energy efficient
execution on the heterogeneous hardware platform, combining
CPUs, GPUs and FPGAs in an appropriate way.
For everyday use, smart home environments require an intuitive
and comfortable interface for user interaction. Depending on the
desired functionality of an individual assistance system, specific
modalities for interaction are preferred by the user, e.g., touch,
speech, gestures, or even emotions. Within LEGaTO, a uniform
configurable platform for distributed interaction and information
processing in smart homes is developed. The platform can be
configured to integrate arbitrary combinations of basic
functionalities like face, object, and speech recognition. As an
example implementation, this platform is used to realize a central
human-machine interface for smart homes integrated in a wardrobe
mirror. In addition to information and control of the state of the
smart home environment (heating, ventilation and air conditioning
(HVAC), security, illumination, and many more), the smart mirror
provides cognitive abilities targeting more sophisticated assistive
functionalities including, e.g., virtual try-on of a dress, guidance to
tie a necktie, or interpretation of user intention.
For the user interface, the smart mirror prototype builds upon the
open source project “magic mirror” (https://magicmirror.builders/).
In addition to the basic visualization provided by this environment,
our prototype integrates compute-intensive methods for face, object
and speech recognition. Face recognition is used to provide
personalized content for individual users. It is realized using deep
convolutional networks, implemented in three steps with
TensorFlow. In the first step, a pretrained graph from
“WIDERFace” [14] is used to find faces in the input video stream.
Subsequently, a feature representation is computed for every
detected face using “FaceNet” [15]. Based on the extracted
features, a classifier is trained to determine the identity of the
respective person using “Scikit-learn” [16].
Speech recognition provides an easy and comfortable possibility
for direct interaction with the smart home environment. The smart
mirror provides a local system for speech recognition using
“DeepSpeech” [17]. In addition to direct processing of recorded
audio, other smart home devices can send their audio streams to the
smart mirror, using it as an edge platform for the required
recognition tasks. Object detection is another key feature for smart
environments. For the proposed implementation, “YOLO” is used,

which is capable of recognizing more than 9,000 object categories
[18].
As a reference implementation, the software is implemented on the
RECS|Box using x86 processors and GPUs. For the final platform
we target resource-efficient combinations of embedded CPUs,
embedded GPUs, and FPGAs. The LEGaTO tool flow will be used
to find optimized solutions for the different hardware-software
combinations. The developed concepts used for the smart mirror
can be easily transferred to other use cases, including entertainment
systems, sports coaching, and cooking assistant [19]. In addition to
the improvement of the overall user experience by enhancing
naturalness of interaction and seamless or nearly invisible
integration of assistive functionality, the ability of our homes to
detect unexpected deviations from normal operation, unwanted
behavior, or dangerous situations becomes more and more
important. Deviation recognition enables especially elderly or
cognitive impaired people to live a self-determined life as long as
possible in their own home.

5.2 Healthcare Use Case
In order to better understand how infectious diseases spread and
which effects vaccination strategies have, intensive simulation
studies are needed [20]. For the analysis of real data from patients
or mouse experiments with a limited number of samples but a large
number of observed variables, Bayesian approaches are often better
suited [21]. Simulation studies are computationally expensive
because they have to be repeated very often in order to obtain
reliable results. Bayesian inference relies on Markov chain Monte
Carlo (MCMC) techniques in order to estimate the posterior
distribution representing the essential outcome of a Bayesian
analysis. MCMC techniques are computationally very expensive.
Therefore, simulation studies as well as Bayesian analysis highly
benefit from concurrency and special hardware that supports the
underlying computations. A main goal of this use case within the
LEGaTO project is to achieve a speed-up of the computations to
enable simulations and analyses that would not be feasible with
ordinary implementations and hardware. First prototypes have
demonstrated that a speed-up by a factor of more than 1000 is
possible.

6 About LEGaTO
The H2020 LEGaTO (Low Energy Toolset for Heterogeneous
Computing) project, grant agreement n° 780681, is funded by the
European Commission with a budget of more than €5 million and
will last three years from its beginning on 1 December 2017. The
partners of the project are Barcelona Supercomputing Center (BSC,
Spain), Universität Bielefeld (UNIBI, Germany), Université de
Neuchâtel (UNINE, Switzerland), Chalmers Tekniska Högskola
AB (CHALMERS, Sweden), Machine Intelligence Sweden AB
(MIS, Sweden), Technische Universität Dresden (TUD, Germany),
Christmann Informationstechnik + Medien GmbH & Co. KG
(CHR, Germany), Helmholtz-Zentrum für Infektionsforschung
GmbH (HZI, Germany), TECHNION Israel Institute of

Technology (TECHNION, Israel), and Maxeler Technologies

Limited (MAXELER, United Kingdom).

REFERENCES

[1] ITRS, International Technology Roadmap for Semiconductors 2.0: 2015
Edition, ITRS, 2015.

[2] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet y P.
Demeester, «Trends in Worldwide ICT Electricity Consumption from 2007 to
2012,» Comput. Commun., vol. 50, pp. 64-76, 9 2014.

[3] R. Griessl y e. al, «A Scalable Server Architecture for Next-Generation
Heterogeneous Compute Clusters,» de 2014 12th IEEE International
Conference on Embedded and Ubiquitous Computing, 2014.

[4] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell y J.
Planas, «Ompss: a Proposal for Programming Heterogeneous Multi-Core
Architectures.,» vol. 21, pp. 173-193, 6 2011.

[5] M. Pericàs, «ξ-TAO: A Cache-centric Execution Model and Runtime for Deep
Parallel Multicore Topologies,» de Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, NY, USA, 2016.

[6] A. Oleksiak y e. al, «M2DC – Modular Microserver DataCentre with
heterogeneous hardware,» Microprocessors and Microsystems, vol. 52, pp.
117-130, 2017.

[7] O. Port y Y. Etsion, «DFiant: A dataflow hardware description language,» de
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), 2017.

[8] Xilinx, Vivado High Level Synthesis User Guide, 2015.

[9] R. Nikhil, «Bluespec System Verilog: efficient, correct RTL from high level
specifications,» de Formal Methods and Models for Co-Design, 2004.
MEMOCODE '04. Proceedings. Second ACM and IEEE International
Conference on, 2004.

[10] J. Bachrach y e. al, «Chisel: Constructing hardware in a Scala embedded
language,» de DAC Design Automation Conference 2012, 2012.

[11] I. Sutherland, «The Tyranny of the Clock,» Commun. ACM, vol. 55, pp. 35-36,
10 2012.

[12] M. Pericàs, «Elastic Places: An Adaptive Resource Manager for Scalable and
Portable Performance,» ACM Trans. Archit. Code Optim., vol. 15, pp. 19:1--
19:26, 5 2018.

[13] H. Rohlin, «Performance-targeted Resource-aware TaskScheduling for
Heterogeneous Platforms,» 2018.

[14] S. Yang, P. Luo, C. C. Loy y X. Tang, «WIDER FACE: A Face Detection
Benchmark,» de IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[15] F. Schroff, D. Kalenichenko y J. Philbin, «FaceNet: A Unified Embedding for
Face Recognition and Clustering,» CoRR, vol. abs/1503.03832, 2015.

[16] F. Pedregosa y e. al, «Scikit-learn: Machine Learning in Python,» CoRR, vol.
abs/1201.0490, 2012.

[17] D. Amodei y e. al, «Deep Speech 2 : End-to-End Speech Recognition in English
and Mandarin,» de Proceedings of The 33rd International Conference on
Machine Learning, New York, New York, USA, 2016.

[18] J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger,» CoRR, vol.
abs/1612.08242, 2016.

[19] A. Neumann y e. al, «"KogniChef": A Cognitive Cooking Assistant,» KI -
Künstliche Intelligenz, vol. 31, pp. 273-281, 2017.

[20] A. Bakuli, F. Klawonn, A. Karch y R. Mikolajczyk, «Effects of pathogen
dependency in a multi-pathogen infectious disease system including population
level heterogeneity -- a simulation study,» Theoretical Biology and Medical
Modelling, vol. 14, p. 26, 13 12 2017.

[21] F. Klawonn, T. Wüstefeld y L. Zender, «Statistical Modelling for Data from
Experiments with Short Hairpin RNAs,» de Advances in Intelligent Data
Analysis IX, Berlin, 2010.

