238 research outputs found

    Analysis of phonation onsets in vowel production, using information from glottal area and flow estimate

    Get PDF
    A multichannel dataset comprising high-speed videoendoscopy images, and electroglottography and free-field microphone signals, was used to investigate phonation onsets in vowel production. Use of the multichannel data enabled simultaneous analysis of the two main aspects of phonation, glottal area, extracted from the high-speed videoendoscopy images, and glottal flow, estimated from the microphone signal using glottal inverse filtering. Pulse-wise parameterization of the glottal area and glottal flow indicate that there is no single dominant way to initiate quasi-stable phonation. The trajectories of fundamental frequency and normalized amplitude quotient, extracted from glottal area and estimated flow, may differ markedly during onsets. The location and steepness of the amplitude envelopes of the two signals were observed to be closely related, and quantitative analysis supported the hypothesis that glottal area and flow do not carry essentially different amplitude information during vowel onsets. Linear models were used to predict the phonation onset times from the characteristics of the subsequent steady phonation. The phonation onset time of glottal area was found to have good predictability from a combination of the fundamental frequency and the normalized amplitude quotient of the glottal flow, as well as the gender of the speaker. For the phonation onset time of glottal flow, the best linear model was obtained using the fundamental frequency and the normalized amplitude quotient of the glottal flow as predictors.Peer reviewe

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy. This edition celebrates twenty years of uninterrupted and succesfully research in the field of voice analysis

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Tonal split and laryngeal contrast of onset consonant in Lili Wu Chinese

    Get PDF
    Descriptive and Comparative Linguistic

    Accurate glottal model parametrization by integrating audio and high-speed endoscopic video data

    Get PDF
    The aim of this paper is to evaluate the effectiveness of using video data for voice source parametrization in the representation of voice production through physical modeling. Laryngeal imaging techniques can be effectively used to obtain vocal fold video sequences and to derive time patterns of relevant glottal cues, such as folds edge position or glottal area. In many physically based numerical models of the vocal folds, these parameters are estimated from the inverse filtered glottal flow waveform, obtained from audio recordings of the sound pressure at lips. However, this model inversion process is often problematic and affected by accuracy and robustness issues. It is here discussed how video analysis of the fold vibration might be effectively coupled to the parametric estimation algorithms based on voice recordings, to improve accuracy and robustness of model inversio

    Acoustic and videoendoscopic techniques to improve voice assessment via relative fundamental frequency

    Get PDF
    Quantitative measures of laryngeal muscle tension are needed to improve assessment and track clinical progress. Although relative fundamental frequency (RFF) shows promise as an acoustic estimate of laryngeal muscle tension, it is not yet transferable to the clinic. The purpose of this work was to refine algorithmic estimation of RFF, as well as to enhance the knowledge surrounding the physiological underpinnings of RFF. The first study used a large database of voice samples collected from 227 speakers with voice disorders and 256 typical speakers to evaluate the effects of fundamental frequency estimation techniques and voice sample characteristics on algorithmic RFF estimation. By refining fundamental frequency estimation using the Auditory Sawtooth Waveform Inspired Pitch Estimator—Prime (Auditory-SWIPE′) algorithm and accounting for sample characteristics via the acoustic measure, pitch strength, algorithmic errors related to the accuracy and precision of RFF were reduced by 88.4% and 17.3%, respectively. The second study sought to characterize the physiological factors influencing acoustic outputs of RFF estimation. A group of 53 speakers with voice disorders and 69 typical speakers each produced the utterance, /ifi/, while simultaneous recordings were collected using a microphone and flexible nasendoscope. Acoustic features calculated via the microphone signal were examined in reference to the physiological initiation and termination of vocal fold vibration. The features that corresponded with these transitions were then implemented into the RFF algorithm, leading to significant improvements in the precision of the RFF algorithm to reflect the underlying physiological mechanisms for voicing offsets (p < .001, V = .60) and onsets (p < .001, V = .54) when compared to manual RFF estimation. The third study further elucidated the physiological underpinnings of RFF by examining the contribution of vocal fold abduction to RFF during intervocalic voicing offsets. Vocal fold abductory patterns were compared to RFF values in a subset of speakers from the second study, comprising young adults, older adults, and older adults with Parkinson’s disease. Abductory patterns were not significantly different among the three groups; however, vocal fold abduction was observed to play a significant role in measures of RFF at voicing offset. By improving algorithmic estimation and elucidating aspects of the underlying physiology affecting RFF, this work adds to the utility of RFF for use in conjunction with current clinical techniques to assess laryngeal muscle tension.2021-09-29T00:00:00

    An investigation into glottal waveform based speech coding

    Get PDF
    Coding of voiced speech by extraction of the glottal waveform has shown promise in improving the efficiency of speech coding systems. This thesis describes an investigation into the performance of such a system. The effect of reverberation on the radiation impedance at the lips is shown to be negligible under normal conditions. Also, the accuracy of the Image Method for adding artificial reverberation to anechoic speech recordings is established. A new algorithm, Pre-emphasised Maximum Likelihood Epoch Detection (PMLED), for Glottal Closure Instant detection is proposed. The algorithm is tested on natural speech and is shown to be both accurate and robust. Two techniques for giottai waveform estimation, Closed Phase Inverse Filtering (CPIF) and Iterative Adaptive Inverse Filtering (IAIF), are compared. In tandem with an LF model fitting procedure, both techniques display a high degree of accuracy However, IAIF is found to be slightly more robust. Based on these results, a Glottal Excited Linear Predictive (GELP) coding system for voiced speech is proposed and tested. Using a differential LF parameter quantisation scheme, the system achieves speech quality similar to that of U S Federal Standard 1016 CELP at a lower mean bit rate while incurring no extra delay

    Korean laryngeal contrast revisited:An electroglottographic study on denasalized and oral stops

    Get PDF
    In several Korean dialects, domain-initial nasal onsets undergo denasalization as a recent sound change. Nasal stops may be realized as prevoiced or even devoiced stops. This makes it necessary to examine the interplay of phonetic properties of the denasalized and the three oral stop series as a whole, in synchrony and diachrony. What are their concomitant and conflicting properties? Our study provides a bigger picture of the laryngeal contrast in Seoul and Gyeonggi Korean by examining the acoustic distributions related to the laryngeal properties of the four stop series, using acoustic and electroglottographic data. VOT and 'f'0 play important roles in the distinction of the four stop series, in line with previous studies. While the contribution of voice quality is relatively minor, we show that it plays an essential role of disambiguation when the VOT–'f'0 space gets crowded: When lenis stops can be confused with other stops, there is an enhancement of breathy voice. Finally, we discuss stop variation according to prosodic contexts. We highlight the basis of both syntagmatic variation and paradigmatic contrast in their phonetic implementations. They illustrate a constant reorganization to reconcile contrast maintenance with constraints from articulatory and perceptual systems, as well as language-specific structures

    It Sounds like It Feels: Preliminary Exploration of an Aeroacoustic Diagnostic Protocol for Singers

    Get PDF
    To date, no established protocol exists for measuring functional voice changes in singers with subclinical singing-voice complaints. Hence, these may go undiagnosed until they progress into greater severity. This exploratory study sought to (1) determine which scale items in the self-perceptual Evaluation of Ability to Sing Easily (EASE) are associated with instrumental voice measures, and (2) construct as proof-of-concept an instrumental index related to singers’ perceptions of their vocal function and health status. Eighteen classical singers were acoustically recorded in a controlled environment singing an /a/ vowel using soft phonation. Aerodynamic data were collected during a softly sung /papapapapapapa/ task with the KayPENTAX Phonatory Aerodynamic System. Using multi and univariate linear regression techniques, CPPS, vibrato jitter, vibrato shimmer, and an efficiency ratio (SPL/PSub) were included in a significant model (p &lt; 0.001) explaining 62.4% of variance in participants’ composite scores of three scale items related to vocal fatigue. The instrumental index showed a significant association (p = 0.001) with the EASE vocal fatigue subscale overall. Findings illustrate that an aeroacoustic instrumental index may be useful for monitoring functional changes in the singing voice as part of a multidimensional diagnostic approach to preventative and rehabilitative voice healthcare for professional singing-voice users
    • …
    corecore