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Abstract The aim of this paper is to evaluate the effec-1

tiveness of using video data for voice source parametrization2

in the representation of voice production through physical3

modeling. Laryngeal imaging techniques can be effectively4

used to obtain vocal fold video sequences and to derive time5

patterns of relevant glottal cues, such as folds edge position6

or glottal area. In many physically based numerical models7

of the vocal folds, these parameters are estimated from the8

inverse filtered glottal flow waveform, obtained from audio9

recordings of the sound pressure at lips. However, this model10

inversion process is often problematic and affected by accu-11

racy and robustness issues. It is here discussed how video12

analysis of the fold vibration might be effectively coupled to13

the parametric estimation algorithms based on voice record-14

ings, to improve accuracy and robustness of model inversion.15

Keywords Physical glottal modeling · Videokymography ·16

Voice data analysis · Model inversion · Video analysis17

1 Introduction18

The glottal flow waveform has a fundamental role in the19

characterization of a speaker’s voice. There is experimen-20

tal evidence that flow waveforms obtained by inverse fil-21

tering actual voice recordings are characterized by a wide22

variety of different shapes and cues. The waveform of the23

glottal volume velocity is influenced by a number of fac-24

tors, e.g., the sex and the age of the speaker, the vocal fold25
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health, the style of phonation. Physiological parameters used 26

to control the glottal cycle characteristics include the subglot- 27

tal pressure, the laryngeal muscles tension, and the resting 28

position of the vocal folds [1]. Vocal fold vibration consists 29

of a back-and-forth movement, which can be induced and 30

sustained over time, and whose source of energy is a steady 31

stream of air flowing through the glottis. This phenomenon is 32

called flow-induced oscillation. In the early 1950s and 1960s, 33

the vocal fold oscillation was explained with the myoelastic- 34

aerodynamic theory. According to these theories, Bernoulli 35

forces (negative pressure) cause the vocal folds to be sucked 36

together, creating a closed airspace below the glottis. Con- 37

tinued air pressure from the lungs builds up underneath the 38

closed folds. Once this pressure becomes high enough, the 39

folds are blown outward, thus opening the glottis and releas- 40

ing a single “puff” of air. Since the 1970s, a large number of 41

studies addressed the acoustic characterization of the glot- 42

tal air flow during voiced phonation by accurate modeling 43

of the folds vibration phenomenon [2–5]. Among these, the 44

lumped-element model proposed in 1972 by Ishizaka and 45

Flanagan [2], in which the folds are represented by two cou- 46

pled mass-spring oscillating systems, is most representative. 47

To date, the main achievement of the studies on voice source 48

dynamics has been to assist us in understanding the principles 49

of flow-induced oscillatory phenomena and the causes under- 50

lying vocal fold pathologies, e.g., [6,7]. The potentialities of 51

employing source model tracking in conjunction with vocal 52

tract analysis in voice modeling and disorder diagnosis [8] 53

are interesting, yet poorly investigated if compared with other 54

non-dynamical representations of the glottal source [9–11]. 55

On the other hand, video data acquisition and processing 56

became in the last decades an essential tool for medical prac- 57

tical applications such as larynx examination and pathology 58

diagnosis. Visual analysis techniques that are widely used, 59

especially for clinical investigation, include laryngeal (video) 60
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stroboscopy, high-speed videolaryngoscopy, and videoky-61

mography (high-speed line scanning of vocal fold vibra-62

tions). The acquisition of visual information about voice pro-63

duction requires that an endoscope is inserted in the mouth64

or in the nasal cavity to reach the vocal folds. Digital image65

processing algorithms can provide time patterns of visual66

cues related to the oscillations of the vocal fold edges for67

further analysis (vocal fold boundary detection and tracking)68

[12,13]. Recently, a video processing-based analysis scheme69

relying on the computation of a set of spatiotemporal geo-70

metric features from the glottal area has been proven useful in71

quantifying and differentiating normal and disordered vocal72

fold vibrations in adults and in children [14,15].73

Despite the wide number of investigations dedicated in74

the analysis of acoustic data on one side and of video endo-75

scopic data on the other, effective analysis schemes exploit-76

ing both modalities have been rarely addressed to date. An77

example is [16], in which vocal fold vibrations were analyzed78

using a high-speed camera and related to sound characteris-79

tics. Analysis included automatic glottal edge detection and80

calculation of glottal area variations, as well as kymography.81

In this paper, we illustrate an approach to phonation mod-82

eling that relies on both acoustic and videokymographic83

data analysis. The information gathered from the audiovi-84

sual analysis is used to accurately fit a source-plus-vocal tract85

model, in which the voice source is represented by a dynam-86

ical model of the vocal folds. The videokymographic data in87

particular is used to improve the parametrization of the source88

model, by controlling the principal glottal sub-cycle features89

such as open/closed interval durations. A pilot experiment is90

presented in which the method is used on a dataset featuring91

two different subjects uttering a sustained vowel.92

The paper is organized as follows: in Sect. 2, the numerical93

model of the voice source and the parametrization algorithm,94

95

addressing the fitting of visual and acoustic data, is presented. 96

In Sect. 3, the proposed method is assessed on a dataset con- 97

sisting of a videokymographic plus acoustic recordings of 98

sustained phonation, and the results are discussed. In Sect. 4, 99

the conclusions are presented. 100

2 Method 101

The proposed voice modeling method is based on the joint 102

analysis of audio and video data with the aim of inverting a 103

physiologically inspired model representing the dynamics of 104

the vocal folds and the vocal tract resonances. The acoustic 105

pressure recorded at lips is used to gather information on the 106

vocal tract formants and to provide an estimation of the glot- 107

tal source by inverse filtering; the videokymographic data, 108

providing accurate information on the closure and opening 109

glottal instants and on the duration of closed and open phases, 110

are used to improve the accuracy in the fitting of the glottal 111

model to the acoustic data. 112

In our modeling scheme, the lip pressure signal measured 113

by the microphone is given by 114

y(t) = −
N∑

k=1

ak y(t − k) + u̇g(t) (1) 115

where a1, . . . , aN are the auto regressive (AR) coefficients 116

of an all-pole model of the vocal tract, and u̇g(t) is the first 117

derivative of ug(t), the excitation glottal pulse waveform. 118

The voice source model used to represent ug relies on the 119

mass-spring paradigm adopted, among others, by the well- 120

known Ishizaka–Flanagan one-mass and two-mass models. 121

The details of the glottal excitation model, illustrated in 122

Fig. 1, can be found elsewhere [17], and here we only briefly 123

recall the essential components. 124

Fig. 1 Scheme of the low-dimensional voice source used as glottal
waveform generator (note that the vocal tract model is not represented
here). Left representation of the vocal folds in terms of a mass-spring
system; phase delay between lower and upper edges of the fold are

modeled through the propagation of the fold displacement along the
thickness of the fold. Right the discrete counterpart of the mass-spring
model
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The lower edge of the folds is represented by a single125

mass-spring system k, r, m and the propagation of the dis-126

placement x along the thickness T h of the fold is represented127

by a propagation line of length τ . Let x1 be the displacement128

of the fold at glottis entrance, and x2 the displacement at the129

exit. An impact model reproduces the impact distortions on130

the fold displacement and adds an offset x0 (the resting posi-131

tion of the folds). The driving pressure Pm acting on the folds132

is computed from the lung pressure Pl, the flow ug and the133

lower glottal area A1, using Bernoulli’s law: Pm = Pl− 1
2ρ

ug

A1
134

(a)

(b)

(c)

Fig. 2 A simulation of the glottal model, for different values of the
phase delay parameter τ (in samples): folds edge displacements (upper

plots), and glottal source (lower plots). The plots show how the phase
delay parameter τ directly affects the closed-phase interval of the glottal
flow cycle, i.e., the interval in which x1 or x2 is in the closed position

(ρ being the air density). In Fig. 1, the vocal folds and the 135

Bernoulli term are enclosed in the fluid mechanical compo- 136

nent M. A flow model F converts the glottis area given by 137

the fold displacements into the airflow at the entrance of the 138

vocal tract. In its simplest form, the glottis area is computed as 139

the minimum cross-sectional area between the area at lower 140

vocal fold edge, A1 = L · x1, and the area at upper vocal fold 141

edge, A2 = L · x2. The flow is then assumed proportional to 142

the glottal area, i.e., ug = F(x1, x2) = kgmin(x1, x2) (where 143

the lung pressure Pl is included in kg). The propagation line 144

of length τ reproduces the vertical phase difference of the 145

vibration of the cord edges, which is essential for the pro- 146

duction of self-sustained oscillations without a vocal tract 147

load. The pressure lung, Pl, has a role in determining the 148

onset and offset of the oscillation. In our simulations, it is 149

kept constant during the system evolution and is omitted for 150

simplicity in what follows. The mass-spring system k, r, m is 151

modeled as a second-order resonant filter, characterized by a 152

resonance frequency f0 = 1
2π

√
k/m. 153

In previous investigations, this model has shown to pro- 154

vide stable oscillatory behavior in a wide range of parametric 155

configurations of interest [18], and to be suited for applica- 156

tions in which automatic fitting to recorded speech data is 157

involved [17,19]. Moreover, with respect to traditional multi- 158

mass-based glottal models, it has the property that the phase 159

delay parameter τ directly affects the closed/open-phase ratio 160

of the glottal flow waveform, as shown in Fig. 2. This is of 161

particular interest here, since the method that we propose 162

relies especially on the optimization of τ in order to match 163

the closed/open-phase ratio measured from the visual data. 164

An example of the analysis data used in this investigation 165

is shown in Fig. 3. It reproduces a videokymography, i.e., a 166

high-speed line scanning of vocal fold vibrations in a given 167

point along the vocal folds length [20,21]. Given the video 168

500 1000 1500 2000 2500 3000

100

200

300

400

500

600

Fig. 3 The audio visual data used in this investigation. The acoustic
pressure recorded at lips (upper plot) is used to gather information on the
vocal tract formants and to provide an estimation of the glottal source
by inverse filtering; the video kymograph data (lower plot) provides
accurate information on the closure and opening glottal instants and
on the duration of closed and open phases, which is used in turn to
accurately fit the glottal model to the acoustic data
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Fig. 4 The pitch-synchronous parameter identification procedure performing a joint source-vocal tract identification

frame rate Fpsv and the image resolution Xresv along the169

time axis, the time interval Tpix corresponding to an image170

pixel can be computed as Tpix = (1/Fpsv)Xresv . In the171

example shown, the image has an x-axis resolution of 512172

pixel at 25 frames per second, resulting in a pixel time Tpix =173

0.0781 ms. The available acoustic pressure at lips is recorded174

with a 44.1 kHz sampling rate and 16 bit resolution.175

The voice model (glottal source plus vocal tract) is fitted to176

time-varying recorded speech data, by a pitch-synchronous177

parameter identification procedure which performs a joint178

source-vocal tract identification. The procedure is summa-179

rized in Fig. 4 and operates through the following steps:180

1. a fixed length running analysis window is shifted by a181

variable hop size equal to the period length.182

2. for the audiovisual analysis frame under investigation,183

whose length corresponds to around three periods of184

speech, a traditional LPC analysis is performed on the185

audio signal to obtain a rough estimate of the vocal tract186

model parameters ak , which also represent its principal187

resonances called formants.188

3. the fundamental frequency is estimated through an audio189

pitch detector (and the analysis of the videokymography);190

the GCI (glottal closure instants) and the closed/open-191

phase durations of the glottal cycle are estimated from192

the videokymography through video analysis routines.193

4. the cues computed in the previous step are used to syn-194

chronize and tune the mass-spring system representing195

the folds (through the mass-spring system resonance fre-196

quency f0 and the folds edges delay parameter τ ), and197

the glottal model is used to generate a glottal pulse.198

5. a least-square fitting procedure, based on QR factoriza-199

tion, is used to solve the estimation problem which pro-200

vides the final parameters ak of the vocal tract filter, given201

its time aligned input (the glottal source) and output (the 202

target speech signal) time series. 203

In the procedure sketched above, the cues provided by the 204

video analysis procedure in Step 3 are used in Step 4 to accu- 205

rately tune those parameters of the model that principally 206

affect the open-phase to close-phase duration ratio, i.e., prin- 207

cipally, the phase parameter τ (the vocal fold resting position 208

x0 and the lung pressure Pl may also affect the glottal cycle, 209

however, the focus in this paper will be on the phase delay 210

control, and the other parameters are held constant during the 211

simulations). To this purpose, a Levenberg–Marquardt non- 212

linear least-square optimization is used, which searches for 213

the best τ parameter that minimizes a cost function propor- 214

tional to the distances between target and reproduced open- 215

phase/closed-phase duration ratio. 216

2.1 Video features extraction 217

Several cues of the glottal waveform can be extracted from 218

videokymographic data in order to estimate voice source 219

parameters. Glottal opening and closing instants are clearly 220

identified as the left and right corners of the rhomboid-shaped 221

convex regions, denoting the open phase of the glottal cycle. 222

Closed- and open-phase time localization and duration are 223

the principal parameters that will be used here to tune the 224

model fitting. The skewness of the rhomboid-shaped regions 225

is potentially interesting as well, since it relates to the degree 226

of left–right asymmetry in the vocal folds oscillation. Here, 227

we will adopt a symmetrical model of the folds oscillation 228

and will not take left–right asymmetries into consideration. 229

The input image I (x, y, t) is considered as a set of pixels 230

that belong to one of two regions: rhomboid-shaped convex 231

areas or background. Convex area pixels are those which 232
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0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2

Fig. 5 A frame showing sub-cycle timing details. GCI are glottal clo-
sure instants, T is the glottal cycle period, Tc and To are the closed- and
open-phase intervals

belong to a region associated with the open phase, while233

background pixels between two convex areas are associated234

with the closed phase (see Fig. 5). The first step of the pro-235

posed method is to detect figure pixels in each frame of the236

temporal sequence. There is a wide variety of techniques that237

could be used for the identification of whether a pixel is part238

of the figure or the background. For example, a model of the239

average shape of the figure can be built and an attempt to fit240

this model to locations within the image can be done. How-241

ever, model-based identification schemes are computation-242

ally intensive and may not be able to complete the detection243

in real-time. In order to satisfy the real-time constraint and to244

reach a high level of accuracy, the change detection method245

based on the fast Euler number (FEN) has been applied [22].246

Such a method consists in thresholding the difference image247

at g different levels, computing the Euler number for each248

binarization, and choosing the “optimal” threshold value that249

better separates signal from noise. At the end of this process,250

a binary image B(x, y, t) is obtained where figure pixels are251

set to 1 and background pixels are set to 0. The output of252

this step can be seen in Fig. 6a. However, noise points may253

appear in B(x, y, t), due to wrong illumination conditions or254

errors of the FEN method. In practice, isolated points rep-255

resent noise points, while compact regions of black pixels256

represent possible regions associated with the open phase. In257

order to reduce noise and obtain a binary image characterized258

by uniform and compact regions, a morphological focus of259

attention mechanism is used [23]. First, a statistical erosion is260

applied to the binary image B(x, y, t), B ′ = B ⊖β1 S, where261

S is a 3 × 3 square structuring (SE) element and β1 is a para-262

meter which regulates statistical operators [23,24]. Then, a263

statistical dilation is applied to the set B ′, B ′′ = B ′ ⊕β2 S′,264

where S′ is a cross SE and β2 > β1. The resulting denoised265

video frame is shown in Fig. 6b. Finally, a fast active con-266

Fig. 6 A frame showing the image processing steps for sub-cycle cues
analysis: thresholding for convex regions-background separation (a),
denoising (b), contour detection (c), computation of opening and closing
instants (d)

tour algorithm [25] is applied to detect the contours of the 267

open-phase regions (see Fig. 6d), and each region is approx- 268

imated with an elliptical shape. Glottal opening and closing 269

instants, GOI’s and GCI’s, are computed, respectively, as 270

the leftmost pixel and rightmost pixel of each contour curve 271

(Fig. 6d), and the closed/open-phase durations are computed 272

as Tc,i = GOIi+1 − GCIi, and To,i = GCIi − GOIi. 273

The procedure discussed so far has been implemented in 274

Matlab as a semi-automatic program. It requires a certain 275

amount of supervision, including the preliminary segmen- 276

tation of the portion of data to be analyzed, the tuning of 277

the parameters of the numerical model not involved in the 278

adaptation procedure, and the tuning of the video analysis 279

threshold parameters. 280

3 Results and discussion 281

In this section, the proposed fitting procedure is assessed 282

on a dataset consisting of a videokymographic plus acoustic 283

recordings of sustained phonation from two healthy subjects. 284

The subjects, both males, uttered a sustained vowel (/a/ for 285

S1, and /i/ for S2) for approximately 7 s, subject S1 with 286

a fundamental frequency of 130.0 Hz, and subject S2 with 287

a fundamental frequency of 178.6 Hz. The procedure was 288

applied on a total of 30 frames for each subject, in the sta- 289

tionary portions of the recordings (voice onsets and offsets 290

were discarded in this investigation). 291
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The video analysis process aimed at measuring the prin-292

cipal cues that could be of interest for the parametrization293

of a glottal model able to represent the motion of the vocal294

folds and the fluid dynamics of the airflow passing through295

the folds and originating the glottal waveform. Some cues of296

the glottal waveform have been recognized to be particularly297

relevant for the study of the perceptual influence of the voice298

source characteristics, and for comparing different voice299

qualities. Well-established voice source quantification para-300

meters, computed from the flow and the differentiated flow,301

are usually defined in terms of the time intervals in which air302

is allowed to flow through the glottis (opening and closing303

intervals) or not (closed interval), and in terms of flow ampli-304

tude [1,26]. We define here a set of glottal area time parame-305

ters which are strictly related to the ones used in the literature306

to characterize the air flow. If T is the glottal cycle period, and307

F0 = 1/T the fundamental frequency of oscillation, we call308

Tc the closed glottis interval, Top the opening interval, Tcl the309

closing interval, and To = Top + Tcl the open interval. Also,310

the following derived parameters are defined: the closed quo-311

tient CQ = Tc/T , the opening quotient OQ = To/T , the312

speed quotient SQ = Top/Tcl. Table 1 reports the values313

of time-related area function parameters computed from the314

video data, upon segmentation of the visual glottal area cues315

as illustrated in the video analysis section.316

In the speech model adaptation procedure sketched in 317

Sect. 2, part of the parameters adaptation relies on the mea- 318

sure of the acoustic pressure radiated at lips, whereas part 319

of the glottal source parameters are tuned using the visual 320

information related to the glottal area function evolution in 321

time. Specifically, the visual-related adaptation step is per- 322

formed using a Levenberg–Marquardt gradient descent opti- 323

mization method, targeted at reproducing the same closed 324

and open glottis intervals as measured from the videoky- 325

mography frames. The cost function used here in the gradient 326

descent algorithm, referred to a frame of data, is defined as: 327

F(τ, f0) = α1(T
M

c (τ, f0) − T V
c )2 + α2||(y − ỹ(τ, f0)||L2 328

(2) 329

where T M
c and T V

c are the closed interval durations from 330

the model and from the video analysis respectively, y = 331

[y(ni), . . . , y(ni+Nfr)] and y = [ỹ(ni), . . . , ỹ(ni+Nfr)] are 332

the target and reproduced speech waveforms, respectively. 333

The parameters α1 and α2 allow to weight the importance 334

of the glottal time parameter term over the speech waveform 335

term and are set both to 0.5 in our experiments. The order 336

of the AR filter representing the vocal tract filter was set to 337

40 (the sampling rate of the audio data being 44,100 Hz). 338

Figures 7 and 8 show the result of the adaptation of the folds 339

340

Table 1 Time-based parameters (mean values and standard deviations)
computed from the video data for subject S1 (male, pitch: 130.0 Hz),
and S2 (male, pitch: 178.6 Hz). Parameters reported are T (period), Tc

(closed interval), Top (opening interval), Tcl (closing interval), expressed
in milliseconds, and OQ (open quotient), SQ (speed quotient)

Subj. T Tc Top Tcl CQ SQ

S1 7.4 (130.0 Hz) 3.4 2.0 2.0 0.46 1.0

S2 5.6 (178.6 Hz) 2.6 1.0 2.0 0.46 0.5

0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
−0.1

−0.05

0

0.05

0.1

time [sec]
0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4

−0.1

−0.05

0

0.05

0.1

time [msec]

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395
−0.1

−0.05

0

0.05

0.1

time [msec]

(a) (b) (c)

Fig. 7 An analysis frame from subject S1 showing the adaptation of
the folds model with respect to glottal area time intervals measured from
videokymographic image: a shows the acoustic pressure recorded at lips
and the videokymographic data and reports the closed and open inter-
vals (Tc and To, respectively) estimated by the image analysis process;
b shows the reproduced lip pressure and the time evolution of the mod-
eled folds (lateral displacement of lower edge and upper delayed edge),

when the model is fitted to the acoustic data using a randomly cho-
sen value for the parameter τ , affecting the edges phase difference. An
arbitrary value of 2 samples was used for the parameter τ , resulting
in a short closed interval and longer open interval; c shows the repro-
duced lip pressure and the time evolution of the modeled folds when
the target intervals measured from video are used to tune the parameter
τ (reaching the final value of 39 samples)
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0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
−0.06

−0.04

−0.02

0

0.02

0.04

time [sec]

0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
−0.06

−0.04

−0.02

0

0.02

0.04

time [msec]

0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
−0.06

−0.04

−0.02

0

0.02

0.04

time [msec]

(a) (b) (c)

Fig. 8 An analysis frame from subject S2 [plots and parameters are as in Fig. 7. For this subject, the arbitrary value used in the audio-only procedure
for τ was 60 samples, providing a wide closed phase (b)]. The parameter reached a value of 32 samples upon tuning (c)

Table 2 Segmental SNR and IS
spectral distance values for
distinct modeling settings,
referring to audiovisual data
from subjects S1 and S2
(average values, calculated over
20 frames for each subject)

Subj. Glottal area (rel. error) Speech waveform

T (%) Tc Top (%) Tcl SNR IS

S1 <1 3.1 % (23 %) 18 – 1.8 (0.8) 3.8 (5.0)

S2 <1 3.8 % (19 %) 32 – 2.7 (0.6) 2.9 (8.1)

model with respect to the target waveforms and area parame-341

ters. Note that here we only addressed the matching of the342

open and closed glottis time intervals and did not attempted343

at matching the correct opening and closing intervals within344

each open phase. This is because, given the present design of345

the model, there is no direct relation that links these intervals346

to one prevailing parameter, as it is the case for the phase347

delay parameter τ and the closed phase. Most probably, all348

the parameters of the fluid mechanical model of the folds349

affect the evolution of the open phase, as well as the inter-350

action with the vocal tract. This issue will be the object of351

future investigation.352

Looking at Figs. 7 and 8, it can be seen that in both353

cases the fitting procedure which also relies on video analy-354

sis (Figs. 7c, 8c) allows to match the closed and open inter-355

vals with good approximation. To provide a measure of the356

acoustic reconstruction quality, two objective measures are357

adopted: the SNR, defined as the ratio of signal energy over358

the reconstruction error energy, and Itakura–Saito (IS) spec-359

tral distance, a measure of the perceptual difference between360

the target signal spectrum and the modeled signal spec-361

trum. With respect to the fitting results based only on audio362

(Figs. 7b, 8b), in which the parameter τ was chosen arbitrar-363

ily, the quality measures computed on the speech waveform364

also are improved for this specific frame: SNR improves from365

0.91 to 1,93 for subject S1, and from 0.60 to 2.92 for subject366

S2; the IS distance decreases from 4.7 to 3.68 for subject367

S1, and from 6.5 to 0.5 for subject S2. In Table 2, the fitting368

performances of the proposed model are compared in terms369

of glottal area time-related parameters, and in terms of SNR370

and IS distance. Values refers to the average of SNR and IS 371

values, calculated on the acoustic speech signal over a total 372

of 20 analysis frames for each subject (segmental measures). 373

The glottal area-related parameters are expressed as relative 374

errors given by modeled values compared with the target val- 375

ues computed from video: rel_err = |(T M − T V )|/T V . 376

First column refers to the glottal period, and error is below 377

1 % in both cases; the second column shows the average 378

improvement provided by using video data analysis if com- 379

pared with audio-only analysis (values in parentheses). The 380

third column reports the values related to the opening inter- 381

val, although the fitting of opening and closing intervals 382

is not addressed here. The value for subject S1 is around 383

20 % and does not improve significantly with the video- 384

based analysis. This happens for subject S2 too, for which, 385

however, the error value is rather high, probably because 386

the opening interval is shorter in average than the closing 387

interval, whereas the model shows rather symmetrical open- 388

ing and closing intervals with the parametric configuration 389

used here. 390

It is to be stressed that the experiments were conducted 391

on a minimal dataset, due to the limited availability of 392

pre-recorded audiovisual endoscopic data and to the semi- 393

automatic nature of the procedure illustrated. Thus, the 394

improvements documented here cannot be claimed to be sta- 395

tistically significant. Nonetheless, we believe that the out- 396

come of this experiment provides interesting information on 397

the potentials of such a data analysis setting, in which a phys- 398

iologically motivated model is adapted to both acoustic and 399

video endoscopic data. 400
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4 Conclusions401

The use of videokymographic data to improve the audio-402

based parametrization of a nonlinear dynamical model of403

the vocal folds has been investigated. A low-dimensional404

glottal model, provided with features which permit to accu-405

rately control glottal sub-cycle features such as open- and406

closed-phase durations, was adopted. A video processing407

analysis procedure was designed, to extract glottal cues form408

the high-speed video data, which are not directly observ-409

able from lip pressure signals. The video cues were used410

in a joint audio–video parametric identification procedure,411

to obtain an accurate tuning of the glottal numerical model.412

This in turn provides an improved superposition of actual and413

modeled vocal fold edge displacement and an accurate open414

phase/closed phase-related glottal cues. It has finally been415

shown that improved glottal closed/open intervals is also ben-416

eficial to the vocal tract parameter identification, resulting in417

improved speech signal reconstruction error and IS spectral418

distance.419

Given the pilot nature of this investigation and due to the420

scarce availability of audiovisual videokymographic record-421

ings, the experiments were conducted on a limited amount422

of data. Future experiments will address the statistical sig-423

nificance of the method by assessing it on a larger number424

of subjects and on wider spectrum of variables, including425

gender, age, and phonatory settings.426

Further developments are also foreseen in terms of model427

details and tracking procedure. The model used here is intrin-428

sically symmetrical, i.e., only one fold is actually represented429

by a moving mass. It is often the case that the motion of the430

left and of the right fold is slightly asymmetrical, even in431

healthy subjects. An improved representation of the folds432

motion is possible by explicitly modeling each fold indepen-433

dently.434

Also, it has been noted that the fitting of opening and clos-435

ing time intervals, summing up to the open interval, has not436

been addressed in this paper. The ratio of these two intervals437

is considered to be an interesting glottal parameter (speed438

quotient) to characterize non-modal phonation. The possi-439

bility of accurately matching these cues by extending the440

proposed procedure will be further investigated.441
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