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ABSTRACT 

Quantitative measures of laryngeal muscle tension are needed to improve 

assessment and track clinical progress. Although relative fundamental frequency (RFF) 

shows promise as an acoustic estimate of laryngeal muscle tension, it is not yet 

transferable to the clinic. The purpose of this work was to refine algorithmic estimation 

of RFF, as well as to enhance the knowledge surrounding the physiological 

underpinnings of RFF. The first study used a large database of voice samples collected 

from 227 speakers with voice disorders and 256 typical speakers to evaluate the effects of 

fundamental frequency estimation techniques and voice sample characteristics on 

algorithmic RFF estimation. By refining fundamental frequency estimation using the 

Auditory Sawtooth Waveform Inspired Pitch Estimator—Prime (Auditory-SWIPE′) 

algorithm and accounting for sample characteristics via the acoustic measure, pitch 

strength, algorithmic errors related to the accuracy and precision of RFF were reduced by 

88.4% and 17.3%, respectively. The second study sought to characterize the 
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physiological factors influencing acoustic outputs of RFF estimation. A group of 53 

speakers with voice disorders and 69 typical speakers each produced the utterance, /ifi/, 

while simultaneous recordings were collected using a microphone and flexible 

nasendoscope. Acoustic features calculated via the microphone signal were examined in 

reference to the physiological initiation and termination of vocal fold vibration. The 

features that corresponded with these transitions were then implemented into the RFF 

algorithm, leading to significant improvements in the precision of the RFF algorithm to 

reflect the underlying physiological mechanisms for voicing offsets (p < .001, V = .60) 

and onsets (p < .001, V = .54) when compared to manual RFF estimation. The third study 

further elucidated the physiological underpinnings of RFF by examining the contribution 

of vocal fold abduction to RFF during intervocalic voicing offsets. Vocal fold abductory 

patterns were compared to RFF values in a subset of speakers from the second study, 

comprising young adults, older adults, and older adults with Parkinson’s disease. 

Abductory patterns were not significantly different among the three groups; however, 

vocal fold abduction was observed to play a significant role in measures of RFF at 

voicing offset. By improving algorithmic estimation and elucidating aspects of the 

underlying physiology affecting RFF, this work adds to the utility of RFF for use in 

conjunction with current clinical techniques to assess laryngeal muscle tension. 
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PREFACE 

This dissertation is an exploration into refining algorithmic methods for 

calculating the acoustic measure, relative fundamental frequency (RFF). With advances 

in algorithmic development, the dissertation further investigates the physiological 

underpinnings of RFF. The dissertation is organized as three self-contained manuscripts 

(Chapters 2–4), preceded by a common foreword (Chapter 1). The authors and titles of 

these manuscripts can be found below. In this construction, there is some overlap 

between Chapters 2–4 and the Chapter 1. A final chapter (Chapter 5) provides a summary 

and synthesis of results for the three manuscripts (Chapters 2–4).  

Chapter 2: Vojtech, J.M., Segina, R.K., Buckley, D.P., Kolin, K.R., Tardif, M.C., 

Noordzij, J.P., & Stepp, C.E. (2019). “Refining algorithmic estimation of relative 

fundamental frequency: Accounting for sample characteristics and fundamental 

frequency estimation method,” The Journal of the Acoustical Society of America, 146(5), 

3184-3202. 

Chapter 3: Vojtech, J.M., Cilento, D., Luong, A., Noordzij, J.P., Jr., Park, Y., 

Diaz-Cadiz, M., Groll, M.D., Buckley, D.P., Noordzij, J.P., & Stepp, C. E. “The 

Relationship between Acoustic Features and Vocal Fold Vibratory Characteristics during 

Intervocalic Offsets and Onsets,” In Prep. 

Chapter 4: Vojtech, J. M., & Stepp, C. E. “The Relationship between Vocal Fold 

Abductory Kinematics and Relative Fundamental Frequency: An Analysis across Young 

Adults, Older Adults, and Adults with Parkinson’s Disease,” In Prep. 
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CHAPTER 1. Introduction 

During speech, listeners can attend to what a speaker is saying as well as how a 

speaker is saying it. This is because voice is a unique medium through which speakers are 

not only able to convey linguistic information, but also individualistic characteristics such 

as emotion, personality, and intent. An individual’s voice is the product of intrinsic 

factors derived from their anatomy and physiology, as well as habitual factors adopted by 

the individual during their lifetime (e.g., sociolinguistic trends; Tiwari & Tiwari, 2012). 

These intrinsic and habitual factors converge in voice production via interactions between 

aerodynamic, structural, and acoustic mechanisms involving the lungs, larynx, and vocal 

tract (Zhang, 2016).  

Voice Production 

The classic source-filter theory of voice production simplifies the complex 

interactions of aerodynamic, structural, and acoustic mechanisms necessary for speech 

using two components: a sound source and a filtering process (Fant, 1960; Stevens, 

2005). Airflow passes from the lungs through narrow constrictions at or above the larynx 

to generate a sound source, which, in turn, is modified via articulatory mechanisms to 

produce speech. Located in the anterior neck, the larynx is a highly specialized structure 

that serves an integral role as a source of sound energy for human speech.  

Anatomy and Physiology of the Larynx 

The larynx protects the airway, assists in swallowing, and enables voice 

production. It is composed of a framework of cartilages, bone, tissues, membranes, and 

muscles (Coleman, Zakowski, Gold, & Ramanathan, 2013; Young, Matsuzaki, & Sasaki, 
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2015). Complex interactions among these components modify the configuration of the 

larynx to regulate breathing, swallowing, and voicing.  

Vocal Folds as the Glottal Source 

The vocal folds—located within the central region of the larynx—are essential 

structures for voice production. Each vocal fold is made up of multiple structural layers, 

with the deeper layers being less pliable than the more superficial layers (Ferrand, 2007; 

Hirano, 1974; Hixon, Weismer, & Hoit, 2018). The vocalis muscle is the deepest layer 

and is interdigitated with a fibrous ligament called the elastic conus; this interdigitation 

allows the two structures to act as a single unit during voicing. Covering the elastic conus 

is a mucous membrane that constitutes the lamina propria and squamous epithelium. The 

lamina propria consist of three morphologically different layers of connective tissue 

(Hirano, Kakita, Ohmaru, & Kurita, 1982), whereas the squamous epithelium is a single, 

thin epithelial layer. Distinct from these “true” vocal folds are the “false” vocal folds: the 

false vocal folds (ventricular folds) are thick folds of mucous membrane that lie superior 

to the true vocal folds (Agarwal, Scherer, & Hollien, 2003). These structures assist in 

lubricating the true vocal folds (Kutta, Steven, Kohla, Tillmann, & Paulsen, 2002), and—

like the true vocal folds—have been shown to abduct (open) and adduct (close) during 

specific vocal gestures (e.g., throat singing; Lindestad, Sodersten, Merker, & Granqvist, 

2001; Stager, Bielamowicz, Regnell, Gupta, & Barkmeier, 2000) as well as during 

pathological phonation (Arnold & Pinto, 1960; Lindestad, Blixt, Pahlberg-Olsson, & 

Hammarberg, 2004; Nasri et al., 1996; Von Doersten, Izdebski, Ross, & Cruz, 1992).  

Each vocal fold comprises membranous and cartilaginous portions: the 
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membranous portion forms the anterior 55–65% of the length of the fold, whereas the 

cartilaginous portion corresponds to the posterior 35–45% of the length of the fold 

(Hirano, Kurita, Kiyokawa, & Sato, 1986). The membranous segment of the fold is 

bounded by the vocal ligament, a structure comprising the deeper of the lamina propria 

layers. On the other hand, two cartilaginous processes stemming from the inferior portion 

of the arytenoid cartilage (“vocal processes”) form the cartilaginous segment of the fold 

(Ferrand, 2007; Hixon et al., 2018). The vocal folds are in a paramedial position during 

tidal breathing, leaving a slightly open space between the folds. This space is referred to 

as the glottis. The vocal folds may be forcefully abducted (opened) to a greater extent, 

thus expanding the glottis, when larger amounts of air are inhaled during deep breathing 

and sniffing gestures. During phonation, the vocal folds are adducted (closed) to the 

midline of the glottis. 

The mechanical properties of the vocal folds during oscillation can be described 

by the cover-body theory of vocal fold vibration. In this model, the vocal folds act as a 

double-structured vibrator: the body corresponds to the vocalis muscle and elastic conus 

that operate as a single unit, whereas the cover refers to the mucous membrane (Hirano, 

1974). This cover is made up of the epithelium and the intermediate and superficial layers 

of the lamina propria. The body has been shown to exhibit variable mechanical properties 

according to the degree of activation of the vocalis muscle, as well as mechanical 

changes from passive stretching via activations from other laryngeal muscles (e.g., 

cricothyroid; Vahabzadeh-Hagh, Zhang, & Chhetri, 2018). The mechanical properties of 

the mucous membrane differ from that of the body since it is only loosely connected to 
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the elastic conus, instead largely depending on the interactions of the vocalis muscle with 

other intrinsic laryngeal musculature (Hirano, 1974). The implications of this model are 

that different laryngeal adjustments are possible based on the unique relationships 

between the body and cover, and occur on a similar time scale as the articulators (e.g., 

tongue, lips, jaw, and velum). Yet these adjustments do not generate the vibratory motion 

of the vocal folds and, thus, do not lead to voice production; instead, vocal fold vibration 

depends on the aerodynamic conditions surrounding the vocal folds, as well as the 

configuration and mechanical properties of the folds (Story, 2015). The cover-body 

theory does not account for these conditions, which are necessary to initiate and sustain 

self-oscillation. 

Laryngeal Cartilages 

There are nine cartilages that form the skeleton of the larynx. These include the 

unpaired cricoid, thyroid, and epiglottis as well as the paired arytenoids, corniculates, and 

cuneiforms (Coleman et al., 2013; Ferrand, 2007; Young et al., 2015). The laryngeal 

cartilages are attached to each other via membranes and ligaments that surround and 

protect the larynx.  

Unpaired Cartilages 

The lower limit of the larynx is marked by the cricoid cartilage. As the most 

inferior of the laryngeal cartilages, the cricoid cartilage is a ring-shaped cartilage that 

connects to the tracheal rings of the airway. The cricoid cartilage also serves as an 

attachment point with the thyroid and arytenoid cartilages for ligaments and muscles to 

regulate respiration and voice production. The cricoid cartilage connects inferolaterally 
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and anteriorly with the thyroid cartilage as well as posterosuperiorly with the arytenoid 

cartilages via these membranes and ligaments.  

Just superior to the cricoid cartilage lies the thyroid cartilage. The thyroid 

cartilage is a shield-like structure with two laminae that fuse together at the laryngeal 

prominence (commonly known as the Adam’s apple). The true vocal folds attach to the 

inner surface of the thyroid just below the superior surface of the laryngeal prominence. 

This intersection point of the true vocal folds on this surface is referred to as the anterior 

commissure. In addition to its connection with the cricoid cartilage, the thyroid cartilage 

attaches to the hyoid bone by the thyrohyoid membrane to anchor the larynx during 

respiration and phonation (Coleman et al., 2013).  

Marking the entryway to the laryngeal vestibule, the epiglottis is the most 

superior of the laryngeal cartilages. The epiglottis is a leaf-like cartilaginous structure 

attached to the thyroid cartilage via the thyroepiglottic ligament and is laterally bordered 

by triangular folds of mucous membrane extending into the arytenoid cartilages 

(aryepiglottic folds). The epiglottis and aryepiglottic folds both cover the upper airway to 

prevent foreign bodies from entering during swallowing (Young et al., 2015). 

Specifically, the epiglottis sits in an otherwise upright position to allow for breathing, but 

retroflexes over the entrance of the larynx during swallowing to both protect the airway 

and guide prandial material toward the esophagus (Ferrand, 2007). Similarly, the 

aryepiglottic folds adduct to prevent unwanted aspiration while swallowing (Standring, 

Borley, & Gray, 2008). 
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Paired Cartilages 

The arytenoids are three-sided pyramidal cartilages that function in airway 

protection and voice production. The arytenoid cartilages are attached to the cricoid 

cartilage at a ball-and-socket joint referred to as the cricoarytenoid joint; as a result, the 

arytenoids articulate with the cricoid ring. The base of each arytenoid cartilage is 

characterized by a vocal process, which attaches to the vocal ligament, and a muscle 

process, which attaches to intrinsic laryngeal musculature. Because of its attachment to 

the vocal ligament, the arytenoids can articulate to promote vocal fold tensing, relaxation, 

or approximation to alter voice production (Coleman et al., 2013; Ferrand, 2007; Hixon et 

al., 2018).  

In addition to the arytenoids, there are two other pairs of laryngeal cartilages: the 

corniculate cartilages and the cuneiform cartilages. The corniculate cartilages are small, 

conical structures that articulate with the apex of the arytenoids to assist in vocal fold 

approximation (Jacob, 2007, p. 205). The cuneiform cartilages are thin, elongated 

structures that are also small relative to the other laryngeal cartilages. The cuneiforms lie 

within either side of the posterior portion of the aryepiglottic folds, providing rigidity to 

the folds (Coleman et al., 2013).  

Laryngeal Musculature 

Throughout this complex network of membranes and ligaments are muscles that 

enable motion within and around the larynx. These muscles are often referred to as 

intrinsic and extrinsic muscle groups. Muscles categorized as “intrinsic” originate within 

the larynx and have insertions that fall between the laryngeal cartilages, whereas muscles 
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categorized as “extrinsic” have one insert in the laryngeal cartilages and the other in 

adjacent structures. The intrinsic laryngeal muscles are directly responsible for inducing 

changes in the length and tension of the vocal folds as well as modifying glottal 

positioning. The extrinsic laryngeal muscles work to raise, lower, or stabilize the larynx 

during speech and swallowing movements. 

Intrinsic Laryngeal Muscles 

The intrinsic laryngeal muscles comprise five major muscle pairs that 

differentially affect the biomechanical state of the vocal folds. These muscles include the 

thyroarytenoid (TA), lateral cricoarytenoid (LCA), interarytenoid (IA), posterior 

cricoarytenoid (PCA), and cricothyroid (CT). The LCA, TA, and IA act as adductors to 

close the vocal folds, whereas the PCA acts as an abductor to open the vocal folds 

(Ferrand, 2007). The CT functions to lengthen and stretch the vocal folds which, in turn, 

alters the vibratory rate of the vocal folds (Chhetri, Neubauer, Sofer, & Berry, 2014). The 

distinct roles of each intrinsic muscle in voice production are described in detail below. 

The three adductors (LCA, TA, and IA) differentially act to approximate the vocal 

folds. The LCA is a paired muscle that acts as the principal adductor by pulling the vocal 

processes inward and downward to medially compress the vocal folds. The IA is an 

unpaired muscle that assists in vocal fold adduction by pulling the arytenoid cartilages 

together to bring the posterior portion of the vocal folds together (Andaloro & La Mantia, 

2019; Choi, Ye, & Berke, 1995). Also considered an adductor muscle, the TA is a 

bilaterally paired muscle that comprises the main mass of each vocal fold. The medial 

region of the TA is often referred to as the vocalis muscle, described above as the body of 
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the vocal fold. The TA is anteriorly attached to the internal surface of the thyroid 

cartilage and posteriorly attached to the vocal and muscular processes of the arytenoids. 

As a result, other intrinsic and extrinsic laryngeal muscles that alter the tension of the 

vocal folds thus influence the status of the TA (Hixon et al., 2018). Contraction of the TA 

contributes to the approximation of the vocal folds (particularly the membranous portion 

of the folds), as well as shortens the vocalis to increase vocal fold body stiffness (Choi, 

Berke, Ye, & Kreiman, 1993b; Hixon et al., 2018; Sataloff, Heman-Ackah, & 

Hawkshaw, 2007) to, in turn, increase the rate of vibration of the vocal folds and stabilize 

the onset of phonation (Chhetri & Neubauer, 2015; Choi et al., 1993b).  

As the sole abductor of the group, the PCA induces an outward rotation of the 

arytenoids on the cricoid cartilage to open the vocal folds. The primary function of PCA 

is to abduct the vocal folds respiratory tasks such as inspiration (Hast, 1967b). However, 

the PCA also promotes devoicing by supporting the larynx against pulls from the CT and 

adductor muscles during phonation (Choi, Berke, Ye, & Kreiman, 1993a; Faaborg-

Andersen, 1957; Fujita, Ludlow, Woodson, & Naunton, 1989; Hirano, 1988).  

The main function of the CT is to lengthen and stretch the vocal folds, which, in 

turn, increases the stiffness of the body and cover as well as the vibratory rate of the 

vocal folds (Chhetri et al., 2014). The CT muscle has two components: the pars recta, 

with vertically oriented muscle fibers, and the pars oblique, with obliquely upward 

oriented muscle fibers. The pars recta and pars oblique simultaneously act to displace the 

joint that connects the cricoid and thyroid cartilages (cricothyroid joint) vertically (pars 

recta) and horizontally (pars oblique; Hong, Kim, & Kim, 2001; Hong et al., 1998). 
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Displacement of this joint increases the distance between the arytenoid cartilages and the 

thyroid cartilage; since the vocal folds are attached anteriorly to the thyroid and 

posteriorly to the vocal processes of the arytenoids, an increase in distance between these 

cartilages, in turn, passively lengthens the TA (Hixon et al., 2018; Hong et al., 2001). 

Thus, the pars recta and pars oblique act to lengthen and tense the vocal folds during 

phonation and are the primary means of pitch variation during voicing. 

Extrinsic Laryngeal Muscles 

The role of the extrinsic laryngeal muscles in voice production is to modulate 

laryngeal height and tilt. The extrinsic laryngeal muscles are categorized based on their 

attachment points relative to the hyoid bone: suprahyoid muscles attach above the hyoid 

bone whereas infrahyoid muscles attach below the hyoid bone. The suprahyoid muscles 

include the anterior and posterior digastrics, stylohyoid, mylohyoid, geniohyoid, and 

hyoglossus muscles. These muscles contribute to elevating the larynx by anteriorly 

(anterior digastric, mylohyoid, hyoglossus, and geniohyoid) or posteriorly (posterior 

digastric and stylohyoid) pulling the hyoid bone (Broniatowski et al., 1999; Sataloff et 

al., 2007; Suárez-Quintanilla, Fernández Cabrera, & Sharma, 2019). The infrahyoid 

muscles include the thyrohyoid, omohyoid, sternothyroid, and sternohyoid. Contraction 

of the thyrohyoid draws the thyroid and hyoid bone closer together, thereby elevating the 

larynx; conversely, contraction of the omohyoid, sternothyroid, and sternohyoid each 

contribute to lowering the larynx (Ferrand, 2007).  

Changes in laryngeal elevation via the extrinsic laryngeal muscles have been 

shown to indirectly affect the vibratory rate of the vocal folds (Ueda, Oyama, Harvey, & 
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Ogura, 1972). Specifically, vertical laryngeal movements affect vocal fold length and 

tension through rotation of the cricoid cartilage because of cervical lordosis (i.e., 

excessive inward curvature of the spine; Honda, Hirai, Masaki, & Shimada, 1999). 

Altering the length and tension of the vocal folds, in turn, modifies vocal fold vibratory 

rate.  

Glottal Dynamics during Voice Production 

Stevens (2005) describes two types of sound sources that are produced within the 

larynx. These sources include the glottal phonation source and aspiration noise. These 

sound sources are not mutually exclusive, yet are generated through different processes. 

Whereas the glottal phonation source arises from quasiperiodic pulses of air generated 

from airflow traveling through the vibrating vocal folds, aspiration noise arises from 

turbulent airflow through slightly abducted vocal folds (Mehta, 2006; Stevens, 2005). 

This turbulent airflow acts as a stochastic excitation source to introduce noise into the 

voice production system (Kent & Read, 2002).  

Voice production via the glottal phonation source occurs because of aerodynamic 

forces and vocal fold mechanical properties. Theoretical models of intraglottal 

aerodynamics suggest that the forces responsible for separating the adducted vocal folds 

occur in the form of a centerline glottal jet that travels from the lungs and makes contact 

with the inferior-medial surface of the folds (Khosla, Muruguppan, Gutmark, & Scherer, 

2007); the vocal folds diverge as the glottal jet passes through the glottis. Recent 

modeling in hemilarynges has shown that as the folds are pushed apart, the glottal jet 

undergoes flow separation (Khosla et al., 2007; Oren, Khosla, & Gutmark, 2014). These 
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models have also shown that the velocity of the jet relates to the motion of the laryngeal 

walls and the magnitude of subglottal pressure, such that flow separation vortices have 

been demonstrated at high subglottal pressures (Oren et al., 2014).  

As the column of air pressure travels vertically through the glottis, the intraglottal 

geometry of the cover can undergo wave propagation as the result of phase differences in 

tissue compression and rarefaction (Berke & Gerratt, 1993). Mucosal wave propagation 

is the result of subglottal air pressure against the vocal folds, wherein the medial-lateral 

and superior-inferior surfaces oscillate along with the main body of the folds as they 

separate (Berry, Montequin, & Tayama, 2001; Doellinger, Berry, & Berke, 2005; 

Krausert et al., 2011). Oscillations occur within the cover of the vocal fold due to the 

mucous membrane being a mechanically pliable structure as compared to the body of the 

vocal fold (Ferrand, 2007).  

When the vocal folds meet at the midline during oscillatory motion, the passage 

of air through the glottis is temporarily halted until air pressure from the lungs once again 

pushes the vocal folds apart. This vibratory cycle repeats while airflow from the lungs 

passes through the glottis at a high enough pressure (subglottal pressure) to drive the 

vocal folds apart and induce vocal fold oscillations (Finck & Lejeune, 2010; Stevens, 

2005). The intermittent closure of the vocal folds transforms the airflow into a series of 

(glottal) pulses that constitute the glottal sound source for phonation. The lowest 

frequency of the glottal source spectrum is its fundamental frequency (fo). The fo of the 

glottal source is related to the rate of vocal fold vibration, and is perceptually correlated 

with vocal pitch (Hixon et al., 2018). Higher frequencies are also contained within the 
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spectrum and comprise integer multiples of the fo (harmonics). These harmonics are 

produced by the collisions of the vocal folds as well as the diversion of acoustic energy 

toward the vocal folds to distort the glottal airflow.  

Voiced and Unvoiced Speech Sounds 

Human speech comprises voiced, unvoiced, and mixed speech sounds, referred to 

as phonemes. The source for voiced phonemes (e.g., /ɔɪ/ as in “voice”) corresponds to the 

vibrating vocal folds, whereas the source for unvoiced phonemes (e.g., /s/ as in “voice”) 

originates from airflow passing through a constriction in the vocal tract across the 

pharynx, oral, and/or nasal cavities. Mixed speech sounds necessitate a combination of 

voiced and unvoiced sound sources (e.g., /v/ as in “voice”). In each of these scenarios, the 

vocal tract acts as a resonator to filter specific frequency bands while attenuating others 

(Fant, 1960; Ferrand, 2007). Due to the different sizes and shapes of each of the 

supraglottal regions (e.g., pharynx, oral cavity, nasal cavity), the vocal tract acts as a 

broadly tuned resonator with multiple, different resonant frequencies (Ferrand, 2007; 

Hixon et al., 2018). Based on the configuration of the vocal tract, specific frequencies are 

amplified as others are dampened to alter the quality of the sound as it emerges at the lips 

(Ferrand, 2007). As a result, a wide range of speech sounds may be produced based on 

the source of the sound and the configuration of the vocal tract (Fant, 1960). 

Voice Disorders 

Voice disorders arise when an individual feels that their voice does not meet their 

daily physical, social, emotional, and/or professional needs (Verdolini & Ramig, 2001). 

These disorders are prevalent throughout the world, with approximately one third of 
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adults reporting problems using their voice at some point during their lifetime in the 

United States alone (Bainbridge, Roy, Losonczy, Hoffman, & Cohen, 2017; 

Bhattacharyya, 2014; Roy, Merrill, Gray, & Smith, 2005). Nearly a quarter of these 

individuals further report recurrent issues (Roy et al., 2005). Considering that around 28 

million individuals in the United States rely on their voice in order to successfully carry 

out their job (Verdolini et al., 2001), having a voice disorder can have a substantial 

impact on one’s life. 

Voice disorders have been historically characterized as voice production that 

deviates from a speaker’s expectations, whether it be voice quality, pitch, and/or loudness 

differing from those of a similar background (e.g., age, gender, culture, geographical 

location; Ramig & Verdolini, 1998), or due to functional and/or structural changes to the 

laryngeal mechanism that prevent the speaker from meeting daily voice needs (Stemple, 

Roy, & Klaben, 2018). These scenarios are not mutually exclusive: individuals who 

describe functional or structural issues (e.g., pain in the larynx or neck, globus sensation, 

dryness, and/or a need to cough during voice use) may also exhibit signs of inappropriate 

voice quality, pitch, or loudness. It is estimated that approximately 10–50% of cases 

referred to multidisciplinary voice clinics include some sort of tension component 

(Dworkin-Valenti, Stachler, Stern, & Amjad, 2018; Roy, 2003). Because the proper 

regulation of laryngeal muscle tension is vital for voice production, it is important to be 

able to comprehensively assess tension using clinical outcome measures. 

Laryngeal Muscle Tension 

The regulation of laryngeal muscle tension is necessary to produce voice. 
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Extrinsic laryngeal muscle tension is directly responsible for raising and lowering the 

larynx, whereas intrinsic laryngeal muscle tension is responsible for tensing, abducting, 

and adducting the vocal folds (Boone, McFarlane, Von Berg, & Zraick, 2014, p. 42). 

Increased vocal exertion (effort) is thought to be a byproduct of higher cervical muscle 

tension (Hunter et al., 2020) and has been associated with a strained or “strangled” voice 

quality in some speakers (Baldner, Doll, & van Mersbergen, 2015; Borg, 1982; Brandt, 

Ruder, & Shipp, 1969; Lagier et al., 2010; McKenna, Diaz-Cadiz, Shembel, Enos, & 

Stepp, 2018a; Mooshammer, 2010).  

The etiologies associated with excessive laryngeal muscle forces are diverse, 

ranging from overuse and/or misuse of the laryngeal mechanism in the absence of 

organic pathology, pathological changes in the vocal fold tissue (e.g., nodules, polyps, 

contact ulcers), and neurological disorders affecting the laryngeal mechanism (Boone et 

al., 2014, p. 120; Ghassemi et al., 2014; Hillman, Holmberg, Perkell, Walsh, & Vaughan, 

1989). It is thought that each of these etiologies necessitate functional changes in 

laryngeal muscle tension to compensate for the additional effort required to maintain 

adequate phonation.  

Excessive Laryngeal Tension in Clinical Populations 

Hypertonicity of the laryngeal mechanism is thought to be a prevalent 

characteristic in a range of voice disorders and is a critical target of many therapeutic 

interventions (e.g., circumlaryngeal massage). Although the specific pathophysiology of 

excessive laryngeal muscle tension may vary across speakers, it is a prevalent 

characteristic of many functional, structural, and/or neurological disorders, including 
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adductor focal laryngeal dystonia (Aronson & Bless, 2009; Nash & Ludlow, 1996), 

unilateral vocal fold paralysis (Neel et al., 1994; Pinho, Pontes, Gadelha, & Biasi, 1999), 

hyperfunctional voice disorders (Hillman et al., 1989), and Parkinson’s disease (Gallena, 

Smith, Zeffiro, & Ludlow, 2001). As vocal hyperfunction and Parkinson’s disease will be 

the focus of this dissertation, a discussion of laryngeal muscle tension in relation to vocal 

hyperfunction and Parkinson’s disease is included below. 

Vocal Hyperfunction 

Vocal hyperfunction (VH) is a common feature exhibited in individuals with 

voice disorders. VH is described as excessive or imbalanced tension in the laryngeal 

musculature and is associated with daily vocal overuse and/or misuse (e.g., yelling; 

Hillman et al., 1989). Hyperfunctional vocal behaviors may occur in the presence or 

absence of organic pathology. These behaviors are present as either the primary cause of 

a voice disorder or as a compensatory adaptation to glottal insufficiency, and as such, are 

often sorted as “non-phonotraumatic VH” and “phonotraumatic VH,” respectively.  

Non-phonotraumatic VH (also referred to as non-adducted VH or primary VH) is 

characterized as persistent dysphonia and excessive tension of the laryngeal and 

circumlaryngeal areas in the absence of vocal fold tissue trauma (Bhattacharyya, 2014; 

Boone et al., 2014, p. 66; Hillman et al., 1989; Mehta et al., 2015). These behaviors are 

also associated with stiff and tensed vocal folds without complete vocal fold adduction 

(Hillman et al., 1989). Additional behaviors may include elevated hyolaryngeal position, 

decreased space between the hyoid bone and laryngeal cartilage, increased extrinsic 

laryngeal muscle activation, and excessive supraglottal constriction (Lowell, Kelley, 
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Awan, Colton, & Chan, 2012a). Speakers that present with non-phonotraumatic VH are 

often diagnosed with “muscle tension dysphonia (MTD),” or “primary MTD;” these 

diagnoses describe excessive tension of the (para)laryngeal musculature with various 

contributing etiologies (Altman, Atkinson, & Lazarus, 2005; Van Houtte, Claeys, 

D'haeseleer, Wuyts, & Van Lierde, 2013).  

Phonotraumatic VH (also referred to as adducted VH or secondary VH) is 

associated with hyperfunctional behaviors in the presence of vocal fold lesions (e.g., 

nodules, polyps; Mehta et al., 2015; Titze, Svec, & Popolo, 2003). Vocal fold tissue 

trauma is thought to lead to incomplete glottic closure, which, in turn, elicits increases in 

laryngeal muscle tension and subglottal pressure to assist in vocal fold closure (Hillman 

et al., 1989). As a result of these increases, phonotraumatic VH is associated with stiff 

and tightly approximated vocal folds that contribute to increased vocal fold collision 

forces (Espinoza, Zañartu, Van Stan, Mehta, & Hillman, 2017), and ultimately, more 

trauma to the vocal fold tissues. In many cases, however, it is unclear if the overuse and 

misuse of the vocal mechanism elicited structural changes to the vocal folds, and/or if the 

structural changes elicited an aberrant compensatory response (i.e., excessive laryngeal 

muscle tension) to maintain phonation (Ghassemi et al., 2014).  

Laryngeal Muscle Tension in Vocal Hyperfunction 

Hyperfunctional vocal behaviors encompass a broad range of symptoms, 

including (but not limited to) tension in the paralaryngeal musculature (Dworkin, Meleca, 

& Abkarian, 2000a), elevated laryngeal positioning (Morrison, 1997; Roy, Ford, & Bless, 

1996), glottal insufficiency (Hillman et al., 1989), hyperadduction of the true and/or false 
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vocal folds (Higgins, Chait, & Schulte, 1999), and supraglottic compression (Hočevar-

Boltežar, Janko, & Zargi, 1998; Stager et al., 2000; Stepp, Heaton, Jette, Burns, & 

Hillman, 2010a). These symptoms may lead to a voice that sounds rough, breathy, and/or 

strained, as well as periods of vocal fry, low vocal pitch, and low dynamic range 

(Dworkin et al., 2000a; Morrison, 1997; Morrison, Nichol, & Rammage, 1986; Morrison, 

Rammage, Belisle, Pullan, & Nichol, 1983).  

Although it is presumed that VH affects both intrinsic and extrinsic laryngeal 

musculature, there is a lack of objective evidence supporting elevated tension in these 

muscle groups. This discordance in the literature may be, in part, because there is no 

gold-standard measure for assessing the presence or severity of laryngeal muscle tension. 

Instead, much of the early literature describing the role of the intrinsic laryngeal muscles 

in hyperfunctional vocal behaviors was based on suppositions about the observed 

laryngoscopic images. For instance, Morrison et al. (1983) attributed the presence of 

posterior glottal gap to increased muscle tension in the posterior cricoarytenoid during 

phonation. Furthermore, there is also disagreement in the hypothesized role of the 

intrinsic laryngeal muscle tension in VH: prior work has suggested that tension manifests 

as specific glottic and supraglottic contraction patterns that can be observed through 

laryngoscopic imaging (Koufman & Blalock, 1991; Morrison et al., 1986; Morrison & 

Rammage, 1993; Morrison et al., 1983), whereas other sources indicate that there is not a 

specific glottic configuration that is uniquely associated with increased tension (Aronson, 

1990). Even if there were an agreed upon, unique glottic configuration observed in VH, 

there has been no objective, quantitative means of confirmation that the degree of 
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intrinsic laryngeal muscle tension is associated with the observed supraglottic activity. 

This is likely because perturbing the intrinsic laryngeal muscles and structures to estimate 

tension (via intramuscular electromyography; see Laryngeal EMG for details) may alter 

typical muscle function. As such, there has been no direct comparisons of intrinsic 

laryngeal muscle tension between vocally healthy speakers and speakers with VH. 

Studies examining extrinsic laryngeal muscle tension in VH are more prevalent in 

the literature, likely a result of the relative ease of using surface electromyography 

(sEMG; see Surface EMG for details about this technique) to non-invasively assess the 

perioral, suprahyoid, and paralaryngeal muscles. There is conflicting evidence regarding 

whether speakers with VH exhibit increased extrinsic laryngeal muscle activity compared 

to vocally healthy speakers. Redenbaugh and Reich (1989) demonstrated greater mean 

(normalized) sEMG activity in speakers with VH when recording from a single electrode 

placed on the anterior neck. Yet the sample size examined in the study was small (seven 

speakers with VH and seven vocally healthy speakers) and varied in age, sex, and clinical 

presentation. In a more recent study, Hočevar-Boltežar et al. (1998) recorded sEMG 

activity from 18 pairs of differential electrodes placed on the face and neck musculature 

of 11 speakers with VH (nodules, MTD) and five vocally healthy speakers. Significant 

differences were demonstrated in mean sEMG activity between the two groups; however, 

the sEMG signals examined in the study were not normalized. Without normalizing the 

sEMG signal, it is difficult to interpret and generalize variations in sEMG activity that 

may be otherwise confounded by sEMG electrode configuration and contact, as well as 

participant neck mass. Due to the limitations in experimental methodology of these two 
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works, it is difficult to generalize study findings to our theoretical understanding of 

extrinsic laryngeal muscle activity in VH. 

More recently, Van Houtte et al. (2013) examined differences in extrinsic 

laryngeal muscle activity between vocally healthy speakers and speakers with MTD. The 

sample sizes included in this study were larger and more controlled than those of the 

aforementioned works (18 speakers with MTD, 44 vocally healthy speakers), and the 

resulting sEMG signals were normalized to a reference contraction prior to comparison. 

The authors found no significant differences in sEMG activity between groups. In a 

similar study, Stepp et al. (2011b) compared sEMG activity between 10 vocally healthy 

individuals, 10 professionally trained singers with nodules, and eight non-singers with 

nodules. Although sternocleidomastoid activity during the initiation of the vowel, /a/, was 

statistically significantly greater in non-singers with nodules, the authors ultimately found 

that sEMG activity could not effectively discriminate nodule and control groups. Stepp et 

al. (2010a) examined sEMG activity of speakers with VH before and after injection 

laryngoplasty, a surgical procedure for correcting glottal insufficiency via injecting 

material into the vocal fold. As glottal insufficiency has been observed in speakers with 

VH, it has been postulated that increased activity of the laryngeal muscles could be used 

to achieve glottal closure. Yet the authors saw no significant changes in sEMG activity 

pre- to post-procedure, despite observing reductions in supraglottic compression. Taken 

together, the findings of these studies suggest that sEMG may not be a suitable technique 

for assessing differences in extrinsic laryngeal muscle tension between speakers with and 

without VH. More importantly, there is a lack of evidence to suggest that the extrinsic 
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laryngeal muscle tension exhibited in these individuals differs from that of typical 

speakers.  

Despite the substantial theoretical framework describing elevated laryngeal 

muscle tension in VH, the current literature base does not support differences in this 

tension between speakers with and without VH. In addition to EMG, other techniques 

have been implemented to assess laryngeal muscle tension; one such example is manual 

palpation, in which tension of the extrinsic laryngeal and other superficial neck 

musculature are examined through visual and tactile inputs. However, these methods 

suffer from poor validity and reliability and, moreover, do not assess tension of the 

intrinsic laryngeal muscles (see Manual Palpation for more details). Further 

investigations are thus needed to objectively quantify the presence and degree of both 

intrinsic and extrinsic laryngeal muscle tension in these groups.  

Assessing and Treating Vocal Hyperfunction 

Treatment for VH typically aims to identify and reduce maladaptive phonatory 

behaviors that may be related to laryngeal muscle tension (Holmberg, Hillman, 

Hammarberg, Sodersten, & Doyle, 2001). Methods of treatment may include indirect 

approaches to modify cognitive, behavioral, psychological, and physical environments, as 

well as direct approaches to manipulate vocal behavior through motor execution, 

somatosensory feedback, and auditory feedback (Roy et al., 2001; Thomas & Stemple, 

2007).  

Indirect treatments include two components: patient education and counseling. 

Patient education opens a line of discussion between the clinician and patient to 
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characterize normative voice production and how a voice disorder may impact it. In this 

intervention, the patient is tasked with learning strategies to modify their vocal health 

(e.g., diet; Roy et al., 2001; Van Stan, Roy, Awan, Stemple, & Hillman, 2015b). On the 

other hand, counseling employs coping strategies, stress management techniques, and 

therapeutic interventions to identify and modify negative psychosocial influences that 

may impact vocal health (Van Stan et al., 2015b). 

Whereas indirect treatments aim to inform the patient about vocal hygiene, direct 

treatments focus on modifying some combination of auditory, vocal functional, 

somatosensory, musculoskeletal, and respiratory behaviors (Van Stan et al., 2015b). 

Targeting musculoskeletal behaviors are a large focus of therapies for individuals with 

non-phonotraumatic VH, as increased or imbalanced laryngeal muscle tension is a 

primary etiological concern. As such, Manual Circumlaryngeal Therapy (Dromey, 

Nissen, Roy, & Merrill, 2008; Khoddami, Ansari, & Jalaie, 2015; Roy, Bless, Heisey, & 

Ford, 1997; Roy & Leeper, 1993; Roy, Nissen, Dromey, & Sapir, 2009) and Laryngeal 

Manual Therapy (Mathieson, 2011; Mathieson et al., 2009) are two established programs 

that employ palpatory techniques to reduce this tension (see Manual Palpation for an 

overview of manual palpation). Other sources of treatment in VH have also shown 

success, including vocal function exercises (Nguyen & Kenny, 2009; Pedrosa, Pontes, 

Pontes, Behlau, & Peccin, 2016), resonant voice therapy (Roy et al., 2003; Watts, 

Hamilton, Toles, Childs, & Mau, 2019) and semi-occluded vocal tract exercises (Guzman 

et al., 2015; Guzman et al., 2016; Titze, 2006), and/or a combination of respiratory and 

phonoarticulatory methods (e.g., Accent Method; Fex, Fex, Shiromoto, & Hirano, 1994; 
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Kotby, Shiromoto, & Hirano, 1993; Liang et al., 2014). Besides behavioral therapy, 

direct treatments may include surgery to remove benign fibrovascular lesions or 

pharmacological interventions (e.g., topical lidocaine; Dworkin, Meleca, Simpson, & 

Garfield, 2000b). These treatments are often implemented on a patient-specific basis, and 

may comprise multiple aspects of indirect and/or direct therapies.  

In general, voice therapy that includes some form of direct intervention has 

demonstrated better outcomes compared to a vocal hygiene program or no intervention 

(Carding, Horsley, & Docherty, 1999; Desjardins, Halstead, Cooke, & Bonilha, 2017; 

Ogawa & Inohara, 2018). Unfortunately, the heterogeneity in outcome measures 

employed in individual studies makes it challenging to compare specific interventions 

across studies. In their review, Desjardins et al. (2017) report that pre- to post-treatment 

outcomes in the literature have been assessed via a myriad of patient-reported outcomes, 

auditory-perceptual judgments of voice quality, laryngeal imaging, and acoustic analyses. 

This lack of standardization of outcomes measures is also paralleled by the failure of 

many studies to control for patients’ motivational and behavioral characteristics, such as 

adherence to therapy and voice use. While it may be difficult to specifically control for 

these characteristics, there is evidence to suggest that therapy outcomes are a result of 

patient adherence (van Leer & Connor, 2015; Ziegler, Verdolini Abbott, Johns, Klein, & 

Hapner, 2014). Assessing treatment efficacy in individuals with phonotraumatic VH is 

even more challenging since the source of improvement is not always clear (Ogawa et al., 

2018). For instance, an individual with a vocal fold polyp may exhibit improved voice 

quality and shrunken size of the polyp, yet it is unknown whether these benefits are due 
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to vocal training, vocal hygiene education, or another source. As such, the clinical 

meaningfulness of voice therapy in VH has not been fully characterized. 

Parkinson’s Disease 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that 

involves numerous neurotransmitter pathways across the central and peripheral nervous 

systems (Braak et al., 2003; Schapira, Chaudhuri, & Jenner, 2017). PD is primarily 

known for its cardinal motor symptoms of muscle rigidity (tension), bradykinesia, tremor, 

and postural instability (Shahed & Jankovic, 2007), but also manifests through non-motor 

symptoms, including mood disorders (e.g., apathy, anxiety), pain, sleep disturbances, 

urinary/bowel symptoms, hallucinations, and dementia (Gallagher & Schrag, 2012; 

Schapira et al., 2017). It is estimated that—in addition to these symptoms—up to 90% of 

individuals with PD further develop a motor speech disorder called hypokinetic 

dysarthria (Darley, Aronson, & Brown, 1969; Robbins, Logemann, & Kirshner, 1986). 

Speech Symptoms in Parkinson’s Disease 

Hypokinetic dysarthria predominantly manifests as reduced loudness (Canter, 

1965; Goberman, Coelho, & Robb, 2002; Logemann, Fisher, Boshes, & Blonsky, 1978; 

Metter & Hanson, 1986; Zwirner, Murry, & Woodson, 1991) and pitch variability 

(Bowen, Hands, Pradhan, & Stepp, 2013; Zwirner et al., 1991), as well as several other 

symptoms resulting from detrimental changes to the respiratory, laryngeal, articulatory, 

and resonatory subsystems. Respiratory symptoms include reduced vital capacity (De 

Letter et al., 2007), as well as impaired speech breathing (i.e., fewer words, less time 

producing speech per breath, faster interpause speech rate; Solomon & Hixon, 1993) and 
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tidal breathing (i.e., faster breathing rate, decreased minute ventilation rate; Solomon et 

al., 1993; Vercueil, Linard, Wuyam, Pollak, & Benchetrit, 1999). Laryngeal symptoms 

not only manifest as impaired prosody (e.g., monoloudness and monopitch; Holmes, 

Oates, Phyland, & Hughes, 2000), but also as abnormal voice quality (Zwirner & Barnes 

Gary, 1992) and intrinsic laryngeal muscle rigidity (Gallena et al., 2001; Zarzur, Duprat, 

Cataldo, Ciampi, & Fonoff, 2013; Zarzur, Duprat, Shinzato, & Eckley, 2007). Individuals 

with PD may also exhibit vocal fold bowing (Blumin, Pcolinsky, & Atkins, 2004), glottal 

insufficiency (Stelzig, Hochhaus, Gall, & Henneberg, 1999; Yuceturk, Yilmaz, Egrilmez, 

& Karaca, 2002), reduced vocal fold abductory and adductory movements (Perju-

Dumbrava et al., 2017; Stelzig et al., 1999), atypical vocal fold vibratory (e.g., phase 

amplitude and symmetry; Perez, Ramig, Smith, & Dromey, 1996; Yuceturk et al., 2002), 

and abnormal mucosal wave characteristics (Stelzig et al., 1999; Yuceturk et al., 2002). 

Reports of vocal tremor have also been attributed to PD (Holmes et al., 2000; Logemann 

et al., 1978; Perez et al., 1996; Stelzig et al., 1999); however, the evidence regarding the 

source of the tremor is unclear. Articulatory and resonatory symptoms comprise 

imprecise articulation (Skodda, Grönheit, & Schlegel, 2012), reduced vowel space area 

(Skodda, Grönheit, Mancinelli, & Schlegel, 2013; Whitfield & Goberman, 2014), and 

velopharyngeal incompetence (Hoodin & Gilbert, 1989; Robbins et al., 1986).  

Neurophysiological Mechanisms of Speech Symptoms in PD 

To date, the specific neurophysiological mechanisms contributing to speech 

symptoms in PD are unknown. Prior work suggests that speech symptoms observed in the 

respiratory, laryngeal, articulatory, and resonatory domains arise from deteriorations in 
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motor control (Henderson, Trojanowski, & Lee, 2019; Jankovic, 2008; Kwan & 

Whitehill, 2011). Motor deficits in these subsystems has been primarily attributed to 

progressive dopaminergic depletion in the substantia nigra (Chu & Kordower, 2007; 

Dauer & Przedborski, 2003), which limits the ability of the basal ganglia to coordinate 

neural motor signals. Yet there is also evidence to suggest that deficits in sensorimotor 

integration (i.e., how sensory information is transformed into motor actions) lead to the 

speech symptoms observed in PD.  

PD is neuropathologically characterized by the presence of Lewy bodies, or 

abnormal proteinaceous aggregates that develop inside nerve cells. These aggregates are 

primarily composed of the synaptic protein, α-Synuclein, and have been identified in PD 

in the sensory neurons innervating the mouth, pharynx, and larynx (Mu et al., 2015). 

Since the ability to reach a desired speech target is partially dependent on somatosensory 

feedback (Houde & Nagarajan, 2011; Lametti, Nasir, & Ostry, 2012; Larson, Altman, 

Liu, & Hain, 2008; Tourville & Guenther, 2011), Lewy-type synucleinopathy in these 

sensory nerves suggests that impairments in sensorimotor integration may be a 

contributing factor to speech symptoms in PD. Indeed, prior work has demonstrated 

reduced somatosensation in PD in response to air bursts in the laryngeal mechanism 

(Hammer & Barlow, 2010). 

Another mechanism in support of abnormal sensorimotor integration is impaired 

auditory feedback. Abnormal responses to perturbations in auditory feedback have been 

demonstrated in the laryngeal (Abur et al., 2018; Liu, Wang, Metman, & Larson, 2012; 

Mollaei, Shiller, Baum, & Gracco, 2016) and articulatory (Mollaei et al., 2016; Mollaei, 
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Shiller, & Gracco, 2013) subsystems in PD. Because the magnitude of responses to brief, 

unanticipated perturbations in auditory feedback (thought to engage feedback 

mechanisms in speech motor control; Houde et al., 2011; Lametti et al., 2012; Larson et 

al., 2008; Tourville et al., 2011) are different between laryngeal (Liu et al., 2012; Mollaei 

et al., 2016) and articulatory (Mollaei et al., 2016) subsystems, it is likely that multiple 

neural regions contribute to impaired speech motor control in PD. These findings are in 

support of impaired sensorimotor integration during speech production as a possible 

etiology for the speech symptoms exhibited in PD. 

It is important to note that much of the research examining speech symptoms in 

PD has focused on the physical limitations that arise from impaired motor control (i.e., 

due to hallmark motor symptoms of tremor, rigidity, bradykinesia, and postural 

instability). Yet these limitations do not appear to purely be the result of an inability to 

achieve motor targets; for instance, acoustic and auditory-perceptual measures of vocal 

loudness have been shown to improve in PD when an individual is externally cued for 

loudness (Ramig et al., 2001). Instead, the evidence described here suggests that these 

limitations are co-occurring with a neutrally mediated change—that is, impaired 

sensorimotor integration—wherein there is an impairment in the way that the brain 

processes sensory information for the desired motor output. Subsequently, there are 

therapeutic techniques that rely on volitional control to overcome some of these deficits. 

Laryngeal Muscle Tension in Parkinson’s Disease 

Muscle tension is one of the hallmark motor symptoms of PD (Berardelli et al., 

2018; Shahed et al., 2007; Sprenger & Poewe, 2013). Tension in PD is also referred to as 
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muscle rigidity, and is characterized by increased muscle stiffness during mobilization. 

Although the specific mechanisms contributing to muscle tension in PD have not been 

fully characterized, it is suspected to be the product of physical modifications of the 

muscles (leading to muscle fiber hypertrophy or atrophy; Dietz, Quintern, & Berger, 

1981; Edstrom, 1968; Mu et al., 2012; Rossi et al., 1996; Watts, Wiegner, & Young, 

1986) and neural processes. The presence of muscle tension in PD has been documented 

throughout the body, including in the upper limbs (Cantello et al., 1991; Cantello, 

Gianelli, Civardi, & Mutani, 1995; Edstrom, 1970; Meara & Cody, 1993; Prochazka et 

al., 1997; Robichaud et al., 2009; Watts et al., 1986), lower limbs (Berardelli, Sabra, & 

Hallett, 1983; Rossi et al., 1996), and axial muscles (e.g., neck, trunk, hips; 

Anastasopoulos, Maurer, Nasios, & Mergner, 2009; Gurfinkel et al., 2006; Kroonenberg 

et al., 2006; Mak, Wong, & Hui-Chan, 2007; Nagumo & Hirayama, 1993, 1996). 

Increased baseline muscle activity has also been identified in the oropharyngeal muscles: 

a reduction in orofacial muscle activity was observed following levodopa administration 

(Leanderson, Meyerson, & Persson, 1971; Nakano, Zubick, & Tyler, 1973), has been 

shown to coincide with improvements to speech articulation (Wolfe, Garvin, Bacon, & 

Waldrop, 1975). More recently, investigations into muscle tension in PD in the laryngeal 

muscles have been underway. 

Intrinsic laryngeal muscle tension has been reported in speakers with PD. Zarzur 

et al. (2007) reported that 19 of 26 participants with PD exhibited hypercontractility of 

the TA and CT at baseline, described as spontaneous activity during voice rest. The 

authors compared these results to those of 26 age-matched controls, showing that mean 
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activity at baseline was significantly higher in those with PD (p = .004). To further 

characterize hypercontractility in PD, Zarzur et al. (2013) assessed the TA and CT 

muscles in a larger sample size. The authors split 94 participants into disease severity 

groups based on Hoehn-Yahr stage (Hoehn & Yahr, 1967): 57 participants were 

considered “mild” (stage I and II), 21 as “moderate” (stage III), and 16 as “severe” (stage 

IV and V). Hypercontractility at baseline was identified in 86 of the 94 participants (50 of 

57 mild cases, 20 of 21 moderate cases, 16 of 16 severe cases). No significant effect of 

disease severity or age was reported. Taken together, these studies indicate that the TA 

and CT exhibit active contractile patterns at rest in PD.  

Laryngeal muscle tension may be a contributing factor to the speech symptoms 

observed in PD. In particular, a study by Gallena et al. (2001) examined the relationship 

between intrinsic laryngeal muscle activity and perceptual measures of speech 

impairment during the initiation and termination of voicing. Although no significant 

group differences were found in the muscle activity of individuals with and without PD, 

there was a significant relationship between increased TA and CT muscle activity and 

degree of speech impairment. The authors also noted a relationship between individuals 

who exhibited increased TA and CT activity and vocal fold bowing, a suspected 

byproduct of hypercontracted TA and PCA muscles and a loss of CT lengthening 

(Hanson, Gerratt, & Ward, 1984). After administering levodopa medication, a marked 

reduction in TA activity was met with improvements to overall speech and voice 

proficiency. These findings indicate a relationship between laryngeal muscle tension and 

observed speech impairments in PD; however, the specific mechanisms associated with 
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this relationship are, to date, unknown. 

Assessing and Treating Speech Symptoms in Parkinson’s Disease 

Speech is primarily evaluated in individuals with PD via subjective assessment by 

a trained technician conducting the motor examination section of the Movement Disorder 

Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS; Stebbins & Goetz, 1998; Goetz et al., 2008). The MDS-UPDRS comprises four 

parts—non-motor experiences of daily living, motor experiences of daily living, motor 

examination, and motor complications—that incorporate responses from the patient 

and/or their caregiver, as well as a clinical investigator. Different aspects of the severity 

and progress of PD are quantified on a 5-point Likert scale. The scale was validated for 

reliability, demonstrating high internal consistency (Cronbach’s alpha = .79–.93; Goetz et 

al., 2008). Interestingly, the MDS-UPDRS incorporate another scale, called the Hoehn-

Yahr scale, which can be performed as part of the motor examination or independently. 

The Hoehn-Yahr scale was developed to describe the general motor progression of PD 

(Hoehn et al., 1967); a clinical investigator ascribes a score (I-V) to the overall severity 

of motor symptoms based on the observed level of clinical disability. 

Dopaminergic therapy is considered the gold standard for alleviating motor 

symptoms in PD (Ferreira et al., 2012). Levodopa medication is the typical method of 

administration of dopaminergic therapy, as it is thought that levodopa could slow the 

degeneration of residual dopamine neurons in PD (Fahn, 1996; Olanow et al., 2004). 

However, there is conflicting evidence in the literature regarding improved speech 

symptoms following levodopa administration. Respiratory symptoms such as reduced 
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vital capacity and impaired speech and tidal breathing have been shown to normalize in 

PD with medication in some studies (De Letter et al., 2007; Vercueil et al., 1999), but not 

change in others (Solomon et al., 1993). Although laryngeal rigidity has been shown to 

decrease following dopaminergic treatment (Gallena et al., 2001; Jiang, Lin, Wang, & 

Hanson, 1999a), the impact on acoustic metrics of prosody (e.g., standard deviation of fo 

to assess vocal pitch variability) is equivocal. For instance, Skodda, Visser, and Schlegel 

(2010) did not see significant changes in intonation (fo variability) and phonation (mean 

fo) before and after medication. Azevedo, Cardoso, and Reis (2003) and Bowen et al. 

(2013), on the other hand, saw improvements in fo variability in PD with medication. 

Articulatory symptoms have been shown to improve through increased vowel articulation 

(Skodda et al., 2010), decreased orofacial rigidity (Cahill et al., 1998; Leanderson et al., 

1971; Svensson, Henningson, & Karlsson, 1993), and reduced dysfluencies (Tykalová et 

al., 2015); yet, other studies report no changes in PD with medication (Goberman & 

Blomgren, 2003; Lowit, Dobinson, Timmins, Howell, & Kröger, 2010). Resonatory 

speech symptoms have not been characterized before and after the administration of 

levodopa medication; as such, it is unclear how dopaminergic medicine offsets these 

symptoms. 

Besides medication, treatment for speech symptoms in PD include surgical and 

behavioral therapy. Surgical therapy includes the use of deep brain stimulation (DBS) to 

alleviate motor symptoms (Deuschl et al., 2006; Fasano, Daniele, & Albanese, 2012). In 

this treatment, electrodes are implanted in the basal ganglia to stimulate certain nuclei. 

Behavioral therapy, on the other hand, focuses on using external cues to improve acoustic 
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and auditory-perceptual measures of speech. Although there has been some reported 

success in alleviating global motor symptoms in PD via DBS (Deuschl et al., 2006; 

Fasano et al., 2012; Limousin et al., 1998), the effects of DBS on speech symptoms is 

controversial, with some studies reporting detriments to speech after DBS. This includes 

reduced MDS-UPDRS speech scores (Gervais-Bernard et al., 2009; Kleiner-Fisman et 

al., 2003), vowel space area (Sidtis, Alken, Tagliati, Alterman, & Van Lancker Sidtis, 

2016) and intelligibility (Tripoliti et al., 2011; Yorkston, Beukelman, & Traynor, 1984). 

Two methods of behavioral therapy include the Lee Silverman Voice Therapy (LSVT 

LOUD), in which patients are instructed to focus on producing a loud, clear voice 

(Cannito et al., 2012; Ramig, Fox, & Sapir, 2004, 2008; Saffarian, Amiri Shavaki, 

Shahidi, Hadavi, & Jafari, 2019; Sapir, Ramig, & Fox, 2011; Spielman, Ramig, Mahler, 

Halpern, & Gavin, 2007) and SPEAK OUT!, which instructs the patient to speak with 

intent (Boutsen, Park, Dvorak, & Cid, 2018). The therapeutic effects from LSVT LOUD 

have been shown to last for up to two years (Wight & Miller, 2015), but long-term data 

for SPEAK OUT! is not yet available. Overall, these intensive treatment programs have 

demonstrated immediate improvements in sound pressure level; however, long-term 

effectiveness may be affected by the progressive nature of PD and limited understanding 

of the neurophysiological mechanisms contributing to speech symptoms in PD 

(Broadfoot, Abur, Hoffmeister, Stepp, & Ciucci, 2019).  

Current State of Clinical Assessments of Laryngeal Tension 

Clinical assessments of laryngeal muscle tension can be classified into two 

groups: non-instrumental methods that do not require equipment and instrumental 
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methods that use tools for assessment. Non-instrumental methods include case history, 

patient-reported outcomes, auditory-perceptual judgments of the voice, and manual 

palpations of the extrinsic laryngeal and other neck musculature. Importantly, these 

methods are not sensitive to tension of the intrinsic laryngeal muscles. Instrumental 

approaches encompass laryngeal visualizations, as well as aerodynamic, 

electroglottographic, electromyographic, accelerometric, and acoustic signal analysis 

techniques that may capture aspects of intrinsic and/or extrinsic laryngeal muscle activity. 

Despite having many techniques available to assess muscle tension, many of these 

methods fall short in terms of validity, reliability, and/or specificity. A discussion of the 

advantages and disadvantages of these methods in relation to laryngeal muscle tension is 

included below. 

Non-Instrumental Assessments 

Case History 

Patient case history is a time-honored technique used to gather information about 

the presenting complaint. A case history typically includes information about how the 

patient describes the voice problem, including the onset and variability of symptoms. It 

may also include patient medical status and history, including daily habits, past surgeries, 

medications and treatments (e.g., voice therapy), and how stress and other psychological 

factors may be influencing the voice. Many individuals with excessive or imbalanced 

laryngeal muscle tension report a history of smoking and/or organic triggers (e.g., reflux), 

and report concerns in using their voice (Kridgen, 2019; Morrison et al., 1986). Throat 

pain, neck/shoulder tightness, vocal effort or fatigue, and intensified symptoms following 
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extended voice use are each associated with excessive and/or imbalanced laryngeal 

muscle tension (Morrison et al., 1986; Roy et al., 1996). Although case history can 

provide insight into the etiology and pathology of the voice complaint, the subjective 

nature of this method means that it does not provide direct information about laryngeal 

muscle tension. Therefore, case history is largely limited to monitoring and evaluating 

voice change over time from the patient’s point of view. 

Patient-reported Outcomes 

Patient-reported outcome (PRO) measures systematically capture the experiences 

of the patient without interpretation from other individuals (e.g., clinicians). Although 

subjective in nature, these approaches are appealing since many voice problems are 

clinically complex and manifest differently across individuals. Popular examples of PRO 

instruments include the Vocal Fatigue Index (Nanjundeswaran, Jacobson, Gartner-

Schmidt, & Verdolini Abbott, 2015), the Voice Handicap Index (Jacobson et al., 1997), 

and the Voice-Related Quality of Life questionnaire (Hogikyan & Sethuraman, 1999; 

Karnell et al., 2007).  

There are two pitfalls when applying PRO instruments to assess laryngeal muscle 

tension. First, PRO measures do not collect direct information about muscle tension. 

Although a patient may report a sense of discomfort or describe a problem that could be 

related to excessive tension, PRO instruments are restricted to the psychosocial 

consequences of voice complaints, as well as how different individuals are affected by 

the same voice problem. For instance, a patient could report “tightness” of the throat 

when completing the Vocal Tract Discomfort scale (Mathieson et al., 2009); however, it 
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is unclear whether this tightness is a result of excessive tension or inflammation. Second, 

a review of 32 voice-related PRO instruments revealed that only 20 PRO measures 

(62.5%) showed adequate reliability (e.g., test-retest, internal consistency) and only 3 

PRO measures (9.4%) showed sufficient longitudinal validity (Francis et al., 2017). 

Longitudinal validity was qualified as a demonstrated responsiveness to change as well as 

adequate test-retest reliability, and included the Voice Outcome Survey (test-retest 

reliability: r = .87, p < .001; Richard, Robert, & William, 1999), Voice-related Quality of 

Life (test-retest reliability: r = .93, p < .001; Hogikyan et al., 1999), and Linear Analogue 

Self-Assessments of Voice Quality (test-retest reliability: ICC > .54 for all 16 scale 

items; Llewellyn-Thomas et al., 1984). Interestingly, none of the 32 PRO measures 

offered a statistical justification for interpreting severity scores. It is clear that—while 

PRO approaches are appealing for providing a patient’s unique perspective on their voice 

problem—caution must be used when selecting, collecting, and interpreting PRO 

measures. As with case history, PRO measures may be used to provide useful insights 

into the possible etiology and pathology of a tension-based voice complaint; however, 

these measures should be combined with additional forms of assessment for a more 

comprehensive analysis. 

Auditory-perceptual Assessments 

Auditory-perceptual assessments of voice quality are performed by clinicians to 

quantify the severity of auditory-perceptual attributes of voice problems. During these 

evaluations, a clinician listens to and critically judges a person’s vocal output to 

determine whether vocal symptoms are consistent with a referral diagnosis, and if these 
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symptoms are exhibited consistently or intermittently. In these assessments, the presence 

of laryngeal muscle tension is often regarded as vocal strain (Askenfelt & Hammarberg, 

1986; Dejonckere et al., 1996; Jafari et al., 2017; Lowell et al., 2012a). 

Vocal strain is defined as the perception of excessive vocal effort during 

phonation (Hirano, 1981; Kempster, Gerratt, Verdolini Abbott, Barkmeier-Kraemer, & 

Hillman, 2009). Vocal effort, in turn, is the perceived exertion of a vocalist to a perceived 

communication scenario (i.e., vocal demand; Baldner et al., 2015; Borg, 1982; Hunter et 

al., 2020) and has been linked to dry throat, odynophonia (i.e., pain in using voice), and 

vocal fatigue (McCabe & Titze, 2002). Strain is specifically thought to be related to the 

degree of compression of the vocal folds and hypertonicity in or around the larynx 

(Askenfelt et al., 1986; Lowell et al., 2012a) and can occur either as a primary feature of 

the voice disorder or as a result of the individual attempting to compensate for unrelated 

pathologies (e.g., vocal fold paralysis; Lowell et al., 2012).  

Two well-established rating scales that can capture vocal strain are the GRBAS 

(Hirano, 1981) and the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V; 

Kempster et al., 2009). The GRBAS scale contains subscales to assess five core attributes 

of voice: grade (G), roughness (R), breathiness (B), asthenia (A), and strain (S). These 

attributes are scored on a four-point ordinal scale as either 0 (normal or none of the 

quality), 1 (mild), 2 (moderate), or 3 (severe). The CAPE-V scale also encompasses these 

attributes, except for asthenia (weakness). However, the CAPE-V also assesses pitch and 

loudness, and further, includes optional space to analyze two non-predetermined 

parameters (e.g., diplophonia, aphonia, tremor). CAPE-V attributes are evaluated by 



	

	

36 

considering the degree of perceived deviance from “normal” on a continuous visual 

analog scale. GRBAS and CAPE-V scales both allow experimenters to judge whether the 

deviance of each attribute was consistent or intermittent throughout the voice evaluation. 

Although the GRBAS and CAPE-V scales are similar in that both instruments 

allow experimenters to assess vocal strain, the method of analyzing these attributes are 

distinct. The GRBAS scale uses an ordinal scale that does not allow for parametric 

statistical analysis, whereas the CAPE-V operates on a visual analog scale. Because of 

this, the GRBAS is considered less sensitive in evaluating subtle differences in voice 

quality (Nemr et al., 2012; Wuyts, De Bodt, & Van de Heyning, 1999). The GRBAS 

scale also fails to supply instructions regarding the vocal tasks that should be used. These 

concerns and others led to the development of the CAPE-V as a more standardized 

practice for auditory-perceptual evaluations. The CAPE-V uses a continuous visual 

analog scale to allow for parametric analysis, and moreover, the CAPE-V specifies vocal 

tasks (sustained vowels, scripted sentences, and spontaneous speech) to minimize 

variability in elicitation and analysis. 

Of the auditory-perceptual features assessed in clinical voice quality assessments, 

vocal strain is considered one of the least reliable features. Dejonckere et al. (1996) 

examined the reliability of GRBAS parameters collected from two experienced clinicians 

in a large subset of voice samples across different institutes. The authors combined 

asthenia and strain into a single parameter, termed “tonus.” Interrater reliability was 

calculated across 943 voice samples via Spearman’s rank-correlation coefficients, 

resulting in a reliability of rs = .87 for grade, rs = .70 for roughness, rs = .69 for 
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breathiness, and rs = .65 for tonus. Similarly, intrarater reliability was calculated across 

80 repeated voice samples, producing a reliability of rs = .89 for grade, rs = .74 for 

roughness, rs = .78 for breathiness, and rs = .68 for tonus. Despite showing promising 

reliability, the authors noted that behavioral aspects of tonus were observably difficult to 

tease apart, hence combining asthenia and strain. The authors further noted that 

variability in interrater reliability were somewhat reduced by rater training and 

experience.  

In a similar study, Zraick et al. (2011) examined the intrarater reliability of a 

larger group of raters when carrying out GRBAS and CAPE-V evaluations. The rater 

group included 21 speech-language pathologists with more than five years of clinical 

voice experience. For the 21 raters, intrarater reliability (assessed via Spearman’s rank-

correlation coefficients) when using the GRBAS scale produced reliability scores of rs = 

.65 for grade, rs = .67 for roughness, rs = .67 for breathiness, rs = .69 for asthenia, and rs 

= .53 for strain. In a separate analysis, the authors considered the number of raters with 

intrarater reliability scores above a cut-off of .70, resulting in 4 raters for grade, 9 raters 

for roughness, 11 raters for breathiness, 8 raters for asthenia, and 3 raters for strain. When 

using the CAPE-V scale, intrarater reliability was found to be rs =.57 for overall severity 

(with only 2 raters with rs > .70), rs = .77 for roughness (14 raters with rs > .70), rs = .82 

for breathiness (17 raters with rs > .70), rs = .35 for strain (0 raters with rs > .70), rs = .78 

for loudness (7 raters with rs > .70), and rs = .64 for pitch (15 raters with rs > .70). 

Except for the percept of strain, all CAPE-V intrarater reliability scores were greater than 

those of the GRBAS. Most importantly, strain resulted in the lowest intrarater reliability 
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for both scales, as well as the least number of raters with reliability above .70. 

In the same study, Zraick et al. (2011) compared interrater reliability between the 

GRBAS and CAPE-V. For the 21 raters, interrater reliability was low-to-moderate for the 

GRBAS (.66 for grade, .56 for roughness, .59 for breathiness, .58 for asthenia, .48 for 

strain) and negligible-to-strong for the CAPE-V (.76 for overall severity, .62 for 

roughness, .60 for breathiness, .56 for strain, .54 for loudness, .28 for pitch). In general, 

reliability was greater for CAPE-V ratings than for corresponding GRBAS ratings. Both 

scales showed good reliability for overall severity of voice/grade; however, raters found 

strain to be difficult to assess using either scale. 

Although laryngeal muscle tension is most often associated with the auditory-

perceptual quality of strain, perceptually assessing vocal strain is difficult. It is possible 

that excessive or imbalanced laryngeal muscle forces manifest through multiple voice 

percepts, as it is rare that deviant voice production varies along a single dimension of 

quality (Aronson et al., 2009; Lowell et al., 2012a). For instance, roughness and 

breathiness are common percepts of voice quality included in both the GRBAS and 

CAPE-V, as described above. Roughness refers to perceived irregularity in the voicing 

source (Hirano, 1981; Kempster et al., 2009) stemming from fluctuations in amplitude 

and/or frequency of vocal fold vibration (Dejonckere, Obbens, de Moor, & Wieneke, 

1993; Hirano, 1981); these irregularities lead to the production of a crackly or creaky 

voice (Bassich & Ludlow, 1986; Borrie & Delfino, 2017). Breathiness, on the other hand, 

is thought to be related to turbulent noise in the signal from insufficient glottal closure 

(Ferrer, Haderlein, Maryn, de Bodt, & Nöth, 2018), and is associated with the perception 



	

	

39 

of audible air escape during voicing (Askenfelt et al., 1986; Hirano, 1981). In principle, 

these percepts are independent regarding their pathophysiology and acoustical 

manifestation. Yet roughness and breathiness have been shown to be highly correlated 

with one another (Kreiman & Gerratt, 2000; Kreiman, Gerratt, & Berke, 1994), and 

acoustically, the harmonics-to-noise ratio is related to both roughness (de Krom, 1995; 

Eskenazi, Childers, & Hicks, 1990; Ferrand, 2007; Martin, Fitch, & Wolfe, 1995) and 

breathiness (Castillo-Guerra & Ruiz, 2009; de Krom, 1995; Heman-Ackah, Michael, & 

Goding, 2002; Martin et al., 1995; Samlan, Story, & Bunton, 2013; Shrivastav & 

Sapienza, 2003). It is likely that the underlying etiologies leading to roughness or 

breathiness of the voice may be similar (Ferrer et al., 2018), and moreover, that both 

breathiness and roughness can co-occur in the same individual (Kreiman et al., 1994; 

Lowell et al., 2012a). Thus, it is possible that abnormal laryngeal muscle tension 

manifests through multiple voice quality percepts for some individuals. 

The reliability and validity of auditory-perceptual assessments to assess laryngeal 

muscle tension remain questionable. Although auditory-perceptual evaluations fail to 

quantify the degree of laryngeal muscle tension present in the system, these examinations 

may still provide some insight into tension within the laryngeal mechanism. These 

assessments may be useful to monitor and track changes in voice quality in an individual 

over time, but have been recommended for use in conjunction with additional methods of 

clinical voice evaluation (Oates, 2009). 
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Manual Palpation 

Manual laryngeal palpation techniques necessitate the use of visual and tactile 

inputs to assess the laryngeal spaces and the extrinsic laryngeal and other superficial neck 

musculature (Altman et al., 2005; Hirano, 1981). Laryngeal palpation is useful for 

evaluating the tension of the extrinsic laryngeal and other superficial neck musculature; it 

is a safe technique that requires no equipment and has no reported side effects 

(Khoddami, Ansari, Izadi, & Talebian Moghadam, 2013). Many laryngeal palpation 

methods are purely qualitative and have no reported validity or reliability regarding the 

criteria for judgement. These methods mainly assess laryngeal elevation—one of the key 

features of excessive laryngeal tension (Lowell, Kelley, Colton, Smith, & Portnoy, 

2012b)—as well as pain in response to pressure, resistance in response to movement, 

lateral mobility, tenderness, and hypertonicity (Altman et al., 2005; Khoddami et al., 

2013; Morrison, 1997; Morrison et al., 1986; Roy, 2008; Roy et al., 1996; Roy et al., 

1993; Rubin, Blake, & Mathieson, 2007; Rubin, Lieberman, & Harris, 2000; Van Lierde, 

De Bodt, Dhaeseleer, Wuyts, & Claeys, 2010).  

Few manual palpation methods include a grading system to quantify criteria for 

judgement. Two popular scales that are specific to extrinsic laryngeal muscle tension 

include the 4-point scale from Angsuwarangsee and Morrison (2002) to assess tension 

and the 5-point scale from Mathieson and colleagues (2009)  to evaluate muscle 

resistance and position. The former of these scales was modified from prior work by 

Lieberman (1998) to include a grading system, and was evaluated in a selection of 465 

dysphonic patients. The authors found good interrater reliability in the assessment of 
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suprahyoid, thyrohyoid, and cricothyroid muscles, as well as a correlation between 

thyrohyoid tension and muscle misuse dysphonia (assessed via subjective interpretations 

of case history and visualization of the laryngeal mechanism; Morrison et al., 1993). The 

scale from Mathieson and colleagues, called the Laryngeal Manual Therapy (LMT) scale, 

was validated in 10 individuals with MTD; because only one investigator (a speech-

language pathologist) performed the evaluation, interrater reliability was not obtained. 

The authors did not report any validity metrics. 

Although these manual palpation schemes successfully quantify clinical findings 

of excessive muscle tension, there are conflicting views as to the reliability and validity 

of these scales. For instance, the Polish version of the LMT scale was administered to a 

group of 51 female speakers with disordered voices (16 with nodules, 35 with MTD) and 

a group 50 female control speakers (Woźnicka, Niebudek-Bogusz, Morawska, 

Wiktorowicz, & Śliwińska-Kowalska, 2017). Significant relationships were identified 

between the LMT scale and the Voice Handicap Index (Jacobson et al., 1997), GRBAS 

auditory-perceptual scale (Hirano, 1981), and acoustically derived maximum phonation 

time; however, the authors did not assess the validity of the scale using objective tools 

that—unlike the Voice Handicap Index and GRBAS scale—do not assume that raters are 

correct in their evaluation (Jafari et al., 2020). Upon comparing LMT scores to objective 

findings, the reliability and validity of these scales seems questionable. Lowell et al. 

(2012b) compared LMT scores to radiographic findings of hyoid position, laryngeal 

position, and hyolaryngeal space during phonation in 20 individuals with and without 

MTD. The authors found low-to-moderate significant correlations between total LMT 
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score and radiographic hyoid and laryngeal positions, but no correlation between LMT 

score of laryngeal position and radiographic laryngeal position. Similarly, a study by 

Stepp et al. (2011a) compared the LMT scale and the scale by Angsuwarangsee et al. 

(2002) to objective findings of (para)laryngeal muscle activity (see 0). The authors found 

low interrater reliability as well as low correlations between manual palpation grades and 

muscle activity (Stepp et al., 2011a). Taken together, the results of these studies indicate 

conflicting evidence regarding the generalizability of manual palpation techniques. 

In more recent years, there has been a push to design manual palpation scales that 

use descriptive and instructive text to inform practitioners how to validly, reliably, and 

quickly assess tensioned structures (Khoddami et al., 2015). Jafari et al. (2020) sought to 

develop such a scale by drawing information from other palpatory scales and from the 

opinions of a panel of speech-language pathologists, otolaryngologists, and physical 

therapists with more than four years of experience with clinical voice disorders. In doing 

so, the authors developed a 45-item scale called the “laryngeal palpatory scale,” or 

“LPS,” to evaluate pain, posture, muscle tenderness and tightness, laryngeal and hyoid 

position, range of movement, and thyrohyoid spacing. The scale includes clinician-based 

ratings (on a four-point Likert scale), as well as inputs from the patient regarding their 

own assessment of pain in the anterior/posterior neck and tenderness of the muscles. 

When assessing scale reliability in a group of 55 patients with MTD, the authors saw that 

the weighted kappa for the 45 items ranged from .41 (moderate inter-rater agreement) to 

1.0 (nearly perfect inter-rater agreement) across two experienced and blinded speech-

language pathologists. This scale shows promise for quantitatively assessing the head, 



	

	

43 

neck, and shoulders, which—despite a known clinical relation between cervical problems 

and laryngeal muscle tension (Hülse, 1991; Kooijman et al., 2005)—have not all been 

included in a palpatory scale to date. However, there are three main limitations with this 

scale: 1) it is unclear how level of training and experience affect rater outcomes, 2) the 

accuracy of the scale was not validated against objective findings (e.g., extrinsic 

laryngeal muscle activity), and 3) despite arguments of the need for a quick and easy-to-

administer test, the time required to carry out the 45-item scale is estimated to be 15 

minutes. 

Manual palpation is a valuable tool to provide insight into extrinsic laryngeal 

muscle tension. Yet the current state of laryngeal palpation techniques suffers from a lack 

of standardization. Despite being an easy, direct, non-instrumental assessment method, it 

is well-known that laryngeal manual palpation schemes depend on the skill and 

experience of the practitioner (Khoddami et al., 2015). Research is ongoing to develop a 

comprehensive, clinically useful tool for assessing tensioned structures; however, more 

work must be done to fully characterize the reliability, validity, and efficiency of such a 

tool.  

Instrumental Assessments 

Laryngeal Imaging 

During laryngoscopic imaging, a device is inserted via the oral or nasal passages 

to visualize the vocal folds. Visualizing the laryngeal mechanism is an important step to 

identify laryngoscopic features that may indicate some presence of excessive tension. 

There are two main types of laryngoscopy: indirect and direct. Indirect laryngoscopy 
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necessitates the insertion of a laryngeal mirror into the oropharynx to reflect the image of 

the vocal folds, whereas direct laryngoscopy requires the insertion of an endoscope either 

through the nose or mouth transmit light to the vocal folds and receive the image back 

(Colton, Casper, & Leonard, 2011, pp. 223-24). Direct laryngoscopic techniques can be 

divided into rigid laryngoscopy, in which the endoscope is inserted into the oropharynx, 

and flexible laryngoscopy, in which the endoscope is passed transnasally and into the 

hypopharynx. A rigid laryngoscope placed in the oral cavity requires the technician to 

physically hold the tongue in a protruded position, such that the patient is unable to 

articulate any speech sounds other than vowels. Those with sensitive gag reflexes or 

limited jaw/neck mobility may not tolerate rigid laryngoscopic examinations. On the 

other hand, a flexible laryngoscope is passed through the nasal cavity. Subsequently, the 

patient may speak freely since the tongue is not restrained. 

Indirect vs. Direct Laryngoscopy 

Indirect and direct (rigid, flexible) laryngoscopic techniques each have advantages 

and disadvantages. For instance, indirect and rigid laryngoscopy restrict the speech that 

can be evaluated since the tongue must be restrained to visualize the vocal folds 

(Hartnick & Zeitels, 2005). On the other hand, a flexible laryngoscope may be inserted 

through the nasal cavity to allow the patient to speak without their tongue being 

restrained. These examinations are generally performed using distal chip or fiberoptic 

technology. By not restraining the tongue, flexible laryngoscopy allows clinicians to 

visualize the functionality of the laryngeal mechanism across various speech tasks and 

phonemes. This includes visualizing the phonatory and non-phonatory supraglottal 
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behaviors of the larynx (Colton et al., 2011, p. 226). Although direct laryngoscopy is 

more invasive, it is advantageous over rigid and flexible endoscopes since a full image of 

the vocal folds can be recorded; this contrasts with the use of laryngeal mirrors that often 

do not enable the visualization of the anterior commissure. 

Direct laryngoscopies can be performed under continuous light, stroboscopy, or 

high-speed video imaging. Using continuous light allows for the evaluation of structure 

and gross function; however, these images are traditionally captured at 30 frames-per-

second (fps), whereas the vocal folds typically vibrate around 80–1000 cycles per second 

(Hz) during speech according to age, sex, psychological state, loudness, speaking task, 

and environment (Aronson et al., 2009, p. 143; Baken & Orlikoff, 2000; Titze, 1994; 

Woo, 2009, pp. 11-17). As 30 fps is too slow to capture the individual vocal fold 

oscillations during typical vocalizations, stroboscopy is often employed in conjunction 

with videoendoscopy (Deliyski et al., 2008) to examine vocal fold vibratory function.  

Stroboscopy 

Stroboscopy emits a pulse of light at a rate that can be controlled either by the 

clinician or by the fo of the vocalization (from a laryngeal microphone placed on the 

surface of the anterior neck, approximating the thyroid cartilage). The light pulses are 

emitted at a rate slightly greater or less than the vocal vibrational frequency in order to 

sample different points in the vibratory cycle (Colton et al., 2011, p. 228). This makes the 

vocal folds appear to be vibrating in slow motion, as different phases of the vibratory 

cycle are captured across multiple periods and concatenated into a single video stream 

(Deliyski et al., 2008). Videostroboscopy is useful for detecting vocal fold vibratory 
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asymmetry (phase or amplitude), abnormal glottal closure, presence and regularity of the 

mucosal wave, supraglottic compression, and organic pathologies such as lesions (Hsiao, 

Liu, Hsu, Lee, & Lin, 2001; Morrison, Rammage, & Emami, 1999; Morrison et al., 

1986).  

One drawback of stroboscopy, however, is that aperiodic vibrations may cause the 

strobe light to become asynchronized with vocal fold movements. Since even healthy 

voices are considered quasiperiodic at best (Rabiner, 1977), many individuals are unable 

to reap the benefits of stroboscopy for laryngeal imaging. Reports state that 17–63% of 

recordings are considered invalid due to an inability of the strobe light to synchronize 

with the fo of the vocalization (Patel, Dailey, & Bless, 2008; Woo, Colton, Casper, & 

Brewer, 1991). 

High-speed Videoendoscopy 

Laryngeal high-speed videoendoscopy (HSV) is an alternative technique for 

assessing vocal fold vibratory function. This method uses high-speed (≥1000 fps) 

endoscopic imaging techniques to capture an accurate representation of the true vibratory 

motion of the vocal folds (Powell et al., 2016). Laryngeal HSV can be performed using a 

rigid or flexible endoscope, both of which enable laryngeal visualization. Rigid 

endoscopes are a popular choice for providing a minimally distorted, brightly illuminated 

view of the laryngeal and pharyngeal anatomy. Since the scope is inserted through the 

mouth, only sustained vowels can be captured using this method. Flexible endoscopes 

may be inserted transnasally such that the vocal folds can be examined during connected 

speech. However, flexible scopes typically provide less light than their rigid counterparts 
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and are susceptible to field distortion (Eller et al., 2008; Popolo, 2017). Because flexible 

endoscopes require a small barrel diameter to successfully pass through the nasal 

passages and pharynx, the camera lens at the end of the scope must be a wide-angle lens. 

As a result of this “barreling effect,” objects may appear overly rounded or bent 

compared to those observed using a rigid endoscope (Eller et al., 2008). The use of 

flexible or rigid endoscopes may be preferred depending on the patient population, 

desired stimuli (e.g., sustained vowels versus connected speech), and intended recording 

parameters (e.g., frame rate, color).  

Laryngeal HSV has been applied to investigate vocal fold vibratory characteristics 

across individuals with and without voice disorders (Döllinger et al., 2012; Patel et al., 

2008; Samlan, Kunduk, Ikuma, Black, & Lane, 2018; Tsuji et al., 2014), as well as before 

and after surgical intervention (Mehta et al., 2012b; Powell et al., 2019). Because 

laryngeal HSV does not depend on the synchronization of light with the estimated fo of 

the vocalization (Patel et al., 2008), even voices characterized by aperiodicity (i.e., with 

an undistinguishable or inconsistent fo) can be captured and analyzed. The temporal 

resolution of laryngeal HSV is advantageous over that of videostroboscopy for 

identifying nonstationary laryngeal dynamics such as phonatory offset or onset (Deliyski 

et al., 2008). Despite the promise of laryngeal HSV, however, its adoption rate in voice 

clinics remains low. This is likely due to high cost, low spatial resolution, and short 

recording duration compared to videostroboscopy, as well as a lack of a commercially 

available system to purchase. 
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Features of Excessive Laryngeal Muscle Tension 

Under continuous light, observable features that may relate to excessive tension 

include posterior glottic opening (gap), organic pathologies (vocal fold nodules, polyps), 

diffuse and/or localized laryngeal edema or swelling, false vocal fold adduction, irregular 

degree and/or symmetry of arytenoid excursion during vocal fold adduction and 

abduction, and supraglottic hyperfunction in the anteroposterior and mediolateral planes 

(Aronson et al., 2009; Morrison et al., 1986, p. 154). Videostroboscopy and HSV enable 

the visualization of vocal fold vibratory patterns; vibratory cycles that are predominately 

closed phase, irregular in terms of vocal fold phase symmetry and/or periodicity, and 

exhibit an interruption of the mucosal wave are among features often associated with 

excessive laryngeal tension (Aronson et al., 2009, p. 155). Perhaps most importantly, 

videostroboscopy and HSV are useful for assessing supraglottic compression as a feature 

of excessive supralaryngeal muscle activation.  

Supraglottic compression (also referred to as supraglottic constriction) refers to 

the degree of tightening of the supraglottic structures (Patel et al., 2018; Poburka, Patel, 

& Bless, 2017), and is typically associated with temporary obstruction of the view of the 

true vocal folds. Anterior-to-posterior supraglottic compression (A-P compression) 

occurs when the arytenoid cartilages are drawn toward the petiole of the epiglottis, 

whereas medial compression occurs as the adduction of the false vocal folds (FVF 

compression; Stager et al., 2000). Supraglottic compression is a clinical feature that may 

be observed in those with voice disorders characterized by excessive laryngeal muscle 

tension, such as MTD (Behrman, Dahl, Abramson, & Schutte, 2003; Garaycochea, 
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Navarrete, del Río, & Fernández, 2019; Morrison et al., 1993; Ogawa et al., 2005; Stager 

et al., 2000) and vocal fold nodules (Behrman et al., 2003). Because supraglottic 

compression can vary across speech sounds (Dabirmoghaddam et al., 2019), assessing 

supraglottic compression as “present” or “absent” may not be a useful metric. Instead, the 

degree of supraglottic compression present in the laryngeal mechanism may be more 

useful. 

During videostroboscopic or HSV examinations, supraglottic compression can be 

assessed using a standardized scale. Indeed, ratings of supraglottic compression have 

been shown to not statistically significantly differ between stroboscopic imaging at 30 fps 

and HSV at 4000 fps (Zacharias, Deliyski, & Gerlach, 2018). However, the Voice-

Vibratory Assessment with Laryngeal Imaging (VALI; Poburka et al., 2017) scale trains 

clinicians to make reliable visual-perceptual judgments of supraglottic compression, 

among other features of vibratory motion (e.g., amplitude, mucosal wave, phase closure) 

based on imaging modality. Inter- and intrarater reliability were greater for HSV analysis 

of A-P and FVF compression, ranging from ICC = .85–.89 for interrater and rs = .28–.84 

for intrarater reliability; this is compared to ICC = .75–.93 for interrater and rs = .19–.39 

for intrarater reliability when using stroboscopy.  

More quantitative estimates of supraglottic compression have also been 

attempted. Behrman et al. (2003) quantitatively assessed the normalized pixel area of the 

glottis to assess A-P and FVF compression, ultimately observing statistically significant 

differences in A-P compression between individuals with and without MTD. However, 

Stepp et al. (2010a) later carried out this methodology to compare the pixel-based 
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estimates of supraglottic activity to visual-perceptual judgments obtained using a 5-point 

Likert scale. Results of this study showed a lack of significant correlations between 

visual-perceptual and quantitative measures of A-P and FVF compression. The authors 

also identified crucial errors in the theoretical bases from Behrman et al. (2003) that were 

used to obtain the pixel-based estimates of supraglottic activity. Thus, although assessing 

supraglottic compression can provide insight into the degree of laryngeal muscle tension 

present in the system, further research is needed to develop valid, quantitative methods to 

comprehensively estimate supraglottic compression.  

Aerodynamics 

The assessment of aerodynamics includes measurement of air volume, flow and 

pressure during phonation. Subglottal air pressure, glottal flow rate, phonation threshold 

pressure, and maximum phonation time are commonly extracted to monitor change of 

voice, identify laryngeal abnormalities, and describe laryngeal function (Mehta & 

Hillman, 2008; Scherer, 1991). Invasive aerodynamic techniques (tracheal puncture, 

transnasal pressure transducer) allow for direct collection of aerodynamic measures. Yet 

these methods are not ideal since they can be painful, time-consuming, and/or 

uncomfortable for the patient. Non-invasive techniques, on the other hand, indirectly 

assess glottal parameters by capturing intraoral air pressure (e.g., via subject- or 

mechanical-controlled labial interruptions to create a continuous, enclosed system) or 

circumferential changes in the rib cage and abdomen (i.e., inductance plethysmography).  

Investigations into the validity and reliability of indirect aerodynamics measures 

to clinically assess laryngeal muscle tension is ongoing. Many studies highlight indirect 
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measures of subglottal pressure, a driving pressure that builds up below the adducted 

vocal folds until it exceeds the resistance of the folds and sets them into oscillatory 

motion. Subglottal pressure is thought to be increased in those with a voice disorder 

characterized by excessive laryngeal tension, increased vocal fold stiffness, and abnormal 

vocal fold adduction (Hillman et al., 1989; Hillman, Montgomery, & Zeitels, 1997; 

Netsell, Lotz, & Shaughnessy, 1984). For instance, subglottal pressure estimates of 

typical speakers have been shown to differ individuals with VH (Dastolfo, Gartner-

Schmidt, Yu, Carnes, & Gillespie, 2016; Espinoza et al., 2017; Hillman et al., 1989; 

Holmberg, Doyle, Perkell, Hammarberg, & Hillman, 2003; Kuo, Holmberg, & Hillman, 

1999; Zheng et al., 2012) and Parkinson’s disease (Jiang et al., 1999b; Murdoch, 

Manning, Theodoros, & Thompson, 1997). Studies have also reported increases in 

subglottal pressure during intentional modulations in vocal effort of typical speakers 

(Lien, Michener, Eadie, & Stepp, 2015b; McKenna, Llico, Mehta, Perkell, & Stepp, 

2017; Rosenthal, Lowell, & Colton, 2014).  

Previous work indicates a strong relationship between indirect and direct 

measures of subglottal pressure (Bard, Slavit, McCaffrey, & Lipton, 1992; Hertegard, 

Gauffin, & Lindestad, 1995; Löfqvist, Carlborg, & Kitzing, 1982), which would suggest 

that indirect, non-invasive measures could be used in clinical assessments of subglottal 

pressure. Subglottal pressure is often measured indirectly as the intraoral air pressure of a 

vowel when produced subsequent to a bilabial stop consonant (e.g., /pi/; Löfqvist et al., 

1982; McKenna et al., 2017). This configuration requires the velopharyngeal port and 

lips to be closed, but the vocal folds remain abducted such that pulmonary pressure may 
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equalize above and below the glottis at the time of lip opening (i.e., to initiate the vowel). 

Moreover, work from Plant and Hillel (1998) argues that assessing intraoral pressure 

during the production of a bilabial stop consonant may not accurately reflect changes in 

subglottal pressure of the corresponding vowel. Thus, mechanical interruptions (e.g., 

balloon valve) during the production of a sustained vowel may be used as an alternative 

to the labial method. Lamb, Schultz, Scholp, Wendel, and Jiang (2020) recently showed 

that the mechanical method led to a significantly greater test-retest reliability of 

subglottal pressure estimates than the labial method. This is likely because subglottal 

pressure estimates obtained via the labial method are subject to variability from human 

inconsistencies, as the participant controls when their lips open and close. Despite work 

showing that the mechanical method leads to more reliable estimates of subglottal 

pressure, the labial method remains the most commonly used technique. As a result, 

further research must be carried out to standardize a non-invasive method that both 

validly and reliably assesses subglottal pressure. 

Electroglottography 

Electroglottography captures the electrical conductance across two electrodes 

placed on either side of the thyroid cartilage. Electrical conductance is greater when the 

vocal folds are contacting than when the glottis is open; as such, changes in vocal fold 

contact area during phonation alter the captured conductance to provide insight into the 

glottal source (Askenfelt et al., 1986; Childers, Hicks, Moore, & Alsaka, 1986; Herbst, 

2019).  

Electroglottography has been explored as a non-invasive measure of intravocal 
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fold impact stress (Peterson, Verdolini-Marston, Barkmeier, & Hoffman, 1994; 

Verdolini, Chan, Titze, Hess, & Bierhals, 1998). This method assesses the proportion of 

time that the vocal folds are closing or opening with respect to the pitch period of the 

vocalization. The proportion of time that the vocal folds are closing in a single pitch 

period (“closed quotient”) has been shown to positively correlate with vocal fold impact 

stress. This closed quotient has also been shown to distinguish individuals with MTD 

from those with typical voices (Hosokawa et al., 2012; Ogawa et al., 2014) and from 

those with vocal fold lesions (e.g., nodules; Hosokawa et al., 2012). The proportion of 

time that the vocal folds are open in a single pitch period (“quasi-open quotient”) has also 

been investigated as a possible discriminatory metric, but with little success 

(Szkiełkowska, Krasnodębska, Miaśkiewicz, & Skarżyński, 2018).  

Overall, electroglottography shows some promise for evaluating vocal fold impact 

stress. Yet further investigations must be undertaken to comprehensively assess the utility 

of electroglottography for assessing laryngeal muscle tension, as research in this area is 

sparse. At present, the limitations of using electroglottography may outweigh its benefits 

for assessing tension. For instance, this method suffers from speech-induced artifacts 

caused by vertical movements of the larynx—wherein the vocal folds move in and out of 

the field captured by the neck electrodes—as well as contractions from the neck muscles 

(Colton & Conture, 1990). These artifacts may cause considerable variability in 

electroglottographic waveform shape. Yet waveform shape may also be affected by errors 

in detecting vocal fold tissue contact, irregular vocal fold vibratory motion, or mucous 

on/around the vocal folds (Childers, Hicks, Moore, Eskenazi, & Lalwani, 1990). Since 
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there are no standardized methods of using electroglottography to assess laryngeal 

muscle tension, care must be exercised to avoid results that are confounded by these 

instrumental-, participant-, and speech-related artifacts. 

Electromyography 

Electromyography (EMG) is a technique that captures the electrical activity of 

muscles. In this method, sensors placed intramuscularly (laryngeal EMG) or at the 

surface of the skin (surface EMG) capture depolarized zones of muscle fibers during 

muscle contractions.  

Laryngeal EMG 

Laryngeal EMG (LEMG) has been used to examine how combinations of the five 

major intrinsic laryngeal muscles are involved in voice control (Gay, Hirose, Strome, & 

Sawashima, 1972; Hirano & Ohala, 1969a; Poletto, Verdun, Strominger, & Ludlow, 

2004), and to gain understanding of laryngeal biomechanics (Hast, 1966, 1967a; Hirano 

et al., 1969a; Hirano, Ohala, & Vennard, 1969b). For instance, a large focus of LEMG-

based research has been to elucidate the activity of the CT and TA muscles as they 

pertain to vocal pitch and intensity; work in this area has shown that the contraction force 

of the CT and TA muscles jointly increase with increases in vocal pitch and intensity 

(Lindestad, Fritzell, & Persson, 1991). Further research has implicated these muscles in 

reflexive control of voice fo (Liu, Behroozmand, Bove, & Larson, 2011). Unfortunately, 

there has been no objective, quantitative evidence of increased intrinsic laryngeal muscle 

in those diagnosed a voice disorder characterized (via other assessment methods) by 

excessive laryngeal muscle tension compared to typical speakers. This is likely, in part, 
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because perturbing the intrinsic laryngeal muscles and structures using LEMG could alter 

typical muscle function. 

Surface EMG 

Surface EMG (sEMG) is a non-invasive alternative that captures myoelectric 

activity via electrode(s) placed on the surface of the skin. Although sEMG is not able to 

detect sufficient activity from the intrinsic laryngeal muscles due to their distance from 

the surface of the skin, sEMG is able to detect activity from the extrinsic laryngeal 

musculature. One drawback of using sEMG to examine anterior neck musculature is that 

the small, overlapping, and interdigitated nature of these muscles makes it difficult to 

isolate the electrical activity of a single targeted muscle. Surface EMG does exhibit some 

key advantages, however, as this technique is non-invasive, easy to implement, and 

provides an objective view of myoelectric activity.  

There has been some evidence to suggest that sEMG is useful for assessing 

extrinsic laryngeal muscle tension. For instance, Redenbaugh et al. (1989) reported 

increased myoelectric activity of the anterior neck muscles (likely comprising the 

sternohyoid and omohyoid; Loucks, Poletto, Saxon, & Ludlow, 2005) in speakers with 

MTD when directly compared to vocally healthy controls. However, the method of data 

collection in this study was relatively primitive, with sEMG activity processed in real-

time and on-screen values recorded by hand. In a similar study, Hočevar-Boltežar et al. 

(1998) reported increased myoelectric activity of the perioral and anterior neck muscles 

in speakers with MTD both before and during phonation. Yet it must be noted that sEMG 

activity was not normalized before comparing activity levels across conditions and 
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participants in either study. Both studies used root-mean-squared amplitude to compare 

sEMG activity across electrode sites. 

Yet there have also been reports that sEMG activity is not distinct between 

speakers with hyperfunctional voices and vocally healthy controls. Work from Stepp et 

al. (2011b) compared myoelectric activity of the thyrohyoid, omohyoid, sternohyoid, and 

CT1 muscles between normal speakers and both singers and non-singers with vocal 

nodules. The authors indicated that muscle activity was not significantly different 

between groups, but suggested a potential use of sEMG for identifying inappropriate 

phonatory behaviors in individuals with vocal nodules (e.g., increased activity of the 

extrinsic laryngeal musculature prior to phonation). In a separate study, Stepp et al. 

(2011a) assessed the utility of sEMG for detecting changes in myoelectric activity across 

a session of voice therapy in individuals with VH, ultimately reporting a lack of reliable 

changes over the singular session of therapy. Contrary to findings from Redenbaugh et al. 

(1989), a more recent study from Van Houtte et al. (2013) that sEMG activity was not 

discriminable between individuals with MTD and vocally healthy controls. The authors 

pointed out that the type of electrodes, pathophysiology and etiology of the disorder, and 

the emotion state of the participant were all confounding factors.  

As an alternative to comparing differences in sEMG amplitude, some studies have 

explored the utility of beta coherence as a metric for evaluating extrinsic laryngeal 

muscle activity. Beta coherence is thought to represent the transmissions from the 

1 The authors acknowledged that it was unlikely for the cricothyroid to have contributed to the 
resulting myoelectric signal since it is a deep, intrinsic laryngeal muscle. 
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primary motor cortex to spinal motor neurons (Salenius, Portin, Kajola, Salmelin, & Hari, 

1997). Neck intermuscular beta coherence (NIBcoh) could therefore elucidate patterns of 

EMG activity between electrode positions as a means of assessing potential imbalances 

between laryngeal muscle forces. Stepp, Hillman, and Heaton (2010c) investigated 

NIBcoh by targeting the activity of the 1) thyrohyoid, omohyoid, and sternohyoid, and 2) 

sternohyoid (contralateral) and cricothyroid. The authors found that mean NIBcoh was 

significantly reduced in speakers with vocal nodules when directly compared to vocally 

healthy controls. In a similar study comprising vocally healthy speakers, Stepp, Hillman, 

and Heaton (2011c) saw a significant reduction in NIBcoh when speakers were instructed 

to mimic a strained, hyperfunctional voice. Although NIBcoh shows promise for 

distinguishing between typical and hyperfunctional voices, more work must be done to 

determine the sensitivity and specificity of this metric across different degrees of 

laryngeal muscle tension. 

 Surface EMG is a non-invasive method that can easily be incorporated into 

clinical assessments of laryngeal muscle tension. Yet it must be noted that many of these 

studies regard reduced muscle activity as a reduction in muscle tension even though 

sEMG activity does not provide a direct measure of muscle tension (Roberts & Gabaldón, 

2008). This is because muscle tension is a function of muscle length and velocity, 

whereas the sEMG signal only comprises myoelectric activity near the electrode site. 

NIBcoh, on the other hand, provides insight into muscle imbalance rather than directly 

measuring muscle tension. Additionally, variations in study design and sensor 

configuration (e.g., type and placement) make it difficult to directly compare the findings 
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of studies utilizing sEMG to assess extrinsic laryngeal muscle tension. For these reasons, 

the use of sEMG must be critically evaluated in its use for assessing extrinsic laryngeal 

muscle tension. 

Accelerometry 

Accelerometry for voice assessment includes placing a vibratory transducer at the 

base of the neck, just superior to the sternal notch. Neck-placed accelerometers act as 

vibratory transducers that sense phonation-related neck-skin vibration, and as a result, are 

not coupled to the air like microphones (Hillman, Heaton, Masaki, Zeitels, & Cheyne, 

2006; Zanartu et al., 2009). These devices are advantageous in monitoring phonation as 

accelerometers are relatively impervious to environmental noise and are less affected by 

supraglottal vocal tract resonances and aspiration noise (Cheyne, Hanson, Genereux, 

Stevens, & Hillman, 2003). Specifically, neck-surface accelerometers are thus capable of 

passively rejecting airborne sound that may be undesirable in acoustic analysis (e.g., 

ambient room noise; Coleman, 1988). Still, the signals collected via accelerometers and 

microphones both capture information of the glottal source: accelerometer-derived 

measures of voice fo, jitter (cycle-to-cycle perturbations in cycle period), and cepstral 

peak prominence strongly correlate to those measures when collected via a microphone 

signal (Mehta, Van Stan, & Hillman, 2016; Szabo, Hammarberg, Hakansson, & 

Sodersten, 2001).  

Prior work has shown that neck-surface accelerometry can be used to differentiate 

between typical and hyperfunctional voices, as well as to track changes in vocal effort 

over time. When used in ambulatory voice monitoring, Ghassemi et al. (2014) observed 
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that measures of sound pressure level and voice fo from the neck-surface accelerometer 

signal distinguished 22 of 24 speakers (12 typical speakers and 12 speakers with 

phonotraumatic VH). Cortés et al. (2018) used an accelerometer signal to derive 

parameters relating to glottal airflow. The authors tested this approach in 48 speakers 

with and 48 speakers without phonotraumatic VH, demonstrating that seven parameters 

relating to peak-to-peak glottal airflow (i.e., mean, minimum, median, logarithm versions 

of mean, minimum, median, and kurtosis) and the difference between the magnitudes of 

the first two harmonics could be used to classify whether or not a speaker was diagnosed 

with phonotraumatic VH. A recent study by Van Stan et al. (2020) used a larger group of 

speakers than these previous studies to further identify measures for discriminating daily 

vocal behaviors between typical speakers and those with phonotraumatic VH. The 

authors compared week-long patterns of voice use between 90 typical speakers and 90 

speakers with phonotraumatic VH and demonstrated that phonotraumatic VH was related 

to higher sound pressure levels and more abrupt glottal closure. A negatively skewed 

sound pressure level supported clinical impressions that speakers with phonotraumatic 

VH talk louder more often (rather than on average) than typical speakers. The authors 

also hypothesized that more abrupt glottal closure may be the result of hyperadduction to 

compensate for glottal insufficiency. 

Neck-surface accelerometry has also been related to aerodynamic measures of 

subglottal pressure. Specifically, McKenna et al. (2017) demonstrated that the magnitude 

of the neck-surface accelerometer signal was related to subglottal pressure (non-

invasively derived via intraoral estimates), as well as speaking intensity during variations 



60 

in vocal effort. In a separate study, McKenna et al. (2018a) demonstrated that a neck-

surface accelerometer-derived measure of subglottal pressure was significantly predictive 

of self-ratings of vocal effort, wherein a greater rating of effort corresponded to higher 

subglottal pressure.  

Together, these findings suggest that neck-surface accelerometry may be useful in 

the assessment of laryngeal muscle tension. However, further investigations must be 

conducted to identify a single estimator of laryngeal muscle tension. Unfortunately, 

signal quality is highly affected by accelerometer sensor placement, thickness of neck 

adipose tissue, and movement distortions (Behrman, 2005; Mehta, Zanartu, Feng, 

Cheyne, & Hillman, 2012a; Popolo, Svec, & Titze, 2005).  

Acoustics 

Acoustic analysis is a common method employed in voice assessments since data 

can be non-invasively collected via a microphone. Speech signals captured using a 

microphone can be analyzed to provide insight into basic metrics of the glottal source 

(timing, frequency, and amplitude of vocal fold vibration) and phonation (e.g., fo, vocal 

intensity, and phonation duration). There have been numerous attempts to identify 

acoustic metrics that relate to muscle tension in the laryngeal mechanism. To date, 

however, a single acoustic indicator specific to laryngeal muscle tension does not exist. 

Time- and Amplitude-based Measures 

Clinical assessments of laryngeal muscle tension typically comprise measures of 

sound pressure level and fo, as well as acoustic perturbation measures (e.g., jitter, 

shimmer, harmonics-to-noise ratio; Aronson et al., 2009, pp. 236-43; Colton et al., 2011, 
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p. 239; Mehta et al., 2016). These current clinical assessment methods objectively

quantify vocal function as it relates to vocal loudness, pitch, and quality. 

Vocal Sound Pressure Level 

Vocal sound pressure level (SPL) is a measure of radiated power from the mouth 

(“vocal power”) and reflects properties of the voice source and vocal tract (Gramming, 

1991; Švec & Granqvist, 2018). SPL is quantified in decibels (dB SPL) relative to a 

known reference for sound pressure in a given medium (e.g., air). Prior work indicates a 

positive relationship between vocal SPL and both perceived loudness and effort of the 

voice (Brandt et al., 1969; Rosenthal et al., 2014). Moreover, mean SPL is a significant 

factor in self- and listener-perceptual ratings of vocal effort (McKenna & Stepp, 2018b). 

Yet there is evidence to suggest that the relationship between mean SPL and vocal effort 

is different between individuals with and without a voice disorder characterized by 

excessive laryngeal tension. For instance, there is a strong relationship between subglottal 

pressure and vocal SPL in typical speakers (Baker, Ramig, Sapir, Luschei, & Smith, 

2001; Bjorklund & Sundberg, 2016; Fryd, Van Stan, Hillman, & Mehta, 2016; Marks, 

Lin, Fox, Toles, & Mehta, 2019); however, those with voice disorders characterized by 

excessive laryngeal muscle tension have been shown to exhibit increases in subglottal 

pressure without concurrent increases in vocal SPL (Hillman et al., 1989). Research 

suggests that individuals with stiff or heavy vocal folds (as in phonotraumatic VH) may 

leverage subglottal pressure to improve vocal fold vibratory amplitude (Zanartu et al., 

2014), leading to increased subglottal pressure and perceived vocal effort without 

increasing mean SPL out of the normative range (Espinoza et al., 2017; Friedman, 
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Hillman, Landau-Zemer, Burns, & Zeitels, 2013; Hillman et al., 1989; Zeitels, Burns, 

Lopez-Guerra, Anderson, & Hillman, 2008).  

The specific relationship between vocal SPL and laryngeal muscle tension is less 

clear. One study found that individuals with MTD spoke at a significantly lower vocal 

SPL than typical speakers (66.95 dB SPL in MTD versus 68.37 dB SPL in typical voices; 

Belsky, Rothenberger, Gillespie, & Gartner-Schmidt, 2020). On the other hand, Van Stan 

et al. (2015a) determined that vocal SPL is not significantly different between speakers 

with and without phonotraumatic lesions (84.4 dB SPL in phonotraumatic VH versus 

83.6 dB SPL in typical voices). The differences observed between phonotraumatic and 

non-phonotraumatic VH may reflect differences in phonatory mechanisms associated 

with the disorder. Although both phonotraumatic and non-phonotraumatic VH have been 

linked to lower vocal efficiency compared to typical speakers, phonotraumatic VH is also 

associated an increased likelihood of trauma to the vocal fold tissues (Espinoza et al., 

2017). Yet the discrepancy in average SPL values between these studies also indicates 

that methodology is a crucial factor to consider when interpreting results: Van Stan and 

colleagues (2015) obtained data from ambulatory monitoring to enhance ecological 

validity, whereas Belsky et al. (2020) collected data while participants wore a facemask 

to simultaneously collect acoustic and aerodynamic data via the KayPENTAX PAS 

Model 6600. The notion of differences in methodology is also supported in the fact that 

the reported SPL means of typical speakers from Belsky et al. (2020) are lower compared 

than normative adult values when using the KayPENTAX PAS Model 6600 (Zraick, 

Smith-Olinde, & Shotts, 2012). Vocal SPL is a useful measure to consider when 
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evaluating voice disorders; however, the relationships between vocal SPL and both vocal 

effort and laryngeal muscle tension must be interpreted with caution. 

Fundamental Frequency 

Voice fo is based on the length, mass, and tension of the vocal folds (Van Den 

Berg, 1958). Increases in mean fo have been associated with increased activity of the TA 

(Titze, Luschei, & Hirano, 1989) and CT (Löfqvist, Baer, McGarr, & Story, 1989) 

muscles, which are known to alter the configuration of the vocal folds (see Intrinsic 

Laryngeal Muscles). This relationship, however, is not straightforward. When stimulated 

in isolation, the TA and CT muscles have each been associated with increases in mean fo, 

whereas concurrent TA and CT stimulation results in antagonistic activity that may result 

in either no change or decreases to mean fo (Chhetri, Neubauer, & Berry, 2012; Lowell 

& Story, 2006; Titze et al., 1989; Yin & Zhang, 2013). The extrinsic laryngeal muscles 

(primarily the sternothyroid and thyrohyoid) also influence voice fo by altering the 

position of the hyoid and thyroid cartilages (see Extrinsic Laryngeal Muscles). Previous 

work has shown that speakers with VH exhibit increased values of mean fo over the 

course of the day (Ghassemi et al., 2014), but reduced mean fo following a successful 

course of vocal therapy (Kennard, Lieberman, Saaid, & Rolfe, 2015; Roy et al., 1997). 

Despite clear connections between laryngeal muscle tension and voice fo, a wide range of 

fo values have been reported across the spectrum of vocal function (Holmberg et al., 

2003; Mehta et al., 2015; Redenbaugh et al., 1989; Van Stan et al., 2015a); as such, 

voice fo is a non-specific indicator of laryngeal muscle tension.  
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Perturbation Measures 

Jitter, shimmer, and harmonics-to-noise ratio (HNR) are common perturbation 

measures included in acoustic voice assessments. Jitter refers to cycle-to-cycle 

perturbations in fo, and is a measure of frequency instability. Shimmer, on the other hand, 

refers to cycle-to-cycle perturbations in amplitude, and is thus a measure of amplitude 

instability. HNR is an indication of the ratio of harmonic energy to noise in the speech 

signal. These measures have the potential to provide an estimate of quality of sustained 

vowel productions. However, prior work indicates poor test-retest reliability of these 

measures in dysphonic voices, with ICC = .46 for jitter, .40 for shimmer, and .33 for 

HNR (Carding et al., 2004). Test-retest reliability was substantially greater for non-

dysphonic voices, with moderate reliabilities of ICC = .73 for jitter, .55 for shimmer, and 

.68 for HNR. Yet these values may be influenced by speaking voice pitch (measured as 

fo) and loudness (measured as vocal SPL), as increased fo and SPL have each been shown 

to result in reduced jitter and shimmer (Brockmann-Bauser, Bohlender, & Mehta, 2018; 

Brockmann-Bauser & Drinnan, 2011; Brockmann, Drinnan, Storck, & Carding, 2011; 

Gelfer, 1995) and increased HNR (Brockmann-Bauser et al., 2018). As such, these 

measures may give clinically useful measurements of subtle changes in non-dysphonic or 

mildly dysphonic patients; however, the reliability of these measures grows more 

questionable in more dysphonic voices. 

Although jitter, shimmer, and HNR may provide some clinical insights into 

phonatory quality, the clinical utility of these measures across a broad range of vocal 

function is low. Titze (1995) describes three types of voice signals encountered in 
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acoustic voice analysis: Type I, which are nearly periodic signals; Type II, or signals with 

strong subharmonics and/or modulating frequencies that mask the presence of a single, 

obvious fo; and Type III, which are signals with no apparent periodic structure. Because 

jitter, shimmer, and HNR each rely on the periodic structure of the acoustic signal, these 

measures are generally restricted for use with only Type I and some Type II signals. Yet 

the level of aperiodicity in a voice signal typically increases when voice problems are 

present (Eadie & Doyle, 2005; Titze, 1995), such that these perturbation measures cannot 

be reliably used to assess more dysphonic signals. As a result, these measures are often 

used in conjunction with other methods of voice assessment (e.g., laryngoscopy) to 

provide a more comprehensive evaluation of the voice. 

Spectral- and Cepstral-based Measures 

Laryngeal muscle tension has been related to a collection of spectral- and 

cepstral-based measures, including the low-to-high ratio of spectral energy (L/H ratio), 

standard deviation of the L/H ratio (L/H ratio SD), cepstral peak prominence (CPP), the 

standard deviation of CPP (CPP SD), and the cepstral spectral index of dysphonia 

(CSID). Spectral and cepstral measures are both derived from the spectral distribution of 

acoustic energy. Spectral measures (L/H ratio, L/H ratio SD) reflect the distribution of 

spectral energy within the acoustic waveform, whereas cepstral measures (CPP, CPP SD, 

CSID) reflect the distribution of energy at harmonically related frequencies and the 

regularity of harmonic peaks (Hillenbrand & Houde, 1996).  

The spectrum of the acoustic waveform is first obtained via the fast Fourier 

transform of the time-based signal; from here, the distribution of spectral energy across 
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frequency can be analyzed. The L/H ratio is a measure of spectral tilt, and is calculated 

by comparing the spectral energy below and above an established cut-off frequency. A 

popular cut-off frequency is 4 kHz, as it is thought that the energy above 2–3 kHz is 

susceptible to the effects of high-frequency aspiration noise stemming from posterior 

glottal gap size (Klatt & Klatt, 1990). Larger posterior glottal gap sizes are associated 

with an increased escape of turbulent air, resulting in increased energy above 4 kHz and a 

voice that may be perceived as excessively breathy (Hillenbrand, Cleveland, & Erickson, 

1994; Hillenbrand et al., 1996). The L/H ratio is a promising metric since hyperfunctional 

voices (Holmberg et al., 2001; Patel, Liu, Galatsanos, & Bless, 2011) have been 

considered as being perceptually breathy (although breathiness is more often associated 

with hypofunctional voice disorders; Watts & Awan, 2011). Indeed, the L/H ratio at a 

cut-off frequency of 4 kHz has been shown to successfully distinguish perceptually 

dysphonic speakers from typical speakers (Awan, Roy, Jette, Meltzner, & Hillman, 2010; 

Lowell, Colton, Kelley, & Mizia, 2013).  

Employing the L/H ratio shows promise as an indicator of laryngeal muscle 

tension, the specific relationship between tension and the L/H ratio is unclear. Recent 

work suggests that the L/H ratio and the L/H ratio SD cannot be used to distinguish 

typical speakers from those diagnosed with MTD (Belsky et al., 2020). Additional work 

comparing L/H ratio SD values between normative and dysphonic speakers found 

minimal differences (Lowell et al., 2013). It is possible that these findings are due to the 

non-specificity of the L/H ratio, as this metric may also be affected by vocal fold 

vibratory characteristics that—in addition to increased aspiration noise—could reduce the 
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ratio. For instance, a lower L/H ratio could result from increased energy in the upper 

harmonics or from increased energy from aspiration noise.  

Issues employing the L/H ratio to assess voice depends on the cut-off frequency 

used. Prior work examining the L/H ratio before and after behavioral therapy in PD found 

that the L/H ratio at a cut-off frequency of 4 kHz was not sufficient to differentiate the 

effects of behavioral therapy in PD (Alharbi, Cannito, Buder, & Awan, 2019). The 

authors adjusted the cut-off frequency to 2 kHz for males and 2.5 kHz for females to 

focus on the first two formant frequencies in the spectrum; by using an adjusted L/H 

ratio, a significant difference was found before and after behavioral therapy (LSVT) in 

PD. It is unclear whether this change was a result of actually honing in on the first two 

formant frequencies, or if other characteristics of vocal fold vibration and aspiration noise 

were differentiated because of the change. Specifically, the third formant hovers around 

1.7–3 kHz for adult men and 1.9–3.4 kHz for adult women, because it varies according to 

the target phoneme (Hillenbrand, Getty, Clark, & Wheeler, 1995). This range can impact 

the distribution of energy and inaccurately inflate high-frequency energy in some cases. 

Additionally, the L/H ratio is a non-specific measure of dysphonia; for instance, a 

decrease in the L/H ratio could be the result of an increase in breathiness (to increase 

high-frequency spectral energy) or in pressed voice (due to higher harmonics). Thus, 

although L/H ratio and L/H ratio SD may provide some insight into the spectral 

composition of voices characterized by excessive laryngeal muscle tension, these metrics 

cannot distinguish the contributions from specific physiological mechanisms.  

The cepstrum is usually obtained by computing the fast Fourier transform of the 
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logarithm of the power spectrum. In other words, the cepstrum is the spectral 

representation of the spectrum. The dominant peak in the cepstrum corresponds to the 

fundamental period of the spectrum, just as the dominant frequency of the spectrum 

corresponds to the fo of the voice signal. A highly periodic voice will have a strong peak 

at the fo of the original spectrum (and integer multiples of this fo) and a strong peak at the 

fundamental period of the cepstrum (measured here in terms of “quefrency” instead of 

frequency). Cepstral analyses do not rely on specific time-based information from the 

acoustic signal (e.g., time between glottal pulses). Consequently, cepstral analyses are 

particularly useful when it is too difficult to extract time-based measures (e.g., voice fo), 

such as in a severely dysphonic speaker. 

CPP was first introduced as an acoustic correlate of breathiness by Hillenbrand et 

al. (1994), and was later modified by Hillenbrand et al. (1996) via adding smoothing 

operations to the temporal and cepstral domains (“smoothed” CPP, or CPPs). CPP is a 

measure of cepstral peak amplitude when normalized to overall amplitude; it is computed 

by (1) constructing a linear regression line through the cepstrum to represent average 

sound energy, (2) locating the peak in the cepstrum that exhibits the largest amplitude, 

and (3) calculating CPP as the distance between the magnitude of this peak and the 

regression line (Heman-Ackah et al., 2003; Hillenbrand et al., 1994). CPP is associated 

with the fo of the original spectrum and is affected by the periodicity of the original 

signal. A periodic voice signal will display a well-defined harmonic structure, and as a 

result, exhibit a more prominent cepstral peak than an aperiodic voice signal (Hillenbrand 

et al., 1994). For this reason, CPP demonstrates promise in the analysis of disordered 
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voices. 

CPP has demonstrated use as an acoustic marker of dysphonia. Prior work 

indicates that CPP is a strong correlate to overall severity of dysphonia (Awan & Roy, 

2005, 2009; Awan, Roy, & Dromey, 2009; Eadie & Baylor, 2006) and can successfully 

differentiate between typical speakers and those with disordered voices (Awan et al., 

2005; Eadie et al., 2005; Heman-Ackah et al., 2014; Lowell et al., 2012a; Shim, Jung, 

Koul, & Ko, 2016). It has been reported that dysphonic voices may be characterized by 

lower CPP values (Awan et al., 2005; Awan et al., 2010; Shim et al., 2016) and more 

specifically, a strained voice quality (Lowell et al., 2012a) than typical speakers. 

However, the responsiveness of CPP to changes in laryngeal muscle tension remains 

equivocal. Work by Rosenthal et al. (2014) suggests that CPP is responsive to tension. 

When they instructed 18 typical speakers to modulate their level of vocal effort 

(comfortable, minimum, maximal), the authors noted that increased vocal effort led to an 

increase in CPP and decrease in CPP SD, and further, that decreased vocal effort resulted 

in a decrease in CPP and decrease in CPP SD. However, work from McKenna et al. 

(2018b) found that CPP was not salient to changes in vocal effort for speakers or 

listeners. 

The conflicting results of these studies may be due to vocal SPL acting as a 

confounding factor: increases in vocal SPL have been shown to increase CPP values in 

male speakers (Awan, Giovinco, & Owens, 2012). Indeed, Rosenthal et al. (2014) male 

speakers were reported to carry out each speaking task at an average intensity 3–7 dB 

higher than female speakers in the current study. However, it is also unclear how task 
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instructions and cueing affected participant strategies for modulating their voice in these 

studies. 

CPP and CPP SD have shown promise for assessing PD. A recent study by 

Alharbi et al. (2019) evaluated the ability of these metrics for differentiating between 

speaker voices pre-/post-LSVT. Both CPP (p = .006) and CPP SD (p = .007) significantly 

increased from pre- to post-treatment, indicating an effect of increased vocal intensity 

and/or improved periodicity of the voice in post-treatment recordings. Although the 

primary objective of LSVT is for individuals to focus on speaking with a clear, loud 

voice, only a weak correlation between vocal intensity and CPP was found. This suggests 

that vocal intensity may have contributed to increases in CPP and CPP SD, but that the 

significant increase in CPP and CPP SD were likely not a result of increases in vocal 

intensity alone. Overall, these results are in support of utilizing CPP and CPP SD to 

acoustically characterize voice changes in PD. 

In addition to the L/H ratio and CPP, the Cepstral/Spectral Index of Dysphonia 

(CSID) has been used as an acoustic marker of dysphonia. The CSID is a composite 

index that combines CPP, CPP SD, L/H ratio, and L/H ratio SD into a weighted formula 

that takes speech stimuli (sustained vowel or continuous speech) and speaker sex into 

account (Awan & Roy, 2006; Awan et al., 2010; Watts & Awan, 2015). The CSID can 

differentiate between normative and dysphonic, strained voice samples (Lowell et al., 

2012a; Shim et al., 2016; Watts et al., 2015), as well as between voice samples collected 

in speakers with PD pre- to post-behavior therapy (Alharbi et al., 2019). Moreover, 

CSID-estimated severity has been demonstrated to be a strong correlate of listener 
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perceptual ratings of severity in voice samples collected from dysphonic speakers before 

and after voice treatment (behavior, medical, and/or surgical; Peterson et al., 2013). As 

such, the CSID offers an objective, non-invasive means of quantifying dysphonia 

severity. 

Limitations with Current Acoustic Methods 

Given the non-invasive nature of acquiring acoustic signals, it may be a promising 

modality for developing an objective estimator of laryngeal muscle tension. However, 

current clinical acoustic measures are limited in their ability to specifically assess 

laryngeal muscle tension. This may be because the steps for developing and validating 

acoustic measures are often difficult, as acoustic measures require robust testing (i.e., 

sufficient methodology, user interfaces, and sample sizes) prior to their implementation 

for routine clinical use (Roy et al., 2013). In recent years, relative fundamental frequency 

has been suggested as an indicator of laryngeal muscle tension. This non-invasive, 

objective, acoustic measure is in the process of undergoing robust testing to evaluate and 

refine its ability to track changes in laryngeal muscle tension within an individual over 

time, as well as differentiate levels of laryngeal muscle tension across individuals. For 

these reasons, relative fundamental frequency may be a promising clinical outcome 

measure for tracking baseline laryngeal muscle tension. 

Relative Fundamental Frequency (RFF) 

Relative fundamental frequency (RFF) has been proposed as an acoustic estimate 

of laryngeal muscle tension. RFF examines instantaneous fo of vocalic devoicing and 

voicing gestures preceding and following a voiceless consonant. Changes in fo during 
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these gestures are dependent on the vibration of the vocal folds; this vibratory rate, in 

turn, is a function of vocal fold length, mass, and tension (Van Den Berg, 1958). Changes 

in RFF during vocalic devoicing and voicing gestures have been shown to form a 

characteristic pattern: Voicing offset in typical speakers is characterized by a relatively 

stable, if not slightly decreasing, RFF trend (Goberman & Blomgren, 2008; Robb & 

Smith, 2002), whereas voicing onset is marked by a decreasing RFF trend (Robb et al., 

2002; Watson, 1998). The formation of this pattern has been attributed to interactions of 

laryngeal muscle tension, vocal fold kinematics, and changes in airflow (Löfqvist et al., 

1989; Stepp, Merchant, Heaton, & Hillman, 2011d; Stevens, 1977; Van Den Berg, 1958; 

Watson, 1998). There is evidence to support that laryngeal muscle tension is transiently 

elevated before, during, and after the production of the voiceless consonant to inhibit 

vocal fold vibration (Löfqvist et al., 1989; Stevens, 1977). As glottal abduction 

commonly occurs for voiceless sounds, it is postulated that vocal fold abductory 

kinematics act in concert with elevated muscle tension to achieve devoicing during the 

transition into the voiceless consonant (Watson, 1998); however, the specific 

contributions of abduction to RFF are unclear. The transition out of the voiceless 

consonant is then thought to occur as a result of the interplay between increases in 

laryngeal muscle tension and airflow from the preceding vowel (Watson, 1998), in 

addition to vocal fold adductory kinematics necessary to bring the vocal folds together 

and reinitiate vibration.  
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RFF in Clinical Populations 

Recent work has shown that RFF correlates with severity of vocal symptoms in 

speakers with dysphonia (Eadie & Stepp, 2013) and can distinguish between typical 

voices and those characterized by excessive laryngeal muscle tension, including PD 

(Goberman et al., 2008; Stepp, 2013), adductor laryngeal dystonia (Eadie et al., 2013), 

and VH (Heller Murray et al., 2017; Stepp, Hillman, & Heaton, 2010b; Stepp et al., 

2011d). Specifically, individuals with voice disorders characterized by excessive 

laryngeal muscle tension have lower average RFF values than age-matched typical 

speakers, perhaps due to increased baseline laryngeal muscle tension that impedes their 

ability to use tension as a strategy for devoicing (voicing offset) and reinitiating voicing 

(voicing onset). RFF also normalizes in individuals with VH following voice therapy 

(i.e., functional intervention; Stepp et al., 2011c), but not in individuals with vocal 

nodules or polyps following therapy (i.e., structural intervention; Stepp et al., 2010), 

suggesting that RFF is reflects functional changes to the voice rather than structural 

changes. When employing RFF to investigate functional differences between 

phonotraumatic and non-phonotraumatic VH, RFF values were found to significantly 

differ between the two subtypes, indicating that differences between phonotraumatic and 

non-phonotraumatic VH may be functional as well as structural (Heller Murray et al., 

2017). Overall, these results support the use of RFF for differentiating the degree of 

laryngeal muscle tension between individuals, as well as tracking changes in laryngeal 

muscle tension within an individual over time.  

RFF may also demonstrate utility in quantifying the degree of laryngeal muscle 
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tension present. Vocalic cycles closest to the voiceless consonant are the most sensitive to 

changes in laryngeal muscle tension (Stepp et al., 2010b; Stepp et al., 2011d) and are also 

predictors of laryngeal stiffness (McKenna, Heller Murray, Lien, & Stepp, 2016), a 

proposed biomechanical correlate of intrinsic laryngeal muscle tension (Shiller, 

Laboissiere, & Ostry, 2002). RFF also significantly correlates with listener perceptual 

judgements of dysphonia severity (Roy, Fetrow, Merrill, & Dromey, 2016; Stepp, Sawin, 

& Eadie, 2012), and can be manipulated by typical speakers to achieve values similar to 

those observed in individuals with voice disorders characterized by excessive laryngeal 

muscle tension (Lien et al., 2015b; McKenna et al., 2018b). With refinements to make the 

measure less time-consuming to calculate, RFF may be a useful clinical outcome measure 

in the assessment of laryngeal muscle tension. 

Methods for Estimating RFF 

RFF can be calculated in two ways: manually or semi-automatically. Currently, 

the gold-standard method of RFF estimation is manual analysis. This requires a trained 

technician to use an acoustic software, such as Praat (Boersma, 2001), to visualize the 

acoustic signal in both time and frequency domains. The technician uses this information 

to locate the ten vocal cycles prior to and following the production of the voiceless 

consonant within a vowel–voiceless consonant–vowel (VCV) utterance. The specific 

steps that RFF technicians are trained to perform are as follows: (1) visual examination of 

the acoustic waveform during the transition from the vowel to the voiceless consonant 

(i.e., voicing offset) or from the voiceless consonant to the vowel (i.e., voicing onset), (2) 

identification of the vocal cycle that marks the boundary between voiced and voiceless 
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speech segments, (3) extraction of glottal pulses corresponding to the ten vocal cycles 

closest to the voiceless consonant, and (4) calculation of vocal cycle periods from the 

extracted glottal pulses, (5) calculation of the instantaneous fo of each vocal cycle via 

taking the inverse of each cycle period, and (6) calculating RFF by normalizing the 

instantaneous fo values to an approximate steady-state fo (fo
 ss), as in Eq. 1.1):  

The fo
 ss corresponds to the vocal cycle closest to the midpoint of each vowel; this 

corresponds to the fo of the first cycle for voicing offset RFF values and the tenth cycle 

for voicing onset RFF values. Resulting RFF values are in the normalized unit, semitones 

(ST), which allows for comparison within and across speakers. 

The second step of this process is considered the most tedious, as the technician 

must use trial-and-error techniques to identify the vocal cycle marking the termination or 

initiation of voicing; however, this step is arguably the most important since the 

voiced/unvoiced boundary is used to further identify eleven glottal pulse timings that 

correspond to the edges of the ten vocal cycles identified in the third step.  

Unfortunately, clinical implementation of RFF via manual estimation is 

unfeasible. At least six of these RFF speech sequences are needed for a single reliable 

RFF estimate, averaging around 20–40 minutes of manual analysis per reliable RFF 

extraction (Eadie et al., 2013). To minimize the need for inefficient, manual intervention 

by trained technicians, a semi-automated RFF algorithm was developed using rule-based 

signal processing techniques (Lien, 2015; Lien et al., 2017).  

RFF (ST) = 12× log2 #
fo
fo
 ss$ [1.1] 
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The current semi-automated algorithm estimates RFF in six steps: (1) 

identification of the fricatives and vowels in each production according to the acoustic 

signal via high-to-low energy ratios, (2) estimation of average fo via autocorrelation of the 

vowel, (3) identification of peaks and troughs of potential vocal cycles pertaining to the 

vowel, (4) identification of boundaries between each vowel and the voiceless consonant 

via the normalized peak-to-peak amplitude, number of zero crossings, and waveform 

shape similarity, (5) rejection of instances that do not meet specified criteria (e.g., less 

than 10 onset or offset cycles, glottalization, misarticulation, voicing during the voiceless 

consonant), and (6) RFF calculation. Within this algorithm, all steps are fully automated 

except for step (1), wherein the location of the voiceless consonant may require manual 

intervention. To identify potential vocal cycles in the vowel of a VCV production, the 

utterance is first band-pass filtered according to the average fo of the speaker. A sliding 

window that is constructed using the inverse of the average fo of the speaker then shifts 

from the identified midpoint of the voiceless consonant in the first step and moves toward 

the vowel of interest. Potential vocal cycles are identified by leveraging three acoustic 

features obtained from each sliding window: normalized peak-to-peak amplitude, number 

of zero crossings, and waveform shape similarity. Of the six steps in this algorithm 

design, step (4) is especially prone to error due to the complexity of fo estimation at 

voicing offsets and onsets (Quatieri, 2008); as a result, there remains a need to further 

improve the algorithm for clinical and investigational use.  
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Purpose of the Current Work 

Quantitative measures of laryngeal muscle tension are needed to improve voice 

assessment and track clinical progress. RFF has shown promise as an acoustic estimator 

of laryngeal muscle tension, yet there remains a need to refine the semi-automated RFF 

algorithm for clinical and investigational use. The purpose of this work was to improve 

the accuracy and precision of the RFF algorithms for the objective quantification of 

laryngeal muscle tension, and to use the refined algorithm to determine the role of vocal 

fold abductory kinematics in estimates of RFF. This dissertation comprises three studies 

to achieve these goals, which (1) examine the impacts of sample characteristics and fo 

estimation method on the correspondence between semi-automated and manual RFF 

estimates, (2) elucidate the relationship of acoustic features and vocal fold vibratory 

characteristics during intervocalic offsets and onsets, and (3) determine the association 

between vocal fold abductory kinematics and RFF across a range of voice types. This 

work aims to improve the clinical applicability of RFF related to estimating laryngeal 

muscle tension for use in conjunction with current clinical voice assessment techniques. 
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CHAPTER 2. Refining Algorithmic Estimation of Relative Fundamental Frequency 

by Accounting for Sample Characteristics and Fundamental Frequency Estimation 

Method 

Abstract 

Purpose: The purpose of this study was to evaluate the impact of voice sample 

characteristics and fundamental frequency (fo) estimation techniques on the 

correspondence between automated and gold-standard manual relative fundamental 

frequency (RFF) estimates. 

Methods: Acoustic recordings were collected from individuals with (N = 227) 

and without (N = 256) voice disorders. Four common fo estimation methods (Auditory-

SWIPE′, Halcyon, RAPT, YIN) were evaluated against the autocorrelation method 

currently implemented in the RFF algorithm. Using a training set (1158 samples), sample 

categories were constructed using pitch strength. RFF algorithm parameters were then 

tuned to each pitch strength category. From here, RFF values were recalculated in a test 

set (291 samples) using these category-specific thresholds. Algorithmically extracted 

RFF values were evaluated against manually extracted RFF values using mean bias error 

(MBE) and root-mean-square error (RMSE). 

Results: The RFF algorithms with Auditory-SWIPE′ for fo estimation led to the 

greatest correspondence with manual RFF and was implemented in concert with 

category-specific thresholds. Refining fo estimation and accounting for sample 

characteristics led to increased correspondence with manual RFF (MBE = 0.01 ST, RMSE 

= 0.28 ST) compared to the unmodified algorithm (MBE = 0.90 ST, RMSE = 0.34 ST), 
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reducing the MBE and RMSE of semi-automated RFF estimates by 88.4% and 17.3%, 

respectively. 

Conclusions: Refining the method of fo estimation using Auditory-SWIPE′ and 

accounting for sample characteristics via pitch strength categories led to improvements in 

the precision and accuracy of semi-automated RFF estimates. Future work should 

investigate additional metrics to use in order to objectively quantify the variations in 

voice sample characteristics that may be encountered in clinical populations. 

 

Background 

Relative fundamental frequency (RFF) is an acoustic measure that has 

demonstrated feasibility in assessing and tracking laryngeal muscle tension. RFF is 

measured by examining instantaneous changes in fundamental frequency (fo) during 

voicing transitions. In a vowel–voiceless consonant–vowel (VCV) production, this 

corresponds to the ten vocal cycles that mark the transition into and out of the voiceless 

consonant (see Fig. 2.1). The instantaneous fo of these ten cycles before and after the 

voiceless consonant are normalized to the steady-state fo of the nearest vowel. Changes in 

 
Figure 2.1. Acoustic waveform of a vowel–voiceless consonant–vowel production, with 
voicing offset and voicing onset cycles identified. The first and tenth cycles of each voiced 
sonorant are highlighted. Voicing offset cycles are normalized to offset cycle 1, whereas 
voicing onset cycles are normalized to onset cycle 10. 
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RFF during these transitions into and out of voicing form a characteristic pattern in 

typical speakers that has been attributed to interactions of laryngeal muscle tension, vocal 

fold kinematics, and changes in airflow (Löfqvist et al., 1989; Stepp et al., 2011d; 

Stevens, 1977; Van Den Berg, 1958; Watson, 1998).  

Since RFF is thought to relate to laryngeal muscle tension, research efforts have 

explored the possibility of using RFF as an acoustic indicator of tension. Recent work has 

shown that RFF is capable of differentiating between healthy and disordered voices 

characterized by excessive laryngeal tension, including vocal hyperfunction (Stepp et al., 

2010b; Stepp et al., 2011d), adductor laryngeal dystonia (Eadie et al., 2013), and 

Parkinson’s disease (Goberman et al., 2008; Stepp, 2013). RFF has also been shown to 

correlate with auditory-perceptual judgements of dysphonia severity (Roy et al., 2016; 

Stepp et al., 2012), which encompasses multiple dimensions of voice quality—including 

breathiness, roughness, and strain—and to quantify the degree of laryngeal tension. 

Despite the promise of RFF for assessing laryngeal muscle tension, however, clinical 

implementation remains laborious.  

Issues with Manual RFF Estimation 

The gold-standard method for estimating RFF requires a technician to 

subjectively evaluate the acoustic speech waveform using the acoustic analysis software, 

Praat (Boersma, 2001). Currently, the manual calculation of RFF cannot be implemented 

into clinical practice because of the extensive time needed for estimation. A single 

reliable RFF estimate requires approximately 20–40 minutes of analysis time from a 

trained technician. The majority of this time is spent exercising trial and error to identify 
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the vocal cycle marking the termination or initiation of voicing. Selecting this “boundary 

cycle” and then ensuring that adjacent glottal pulse timings are appropriately estimated 

can be challenging since fo estimation is particularly difficult near voicing offsets 

(voiced-to-unvoiced transitions) and onsets (unvoiced-to-voiced transitions; Quatieri, 

2008). This is because vocal cycles nearest to the voiceless consonant may be masked by 

environmental noise or by concurrent aspiration and frication from coarticulation. 

Boundary cycle selection grows more difficult since the fo estimation method used in 

Praat implies stationarity, meaning that it does not change with time. This is problematic 

since instantaneous fo is expected to change when transitioning between voiced and 

unvoiced speech. As a result, locating the boundary cycle and extracting instantaneous fo 

is often a time-consuming process during manual RFF analysis.  

Considering that at least six RFF speech sequences are needed for a reliable RFF 

estimate (Eadie et al., 2013; Lien et al., 2017), trained technicians must perform this 

tedious boundary selection step a minimum of 12 times (6 voicing offset, 6 voicing onset) 

to achieve a reliable RFF estimate for one speaker. As such, semi-automated RFF 

estimation was developed to mitigate the time-consuming nature of manual RFF 

estimation (Lien, 2015; Lien et al., 2017). 

Issues with Semi-automated RFF Estimation 

The current semi-automated algorithm (called “aRFF”) uses signal processing 

techniques to estimate RFF. The aRFF algorithm estimates fo via autocorrelation to 

identify potential vocal cycles in the vowel of a vowel–voiceless consonant–vowel 

(VCV) production. Instead of relying on manual intervention to identify the boundary 
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cycle, the aRFF algorithm employs rule-based acoustic analyses. This algorithm has 

known limitations, however. Although the aRFF algorithm minimizes the need for 

manual intervention—thus, expediting the RFF computation process—the accuracy of 

semi-automated RFF values was found to vary across a wide range of voice signals (Lien 

et al., 2017). It is possible that some of the observed variations in RFF accuracy are the 

result of unrefined signal processing techniques employed within the aRFF algorithm, 

including inaccurate fo estimation and a failure to account for voice sample 

characteristics. 

Effects of fo Estimation Method 

Accurate estimates of fo are necessary for two steps of the aRFF algorithm: to 

estimate the average fo of the speaker, and to calculate the period between potential vocal 

cycles. Typical fo estimation techniques operate under the assumption that (i) vocal fold 

vibration generally varies a small percentage from one period to the next, and (ii) the 

configuration of the vocal tract varies at a much slower rate than that of the vocal folds 

(Talkin, 1995). The former assumption is important for identifying physiologically 

possible fo estimates, and the latter is necessary to further assume that the speech sound 

being produced will not change from one cycle to another. These methods often operate 

by comparing a segment of a voice signal with another segment that has been shifted in 

time, or by examining the frequency content of the signal.  

The aRFF algorithm relies on autocorrelation-based fo estimation to calculate the 

mean fo of each vowel in a VCV production. This method compares a segment of signal 

to a delayed copy of itself as a function of the delay. Autocorrelation was originally 
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selected for the RFF algorithm because Praat also uses autocorrelation for fo estimation. 

This method is favorable because it provides high resolution in the time domain and is of 

low computational complexity.  

Autocorrelation may not be the best fo estimator for computing RFF because it 

assumes signal periodicity and requires a significant timeframe to examine physiological 

fo ranges encountered in the human voice. Performing simple autocorrelation analyses on 

dysphonic voices may lead to increases in measurement error since the periodicity of the 

human voice is considered quasiperiodic at best (Rabiner, 1977). This is problematic 

since the level of aperiodicity in a voice signal often increases when voice problems are 

present (Eadie & Doyle, 2005; Titze, 1995). Autocorrelation also requires 2–3 complete 

pitch periods to develop an accurate estimate of fo (Rabiner, 1977); however, RFF 

specifically captures rapid changes in fo while transitioning into and out of voiced speech, 

which may further lead to estimation inaccuracies and poor cycle-to-cycle resolution.  

Alternative methods of estimating fo have not previously been explored for semi-

automated RFF calculations. Although manual RFF estimation faces the same difficulties 

in using autocorrelation as an fo estimation method in Praat, manual estimation allows a 

trained technician to subjectively make decisions about the boundary and adjacent cycles 

to (time-intensively) bypass these issues. Thus, an investigation examining the effects of 

different fo estimation methods is warranted to determine whether the shortcomings of 

using autocorrelation for semi-automated fo estimation can be overcome by a different 

technique.  
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Effects of Voice Sample Characteristics 

During the development of the aRFF algorithm, semi-automated RFF estimates 

were compared against manual estimates to gauge algorithmic accuracy (Lien et al., 

2017). The algorithm was trained (N = 126) and tested (N = 64) on voice signals that 

varied in recording location and equipment, speaker diagnosis, and speaker dysphonia 

severity. This group included 36 typical speakers and 154 speakers with disordered 

voices. 

When testing the aRFF algorithm, Lien et al. (2017) found that the relationship 

between RFF estimation methods was dependent on voice sample characteristics, noting 

dysphonia severity and signal quality as potential factors influencing this relationship. 

The authors noted that speech signals recorded from a waiting area or quiet room of a 

voice clinic resulted in a poorer correlation (.82 versus .91) and greater root-mean-

squared error (0.37 ST versus 0.28 ST) between semi-automated and manual RFF 

estimates than those recorded in a sound-treated room. Yet the samples recorded in a 

voice clinic were also, on average, more dysphonic. The trends observed in signal quality 

and dysphonia severity may have been a result of participant recruitment logistics (e.g., 

more dysphonic participants were recorded in a voice clinic rather than in a research 

laboratory), but may have also been a result of interactions among participant, room, and 

task. For instance, it is possible that room acoustics affected speaker levels of vocal 

effort, comfort, control, and clarity (Bottalico, Graetzer, & Hunter, 2016).  

Although the authors did not evaluate the effects of dysphonia severity and/or 

signal quality on RFF, it is possible that these sample characteristics led to the observed 
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variations in algorithm performance. In order to identify the vocal cycles nearest to the 

voiceless consonant, the aRFF algorithm first leverages a set of acoustic features to 

identify the boundary between voiced and voiceless segments. A sliding window based 

on the speaker’s average fo navigates from the midpoint of the voiceless consonant 

toward the vowel. Within each window of time, three acoustic features are calculated: 

normalized peak-to-peak amplitude (PTP), number of zero crossings (NZC), and 

waveform shape similarity (WSS). PTP is computed as the range of the amplitude of the 

windowed speech signal, NZC is the number of sign changes of the windowed speech 

signal, and WSS is the normalized sum of square error between the current window of 

time and the previous window of time. If a positive or negative peak is identified in the 

region of the voiceless consonant, PTP is expected to be low and both NZC and WSS are 

expected to be high (Lien, 2015).  

After the window navigates through the vowel, the aRFF algorithm stops 

collecting acoustic features and instead applies rule-based signal processing techniques 

on the three acoustic feature vectors to locate the boundary between the vowel and 

voiceless consonant. The algorithm assumes that the largest change in the three acoustic 

feature vectors will occur at this boundary. To locate this change, the algorithm identifies 

the feature value that maximizes the effect size between the left and right components of 

each acoustic feature vector. To help in identifying this boundary, a single set of constant 

threshold multipliers are applied to each acoustic feature vector. These constant threshold 

multipliers were identified by choosing values that minimized the overall difference 

between manual and semi-automated RFF estimates across their training set of 
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heterogeneous voice samples (Lien et al., 2017). The cycle index corresponding to the 

identified feature value is selected as a boundary cycle candidate, and the median of these 

candidates is chosen as the boundary cycle.  

The problem in using a threshold set that has been optimized across 

heterogeneous voice samples is that Lien and colleagues (2017) found that boundary 

cycle identification varies according to the voice samples used to train and test the 

algorithm. This is likely because any singular threshold set may not be the best thresholds 

for an individual’s voice samples. For instance, a typical voice sample may be more 

periodic than many of the samples used to train the semi-automated algorithm to 

calculate RFF. In this scenario, the thresholds that identify the boundary cycle are tuned 

to more aperiodic signals, but the criteria for choosing the boundary cycle may differ for 

more periodic signals. 

It is possible that the thresholds required to minimize the difference between 

manual and semi-automated RFF estimates vary across a wide range of speech signals. 

This may be, in part, due to vocal cycle masking and a lack of fo stationarity at voicing 

offsets and onsets. If so, it is likely that manual RFF estimation is less impacted by these 

complications since trained technicians visualize the acoustic waveform and subjectively 

choose the boundary cycle, employing trial-and-error techniques when necessary. Since 

voice sample characteristics have been shown to affect the performance of the aRFF 

algorithm, it is necessary to take these differences into consideration prior to RFF 

computation.  
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Purpose of the Current Study 

The specific purpose of the study was to investigate the effects of fo estimation 

method and voice sample characteristics (dysphonia severity, signal quality) on the 

correspondence between manual and semi-automated RFF values. To assess the effects of 

fo estimation method on this correspondence, each of five popular fo estimation methods 

were used for semi-automated RFF estimation and compared against manual RFF values. 

To examine the effects of voice sample characteristics, a training set of voice samples 

was used to tune algorithmic parameters according to voice sample attributes. The 

correspondence between manual and semi-automated RFF values was then evaluated in 

an independent test set of voice samples. The results of this study aimed to improve the 

clinical applicability of using RFF as an estimator of laryngeal muscle tension. 

Methods 

Participants 

A total of 483 participants were recruited for the current study. All participants 

provided informed, written consent with the Boston University or University of 

Washington Institutional Review Board.  

Typical Speakers 

A group of 256 individuals without voice disorders (152 female, 104 male) aged 

18–100 years of age (M = 37.6 years, SD = 22.3 years) were recruited to participate in the 

study. All participants without voice disorders were healthy adult speakers of English, 

and had no history of speech, language, hearing, neurological, pulmonary, or voice 

disorders. 
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Speakers with Voice Disorders 

A group of 227 individuals with disordered voices (148 female, 79 male) aged 

18–84 years of age (M = 52.9 years, SD = 17.7 years) were also recruited to participate in 

the study. Participants within this group were either diagnosed with idiopathic 

Parkinson’s disease by a neurologist, or were diagnosed with a voice disorder by a board-

certified laryngologist. All individuals with Parkinson’s disease were recorded while on 

their typical carbidopa/levodopa medication schedule. Individuals who used deep brain 

stimulation devices were requested to turn their device off for the duration of the study.  

Twenty primary voice-related 

problems were described by the 227 

individuals with disordered voices. 

These problems ranged from muscle 

tension dysphonia (N = 83) to upper 

respiratory infection (N = 1). A 

detailed list of these voice-related 

problems and the frequency to which 

they were reported are included in 

Table 2.1. A broad range of vocal 

function was included in the current 

group to represent a sample of the 

populations that may be seen in clinical 

practice. 

Table 2.1. Frequency of primary voice-related 
problems for speakers with disordered voices. 

Primary Voice-related Problem 
Frequency 
of Problem 

Cyst(s) 3 
Dysphagia 3 
Ear, Nose, and/or Throat Infection 3 
Edema 4 
Gastroesophageal Reflux 3 
Globus Sensation 1 
Granuloma 4 
Laryngeal Trauma 3 
Muscle Tension Dysphonia 83 
Nodules 20 
Papilloma 2 
Paradoxical Vocal Fold Motion 1 
Parkinson’s Disease  74 
Polyp 6 
Presbylarynges 1 
Spasmodic Dysphonia 6 
Upper Respiratory Infection 1 
Vocal Fold Atrophy 3 
Vocal Fold Paralysis 2 
Vocal Fold Scarring 4 
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Dysphonia Severity 

A speech-language pathologist specializing in voice disorders assessed the overall 

severity of dysphonia (OS; 0–100) of each participant using the Consensus Auditory-

Perceptual Evaluation of Voice (CAPE-V; Kempster et al., 2009). Sentences for analysis 

included (i) “Only we feel you do fail in new fallen dew,” and (ii) either “We all found a 

wee fly on my food on Monday” (N = 443) or “To rock out, Molly shows zoo cats as they 

take all food” (N = 40) based on the availability of pre-recorded stimuli. Sentences with 

VCV words loaded with /f/ (e.g., “do fail,” “all found,” “all food”) to resemble the RFF 

stimuli produced by participants in the study. Both sentences were blindly evaluated for 

OS by the speech-language pathologist, yielding two OS scores. A final OS score for 

each participant was obtained by averaging the scores from each sentence. The average 

OS score for speakers without voice disorders was 11.5 (SD = 8.1, range = 0–44.6), and 

that of speakers with disordered voices was 22.1 (SD = 20.0, range = 0–100). 

The speech-language pathologist reanalyzed 15% of speakers in a separate sitting 

to ensure adequate intrarater reliability. Average OS ratings were collected for the 

randomly selected speakers, and were compared to previously made ratings. The 

Pearson’s product-moment correlation coefficient was calculated on the ratings using the 

statistical package R (Version 3.2.4), yielding an intrarater reliability of r = .96. 

Recording Procedures 

Recording Environment and Equipment 

Participants were recruited for the study over the course of seven years from 

2011–2018. Each participant was recorded in one of three locations: Boston University 
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(226 female, 134 male), Boston Medical Center (17 female, 7 male), or University of 

Washington (1 female, 22 male). Participants run at Boston University were recorded in a 

quiet room or sound-treated room using a condenser headset microphone (model 

SM35XLR; Shure, Niles, IL), whereas those run at Boston Medical Center were recorded 

in a waiting area or quiet room of a voice clinic using a dynamic headset microphone 

(model WH20XLR; Shure, Niles, IL), and those run at University of Washington were 

recorded in a quiet room using a dynamic headset microphone (model WH20XLR; 

Shure, Niles, IL). All microphone signals were sampled at 44.1 kHz with 16-bit 

resolution, and were placed 45° from the midline of the vermilion and 7–10 cm from the 

corner of the lips.  

Of the 483 participants, 335 (207 speakers without voice disorders, 128 speakers 

with voice disorders) were recorded in a sound-treated room, and 148 (49 speakers 

without voice disorders, 99 speakers with voice disorders) in a quiet room or waiting 

area. Headset microphones and room characteristics (e.g., reflection, noise, and 

reverberation) were not standardized across recording locations, and may also account for 

some variability across recording equipment and settings available to research 

laboratories and in clinical practice.  

Speaker Training 

Participants were trained to produce three sets of nonsense words that each 

comprised three repetitions of a VCV production loaded with the voiceless consonant, /f/. 

The selected utterances were /ɑfɑ/, /ifi/, and /ufu/. In between each set, participants were 

instructed to take a breath, resulting in nine VCV productions per string: /ɑfɑ ɑfɑ ɑfɑ/, 
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breath, /ifi ifi ifi/, breath, /ufu ufu ufu/.  

For this task, VCV productions were selected as stimuli rather than running 

speech (e.g., “Only we feel you do fail in new fallen dew” as in the OS ratings) to 

minimize intraspeaker variability (Lien et al., 2014). Similarly, uniform utterances (i.e., 

the same vowel surrounding the voiceless consonant) loaded with /f/ were selected as 

stimuli to minimize individual variations within speaker.  

Although sound pressure level was not standardized across participant, each 

participant was instructed to speak using their typical pitch and loudness and to refrain 

from chanting or singing the production; if a VCV production was sung, the participant 

was instructed to repeat the set. Further, if any of the VCV sets were misarticulated or 

glottalized, participants were instructed to repeat the set.  

Data Analysis 

Overview 

The database examined in this study included 4347 VCV productions (1449 voice 

samples) collected from 483 independent speakers. Fig. 2.2 depicts the composition of 

this database. Manual RFF estimation—described in the next section—was conducted on 

all 4347 VCV productions. The aRFF algorithm was then used to perform semi-

automated RFF estimation on the entire database.  

Simple random sampling was implemented to divide the database into training 

(80%) and test (20%), ensuring low bias in model performance (Kuhn & Johnson, 2013; 

Reitermanova, 2010). The training set comprised 3474 VCV productions from 386 

independent speakers, whereas the test set consisted of 873 VCV productions produced 



	

	

92 

by 96 speakers (see Fig. 2.2). 

Samples from the training set were 

used to investigate the  effects of 

different fo estimation techniques 

and voice sample characteristics on 

the semi-automated RFF algorithm. 

Because simple random sampling 

can lead to high variance in model 

performance, k-fold cross validation 

was performed on the training set to 

quantify this variation. Resulting 

parameters were used to tune the 

RFF algorithm, which was then 

evaluated in the independent test 

set. 

 

 

 

 

Manual RFF Estimation 

Effects of the Number of Trained Technicians on Manual RFF Estimates 

Although a single technician has been shown to have high internal reliability 

when manually extracting RFF values (Lien et al., 2015a; Lien et al., 2015b), the ability 

 

Figure 2.2. Voice sample collection flowchart. 
Speakers produced three repetitions each of vowel–
voiceless consonant–vowel (VCV) utterances /ɑfɑ/, 
/ifi/, and /ufu/. 
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to distinguish the vocal cycle closest to the voiceless consonant (i.e., offset cycle 10 and 

onset cycle 1) can vary across technicians and ultimately, influence RFF cycle values. 

Thus, an analysis into the effects of the number of RFF technicians on resulting offset 

cycle 10 and onset cycle 1 values was conducted on a subset of 88 speakers from Lien et 

al. (2017). The subset of 88 speakers was selected because each speaker’s nine VCV 

productions had been rated by three trained technicians, thereby enabling a comparison 

between one, two, and three technicians on resulting RFF values. The average deviation 

of mean RFF values from three trained technicians—considered in this analysis as the 

gold standard—was assessed as a function of the number of technicians in the subset.  

Fig. 2.3 shows that the 

deviation of RFF values of 

each speaker between 1 and 3 

technicians differ by an 

average of 0.30 ST (95% CI = 

0.26–0.36 ST) for voicing 

offset and 0.38 ST (95% CI = 

0.31–0.44 ST) for voicing 

onset. The deviation of RFF 

values between 2 and 3 technicians differ by an average of 0.15 ST (95% CI = 0.13–0.18 

ST) for voicing offset and 0.19 ST (95% CI = 0.16–0.22 ST) for voicing onset. These 

values are less than those reported as clinically meaningful changes after a course of 

voice therapy; specifically, Stepp et al. (2011d) reported that average RFF values 

 
 
Figure 2.3. Average deviation of mean relative 
fundamental frequency (RFF) values from the gold-
standard of three trained technicians, as a function of the 
number of technicians in the speaker subset. Error bars 
indicate 95% confidence intervals. 
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increased after voice therapy by 0.5 ST for voicing offset cycle 10 and 0.81 ST for 

voicing onset cycle 1. The results of this analysis confirm that one technician is sufficient 

to reliably calculate RFF. However, these findings also suggest that using two technicians 

to estimate RFF will lead to a smaller error than when only using one technician. As 

such, two technicians were chosen as sufficient for carrying out manual RFF estimation 

on each participant of the current dataset. 

Technician Training Paradigm 

In the current study, technicians were trained to perform manual RFF estimation 

using a dataset and training protocol described in Vojtech and Heller Murray (2019). This 

training regimen was developed to guide technicians through manual RFF estimation 

using Praat and Microsoft Excel (Microsoft, Redmond, WA). In brief, technicians were 

trained to: (1) determine an appropriate pitch range for the speaker, and alter the range 

from default (male: 60–300 Hz, female: 90–500 Hz) when necessary, (2) locate voicing 

offset or onset of the acoustic signal, (3) identify the boundary cycle distinguishing the 

voiced consonant from vowel, (4) isolate the nine vocal cycles adjacent to the boundary 

cycle, and (5) extract and export the glottal pulse timings corresponding to these ten 

vocal cycles into Excel.  

Technicians were provided an Excel template that automatically calculated the 

period of each vocal cycle as the difference between adjacent pulse timings. The 

instantaneous fo of each vocal cycle was then automatically computed as the inverse of 

the cycle period, and RFF was automatically calculated as this instantaneous fo when 

normalized to the reference fo (fo
 ref; offset cycle 10 for voicing offset and onset cycle 1 for 
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voicing onset) using Eq. 2.1:  

Technicians were further trained to examine the acoustic waveform in the time 

and frequency domains, as well as the resulting RFF values (if applicable), to determine 

whether an offset or onset instance should be rejected. Examples of rejection criteria 

include glottalization, voicing of the voiceless consonant, or failure to reach steady state. 

Using this training paradigm, technicians were empirically considered to be reliable if 

they obtained ≥ .93 interrater reliability with the first author of the training regimen. 

Gold-standard RFF Computation 

Two trained technicians were assigned to manually calculate RFF on each of the 

nine VCV productions per speaker. Average RFF values were computed across both 

technicians to serve as the estimated RFF values for each speaker. Due to the availability 

of technicians to perform manual RFF, a total of eight trained technicians (referred to A–

H) completed manual RFF estimates throughout the course of data collection. Three 

trained technicians (F–H) completed a version of the training regimen prior to 2015, as 

described in Lien (2015); the remaining five technicians (A–E) completed training after 

2015. Table 2.2 shows the number of speakers that each of the eight trained technicians 

rated and the number of speakers that overlapped with other raters. Of the 483 speakers, 

437 were rated by two trained technicians (technicians A–H), and 46 were rated by three 

trained technicians (only technicians F–H). 

RFF (ST) = 12× log2 %
fo

fo
 ref& [2.1] 
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Interrater reliability was conducted on the RFF estimates using two-way random 

intraclass correlation coefficients for consistency of agreement (ICC). Intrarater 

reliability was evaluated by computing the Pearson correlation coefficients within each 

technician when asked to re-estimate 15% of their samples in a different sitting (Lien et 

al., 2017; Lien et al., 2015b). The average interrater reliability was computed as ICC = 

.92 (SD = .05, range = .82–.99), and the average intrarater reliability was calculated as r 

= .92 (SD = .04, range = .87–.99). 

Semi-automated RFF Estimation 

Semi-automated RFF estimation was first performed on all 4347 VCV 

productions using the aRFF algorithm in MATLAB (version 9.3; The MathWorks, 

Natick, MA). Further analyses were performed in MATLAB by adding functionality to 

the aRFF algorithm that evaluates the effects of fo estimation method and sample 

characteristics on resulting RFF values.  

Table 2.2. Number of speakers for which eight trained technicians manually computed 
relative fundamental frequency. The matrix shows common speakers analyzed between 
technicians, whereas the diagonal (bolded) describes the number of speakers a single 
technician rated in total. 

Technician A B C D E F G H 
A 103        
B 93 278       
C 1 92 188      
D 0 79 9 91     
E 9 0 86 3 99    
F 0 0 0 0 0 96   
G 0 1 0 0 1 95 97  
H 0 13 0 0 0 47 46 60 
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Method of fo Estimation 

Choice of fo Estimation Techniques 

In addition to the autocorrelation method implemented in the aRFF algorithm (see 

section Effects of fo Estimation Method for more details about the use of the 

autocorrelation function for fo estimation), four additional fo estimators were identified to 

evaluate the accuracy and precision of semi-automated RFF values: Auditory-SWIPE′, 

YIN, Halcyon, and RAPT.  

Auditory-SWIPE′ 

Auditory-SWIPE′ operates in the frequency domain to estimate fo. It is based on 

the SWIPE (Sawtooth-Waveform Inspired Pitch Estimator; Camacho, 2007) algorithm, 

which measures the similarity between the square-root of the spectrum of a speech signal 

and that of a sawtooth waveform. A sawtooth waveform is constructed across the desired 

range of fo values to examine, and the correlation between the speech signal and sawtooth 

waveform is measured. The fo of the sawtooth waveform that results in the highest 

correlation is considered the fo of the examined signal. The degree of this correlation (0–

1) is the “pitch strength,” described further in Dysphonia Severity. 

The Auditory-SWIPE′ algorithm2 builds upon the original SWIPE algorithm by 

introducing negative weights between harmonics, as well as a kernel that only considers 

the first and prime harmonics of the signal (SWIPE′; Camacho, 2007). These 

modifications were implemented to minimize subharmonic errors. Additionally, the 

                                               	
2 The Auditory-SWIPE′ algorithm may be downloaded from: octolinker-demo.now.sh/saul-
calderonramirez/Aud-SWIPE-P/tree/master/Aud-SWIPE_MATLAB 
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Auditory-SWIPE′ uses an auditory processing front-end (Auditory-SWIPE; Camacho, 

2012), including outer and middle ear transfer functions and a cochlear filter bank, to 

recover potentially missing harmonics. Auditory-SWIPE′ is favored over the basic 

autocorrelation function because it adds additional steps to account for missing 

harmonics, inharmonic signals, and selecting subharmonics of the true fo. Therefore, 

Auditory-SWIPE′ is more computationally complex than the autocorrelation function. 

YIN 

The YIN algorithm (de Cheveigne & Kawahara, 2002) is based on the 

autocorrelation function for estimating fo. YIN is more advantageous, however, in that it 

makes use of additional steps to reduce the errors seen when solely using the 

autocorrelation function. These additional steps include a difference function, cumulative 

mean normalized difference function, absolute threshold, parabolic interpolation, and best 

local estimate. A difference function is used to reduce harmonic and subharmonic errors, 

whereas the cumulative mean normalized difference function is used to reduce the 

sensitivity of the autocorrelation function to amplitude changes, avoid an upper limit of 

the fo search range, and normalize the function as a pre-processing step for the 

thresholding step. An absolute threshold is then implemented as a means of avoiding 

subharmonics being chosen as the estimated fo. These three steps are effective when the fo

candidate is an integer multiple of the sampling frequency (e.g., an fo candidate of 150 Hz 

detected from a voice signal sampled at 44.1 kHz). Parabolic interpolation is effective if 

this is not that case, instead relying on the spectral properties of the autocorrelation 

function to fine-tune period candidates. Finally, a best local estimate method is 
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implemented to identify a more precise estimate of fo from the analysis points identified 

in previous steps.  

As with Auditory-SWIPE′, YIN is advantageous over the simple autocorrelation 

function because it includes steps for reducing subharmonic errors, as well as a method 

for tuning the choice of fo. Despite these steps, the accuracy of YIN is still limited by a 

high dependence on sampling frequency and generates a greater computational cost than 

the simple autocorrelation function (Sukhostat & Imamverdiyev, 2015). 

Halcyon 

The Halcyon algorithm is an fo estimation technique developed by Azarov, 

Vashkevich, and Petrovsky (2016). Halcyon generates fo candidates based on a 

normalized cross-correlation function (NCCF) that has been altered to improve time 

resolution. The Halcyon algorithm operates by cycling through the fo range of interest. At 

each fo candidate, the speech signal undergoes the following process: (1) the signal is 

resampled to a specified multiple of the fo candidate, (2) the resampled signal is energy 

normalized, (3) a set of instantaneous parameters are derived for each fo candidate for use 

as inputs to a NCCF, (4) the instantaneous NCCF is evaluated, (5) resulting fo candidate 

values are weighted to penalize low-frequency candidates, (6) a rough fo estimate is 

extracted via dynamic programming, and (7) a fine fo estimate is computed using the 

instantaneous parameters of the rough fo estimate via a weighted sum.  

Halcyon may be favored over simple autocorrelation since local maxima derived 

from the NCCF tend to be more prominent and less affected by rapid variations in signal 

amplitude. Moreover, Halcyon uses an altered version of the NCCF as well as a 
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weighting function to reduce the impact of harmonic mixing and to penalize low-

frequency candidates. Due to these advantages, Halcyon remains more computationally 

taxing than autocorrelation. 

RAPT 

RAPT (Robust Algorithm for Pitch Tracking; Talkin, 1995) operates in the time 

domain and, like the Halcyon algorithm, employs the NCCF to estimate fo. RAPT 

operates on two versions of the speech signal: the first version of the signal is unaltered, 

whereas the second version is at a significantly reduced sampling rate. The NCCF is first 

calculated for all time delays (lags) within the fo range of interest using the low-rate 

signal. Indices corresponding to local maxima are then used as input lags for the NCCF 

of the regular-rate signal. Local maxima from the NCCF of the regular-rate signal are 

selected as fo candidates. These candidates are then compared to each other using rule-

based signal processing techniques (e.g., voicing tends to change states at low fo values, 

amplitude tends to increase at the onset of voicing and decrease at the offset of voicing) 

to produce an estimate of fo to characterize the signal.  

Similar to the Halcyon algorithm, RAPT improves basic autocorrelation by 

making use of the NCCF to generate fo candidates. Although RAPT is less 

computationally complex than the Halcyon algorithm, it is still more computationally 

intensive than the autocorrelation implemented in the aRFF algorithm. Furthermore, the 

RAPT algorithm suffers when local maxima occur at double or half the “true” lag value.  
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Performance of Selected fo Estimation Methods in the Literature 

The methods described above were selected from many fo detection algorithms 

due to their superior performance and evaluation in the literature. A brief discussion of 

comparing the selected fo detectors is included here: 

Despite its implementation in speech research, comparisons of the Auditory-

SWIPE′ version of SWIPE against other fo estimation methods have not been widely 

conducted. Comparisons of SWIPE and SWIPE′, on the other hand, are prevalent in the 

literature. For instance, Jouvet and Laprie (2017) compared 15 fo estimators on simulated 

and real noisy speech data. Among the assessed algorithms were autocorrelation, RAPT, 

SWIPE, and YIN. Overall, the authors found that the magnitude of errors produced by 

RAPT were lower than those produced by YIN and autocorrelation function on both real 

and simulated noisy data. SWIPE did not perform well on simulated speech data, and as 

such, was not considered for examination on real speech data. On the other hand, 

Camacho and Harris (2008) found SWIPE′ to outperform 12 other fo detectors (including 

autocorrelation, RAPT, and YIN) on each of three databases, including the Disordered 

Voice Database (Model 4337; KayPENTAX, Lincoln Park, NJ), Keele pitch database 

(Plante, Meyer, & Ainsworth, 1995), and musical instruments samples (Fritts, 1994). In a 

smaller examination of fo estimators, Sukhostat et al. (2015) found that YIN resulted in 

the most superior performance against two other time-domain methods (autocorrelation, 

average magnitude difference function) in three different noise types (babble, car, and 

white) and separately at different signal-to-noise levels (clean, -5, 0, 15, and 20 dB).  

Although not widely implemented, Halcyon has been compared to other popular 
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fo detectors on real and simulated speech and shows great promise. Azarov et al. (2016) 

found that the Halcyon algorithm resulted in the least overall error in natural speech when 

compared to RAPT, YIN, and SWIPE′; however, SWIPE′ produced the most accurate 

results regarding mean fine pitch error (percentage of voiced frames with estimated fo 

within ±20% of true fo) in natural female speech. When comparing these four algorithms 

on simulated data, the Halcyon algorithm also led to the least overall error in fo, with YIN 

leading to the worst performance. SWIPE′ and RAPT performed similarly in terms of 

gross fo error (percentage of voiced frames with estimated fo greater than ±20% of true fo), 

but RAPT produced less error compared to SWIPE′ when considering mean fine pitch 

error.  

It is clear that the selected fo estimators perform differently on different databases 

(e.g., natural versus simulated speech). The findings support the notion that fo estimation 

method should be investigated to determine if autocorrelation is sufficient, or whether 

there is a more favorable method to maximize correspondence between manual and semi-

automated RFF estimates. 

Assessment of fo Estimation Accuracy 

A method of fo calculation is necessary to estimate the average fo of the speaker 

and periods of potential vocal cycles. The average fo of the speaker is used to generate a 

window that slides along the acoustic waveform; within each window of time, the 

algorithm estimates PTP, NZC, and WSS and locates peaks and troughs in amplitude. 

The period between the collected peaks and troughs are calculated and recorded as a 

vector of vocal cycle candidates. From here, the effect size of each acoustic feature vector 
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is maximized with respect to time, and the corresponding vector index is considered the 

boundary cycle. The vocal cycle candidate located at the boundary cycle index, along 

with the adjacent nine vocal cycle candidates, are then used to calculate RFF. 

Two simulations were created to mimic average fo and vocal cycle period 

estimation steps. In the first simulation, the midpoint of the voiceless consonant in a VCV 

production was provided as an input to the aRFF algorithm. Using the entire VCV 

production, the algorithm estimated the average fo of the speaker to create a sliding 

window for estimating acoustic features and capturing peaks and troughs in amplitude. 

The algorithm then calculated the pitch period of vocal cycle candidates from the 

collected peaks. This simulation evaluated both fo-dependent steps of the aRFF algorithm.  

In the second simulation, the manually defined indices of the boundary cycle were 

provided to solely evaluate the ability of the fo estimation method to calculate the pitch 

period of vocal cycle candidates. Doing so removes the step of measuring acoustic 

features and collecting peaks and troughs that do not necessarily pertain to the ten cycles 

immediately adjacent to the voiceless consonant. In this way, errors from incorrect 

boundary cycle identification are ignored.  

RFF was calculated on a subset of 180 speech samples (9 speech samples from 20 

participants) in each of the aforementioned simulations: (1) when the approximate 

midpoint of the voiceless consonant was provided, and (2) when the manually defined 

indices of the boundary cycle were provided. A small subset of speech samples was 

chosen for this analysis to include a range of pitch strength values. Of the subset of 20 

participants, 15 speakers were recorded in a sound-attenuated room, whereas the 
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remaining five were recorded in a quiet room or waiting area of a voice clinic. Moreover, 

11 of the 20 individuals were diagnosed with a voice disorder. The samples provided 

pitch strength values ranging from 0.04 to 0.51 (M = 0.33, SD = 0.12). To compute RFF, 

each fo estimation was implemented with specific input parameters: 

• Autocorrelation: Minimum fo (50 Hz) and maximum fo (400 Hz)  

• Auditory-SWIPE′: Minimum fo (50 Hz), maximum fo (400 Hz), time interval (0.001 

s), Hann window overlap proportion (0.6), pitch strength threshold (0), spectrum step 

size (1/32), and resolution (1/32 steps per octave) 

• YIN: Minimum fo (50 Hz) and maximum fo (400 Hz)  

• Halcyon: Minimum fo (50 Hz), maximum fo (400 Hz), number of fo candidates (100), 

number of cycles within time window (4), number of harmonics (8), number of shifts 

for instant phase estimates (1), resolution (8 frames per step), dynamic step 

progression (21 samples) 

• RAPT: Minimum fo (50 Hz) and maximum fo (400 Hz)  

Accounting for Voice Sample Characteristics 

As noted previously, the performance of the aRFF algorithm was observed to vary 

across a broad range of voice signals, with its authors specifically citing dysphonia 

severity and signal quality as observed sources of error. Since the thresholds used to 

locate the boundary cycle were determined from a heterogeneous group of voice samples, 

it is possible that the thresholds contributed to the variability in errors observed between 

manual and semi-automated RFF estimates.  

One method of reducing this variability may be to develop categories based on 
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signal quality and dysphonia severity. In this way, RFF estimation would take place via 

category-specific thresholds instead of using a single set of thresholds for all voice 

samples. To develop category-specific thresholds, signal quality and dysphonia severity 

were first quantified. An automated rejection criterion was then developed to bypass 

samples with poor signal characteristics (e.g., high dysphonia severity or bad signal 

quality). The boundary between voiced and voiceless speech was then examined across 

the spectrum of signal quality and dysphonia severity to create voice sample categories 

and tune threshold parameters. These steps are described in detail below. 

Quantification of Dysphonia Severity and Signal Quality 

Signal Quality 

Signal quality is determined by features of signal acquisition and the room 

conditions in which a voice sample is recorded. Numerous factors may affect the quality 

of a voice signal, including speaker characteristics (e.g., distance from the microphone, 

loudness) and recording environment. As such, the degree of room reverberation, degree 

of room noise, and proximity of the acquisition to reflecting surfaces must be taken into 

consideration when capturing acoustic signals (Titze, 1995). 

The signal-to-noise ratio (SNR) has been widely used to capture global signal 

quality. SNR compares the power of a target stimulus to the power of background noise, 

and is defined as the ratio of signal intensity (computed as root-mean-square; RMS) to 

noise intensity, as shown in Eq. 2.2: 

Signal-to-noise Ratio (dB) = 20·log10 '
RMSsignal

RMSnoise
( [2.2] 
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Dysphonia Severity 

Dysphonia severity is a term that describes a perceptual judgment relating to the 

degree of perceived vocal dysfunction. It has been referred to as “overall voice quality,” 

“grade,” and “overall severity (OS),” among other names. Although there are multiple 

auditory-perceptual evaluation methods for characterizing dysphonia severity, the CAPE-

V’s OS attribute was selected for the current study to remain consistent with the methods 

employed in the aRFF algorithm. 

In the CAPE-V, OS is considered an auditory-perceptual attribute describing the 

global, integrated impression of vocal deviance (Kempster et al., 2009). Many acoustic 

parameters are sensitive to OS; however, the validity and clinical utility of these 

measures have been widely disputed. For instance, perturbation measures of jitter and/or 

shimmer have been frequently employed to characterize OS (Núñez-Batalla, Díaz-

Fresno, Álvarez-Fernández, Muñoz Cordero, & Llorente Pendás, 2017); however, these 

measures demonstrate poor reliability (Carding et al., 2004; Deliyski, Shaw, Evans, & 

Vesselinov, 2006) and are generally restricted for use with only type 1 (nearly periodic) 

and some type 2 (strong modulations/subharmonics that approach the fo in energy) voices 

(Titze, 1995).  

More recently, researchers have turned toward spectral analysis of the voice 

signal to characterize OS. The advantage of using spectral measures for voice analysis is 

that estimates of aperiodicity can be obtained in the absence of detecting specific vocal 

cycle boundaries. One measure, called “pitch strength,” has been shown to be sensitive to 

OS (Eddins, Anand, Camacho, & Shrivastav, 2016; Kopf et al., 2017; Shrivastav, Eddins, 
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& Anand, 2012), and as such, may be used to objectively quantify sample characteristics. 

Pitch strength describes the saliency of pitch sensation and can be calculated using the 

Auditory-SWIPE′ model as the spectral similarity between a voice signal and a sawtooth 

waveform with missing non-prime harmonics at the same estimated fo as the voice signal 

(Camacho, 2012; Camacho et al., 2008). Calculated as the degree of correlation between 

the spectrums (from 0 to 1), sounds with higher pitch sensations result in higher pitch 

strengths, whereas sounds with lower pitch sensations result in lower pitch strengths.  

Pitch strength has been implemented in the objective assessment of voice quality 

due to its versatility across voice signal types (Kopf et al., 2017). For instance, a 

perceptually breathy speech signal may be classified as containing some level of 

stochastic noise due to the turbulence surrounding the airflow jet when the voice is 

produced. Despite lacking an obvious fo, the signal may still elicit a pitch sensation, and 

therefore, a non-zero pitch strength. Indeed, pitch strength has been shown to be 

correlated with perceptual judgments of voice quality (Eddins et al., 2016; Shrivastav et 

al., 2012) and has recently been proposed as a treatment outcome for dysphonia (Kopf et 

al., 2017). Because of this, pitch strength may be a viable, objective measure that can 

assess overall severity of dysphonia.  

Relationship between Pitch Strength and Signal-to-Noise Ratio 

Although pitch strength and SNR have been employed to characterize voice and 

signal quality, respectively, it is possible that these measures exhibit some degree of 

collinearity. If so, it would be redundant to use two separate measures to characterize 

dysphonia severity and signal quality. As an example, introducing noise into a speech 
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signal—such as environmental noise or the noisy by-product of a turbulent airstream 

generated at the glottis—will reduce the SNR and may, in turn, offset the pitch strength 

of the signal. 

To examine the relationship between pitch strength and SNR, noise was added to 

voice samples from the same subgroup of 20 speakers examined in the fo estimate 

analysis. Two types of noise were selected: multi-speaker babble and ambient room 

noise. Multi-speaker babble was chosen to emulate noise that may be heard in a clinical 

environment, such as a waiting area or examination room. It consisted of four healthy 

male speakers and four healthy female speakers who were not included in the speaker 

dataset. Ambient room noise, on the other hand, was selected to simulate the magnetic 

noise sources that may exist in laboratory and clinical environments (e.g., fluorescent 

lights). This noise source was constructed as the sum of sine waves at integer multiples of 

60 Hz (i.e., the fo associated with the mains’ hum in the United States; Cowan, 1993, p. 

155). Noise was added to the 60 voice samples from 20 speakers at SNRs of -5 dB to +50 

dB using each noise source type. Resulting SNR and pitch strength values were extracted 

to assess the relationship between SNR and pitch strength.  

For this analysis, SNR was reassessed as the root-mean-square of the vowels 

(signal) compared to that of the first and last 50 ms of the voice sample (noise), and pitch 

strength was calculated from the vowels (signal). Methodology from Lien (2015) was 

implemented to isolate the vowels (/a/, /i/, or /u/) from voiceless consonants and periods 

of silence: (1) the waveform was filtered using a low-pass 5th order Butterworth filter 

with a corner frequency of 3.4 kHz, (2) the filtered waveform was smoothed using a 50-
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ms moving average filter, and (3) the smoothed waveform was normalized via 

subtracting the mean and dividing by the standard deviation. The root-mean-square was 

then calculated from the vowel(s) and compared to the 100-ms interval of noise. Pitch 

strength, on the other hand, was calculated across the entire waveform using Auditory-

SWIPE′. The default output of the algorithm was a pitch strength contour, which was 

then averaged across the vowel(s) to produce a single pitch strength estimate.  

The correlation between SNR and pitch strength was r = .990 when examining 

multi-speaker babble and r = .996 when examining ambient room noise (see Fig. 2.4). 

These results indicate a strong relationship between pitch strength and SNR, wherein 

pitch strength increases with increasing SNR. This suggests that pitch strength not only 

provides information about dysphonia severity, but signal quality as well (i.e., pitch 

strength increases to some degree as signal quality increases). Because of this 

relationship, pitch strength was chosen as a singular parameter to describe dysphonia 

severity and signal quality.  

 
Figure 2.4. Relationship between pitch strength and signal-to-noise ratio when multi-speaker 
babble (orange) and room noise (gray) were differentially added to voice samples. 
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Development of Category-specific Thresholds 

Pitch strength was calculated for the 1157 VCV productions of the training set 

using the Auditory-SWIPE′ algorithm. The default output of the algorithm was a pitch 

strength contour, which was then averaged across the vowel(s) to produce a single pitch 

strength estimate. Pitch strength estimates were used to develop category-specific 

thresholds via the following steps: 

Automated Sample Rejection 

A rejection criterion was created to eliminate samples with pitch strength values 

considered too low (i.e., little-to-no pitch sensation) to accurately analyze. This criterion 

was developed by constructing a receiver operating characteristic (ROC) curve to 

determine the discriminatory ability of pitch strength to distinguish between VCV 

productions that were rejected versus retained during manual RFF analysis. A pitch 

strength criterion was then selected by maximizing the probability of rejecting a sample 

that would also be rejected through manual analysis, but minimizing the probability of 

rejecting a sample that would be retained through manual analysis (i.e., maximum 

positive likelihood ratio, or PLR). Thus, any VCV productions (including both offset and 

onset instances) with a pitch strength value below this criterion would be excluded from 

further RFF analyses.  

Boundary Cycle Shifts 

The goal of sample category creation is to tune the parameters necessary for 

identifying the boundary between voiced and voiceless speech segments (i.e., voicing 

offset cycle 10, voicing onset cycle 1). To tune the parameters for semi-automated RFF 
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estimation, the average discrepancy in boundary cycle identification between the aRFF 

algorithm and manual estimates must be quantified. While manual RFF estimation 

techniques allow the technician to subjectively evaluate where this boundary occurs, the 

aRFF algorithm leverages a set of acoustic features (PTP, NZC, WSS) to identify the 

boundary. 

In the aRFF algorithm, 

PTP, NZC, and WSS are 

calculated as a sliding window 

travels from the midpoint of 

the voiceless consonant into 

the vowel. After various 

criteria are met to confirm that 

the sliding window has 

successfully reached the 

vowel, the three acoustic 

feature vectors are examined 

using rule-based signal processing. The aRFF algorithm assumes that a state transition 

will occur in feature values upon reaching the vowel, and the location where this 

inflection in feature values occurs is considered the boundary cycle. Fig. 2.5 shows a 

schematic of the ideal state transition of an acoustic feature vector; in this schematic, the 

boundary cycle marks a change in feature magnitude that occurs when transitioning from 

the voiceless consonant to the vowel.  

 
Figure 2.5. Schematic of ideal feature plots for voicing 
offset and voice onset. The upper panel shows an acoustic 
waveform, and the lower panel shows an ideal feature 
vector calculated from the acoustic waveform. 
Highlighted segments mark the offset (left) and onset 
(right) boundary cycles, described as a marked transition 
in acoustic feature values between voiced and voiceless 
components.  
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This logic for identifying the boundary cycle is enacted in the aRFF algorithm by 

maximizing the effect size of each acoustic feature vector. It is thus assumed that either 

side of the boundary cycle contains stable feature values corresponding to the vowel and 

voiceless consonant. The vector index that maximizes the effect size is then chosen as the 

boundary cycle candidate for that feature, and the median of these candidate indices is 

selected as the ultimate boundary cycle index. 

Prior to evaluating the discrepancy between manual and semi-automated 

boundary cycle selections, all VCV productions with pitch strength values (averaged 

between offset and onset instances of a VCV production) below the automated rejection 

cut-off were removed from further analysis. Average PTP, NZC, and WSS values were 

calculated from remaining offset and onset instances as a function of the average number 

of pitch periods away from the manual, or “true,” boundary cycle. For each acoustic 

feature, methodology from the aRFF algorithm was implemented to maximize the effect 

size of these feature vectors within ±2 pitch periods from the true boundary cycle. The 

pitch period cycle that elicited the greatest effect size was considered the automated, or 

“predicted,” boundary cycle candidate for that feature.  

Filtered versions of PTP, NZC, and WSS were also examined to assess whether 

filtering the acoustic signal enhanced the correspondence between true and predicted 

boundary cycle indices. Specifically, the aRFF algorithm uses a version of the 

microphone signal that is band-pass filtered 3 ST above and below the average fo of the 

speaker to identify peaks and troughs in signal amplitude. This was done to attenuate 

frequencies that were not directly associated with the fo of the speaker. Thus, predicted 
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boundary cycle candidates, slope directions, and corresponding effect sizes were 

extracted from the filtered versions of PTP, NZC, and WSS. Raw and filtered feature 

counterparts were compared within each pair; the version that led to the least discrepancy 

between true and predicted boundary cycle indices and/or greatest effect size was 

selected to represent the acoustic feature. 

For the selected feature versions, the predicted boundary cycle candidate 

represents the average error (in number of vocal cycles) between manual and semi-

automated RFF estimation. The acoustic feature slope across the predicted boundary 

cycle corresponds to the direction of the error (i.e., toward or away from the voiceless 

consonant). 

Category Creation 

Pitch strength estimates of samples that exceeded the automated rejection 

criterion were used to construct voice sample categories. For these samples, acoustic 

feature values computed at the predicted boundary cycle were evaluated with respect to 

pitch strength. Trends were visually inspected to identify local extrema, inflection points, 

and standard deviations. Pitch strength categories were manually identified by choosing 

pitch strength levels that represented consistent increases, decreases, or stable feature 

values. The discriminatory ability of pitch strength to distinguish between features at the 

true versus predicted boundary was assessed for each chosen category. An optimal 

feature threshold was selected by maximizing specificity and sensitivity for each offset 

and onset acoustic feature using the Youden index (Youden, 1950). 
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Concatenating Category Components 

Thus far in the development of category-specific thresholds, four pieces of 

information were collected from the 1158 voice samples (3474 VCV productions) of the 

training set: (a) automated rejection criterion, (b) pitch strength category cut-offs, (c) 

feature-specific offset and onset category thresholds, (d) feature-specific magnitude and 

direction of error from the true boundary cycle. This information was implemented into 

the aRFF algorithm as follows: 

1. If the average pitch strength of the VCV production fell below (a), the production 

was rejected. Otherwise, the offset and onset instances of the VCV production 

were classified using (b) and proceed through further analyses. 

2. For both offset and onset instances, a boundary cycle candidate was estimated for 

each offset or onset acoustic feature vector by maximizing the effect size of the 

vector (unchanged from the aRFF algorithm). 

3. The acoustic feature value at the candidate index was compared to (c); if the value 

did not exceed corresponding threshold, then the instance as not considered as 

marking the correct boundary cycle and needed to be shifted. 

4. If the boundary cycle candidate needed to be shifted, the decision was adjusted 

using (d). 

5. The median of the three boundary cycle candidates was extracted as the ultimate 

boundary cycle for the offset or onset instance (unchanged from the aRFF 

algorithm). 
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Metrics of Algorithmic Performance 

 To examine algorithm performance, two measures of error were selected to 

evaluate the correspondence between manual and semi-automated estimates. These 

measures were mean bias error (MBE; Eq. 2.3) and root-mean-square error (RMSE; Eq. 

2.4): 

MBE was chosen to measure the average bias of semi-automated RFF estimates 

when compared to manual counterparts; positive MBE values suggest that RFF is being 

overestimated by the algorithm. On the other hand, RMSE was selected to examine the 

spread of errors between manual and semi-automated RFF values; larger RMSE values 

suggest a greater discrepancy between manual and semi-automated estimates. 

To assess the accuracy of fo estimation, the number of erroneous rejections were 

used in conjunction with MBE and RMSE; these rejections were tabulated as type I or 

type II errors. Type I errors constituted offset or onset instances that were rejected by the 

algorithm, but not during manual analysis. Type II errors comprised offset or onset 

instances that were not rejected by the algorithm, but were rejected during manual 

analysis (e.g., due to glottalization). Resulting MBE, RMSE, and Type I/II errors were 

examined for each fo estimation method. The goal was to determine which method 

contributed the least amount of error in reference to manual RFF and use it as the primary 

fo estimation method in a new version of the aRFF algorithm.  

Mean bias error (MBE; ST) = 
1
n
)*RFFalg	- RFFman,

n

i=1

 [2.3] 

Root-mean-square error (RMSE; ST) = -*RFFalg	- RFFman,
2........................
 [2.4] 
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Validation and Performance 

RFF was first recalculated in the training set using the semi-automated algorithm 

with updated fo estimation method and category-specific thresholds. To assess the 

variation in model performance based on the samples used to train the algorithm, a k-fold 

cross-validation was performed. In this analysis, k = 10 was chosen to provide an 

appropriate estimate of model performance and ensure that the model was not over-fitted 

(Kuhn et al., 2013). The training dataset was therefore split into k-training (347 

speakers/1041 voice samples/3123 VCV productions) and k-validation (39 speakers/117 

speech samples/351 VCV productions) datasets. Algorithm performance was quantified 

as the average MBE and RMSE error across the 10 folds.  

RFF was then calculated in the test set using the aRFF algorithm with refined fo 

estimation (pending that autocorrelation was not selected as the optimal fo estimation 

method), with category-specific thresholds, and with both refined fo estimation and 

category-specific thresholds. RFF values from each algorithm were compared against 

manual RFF counterparts using MBE and RMSE.  

To determine the effectiveness of using pitch strength to account for signal quality 

and overall severity of dysphonia, resulting MBE and RMSE values for the algorithm 

with refined fo estimation and category-specific thresholds were compared against these 

subjective characteristics. Welch’s tests were performed to compare the variances of 

MBE and RMSE values across signal quality (i.e., recorded in a sound-attenuated room 

or in a quiet room/waiting area of a voice clinic). Pearson’s product-moment correlation 

coefficients were examined to compare MBE and RMSE values against overall severity 
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of dysphonia. 

Results 

Evaluation of fo Estimation Accuracy 

Table 2.3 shows the errors (RMSE, MBE, Type I/II) for 20 speakers (60 VCV 

productions) when using the aRFF algorithm in conjunction with each fo estimation 

technique. The range of errors produced by the five fo estimation methods was greater 

when using the true boundary cycle as a reference (RMSE: 1.45 ST, MBE: 1.63 ST) than 

when using the voiceless consonant as a reference (RMSE: 0.11 ST, MBE: 0.07 ST). The 

aRFF algorithm using Auditory-SWIPE′ (RMSE = 0.52 ST; MBE = -0.20 ST) and 

Halcyon (RMSE = 0.81 ST; MBE = 0.03 ST) for fo estimation resulted in the greatest 

correspondence to manual RFF estimates when the true boundary cycle was provided as a 

reference. In this scenario, none of the algorithms erroneously rejected VCV productions. 

The aRFF algorithm using YIN (RMSE = 0.39 ST) and RAPT (MBE = 0.02 ST) for fo 

estimation resulted in the least error when the midpoint of the voiceless consonant was 

Table 2.3. Comparison of fundamental frequency (fo) estimation methods when provided with 
the manually determined time point corresponding to the vocal cycle closest to the voiceless 
consonant, and when provided only with the midpoint of the voiceless consonant.  

Method of fo 
Estimation 

True Boundary Cycle as Reference Voiceless Consonant as Reference 
Error (ST) Type I/II Errors Error (ST) Type I/II Errors 

RMSE MBE Offset Onset RMSE MBE Offset Onset 

Autocorrelation 1.06  0.50 0 0 0.43 0.09 54 90 
Halcyon 0.81  0.03 0 0 0.41 0.06 60 92 
Auditory-SWIPE′ 0.52 -0.20 0 0 0.43 0.04 52 98 
RAPT 1.97 -1.13 0 0 0.50 0.02 72 94 
YIN 0.80 -0.19 0 0 0.39 0.05 59 100 
Note. ST = semitone, RMSE = root-mean-square error, MBE = mean bias error. 
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provided as a reference. However, implementing RAPT and YIN each resulted in the 

largest number of Type I and Type II errors (72 offset and 94 onset for RAPT; 59 offset 

and 100 onset for YIN). When considering RMSE, MBE, and erroneous rejections 

together when provided the midpoint of the voiceless consonant as a reference, Auditory-

SWIPE′ resulted in the best performance (RMSE = 0.43 ST; MBE = 0.04 ST; 52 

erroneous offset rejections, 98 erroneous onset rejections).  

In both scenarios, Auditory-SWIPE′ and Halcyon demonstrate comparable 

accuracy. Analyzing the performance of each fo estimation method when provided with 

indices for the true boundary cycle was conducted to simulate the downstream effects of 

the acoustic features accurately identifying the boundary between the voiced and 

voiceless segments. As such, this scenario was weighed more heavily than when the 

midpoint of the voiceless consonant was provided. With this in mind, Auditory-SWIPE′ 

exhibited superior performance, as well as respectable performance when only provided 

with the midpoint of the voiceless consonant. Considering not only these results, but also 

its functionality for computing the pitch strength contour necessary to account for sample 

characteristics, Auditory-SWIPE′ was selected for fo estimation in the refined version of 

the algorithm, called “aRFF-A” (aRFF with Auditory-SWIPE′). 
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Evaluation of Category-specific Thresholds 

Automated Sample Rejection 

Fig. 2.6 shows the 

distribution of pitch strength 

values from the 3474 VCV 

productions of the training set. 

The average pitch strength of 

the training set was .33 (SD = 

.08, range = .01–.54). Of the 

3474 VCV productions, 3271 

offset and 2854 onset instances 

were considered valid during manual analysis, whereas 203 offset and 620 onset 

instances were rejected. An ROC curve was constructed to examine the discriminatory 

ability of pitch strength to distinguish valid 

and rejected instances (see Fig. 2.7). The 

resulting area under the ROC curve was 

.73 (95% CI = .71–.75). Using the 

maximum PLR (100% specificity, 4% 

sensitivity), a pitch strength threshold of 

.05 was selected as rejection criterion. 

Thus, speech samples with a pitch strength 

of .05 or lower would be rejected prior to 

 
Figure 2.7. Receiver operating characteristic 
curve of pitch strength values for relative 
fundamental frequency instances rejected 
during manual analysis. The dashed line is 
indicative of no discrimination. 

 
Figure 2.6. Histogram of pitch strength values for the 3474 
vowel–voiceless consonant–vowel productions of the 
training set. 
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RFF cycle analysis. Further analysis includes 3270 offset instances and 2853 onset 

instances that were not excluded due to manual rejection or low (<.05) pitch strength 

values.  

Boundary Cycle Shifts 

Fig. 2.8 shows the relationship between acoustic features and the true boundary 

cycle for the training dataset (3270 offset instances, 2853 onset instances). Acoustic 

features were calculated using raw and band-pass filtered versions of the microphone 

signal. For both versions of the signal, normalized peak-to-peak amplitude increased 

toward the vowel for voicing offset (negative pitch period distance) and onset (positive 

 
Figure 2.8. Peak-to-peak amplitude (PTP), number of zero crossings (NZC), and waveform 
shape similarity (WSS) as a function of the number of pitch periods from the true boundary 
cycle (dashed vertical line). Offset cycle 10 for voicing offset is shown in the upper panels, and 
onset cycle 1 for voicing onset is shown in the lower panels. Features are calculated using raw 
(gray) and band-pass filtered (orange) versions of the microphone signal. Solid lines indicate 
mean values and shaded regions indicate standard deviation. 
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pitch period distance), yet was relatively stable during the voiceless consonant. Zero 

crossing trends were not well-defined when using the filtered version of the microphone 

signal. Using the raw microphone signal, the number of zero crossings increased towards 

the voiceless consonant for voicing offset and onset, but were stable during the vowel. 

When calculated using either version of the microphone signal, waveform shape 

similarity—calculated in reference to the voiceless consonant—matched the trends 

observed in number of zero crossings for voicing offset and onset. However, these trends 

were observably less pronounced when using the filtered microphone signal.  

Fig. 2.9 shows the results of the Cohen’s d analysis to identify the average 

discrepancy between boundary cycle candidates (“predicted” boundary cycle) and the 

 
Figure 2.9. Cohen’s d effect sizes computed across cycles for normalized peak-to-peak amplitude 
(PTP), number of zero crossings (NZC), and waveform shape similarity (WSS). Trends are 
shown as a function of the number of pitch periods from the true boundary cycle (dashed 
vertical line). Offset cycle 10 for voicing offset is shown in the upper panels, and onset cycle 1 for 
voicing onset is shown in the lower panels. Features are calculated using raw (gray) and band-
pass filtered (orange) versions of the microphone signal. Vocal cycles that elicit the maximum 
effect size are denoted by a gray or orange dashed line. 
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true boundary cycle. Effect sizes were calculated by analyzing the mean feature values 

across cycles; for instance, a Cohen’s d value at the true boundary (denoted by the black 

dashed lines in Fig. 2.9) would be computed by calculating the effect size between -1 and 

+1 pitch periods from the true boundary cycle. The filtered microphone signal was 

selected for calculating PTP since larger effect sizes were elicited when comparing 

feature values across cycles. The raw microphone signal was selected for calculating 

NZC and WSS since filtering the microphone signal reduced the effect size of feature 

values across cycles.  

On average, the boundary cycle candidates predicted using filtered PTP and raw 

WSS were located one cycle closer to the vowel than the true boundary cycle for voicing 

onset. This would suggest that the candidate should be shifted backward in time by one 

vocal cycle. The boundary cycle candidate predicted using filtered PTP for voicing offset 

was also one vocal cycle closer to the vowel, implicating a shift forward in time by one 

 
Figure 2.10. Distribution of normalized feature values (via z-scores) across pitch strength for (a) 
voicing offset and (b) voicing onset. Upper panels show sample counts per pitch strength bin.  
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vocal cycle. Boundary cycle candidates identified using the raw NZC were typically one 

vocal cycle closer to the voiceless consonant for voicing offset than the true boundary 

cycle, corresponding to a shift backward in time by one cycle for voicing offset.  

Category Creation 

Voice sample categories were created by manually visualizing trends in acoustic 

feature values at the true boundary cycle across pitch strength for 3270 offset instances 

and 2853 onset instances (see Fig. 2.10). Four pitch strength cut-offs were empirically 

selected to describe the trends in acoustic feature values for voicing offset: .15, .25, .35, 

and .45. Thus, in addition to the rejection criteria of .05, five pitch strength categories 

resulted for voicing offset, as follows: 

In Eq. 2.5, pitch strength is denoted by the variable S, and the speech sample 

category is described by catoff. Similar to voicing offset, manual examination of the three 

acoustic features resulted in four pitch strength cut-offs for voicing onset: .15, .25, .35, 

and .55. Five categories resulted for voicing onset (caton) as a function of pitch strength 

(PS):  

Within each category, optimal acoustic feature thresholds were identified by 

catoff(S)=

⎩
⎪
⎨

⎪
⎧

 

1,		.05 < PS ≤ .15
2,	 .15 < PS ≤ .25
3,	 .25 < PS ≤ .35
4,	 .35 < PS ≤ .45
5,													PS > .45

 [2.5] 

 

caton(S)=

⎩
⎪
⎨

⎪
⎧

 

1,	 .05 < PS ≤ .15
2,	 .15 < PS ≤ .25
3,	 .25 < PS ≤ .35
4,	 .35 < PS ≤ .55
5,	           PS > .55

 [2.6] 

 



	

	

124 

determining the discriminatory ability of pitch strength to distinguish PTP, NZC, and 

WSS feature values between the true and predicted boundary cycles (see Fig. 2.11). For 

each offset and onset feature category, the Youden index was identified as the threshold 

to determine whether a boundary cycle candidate should be shifted. Resulting feature 

thresholds are shown in Table 2.4. 

 
Algorithm Performance 

Training Set Performance 

The effects of implementing the pitch strength-tuned categories (i.e., 

categorization of samples, acoustic feature thresholds, boundary cycle shifts) were 

 
Figure 2.11. Discriminatory ability of pitch strength (S) categories to distinguish acoustic 
features at the true versus predicted boundary cycle. Normalized peak-to-peak amplitude (PTP; 
left panels), number of zero crossings (NZC; middle panels), and waveform shape similarity 
(WSS; right panels) are shown for voicing offset (top panels) and voicing onset (bottom panels) 
for the pitch strength categories. 
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evaluated on the training set. Algorithm performance in selecting the true boundary cycle 

was compared between the aRFF algorithm (autocorrelation for fo estimation, does not 

account for voice sample characteristics), the algorithm with Auditory-SWIPE′ for fo 

estimation (“aRFF-A”), and the algorithm with Auditory-SWIPE′ for fo estimation and 

pitch strength-tuned sample categories (“aRFF-AP” for Auditory-SWIPE′ and pitch 

strength). 

Out of 3270 instances to classify for voicing offset (Fig. 2.12, top row), the 

aRFF-AP algorithm resulted in the largest number of correctly identified boundary cycles 

(N = 1503), followed by aRFF-A (N = 1399) then aRFF (N = 1349). When considering 

the instances for which the predicted boundary cycle did not match the true boundary 

cycle, the majority of misclassifications occurred closer to the vowel for aRFF (N = 

1692), aRFF-A (N = 1636), and aRFF-AP (N = 1584).  

Table 2.4. Optimal thresholds obtained at the Youden index from the receiver operating 
characteristic curves for normalized peak-to-peak amplitude (PTP), number of zero crossings 
(NZC), and waveform shape similarity (WSS). 

Acoustic 
Feature 

Optimal Thresholds by Pitch Strength (PS) Category 

Voicing Offset Voicing Onset 
.0

5 
< 

PS
 ≤

 .1
5 

.1
5 

< 
PS

 ≤
 .2

5 

.2
5 

< 
PS

 ≤
 .3

5 

.3
5 

< 
PS

 ≤
 .4

5 

PS
 >

 .4
5 

.0
5 

< 
PS

 ≤
 .1

5 

.1
5 

< 
PS

 ≤
 .2

5 

.2
5 

< 
PS

 ≤
 .3

5 

.3
5 

< 
PS

 ≤
 .5

5 

PS
 >

 .5
5 

PTP 0.140 0.100 0.192 0.177 0.182 0.224 0.192 0.231 0.180 0.128 

NZC 18 24 17 11 10 20 13 13 11 5 

WSS 0.861 0.784 0.822 0.765 0.668 0.964 0.942 0.884 0.954 0.836 
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Out of 2853 instances to classify for voicing onset (Fig. 2.12, bottom row), 

aRFF-AP resulted in the greatest number of correctly identified cycles (N = 1896). The 

aRFF and aRFF-A algorithms produced similar results, with 1502 correctly identified 

cycles for aRFF and 1517 for aRFF-A. Dissimilar from voicing offset, a great majority of 

misclassified boundary cycles were identified as occurring closer to the voiceless 

consonant for aRFF (N = 1197) and aRFF-A (N = 1184). However, results for aRFF-AP 

showed a more even split for misclassified cycles: of the 937 misidentified cycles, the 

boundary cycle was identified as occurring closer to the vowel in 504 instances, whereas 

it was identified as being closer to the voiceless consonant in 434 instances. 

 

Figure 2.12. Boundary cycle identification by each of the semi-automated RFF algorithms. 
Cycle classification is measured as a function of average pitch periods from the true boundary 
cycle (offset cycle 10 for voicing offset and onset cycle 1 for voicing onset). Results for voicing 
offset are shown in the upper panels and for voicing onset in the lower panels. 
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 As a next step, k-fold 

cross-validation was performed 

on all 3474 VCV productions to 

assess whether category and 

threshold parameters were 

overfit to the data (see Fig. 

2.13). The cross-validation 

estimate of prediction error was 

averaged across k = 10 folds, 

resulting in an MBE of -0.03 ST 

(SD = 0.01 ST) and RMSE of 

0.31 (SD = 0.004 ST) of the k-training set (N = 1042), and an MBE of -0.03 ST (SD = 

0.04 ST) and RMSE of 0.32 ST (SD = 0.02 ST) in the k-validation set (N = 116). Given 

the small discrepancy between error estimates of the k-training and k-validation sets, it 

was determined that the constructed model was not overfit to the training data, and 

parameters were retained to finalize the aRFF-AP algorithm. 

Test Set Performance 

Distribution of Pitch Strength Categories 

Table 2.5 shows the distribution of voice samples in the test set (873 VCV 

productions) by the pitch strength categories described in Eq. 2.5 and Eq. 2.6. In general, 

more onset instances were rejected than offset instances for each factor. Results are 

further discussed by speaker factor. 

 

Figure 2.13. Results of the 10-fold cross-validation 
examining (a) mean bias error (MBE) and (b) root-mean-
squared error (RMSE) for k-training (gray) and k-
validation (red) sets. 



	

	

128 

A larger proportion of female voices were rejected (1.9% for voicing offset, 2.5% 

for voicing onset) due to low pitch strength values (<.05) than male voices (0% for 

voicing offset, 0.7% for voicing onset). To this end, a greater proportion of VCV 

productions from female speakers fell within the higher pitch strength categories (i.e., 

categories 4 and 5) than male speakers for both voicing offset and onset (offset: female = 

63.8%, male = 44.1%; onset: female = 64.8%, male = 52.0%).  

By speaker group, a lower percentage of voice samples were rejected from typical 

speakers (0% for voicing offset, 0.9% for voicing onset) than from speakers with 

disordered voices (2.6% for voicing offset, 3.1% for voicing onset). A larger percentage 

of typical speakers (“no voice disorder”) also exhibited pitch strength values above .35 

(i.e., categories 4 or 5) for offset and onset VCV productions (offset: 65.8%, onset: 

66.0%) than speakers with disordered voices (“voice disorder;” offset: 48.7%, onset: 

Table 2.5. Distribution of pitch strength categories for voicing offset and onset instances in the 
test set (873 vowel–voiceless consonant–vowel productions from 291 speech samples). Values are 
shown as a percentage (%) of the total number of productions (N) and do not reflect speech 
samples that were rejected during pre-processing. 

 

N 

Voicing Offset (N = 286) Voicing Onset (N = 290) 

Speaker Factor % of Samples/Pitch Strength 
Category 

% of Samples/Pitch Strength 
Category 

 Rej 1 2 3 4 5 Rej 1 2 3 4 5 
Sex              
Male 279 0 2.9 12.5 40.5 35.1 9.0 0.7 9.3 11.8 26.2 49.8 2.2 
Female 594 1.9 1.7 7.1 25.6 43.4 20.4 2.5 4.9 8.8 19.0 61.3 3.5 

Group              
Voice Disorder 423 2.6 3.3 12.1 33.3 35.5 13.2 3.1 7.3 11.1 23.4 54.1 0.9 
No Voice 
Disorder 

450 0 0.9 5.8 27.6 45.8 20.0 0.9 5.3 8.4 19.3 60.9 5.1 

Location              
Quiet Room 306 2.9 3.6 13.4 41.5 30.4 8.2 3.3 10.5 13.7 25.5 45.4 1.6 
Sound Booth 567 0.4 1.2 6.3 24.4 46.4 21.3 1.2 4.1 7.6 19.0 64.2 3.9 

Note. Rej = Rejected due to pitch strength values <.05. 
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55.1%).  

When taking recording location into account, a greater proportion of samples 

were rejected when recorded in a quiet room or waiting area (2.9% for voicing offset, 

3.3% for voicing onset) compared to in a sound-attenuated room (0.4% for voicing offset, 

1.2% for voicing onset). Of 306 VCV productions recorded in a quiet room or waiting 

area of a voice clinic, the majority of these productions (179 offset instances, 152 onset 

instances) exhibited a pitch strength value below .35 (i.e., categories 1–3). Of the 567 

VCV productions recorded in a sound-attenuated room, however, more than 50% of these 

productions (384 offset instances, 386 onset instances) were classified as having a pitch 

strength above .35 (i.e., categories 4 or 5). Finally, a greater proportion of speakers 

recorded in a sound-attenuated room resulted in higher pitch strength categories (offset: 

67.7%, onset: 68.1%) than those recorded in a quiet room or waiting area (offset: 38.6%, 

onset: 47.1%). 

Comparison to Manual RFF Estimates 

RFF was computed in the independent test set (873 VCV productions) described 

above in Table 2.5 when using each of the semi-automated algorithms (aRFF, aRFF-A, 

aRFF-AP). The aRFF-AP algorithm resulted in the least error when compared to manual 

RFF estimates (MBE = 0.01 ST, RMSE = 0.28 ST; see Table 2.6), followed by aRFF-A 

(MBE = 0.08 ST, RMSE = 0.32 ST) then aRFF (MBE = 0.09 ST, RMSE = 0.34 ST).  

When examining these errors across RFF cycle (see Fig. 2.14), the MBE of offset 

cycles 2–10 substantially decrease when using aRFF-AP rather than aRFF or aRFF-A. 

The MBE of onset cycle 2 improves when using aRFF-AP, but approach similar values  
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for onset cycles 1 and 3–9. RMSE values also decrease for offset cycles 2–10 and onset 

cycle 1 when using aRFF-AP compared to aRFF and aRFF-A. Taking these findings into 

account, aRFF-AP leads to the greatest correspondence to manual RFF estimates. 

 

Figure 2.14. Resulting (a) mean bias error (MBE) and (b) root-mean-squared error (RMSE) of 
for aRFF (dark blue), aRFF-A (light blue), and aRFF-AP (orange) algorithms across vocal 
cycles. 

Table 2.6. Comparison of manual and automated relative fundamental frequency estimates by 
algorithm version, computed using a test set of 291 speech samples. Error values are shown as 
mean (95% confidence interval). 

Algorithm Version Mean Bias Error (ST) Root-mean-square Error (ST) 

aRFF 0.09 (0.07–0.11) 0.34 (0.32–0.36) 
aRFF-A 0.08 (0.05–0.10) 0.32 (0.29–0.34) 

aRFF-AP 0.01 (-0.01–0.03) 0.28 (0.26–0.30) 
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Comparison to Voice Sample Characteristics 

 The Welch’s test examining MBE values against signal quality (i.e., recorded in a 

quiet room or waiting area versus sound-attenuated room) revealed that recording 

location produced a medium significant effect (p = .04, d = 0.47) on RFF values 

produced from the aRFF-AP algorithm (Witte et al., 2010, p. 383). The average MBE 

was larger for sound samples recorded in a quiet room or waiting area (M = 0.08 ST, SD 

= 0.23 ST) compared to those recorded in a sound-attenuated room (M = -0.02 ST, SD = 

0.21 ST). However, the Welch’s test examining RMSE values across recording locations 

showed that recording location was not a significant factor (p = .25), with the average 

RMSE for sound samples recorded in a quiet room or waiting area (M = 0.31 ST, SD = 

0.18 ST) similar to that of sound samples recorded in a sound-attenuated room (M = 0.27 

ST, SD = 0.16 ST). Pearson product-moment correlation coefficients conducted for MBE 

and RMSE against overall severity of dysphonia elicited r = -.08 (p = .44) and r = .44 (p 

< .001), respectively. 

Algorithmic Run Time 

Because the semi-automated RFF algorithm was designed, in part, to mitigate the 

time-intensive nature of manual RFF estimation, fo processing time was also evaluated. 

This post hoc analysis was performed because autocorrelation was removed from the 

aRFF algorithm in favor of Auditory-SWIPE′. The runtimes necessary to compute the fo 

contour of test set samples were compared between autocorrelation (used in the aRFF 

algorithm) and Auditory-SWIPE′ (used in the aRFF-A and aRFF-AP algorithms). On 

average, autocorrelation required 0.28 seconds (SD = 0.11 seconds) to process each voice 
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sample containing three VCV productions, whereas Auditory-SWIPE′ required 3.59 

seconds (SD = 1.34 seconds). 

Discussion 

This study sought to examine the impacts of fo estimation method and voice 

sample characteristics on the semi-automated RFF algorithm. To carry out this work, a 

large database of RFF stimuli collected across a wide range of voice signals were 

analyzed. The samples exhibited a large degree of vocal function and were recorded in a 

variety of locations, including the waiting areas of a voice clinic, in quiet rooms, and in 

sound-attenuated rooms. Five fo estimation techniques were compared within the RFF 

algorithm to determine which method yielded the greatest correspondence with gold-

standard, manual RFF estimates. From this analysis, Auditory-SWIPE′ was implemented 

in the RFF algorithm to replace the previous fo estimation method, autocorrelation. The 

effects of voice sample characteristics were then quantified using the acoustic measure, 

pitch strength. Categories based on pitch strength values were developed, and RFF 

algorithm parameters were tuned to each category. Semi-automated RFF estimates were 

then calculated using the category-specific thresholds and compared against manual 

values in an independent test set of voice samples. 

The results of the current study show that refining the method of fo estimation and 

accounting for the variation in voice sample characteristics increases the correspondence 

between manual and semi-automated RFF estimates. MBE and RMSE were employed to 

provide insight into the accuracy and precision of semi-automated RFF values, 

respectively. Using these metrics, it was determined that the refined RFF algorithm will, 
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on average, generate a positively biased systematic error of 0.01 ST, with a spread of 

error values that approach 0.28 ST.  

The errors seen after refining the RFF algorithm are smaller than the meaningful 

changes in RFF discussed in the literature. After undergoing voice therapy, individuals 

with hyperfunctional voices were found to produce RFF values comparable to those 

obtained from typical speakers (Stepp et al., 2011d). The largest observed changes in 

RFF values were in the boundary cycles: on average, voicing offset cycle 10 increased by 

+0.5 ST, and voicing onset cycle 1 increased by +0.81 ST. The mean accuracy of RFF 

values when using the refined algorithm were +0.05 ST for voicing offset cycle 10 and -

0.04 ST for voicing onset cycle 1. These results suggest that the MBE associated with the 

refined RFF algorithm is on the order of one magnitude smaller than the increases in RFF 

observed by Stepp et al. (2011d). Users can therefore expect that clinically meaningful 

changes in RFF will not be masked by errors associated with using the semi-automated 

algorithm to compute RFF. 

Autocorrelation was replaced as the fo estimator in the aRFF algorithm in favor of 

Auditory-SWIPE′. To obtain lower MBE and RMSE errors, Auditory-SWIPE′ is more 

computationally complex than autocorrelation; this algorithm switch led to a nearly 13-

fold increase in runtime for calculating the fo contour of three VCV productions. 

Although more processing time is required to compute fo, the trade-off for more accurate 

fo estimation is justified to improve the clinical viability of the aRFF algorithm. It is also 

worth considering that this large increase in runtime may be, in part, because Auditory-

SWIPE′ also calculates the pitch strength contour of the signal in addition to the fo 
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contour. The necessity of using pitch strength to categorize voice samples in the aRFF-

AP algorithm further substantiates the switch from simple autocorrelation to the more 

computationally intensive Auditory-SWIPE′ algorithm.  

Pitch strength was used to quantitatively account for variations in signal quality 

and overall severity of dysphonia. With sample pitch strength estimates, RFF is 

calculated using rule-based processing rather than through subjective, specific sample 

characteristics such as clinical diagnosis or recording location. When examining how 

resulting errors compare to these subjective sample characteristics, it was found that the 

aRFF-AP algorithm was differentially affected by sample characteristics. For instance, 

the spread of RFF estimates was relatively similar across recording environments, 

suggesting that the precision of RFF estimates was not affected by signal quality. On the 

other hand, the accuracy of RFF estimates was lower for samples recorded in a quiet 

room; these findings indicate that the RFF values were affected by signal quality despite 

using pitch strength to account for sample characteristics. Users of the aRFF-AP 

algorithm can expect systematic errors to occur, on average, on the order of 0.08 ST for 

samples recorded in a quiet room and of -0.02 ST for samples recorded in a sound-

attenuated room. 

Errors resulting from the aRFF-AP algorithm were found to be affected by 

variations in overall severity of dysphonia. A very weak, negative relationship was found 

between overall severity of dysphonia and MBE. This indicates that the accuracy of an 

RFF estimate from the aRFF-AP algorithm would not be substantially different from 

manual estimates as a function of overall severity of dysphonia. On the other hand, a 
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moderate, positive relationship was found between overall severity of dysphonia and 

RMSE. These findings suggest that the precision of RFF values may be positively related 

to the overall severity of dysphonia of the speaker.  

Limitations and Future Directions 

In the current study, the aRFF algorithm was refined to increase correspondence 

with manual RFF estimates; however, neither of the error metrics computed between 

manual and semi-automated RFF estimates reached zero. This may be because pitch 

strength failed to comprehensively account for variations in overall severity of dysphonia 

and signal acquisition quality, as demonstrated by the weak relationship between overall 

severity of dysphonia and MBE. Future investigations should examine additional or 

alternative acoustic metrics to account for the diversity in clinical sample characteristics. 

Examples of such metrics may include cepstral peak prominence to assess speaker-

related sample characteristics (Anand, Kopf, Shrivastav, & Eddins, 2019a).  

The source of these non-zero errors may also be attributed to difficulties in fo 

estimation. Of the fo detection methods examined in the current study, Auditory-SWIPE′ 

was shown to be the best choice for fo estimation. Yet the approach used to select the best 

fo estimation method (i.e., augmenting the aRFF algorithm with each fo estimation 

method and comparing the resulting RFF values to manual RFF values) is limited. As 

only five relatively well-established fo estimation methods were compared, it is possible 

that other fo estimation algorithms not examined here (e.g., nearly defect-free algorithm; 

Kawahara, de Cheveigné, Banno, Takahashi, & Irino, 2005) may result in greater 

algorithmic RFF accuracy.  
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In addition to comparing a larger set of fo estimation methods, it may be 

interesting to explore the utility of fusing fo detection methods or using adaptive 

techniques to estimate fo. For instance, Tsanas et al. (2014) showed that using an adaptive 

Kalman filter framework led to improvements in fo estimation accuracy from a sustained 

/a/ over nine previously established methods (including Auditory-SWIPE′). Importantly, 

the authors assessed fo estimation accuracy relative to ground-truth values that were either 

calculated from glottal cycles detected via electroglottography or from synthetic signals 

with pre-determined fo values. As both manual and semi-automated RFF estimation rely 

on the acoustic signal to compute fo, it is thus also important to consider that manual RFF 

estimation may not be a true reflection of fo. Future work should therefore use 

electroglottography and/or numerical modeling to compare and validate fo values from 

both algorithmic and manual RFF methods. 

Within this vein, it is also possible that non-zero error metrics were obtained 

because manual estimation is not a true gold standard for RFF values. If so, it may not be 

necessary to remove errors between manual and semi-automated RFF estimates. Manual 

RFF is derived using microphone (Eadie et al., 2013; Goberman et al., 2008; Robb et al., 

2002; Stepp, 2013; Stepp et al., 2010b; Stepp et al., 2011d; Stepp et al., 2012; Watson, 

1998; Watson & Schlauch, 2008) or accelerometer signals (Lien et al., 2015a). However, 

there may be a discrepancy between these signals and the physiological initiation or 

termination of voicing at the vocal fold level. Trained technicians implement trial-and-

error to identify this physiological boundary via manual RFF estimation. Due to the 

subjective nature of their process, the selected boundary may not be the true initiation or 
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termination of voicing. The semi-automated RFF algorithm makes use of three acoustic 

features to identify this transition point. Yet it is unclear as to how these features relate to 

the physiological vibrations of the vocal folds during the transition into and out of 

voicing. As a result, investigation into the physiological relevance of RFF via manual and 

semi-automated techniques is warranted.  

Although the current study details preliminary steps taken to refine the semi-

automated algorithm for RFF estimation, further investigation is warranted to continue to 

enhance accuracy and versatility across a broad range of vocal function. Specifically, the 

sample distribution analyzed in this study may not be fully representative of clinical 

practice. For instance, Martins et al. (2016) reports a substantial prevalence of vocal 

polyps in adults with voice disorders (12% of 2019 adults analyzed); however, only 3% 

of the population examined in the current study was diagnosed with vocal polyps (see 

Table 2.1). Furthermore, nearly 37% of the speakers with voice disorders analyzed in the 

current study were diagnosed with Parkinson’s disease and approximately 33% were 

diagnosed with muscle tension dysphonia. Because a substantial portion of our sample 

group consisted of these individuals, it is possible that our results are biased towards 

speakers with Parkinson’s disease and speakers with muscle tension dysphonia. As such, 

future studies consider the prevalence of voice disorders in the examined population and 

make these representative of those seen in clinical practice. Doing so will enhance the 

clinical relevance of using RFF to acoustically examine vocal function.  

It is also unclear whether the heterogeneity of the equipment used to capture 

speech acoustics played a role in the differences seen in RFF accuracy in terms of signal 
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acquisition quality. In particular, it was hypothesized that signal acquisition quality was a 

feature of acoustic speech samples that affected the accuracy of RFF estimates; however, 

signal acquisition quality was examined solely in terms of whether the speech sample 

was recorded in a sound-attenuated room versus a quiet room or waiting area. As such, 

future work should also take into account the equipment used to record speech (e.g., 

microphone) and the characteristics of the recording environment (e.g., background noise 

levels, reverberation) when examining signal acquisition quality. 

Conclusions 

RFF has shown promise as an acoustic measure for assessing and tracking 

laryngeal muscle tension; however, semi-automated RFF is not yet transferable to the 

clinic due to instability across a range of vocal signals that would be typically 

encountered. Thus, the impacts of fo estimation method and sample characteristics on the 

correspondence between automated and gold standard manual RFF estimates was 

evaluated. Upon refining the fo estimation method using the Auditory-SWIPE′ algorithm, 

in conjunction with accounting for sample characteristics via pitch strength categories, 

the accuracy and precision of semi-automated RFF estimates increased by 88.4% and 

17.3%, respectively. These findings highlight the importance of considering the broad 

range of vocal function that may be encountered in clinical populations.  
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CHAPTER 3. The Relationship between Acoustic Features and Vocal Fold 

Vibratory Characteristics during Intervocalic Offsets and Onsets 

Abstract 

Purpose: The aim of this study was to elucidate the physiological factors 

influencing acoustic outputs of RFF estimation. 

Methods: Sixty-nine vocally healthy adults (33 female, 36 male; M = 43.2 years, 

SD = 23.1 years) and fifty-three adults with disordered voices (29 female, 24 male; M = 

49.5 years, SD = 18.4 years) produced strings of the utterance, /ifi/, while altering their 

vocal rate and vocal effort. Simultaneous recordings were made using a microphone and 

flexible nasendoscope. The initiation (voicing onset) and termination (voicing offset) of 

vocal fold vibration were identified through laryngoscopic images. A series of acoustic 

features were examined in reference to these time points, and the acoustic features that 

best coincided with voicing offset and onset were then implemented within the semi-

automated RFF algorithm (“aRFF-APH”). The accuracy of the aRFF-APH algorithm in 

identifying these physiological transitions in voicing was then assessed against (1) the 

current version of the semi-automated RFF algorithm (“aRFF-AP”), and (2) manual RFF 

estimation, the current gold-standard technique for calculating RFF. Algorithmic 

accuracy was measured as the discrepancy between the physiological transition 

(boundary) and acoustically determined boundary. Chi-square tests of independence were 

performed to investigate the association between the three RFF estimation methods and 

accuracy in identifying the physiological boundary cycle. 
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Results: The association between RFF estimation methods and the accuracy of 

identifying the physiological boundary cycle was significant for both voicing offsets (p < 

.001, V = .53) and voicing onsets (p < .001, V = .51). The aRFF-APH algorithm led to the 

greatest overall correspondence between acoustically and physiologically identified 

boundary cycles. Of 7709 /ifi/ productions, 76.9% of boundary cycles were accurately 

identified when using the aRFF-APH algorithm (5567 offset, 6290 onset), compared to 

only 71.4% when using the aRFF-AP algorithm (5016 offset, 5984 onset) and 20.2% 

when using manual estimation (984 offset, 2137 onset).  

Conclusions: Incorporating acoustic features that corresponded to the 

physiological termination and initiation of vocal fold vibration led to improvements in 

algorithmic accuracy. By reducing the discrepancy between acoustically and 

physiologically determined voicing boundaries, improvements in the precision of using 

RFF were shown to reflect the underlying physiological mechanisms for voicing offsets 

and onsets. Future work should validate the aRFF-APH algorithm in a larger speaker 

dataset that encompasses a broader range of vocal function. 
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Background 

Relative fundamental frequency (RFF) has been proposed as an acoustic metric 

that estimate the degree of laryngeal muscle tension. RFF is calculated from short-term 

changes in instantaneous fundamental frequency (fo) as a speaker devoices (i.e., voiced-

to-unvoiced transition, or “voicing offset”) and reinitiates voicing (i.e., unvoiced-to-

voiced transition, or “voicing onset”). These transitions may be captured in a vowel–

voiceless consonant–vowel (VCV) production by estimating the instantaneous fo of the 

ten voiced cycles preceding and following the voiceless consonant, respectively (see Fig. 

3.1). These fo values are then normalized to a steady-state fo of the nearest vowel (fo
 ref) to 

produce an RFF estimate in semitones (ST), as shown in Eq. 3.1: 

Currently, the gold-standard method of computing RFF is through manual 

estimation techniques using Praat software (Boersma, 2001), which employ simple 

autocorrelation to calculate fo. Autocorrelation operates by comparing a segment of the 

RFF (ST) = 12× log2 %
fo

fo
 ref& [3.1] 

 

 
Figure 3.1. Acoustic waveform of the nonsense word /ifi/, with /i/ segments marked as 
“voiced” and the /f/ segment marked as “unvoiced” (shaded gray). Intervocalic transitions 
labeled as voicing offset (/i/ to /f/) and voicing onset (/f/ to /i/). The first and tenth vocal cycles 
are highlighted for each transition. 
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voice signal with an offset by a certain period to provide insight into potential fo values. 

Although this method is fast and provides high temporal resolution, simple 

autocorrelation suffers from assumptions of signal periodicity. Moreover, fo estimation 

via autocorrelation requires 2–3 complete pitch periods to examine the physiological fo 

ranges encountered in speech. These characteristics are not ideal for estimating fo during 

the voicing offset and onset transitions examined in RFF, which specifically capture rapid 

changes in fo (characterized by a lack of fo stationarity; Quatieri, 2008). Using 

autocorrelation for manual RFF estimation may therefore lead to fo estimation 

inaccuracies and poor cycle-to-cycle resolution.  

More recent investigations into RFF have resulted in a semi-automated RFF 

(aRFF) algorithm (Lien, 2015; Lien et al., 2017). Similar to manual RFF estimation in 

Praat, however, the aRFF algorithm uses autocorrelation to track fo. Specifically, the 

aRFF algorithm leverages average fo estimates to create a sliding window that navigates 

across the acoustic signal in time, collecting potential vocal cycles. Due to the 

aforementioned shortcomings in using autocorrelation for fo estimation, Vojtech et al. 

(2019b; see also Chapter 2) compared the effects of different fo estimation techniques on 

resulting RFF estimates. The authors determined that fo estimation via the Auditory-

SWIPE′ (Camacho, 2012) method increased the correspondence between semi-automated 

and manual RFF estimates compared to simple autocorrelation. The results of this work 

led to a refined version of the aRFF algorithm that not only employs Auditory-SWIPE′ 

for fo estimation, but also accounts for differences in voice sample characteristics using 

the acoustic metric, pitch strength (Camacho et al., 2008; Kopf et al., 2017). As such, the 



	

	

143 

improved aRFF algorithm is called the “aRFF-AP” algorithm. 

In both manual and semi-automated RFF estimation methods, the most tedious 

step of the RFF computational process is identifying the boundary between voiced and 

unvoiced speech. As RFF depends on the termination and initiation of voicing within a 

VCV production, these points in time must be identified from the acoustic signal prior to 

collecting vocal cycles for estimating RFF. Manual RFF estimation relies on trial-and-

error techniques of trained technicians to locate this boundary (requiring 20–40 minutes 

of analysis time per RFF estimate), whereas the aRFF and aRFF-AP algorithms take 

advantage of a faster, more objective approach. Specifically, Lien (2015) proposed 

acoustic feature extraction to identify desired vocal cycles from the voiced-to-unvoiced 

transitions (and vice versa), which was implemented in aRFF and aRFF-AP. During the 

sliding window process, acoustic features are calculated per window of time. After 

collecting a sufficient amount of feature values, the algorithms examine each feature to 

determine where a state transition occurs. In other words, the aRFF and aRFF-AP 

algorithms assume that each acoustic feature will exhibit a substantial change in feature 

values over time and that this change will occur at the boundary between voiced and 

unvoiced segments. This logic was implemented in both algorithms by maximizing the 

effect size of each acoustic vector, with both sides of the transition point containing 

stable values pertaining either to the vowel or voiceless consonant. The index that 

maximized the effect size of the vector was considered the “boundary cycle” for that 

acoustic feature. The algorithm then took the median index of the three boundary cycle 

candidates as the ultimate boundary cycle. 
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Although semi-automated methods are more objective than manual techniques in 

identifying the voiced/unvoiced boundary, current methods for locating the boundary 

remain questionable. In particular, three acoustic features are employed in the aRFF and 

aRFF-AP algorithms: normalized peak-to-peak amplitude, number of zero crossings, and 

waveform shape similarity. However, it is unclear whether these are the best choice of 

acoustic features to mark the initiation and termination of vibration. Whether the 

boundary cycle identified using these acoustic features actually corresponds to the 

physiological beginning or end of vocal fold vibration requires further inquiry and 

validation, as both manual and semi-automated RFF methods rely on the acoustic signal 

as recorded using a microphone. While microphones are able to provide indirect 

information about the vibration of the vocal folds, these vibrations may be masked to 

some extent by supraglottic resonances, coarticulation, and radiation. For instance, the 

vocal cycles closest to the voiceless consonant may be masked by the burst of high 

frequency energy in frication or aspiration as a result of coarticulation. Thus, in addition 

to a lack of fo stationarity during vocal fold offset and onset transitions, signal masking 

may introduce difficulties in identifying the initiation or termination of vocal fold 

vibration. Therefore, the uncertainty in boundary cycle identification using the 

microphone signal warrants further investigation to inform the implementation of 

acoustic features used in the semi-automated RFF algorithm for more accurate 

representations of voicing offsets and onsets.  

Laryngeal imaging is one technique for visualizing the vibrations of the vocal 

folds. During laryngoscopic imaging, a device is inserted via the oral or nasal passages to 
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visualize vocal fold anatomy and physiology. To incorporate vibrational information 

from laryngeal imaging to RFF estimations, flexible laryngoscopy may be used to 

visualize the vibrating vocal folds during VCV transitions; using this modality, a device 

is passed transnasally rather than orally, allowing participants to speak and articulate 

freely while images of the glottal source are captured. In doing so, the physiological 

initiation and termination of vocal fold vibration during VCV productions can be 

recorded for analysis against acoustically derived time points.  

The issue with using conventional laryngeal imaging to examine instantaneous fo 

is that these laryngoscopic systems record at a frame rate of 30 frames per second (fps). 

This rate is much too low to observe basic vocal fold vibratory motion, as the average 

rate of vocal fold vibration in adults is 85–255 cycles per second (Hz) during modal 

phonation (Baken et al., 2000, p. 156). Performing conventional videoendoscopy will 

thus not provide sufficient information related to vocal fold vibratory behaviors. One 

solution to this frame rate issue is to use high-speed videoendoscopy (HSV). 

HSV operates using significantly higher frame rates compared to conventional 

videoendoscopy and videostroboscopy, making it suitable for assessing instantaneous 

changes in fo. By sampling at frame rates higher than the typical modal speaking rate, 

HSV is able to capture the true vibratory behavior of the vocal folds, including aperiodic 

vibration (Deliyski, 2010; Döllinger et al., 2012). As such, HSV can be used to record the 

fast cycle-to-cycle changes in the vocal fold vibratory behavior during voicing offset and 

onset (Braunschweig, Flaschka, Schelhorn-Neise, & Döllinger, 2008; Ikuma, Kunduk, & 

McWhorter, 2013; Kunduk, Yan, McWhorter, & Bless, 2006). 
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Prior work has used HSV to investigate voicing offsets and onsets relative to the 

acoustic signal. Specifically, Patel, Forrest, and Hedges (2017) simultaneously captured 

the acoustic signal and laryngoscopic images in vocally healthy adults. Using the 

laryngoscopic images, the authors computed the glottic angle waveform to represent the 

oscillatory onset and offset behavior of the vocal folds. Patel et al. (2017) observed that 

the onset of the acoustic signal was significantly related to the vocal fold oscillatory onset 

measures, whereas the offset of the acoustic signal was related to oscillatory offset, as 

well as the first instance of incomplete glottal closure and complete cessation of vocal 

fold vibration. The results of this work indicated a tight coupling between the acoustic 

signal and the physiological vibrations of the vocal folds; however, this relationship may 

not be generalizable to the acoustic outputs typically examined with RFF. The authors 

recorded laryngeal images using a rigid laryngoscope as vocally healthy speakers 

repeated /hi hi hi/ at their typical pitch and loudness. Distinct from other fricatives, /h/ is 

called a voiceless glottal fricative, as it is produced at the level of the glottis. 

Transitioning from a vowel to /h/ (and vice versa) may require different mechanisms than 

when transitioning from a vowel to a voiceless obstruent produced via oral constrictions 

(e.g., /f/, /s/, /ʃ/, /p/, /t/, /k/). This difference could affect the relationship between 

oscillatory events obtained from the laryngoscopic images and from the acoustic signal. 

Additionally, the participants in their study were limited to vocally healthy adults, 

whereas the target population of RFF includes speakers with voice disorders 

characterized by excessive laryngeal muscle tension. As such, additional investigations 

must be carried out to examine voicing offsets and onsets in the context of vocally 
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healthy and disordered speakers. 

There are potential advantages for implementing HSV to investigate the 

relationship between acoustic features and vocal fold vibratory characteristics during 

voicing offset and onsets. Since the semi-automated RFF algorithms assume that a state 

transition will occur in acoustic feature values at the boundary between voiced and 

unvoiced segments, identifying acoustic features that exhibit this trend at the 

physiological initiation and termination of vocal fold vibration may be useful to enhance 

the clinical relevance of RFF. Doing so will provide more comprehensive insights into 

the use of RFF as an objective, acoustic indicator of laryngeal muscle tension. 

Purpose of the Current Study 

At present, the semi-automated RFF algorithm requires further development prior 

to widespread implementation in clinical practice. The overarching purpose of the current 

study was to characterize the physiological factors influencing acoustic outputs within 

semi-automated RFF algorithms in order to improve the relevance and applicability of 

RFF in clinical settings. Therefore, individuals with and without voice disorders were 

enrolled across a wide age range to investigate the relationship between acoustic features 

and vocal fold vibratory characteristics during intervocalic voicing offset and onsets. To 

carry out this aim, acoustic features were first identified that corresponded with the 

physiological initiation and/or termination of vocal fold vibration. The aRFF-AP 

algorithm (see Chapter 2) was further refined by modifying algorithmic parameters 

corresponding to the HSV-tuned acoustic feature set (“aRFF-APH”). The accuracy of 

manual and semi-automated (aRFF-AP, aRFF-APH) estimation methods in identifying 
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the physiological transition in voicing was then compared to assess the physiological 

relevance of RFF.  

Methods 

Participants 

A total of 122 participants were enrolled for the current study. All participants 

provided informed, written consent with the Boston University Institutional Review 

Board. Participants over the age of 50 were administered the Montreal Cognitive 

Assessment (MoCA) to determine cognitive status. An a priori cut-off of ≥21 was set to 

ensure all included participants had the capacity to consent to the study tasks (Dalrymple-

Alford et al., 2010). Participants were designated as vocally healthy, or “typical,” 

speakers or speakers with disordered voices; this latter group comprised adults diagnosed 

with a voice disorder as well as adults with Parkinson’s disease. These two groups are 

described in detail below. 

Typical Speakers 

Sixty-nine vocally healthy individuals (33 female, 36 male) aged 18–91 years of 

age (M = 43.2 years, SD = 23.1 years) were recruited to participate in the study. All 

typical speakers were fluent in English, and had no history of speech, language, hearing, 

neurological, or voice problems. Participants had no trained singing experience beyond 

grade school in order to minimize variability in phonatory behaviors that may occur when 

differentiating between singers and non-singers (Stepp et al., 2011b). All were non-

smokers, and were screened by a certified voice-specializing speech-language pathologist 

for healthy vocal function via auditory-perceptual assessment and flexible nasendoscopic 
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laryngeal imaging.  

Speakers with Disordered Voices 

Fifty-three individuals with disordered voices (29 female, 24 male) aged 19–75 

years of age (M = 49.5 years, SD = 18.4 years) were recruited to participate in the study. 

All speakers were fluent in English and reported no history of hearing problems. 

Participants within this group were either diagnosed with idiopathic Parkinson’s disease 

(PD) by a neurologist, or were diagnosed with a voice disorder by a board-certified 

laryngologist. All individuals with Parkinson’s disease were recorded while on their 

typical carbidopa/levodopa medication schedule. Individuals who used deep brain 

stimulation devices were requested to turn their device off for the duration of the data 

collection.  

Table 3.1 shows the demographic information for participants with disordered 

voices. Of the 53 participants, 25 individuals (6 female, 19 male) were diagnosed with 

PD. The average time since diagnosis was 7 years (SD = 5.8, range = 0–24). The 

Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS) was administered to each participant with PD to determine 

the extent of both motor and non-motor complications; each examination was 

administered and scored per protocol by a certified MDS-UPDRS administrator. The 

severity of motor complications as assessed via the MDS-UPDRS were, on average, 

moderate (M = 48.8, SD = 20.5), and ranged from mild to severe (range = 13–91; 

Martínez-Martín et al., 2015). The mean Hoehn-Yahr score was 2.1 (SD = 1.1) and 

ranged from 0 (no disability) to 4 (severe disability; Goetz et al., 2004; Hoehn et al., 
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1967). The remaining 28 individuals (23 female, 5 male) were diagnosed with a voice 

disorder, including muscle tension dysphonia (20/28), nodules (4/28), polyp (2/28), 

scarring (1/28), or a lesion of unknown type on the vocal folds (1/28).  

Table 3.1. Demographic information of participants with disordered voices. 

Participant Sex Age Dx CAPE-V 
OS 

Years 
Post-Dx 

MDS-UPDRS-
III 

Hoehn-Yahr 
Scale 

VD1 F 23 MTD 0.9    
VD2 F 26 MTD 1.3    
VD3 F 19 Nodules 1.6    
VD4 M 30 MTD 3.3    
VD5 F 25 MTD 4.0    
VD6 M 59 PD 4.0 2 23 2 
VD7 F 40 MTD 4.6    
VD8 F 54 MTD 4.8    
VD9 M 68 PD 5.0 6 38 2 

VD10 F 21 MTD 5.0    
VD11 F 35 MTD 5.1    
VD12 F 62 PD 5.6 9 49 3 
VD13 M 49 PD 5.8 7 47 1 
VD14 M 67 PD 6.4 4 63 3 
VD15 M 73 PD 6.8 3 23 1 
VD16 M 50 PD 7.1 0 17 0 
VD17 F 24 MTD 7.4    
VD18 F 60 MTD 7.4    
VD19 M 32 MTD 8.0    
VD20 F 29 MTD 8.1    
VD21 M 68 PD 8.5 1 52 3 
VD22 F 27 MTD 8.7    
VD23 F 23 Lesion 9.0    
VD24 F 68 MTD 9.3    
VD25 F 51 PD 9.7 5 13 0 
VD26 M 62 PD 10.0 3 50 2 
VD27 M 45 PD 10.4 10 51 2 
VD28 F 57 MTD 10.7    
VD29 F 57 MTD 10.7    
VD30 F 22 Nodules 10.8    
VD31 F 39 Scarring 12.0    
VD32 F 26 Nodules 14.0    
VD33 F 70 PD 14.7 6 77 4 
VD34 F 65 PD 15.4 10 48 3 
VD35 F 32 MTD 15.5    
VD36 M 55 PD 18.4 21 49 3 
VD37 M 40 MTD 19.2    
VD38 M 67 PD 19.4 2 38 2 
VD39 M 75 PD 22.1 1.5 68 2 
VD40 F 35 MTD 26.8    
VD41 F 21 Nodules 26.9    
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VD42 M 62 PD 27.9 13 47 2 
VD43 M 65 PD 28.3 1 35 0 
VD44 M 60 PD 30.1 7 54 2 
VD45 F 74 PD 30.6 24 59 2 
VD46 F 67 MTD 32.5    
VD47 F 73 PD 33.3 8 52 2 
VD48 M 73 PD 33.6 9 19 1 
VD49 M 43 PD 35.8 5 91 3 
VD50 M 70 Polyp 38.3    
VD51 M 48 Polyp 38.5    
VD52 M 72 PD 40.9 7 81 4 
VD53 M 67 PD 51.3 11 77 3 

Note. Dx = Diagnosis, CAPE-V OS = Consensus of Auditory-Perceptual Evaluation of Voice, Overall 
Severity of Dysphonia, PD = Parkinson’s disease, MDS-UPDRS-III = Movement Disorder Society-
sponsored revision of the Unified Parkinson’s Disease Rating Scale: Part III, Motor Examination, MTD 
= Muscle tension dysphonia. 

 
Hearing Status 

Hearing screening data were collected for 114 of 122 participants. The eight 

participants for which this data was not collected were vocally healthy young adults who 

reported no history of hearing disorders. Of the 114 participants, 27 were vocally healthy 

young adults, 34 were vocally healthy older adults, 28 were adults diagnosed with a voice 

disorder, and 25 were adults with PD. All vocally healthy young adults passed a hearing 

screening of pulsed pure tones (Burk & Wiley, 2004) at frequencies of 125, 250, 500, 

1000, 2000, and 4000 Hz under 25 dB HL in both ears (American Speech-Language-

Hearing Association, 2005).  

Of the remaining 87 participants (vocally healthy older adults, adults diagnosed 

with a voice disorder, and adults with PD), 77 passed the hearing screening of pulsed 

pure tones at frequencies of 125, 250, 500 and 1000 under 25 dB HL and 2000 and 4000 

Hz under 40 dB HL in at least one ear (Schow, 1991). One vocally healthy older adult 

demonstrated a threshold of 55 dB HL at 4000 Hz in both ears, and one vocally healthy 

older adult (who was 91 years of age) could not hear frequencies beyond 2000 Hz at any 
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hearing level. One participant with PD (VD9 in Table 3.1) passed at all frequencies in at 

least one ear except for 2000 Hz, instead showing a threshold of 45 dB HL. Four 

participants with PD passed at all frequencies below 4000Hz, but two participants 

(VD39, VD43) had a threshold of 45 dB HL and two participants (VD42, VD47) had a 

threshold of 50 dB HL at 4000 Hz. One participant with PD (VD52) and one participant 

with MTD (VD24) passed at frequencies below 2000 Hz, but demonstrated thresholds of 

50 dB HL for 2000 Hz and 75 dB HL for 4000 Hz. Finally, one participant with PD 

(VD38) wore hearing aids during the course of the study, and demonstrated thresholds of 

45 dB HL at 125 Hz and 30 dB HL at 1000 Hz.  

Dysphonia Severity 

A speech-language pathologist specializing in voice disorders assessed the overall 

severity of dysphonia (OS; 0–100) of each participant using the Consensus Auditory-

Perceptual Evaluation of Voice (CAPE-V; Kempster et al., 2009). As described in detail 

in Chapter 2, sentences for analysis included “Only we feel you do fail in new fallen 

dew,” and “We all found a wee fly on my food on Monday.” Both sentences were blindly 

evaluated for OS by the speech-language pathologist, yielding two OS scores. The 

average OS score was computed for each speaker. The speech-language pathologist 

reanalyzed 15% of speakers in a separate sitting to ensure adequate intrarater reliability. 

The Pearson’s product-moment correlation coefficient was calculated on the ratings using 

the statistical package R (Version 3.2.4), yielding an intrarater reliability of r = .96. From 

this analysis, the average OS for typical speakers was 8.3 (SD = 6.7, range = 0.6–34.2), 

and that of speakers with disordered voices was 15.6 (SD = 12.4, range = 0.9–51.3). The 
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overall demographic information, including OS, for vocally healthy speakers (young 

adults, older adults) and speakers with disordered voices (adults with a voice disorder, 

adults with Parkinson’s disease) are included in Table 3.2. 

Recording Procedures 

Participants received training to produce iterations of the utterance /ifi/, which 

comprised four /ifi/ productions, a pause, followed by four /ifi/productions (for a total of 

eight /ifi/s). The phonemes /i/ and /f/ were chosen for the VCV production since the token 

/i/ provides an open pharynx for better laryngeal view under endoscopy (McKenna et al., 

2016), and the token /f/ minimizes within-speaker variation in the acoustic signal (Lien, 

Gattuccio, & Stepp, 2014). Subsequently, individuals were trained to produce /ifi/ strings 

at varying speeds (in beats-per-minute; BPM) and levels of effort to alter the stiffness of 

their laryngeal musculature (Stepp, Hillman, & Heaton, 2010d). Stiffness was modulated 

via speed and effort in order to generate voice with varying degrees of tension (McKenna 

et al., 2016). In doing so, the relationship between acoustically derived signal features 

and RFF could be investigated across a wide range tension. A metronome was used to 

train these vocal speeds: slow rate at 50 BPM, regular rate at 65 BPM, and fast rate at 80 

BPM. Participants were then trained to produce /ifi/ strings at varying levels of effort. In 

Table 3.2. Overall demographic information for the 122 speakers. 

Cohort Sex Age Overall Severity of 
Dysphonia 

M F Mean SD Range Mean SD Range 
Young Adults 18 17 22.8 5.5 18–31 5.4 3.8 0.6–23.5 
Older Adults 18 16 65.6 10.8 41–91 11.4 7.7 1.7–34.2 
Adults with Voice Disorder 5 23 37.5 16.1 19–70 12.3 10.7 0.9–38.5 
Adults with Parkinson’s 
Disease 19 6 63.0 9.4 43–75 19.2 13.3 4.0–51.3 
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order to elicit different levels of vocal effort, participants were cued using methodology 

described by McKenna et al. (2018b), which instructed participants to “increase your 

effort during your speech as if you are trying to push your air out,” while maintaining 

comfortable speaking rate and volume. Mild effort was described as “mildly more effort 

than your regular speaking voice,” moderate effort as “more effort than mild,” and 

maximum effort as “as much effort as you can while still having a voice.” 

Following training, participants were seated in a sound-attenuated booth and 

instrumented with recording equipment, including: a microphone, neck-surface 

accelerometer, and flexible endoscope. A directional headset microphone (Shure SM35 

XLR) was placed 45° from the midline and 7 cm from the lips. A neck-surface 

accelerometer (BU series 21771 from Knowles Electronic, Itasca, IL) was placed on the 

anterior neck, superior to the thyroid notch and inferior to the cricoid cartilage using 

double-sided adhesive. For this study, a directional microphone was selected to reduce 

the impacts of noise emitted by the light source from the flexible endoscopic equipment. 

Microphone and accelerometer signals were pre-amplified (Xenyx Behringer 802 

Preamplifier) and digitized at 30 kHz (National Instruments 6312 USB).  

A flexible routine endoscope (Pentax, Model FNL-10RP3, 3.5-mm) was then 

passed transnasally over the soft palate and into the hypopharynx for laryngeal 

visualization. In cases in which participant anatomy or comfort interfered with image 

acquisition using the routine endoscope, a flexible slim endoscope (Pentax, Model FNL-

7RP3, 2.4-mm) was used. A numbing agent was not administered so as to not affect 

laryngeal function (Dworkin et al., 2000b), but a nasal decongestant was offered to 
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minimize participant discomfort as the endoscope was passed through the nasal cavity. 

To record images of the larynx, the endoscope was attached to a camera (FASTCAM 

Mini AX100l; Model 540K-C-16GB; 256 × 256 pixels) with a 40-mm optical lens 

adapter. A steady xenon light was used for imaging (300 W KayPENTAX Model 

7162B). Video images were acquired at a frame rate of 1 kHz using Photron Fastcam 

Viewer software (v.3.6.6) in order to track the fundamental frequency of vibration of the 

vocal folds, which is estimated to be 85–255 Hz during modal phonation in adults (Baken 

et al., 2000, p. 156), as well as the gross abductory and adductory gestures, which occur 

within 104–227 ms (Dailey et al., 2005). Recording was trigged using a custom 

MATLAB (version 9.3; The MathWorks, Natick, MA) algorithm that automatically time-

aligned the video images with the microphone and accelerometer signals.  

During the endoscopy procedure, participants were instructed to produce the eight 

ifi/ repetitions for each recording. Conditions were cued in the following order: slow rate, 

regular rate, fast rate, mild effort, moderate effort, maximum effort. Participants 

completed a minimum of two recordings per condition; however, recordings were 

repeated in the event that the vocal folds were not adequately captured (e.g., obstruction 

by the epiglottis). To further minimize participant discomfort during the procedure, the 

length of the endoscopic examination was approximately 5–10 minutes. The total 

experimental time (including consent, training, setup, and recording) required 

approximately 1–2 hours. 
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Data Analysis 

High-speed Video Processing 

Reliability Training 

Individual VCV production usability and HSV data processing was performed by 

nine trained technicians. Prior to processing experimental data, the technicians underwent 

a training scheme described by McKenna et al. (2018a). This first included glottic angle 

identification training on flexible laryngoscopic images at a conventional frame rate of 30 

fps, recorded using a halogen light source. The identified glottic angles (extending from 

the anterior commissure along the medial vocal fold edge to the vocal process) were 

compared to angle markings made previously by a gold-standard technician, and were 

required to meet two-way mixed-effects intraclass correlation coefficients (ICC) for 

consistency of agreement ≥ .80 (Diaz-Cadiz, McKenna, Vojtech, & Stepp, 2019). The 

resulting average reliability for the nine technicians was ICC(3,1) = .89 (SD = .01, range 

= .88–.91). 

Technicians then completed training to use a semi-automated glottic angle 

tracking algorithm. This algorithm was developed in MATLAB to track the glottic angle 

over time within VCV productions and is described in detail in Diaz-Cadiz et al. (2019). 

In brief, the algorithm first takes microphone and accelerometer signals as inputs to an 

event detector that identifies VCV productions from the recordings. The technician is 

then prompted to choose a VCV production for examination; then, the algorithm carries 

out an automated glottic angle extraction process to identify the glottis, segment vocal 

fold edges, and estimate the glottic angle over time. The result of this three-step process 
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is a glottic angle waveform for the VCV production, which is shown in a graphical user 

interface (GUI) alongside time-aligned high-speed video frames, microphone and 

accelerometer signals, and glottal angular velocity traces. If the technician does not agree 

with the results of the automated algorithm, they may manually mark glottic angles for 

the VCV production at a downsampled rate of 50 Hz. The automated glottic angle 

extraction procedure then runs again, this time using the manual glottic angle data as a 

reference. Within the glottic angle tracking training, technicians were required to meet 

reliability standards of ICC(3,1) ≥ .80 compared to a gold-standard technician, described 

in Diaz-Cadiz et al. (2019). The resulting average reliability of the nine technicians was 

ICC(3,1) = .85 (SD = .04, range = .80–.91). Following the training, the technicians 

analyzed VCV productions of the experimental data. 

VCV Usability 

The first step of experimental data processing required technicians to determine 

whether each /ifi/ production was “usable” based on manual inspection of the 

laryngoscopic recordings. For instance, if the glottis was obstructed (e.g., by the 

epiglottis) or if video quality was too poor to resolve the glottis, then the VCV production 

was considered unusable since the glottic angle could not be estimated. Such productions 

were rejected from further analysis. Due to the recording limitations of the high-speed 

imaging, the synchronized microphone, accelerometer, and HSV recordings were 

restricted in duration to 7.940 seconds when the 3.5-mm endoscope was used and 8.734 

seconds when the 2.4-mm endoscope was used. Because of these pre-defined parameters 

in the current study, it was possible that /ifi/ productions at the end of the recording were 
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incompletely captured; these VCV productions were also considered unusable and 

excluded from further analysis. Finally, manual intervention was implemented if 

algorithmic estimates of the glottic angle waveform was deemed inappropriate by the 

technician; if errors still persisted following manual intervention, the technicians were 

instructed to mark the instance as unusable.  

Experimental Data Processing 

Nine technicians used the semi-automated algorithm to calculate the glottic angle 

waveform for each /ifi/ production (N = 10776). Within this analysis, a single technician 

determined whether the /ifi/ production was usable and, if so, obtained a quantitative 

estimate of the glottic angle for the production. The technicians accepted the automated 

results in 55.7% of cases (6005 of 10776), whereas the technicians accepted the 

automated results only after performing manual glottic angle estimation in 15.9% of 

cases (1717 of 10776). The technicians discarded the remaining 29.3% of productions 

that were unusable (10.9% of cases, 1178 of 10776) or could not be determined by the 

algorithm either before or after manual-assisted glottic angle estimation (17.4% of cases, 

1876 of 10776). This analysis resulted in 7709 usable VCV productions for further 

processing. Algorithmic reliability was not assessed in the current study since prior work 

indicates that the algorithm yields good reliability (ICC ≥ .8) compared to manual glottic 

angle estimates (Diaz-Cadiz et al., 2019); however, the initial data processing was then 

rechecked by a second technician.  

Since the goal of the current analysis was to examine RFF in reference to the 

physiological termination or initiation of vocal fold vibration (rather than estimated 
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transition points using the acoustic signal), a series of kinematic time points were then 

extracted from each /ifi/ production to mark these transitions. Technicians were presented 

with a MATLAB GUI (see Fig. 3.2) showing time-aligned high-speed video frames, the 

microphone signal, the previously extracted glottic angle waveform, and a quick 

vibratory profile (QVP). The QVP is a one-dimensional waveform that captures the 

vibration of the vocal folds, in addition to non-glottal activities such as camera or 

epiglottic motion (Ikuma et al., 2013). The QVP was included in this analysis as an 

alternative to the glottal area waveform due to its sensitivity to HSV imagery and 

superior ability to track the harmonic motion of the vibrating vocal folds. Specifically, 

the QVP is sensitive to changes in light intensity of the image—as opposed to only being 

sensitive to vocal fold vibrations like the glottic angle waveform—such that the QVP 

waveform is ideal for identifying (i) the vibrating glottis in images of poor resolution, and 

(ii) the time window containing the transition between voiced and unvoiced segments 

(Ikuma et al., 2013). 

In the current analysis, the QVP was calculated with methodology and suggested 

parameters as described in Ikuma et al. (2013). In brief, the HSV frame was first centered 

over the glottis using methodology from the semi-automated glottic angle extraction 

algorithm (Diaz-Cadiz et al., 2019). Vertical and horizontal profiles of the HSV frames 

were then calculated using an observation duration of 0.02 seconds in order to 

sufficiently capture a minimum fo of 50 Hz. From here, the two HSV frame profiles were 

summated to produce the QVP. The resulting QVP profile was then high-pass filtered 

using a 7th order Butterworth to attenuate low frequency noise below a cut-off frequency  
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 of 50 Hz.  
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With the MATLAB GUI described above, a total of three technicians used the 

time-aligned microphone signal, glottic angle waveform, and QVP to identify four 

kinematic timing metrics using methodology described in Park et al. (Under Review):  

• Start of abduction (tabd): Last full or maximum contact of the vocal folds 

during voicing offset 

• Time of voicing offset (toff): Termination of the last vibratory cycle before 

the voiceless consonant 

• Time of voicing onset (ton): Initiation of the first vibratory cycle after the 

voiceless consonant 

• Termination of adduction (tadd): First full or maximum contact of the vocal 

folds during voicing onset 

In the event that the arytenoid cartilages obstructed the view of the vocal folds 

during voicing offset (e.g., due to supraglottic constriction), tabd was considered as the 

time in which the arytenoid cartilages began to move away from one another; similarly, if 

the arytenoid cartilages blocked the vocal folds during voicing onset, tadd was considered 

as the time at which the arytenoid cartilages stopped moving toward one another. In the 

event that the vocal folds exhibited an abrupt closure at the start of voicing onset (i.e., 

prior to vocal fold vibration), ton was extracted as the time point immediately before the 

point of abrupt vocal fold closure.  

Technicians were instructed to use the glottic angle waveform and QVP to 

identify these four time points, then corroborate the selected indices via manual 

visualization of the raw HSV images. This process was carried out to minimize errors 
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that may occur in the event that the glottic angle waveform failed to capture small glottal 

gaps during vibratory cycle phases or if the QVP was confounded by lighting artifacts 

(e.g., intensity saturation due to the epiglottis coming into view). Of note, the microphone 

signal was included within the GUI in the event that the glottic angle waveform and QVP 

both failed to properly track the vibrations of the vocal folds. In such instances, the 

technicians were able to select “Redo” from a drop-down menu (labeled “Action” in the 

right-hand corner of Fig. 3.2) to indicate that the production needed to be rejected or 

reprocessed using methodology from VCV Usability. Productions from which the 

technician successfully identified the four time metrics were marked as “Keep.” 

The technicians each reanalyzed 10% of participants in a separate sitting to ensure 

adequate intrarater reliability. The three technicians also analyzed the HSV images of the 

same participant to assess interrater reliability. Intrarater reliability was assessed via two-

way mixed-effects ICCs for absolute agreement, whereas interrater reliability was 

computed using two-way mixed-effects ICCs for consistency of agreement (single 

measures). The reliability of each technician in extracting the four kinematic time points 

is shown in Table 3.3. Intrarater reliability ranged from moderate to excellent (.70–.99), 

with an overall mean reliability of .98 (95% CI = .97–1.0). Average interrater reliability 

Table 3.3. Reliability of kinematic time point extraction for three trained technicians.  

Measure Intrarater Reliability Interrater Reliability 
Technician 1 Technician 2 Technician 3 Mean (95% CI) 

tabd .70 .98 .99 .75 (.67–.82) 
toff .86 .99 .99 .91 (.86–.96) 
ton .95 .99 .99 .97 (.96–.99) 
tadd .95 .99 .99 .97 (.96–.99) 

Note. tabd = start of abduction, toff = time of voicing offset, ton = time of voicing onset, tadd = 
termination of adduction. 
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for the four kinematic time measure ranged from good to excellent (.75–.97), producing 

an overall reliability of .90 (95% CI = .86 –.94). 

An error analysis was then performed on the 7709 VCV productions to determine 

the resolution error in capturing cycle-to-cycle changes in fo at a sampling rate of 1 kHz. 

To do so, ton and toff were used to localize the initiation and termination of vocal fold 

vibration for voicing onset and offset, respectively. The 10 glottal pulses adjacent to ton 

and toff were identified from the QVP using a custom peak detector in MATLAB (version 

9.3). Vocal cycle durations were then calculated for steady-state vocal cycles (offset 

cycle 1, onset cycle 10) and boundary cycles (offset cycle 10, onset cycle 1). Cycle 

periods were then compared to the sampling period (0.001 s) to quantify the proportion of 

the sampling period that is accounted for in a single vocal cycle. On average, the 

sampling period accounted for 17.0% (SD = 6.4%, range = 5.1–40.0%) of a single vocal 

cycle. For voicing offset, the sampling period constituted 17.4% (SD = 5.8%) of offset 

cycle 1 and 15.9% (SD = 6.7%) of offset cycle 10. For voicing onset, the sampling period 

made up 17.3% (SD = 5.1%) of onset cycle 1 and 17.2% (SD = 5.3%) of onset cycle 10. 

These results indicate that the sampling period used here was sufficient to identify cycle-

to-cycle changes in fo without introducing aliasing. As such, the resolution of the QVP 

was deemed appropriate for identifying the approximate initiation and termination of 

vocal fold vibration for voicing onset and offset. 

Manual RFF Estimation 

Using methodology described in detail in Chapter 2, two trained technicians 

carried out manual RFF estimation on each participant (7709 total VCV productions). 
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Due to the availability of 

technicians to perform manual 

RFF techniques, five trained 

technicians, who met interrater 

reliability criterion ≥ .933, 

were assigned to manually 

estimate RFF throughout the 

course of data collection. Table 3.4 shows the number of speakers that each of the five 

technicians rated. Mean RFF values were computed across technicians to use as the gold-

standard for RFF estimates. Technicians used the manual RFF rejection criteria detailed 

in Vojtech and Heller Murray (2019a) to determine whether an offset and/or onset 

instance should be rejected. Examples of such criteria include glottalization, 

misarticulation, or voicing of the /f/. 

Intrarater reliability was assessed via Pearson correlation coefficients within each 

technician when instructed to reanalyze 20% of participants in a separate sitting, whereas 

interrater reliability was computed via two-way mixed-effects ICCs for consistency of 

agreement. The average intrarater reliability was calculated as r = .90 (SD = .05, range = 

.84–.97), and the average interrater reliability was computed as ICC(3,1) = .93 (SD = .04, 

range = .87–.98). Rater reliability was also examined by assessing the difference between 

selected boundary cycles (i.e., voicing offset cycle 10, voicing onset cycle 1) of original 

                                               	
 3 The dataset used to train individuals in manual relative fundamental frequency estimation is a 
separate dataset from that described here and may be downloaded from 
https://sites.bu.edu/stepplab/research/rff/ (Last viewed May 30, 2019). 

Table 3.4. Number of speakers for which each of five 
trained technicians manually computed relative 
fundamental frequency.  

Technician 1 2 3 4 5 
1 38     
2 5 82    
3 19 53 80   
4 14 13 2 29  
5 0 11 6 0 17 

Note. The matrix shows common speakers analyzed between 
technicians, whereas the diagonal (bolded) describes the number 
of speakers a single technician rated in total. 
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and reanalyzed samples. Errors in boundary cycle selection were quantified as the 

magnitude of the average number of vocal cycles between original and reanalyzed 

samples. The mean intrarater error was 0.64 vocal cycles (SD = 0.44 cycles), with errors 

in boundary cycle selection ranging from 0 to 5 vocal cycles. The mean interrater error 

was 0.71 vocal cycles (SD = 0.41 cycles), with errors in boundary cycle selection across 

technicians ranging from 0 to 6 vocal cycles. 

Semi-automated RFF Estimation 

Semi-automated RFF estimation was first performed on all 7709 VCV 

productions using the aRFF-AP algorithm in MATLAB (version 9.3). The relationship 

between acoustic features and the physiological vibrations of the vocal folds was then 

examined. First, a literature review was conducted to select a set of acoustic features that 

showed promise in distinguishing voiced segments from voiceless segments, as is the 

goal of the acoustic features in the semi-automated RFF algorithm. From here, the 

acoustic feature set was reduced to reflect the features that best corresponded with the 

termination (toff) or initiation (ton) of voicing. The features were then implemented in the 

aRFF-AP algorithm (now “aRFF-APH”) to enhance the physiological relevance of RFF.  

Acoustic Feature Selection 

In the aRFF and aRFF-AP algorithms, acoustic feature trends are examined to 

identify a state transition in feature values that marks the boundary cycle—that is, the 

vocal cycle that marks the transition between voiced and voiceless speech segments (also 

called voiced/unvoiced detection). The boundary cycle is offset cycle 10 for voicing 

offset and onset cycle 1 for voicing onset (see Fig. 3.1). In both algorithm versions, 
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normalized peak-to-peak amplitude, number of zero crossings, and waveform shape 

similarity are used in this process; however, it is not clear whether these acoustic features 

are the best choice for performing voiced/unvoiced detection since they were selected to 

increase correspondence with manual RFF. As both manual and semi-automated RFF are 

computed using the acoustic signal, there may be other features that better correspond to 

the true vibrations of the vocal folds (which are obtained in the current study using HSV). 

As such, additional features were identified that could be used in voiced/unvoiced 

detection. This resulted in the inclusion of 15 additional acoustic features to investigate in 

regard to classifying voiced and unvoiced speech segments: (1) autocorrelation; (2,3) 

simple and normalized cross-correlation; (4,5) average and median pitch strength; (6,7,8) 

average, median, and standard deviation of voice fo; (9,10) mean and standard deviation 

of cepstral peak prominence; (11) high-to-low ratio of spectral energy; (12) short-time 

energy; (13) short-time log energy; (14) short-time magnitude; and (15) signal-to-noise 

ratio. Table 3.5 provides a description of each of acoustic features, along with the 

proposed hypotheses in feature values when used for voiced/unvoiced detection. 

Table 3.5. Acoustic measures for classifying voiced and unvoiced speech segments, with 
abbreviations (Abbr). Rows that are shaded yellow indicate that the acoustic feature was 
included in the aRFF and aRFF-AP algorithms. 

Feature Name Abbr. Definition and Rationale 

Autocorrelation ACO ACO is a comparison of a segment of a voice signal to a delayed copy 
of itself as a function of the delay, and is often used in fo estimation 
and voiced/unvoiced classification (Camacho, 2007; Jalil, Butt, & 
Malik, 2013; Nandhini & Shenbagavalli, 2014). As more periodic 
signals elicit higher ACO values, it was expected that ACO values of 
the vocal cycles during the vowel /i/ would be greater than those 
calculated from voiceless consonant /f/. 
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Mean Cepstral 
Peak 

Prominence 

CPP CCP is a correlate to overall severity of dysphonia (Heman-Ackah et 
al., 2014) and reflects the distribution of energy at harmonically 
related frequencies (Hillenbrand et al., 1996). It is calculated as the 
magnitude of the peak with the highest amplitude in the cepstrum (i.e., 
the Fourier transform of the power spectrum, representing the spectral 
representation of the spectrum). Using CPP, quasiperiodic vocal 
cycles during the vowel /i/ may be differentiated from aspiration noise 
of the /f/. As higher CPP values are associated with more periodic 
signals, CPP was hypothesized to be greater in /i/ than /f/. 

Average  
Pitch Strength 

APS APS is a correlate to overall severity of dysphonia (Kopf et al., 2017; 
Shrivastav et al., 2012) and has been implemented to discriminate 
voice signal types (Anand, Kopf, Shrivastav, & Eddins, 2019b). Using 
Auditory-SWIPE′, pitch strength is calculated by correlating a voice 
signal with a sawtooth waveform constructed across a range of 
possible fo values; the fo value that elicits the greatest correlation is 
considered the fo of the signal, and the degree of this correlation is the 
pitch strength. APS is then calculated as the average pitch strength of 
the window. Because vocal cycles are characterized using fo, it is 
expected that the correlation between the sawtooth waveform and 
voice signal would be greater in voiced segments than unvoiced 
segments. As such, APS was hypothesized to be greater in /i/ than /f/. 

Average  
Voice fo 

Afo Afo is the acoustic correlate of vocal pitch, and is calculated in the 
current study using the Auditory-SWIPE′ algorithm (described above 
in APS). It was expected that Afo would exhibit similar trends to 
resulting RFF measures, wherein Afo would remain stable or decrease 
during voicing offset, then increase during voicing onset.  

Cross-
correlation 

XCO XCO is a comparison of a segment of a voice signal with a different 
segment of the signal. As with the ACO, XCO is often implemented in 
fo estimation and voiced/unvoiced classification (Camacho, 2007; 
Ghaemmaghami, Baker, Vogt, & Sridharan, 2010; Samad, Hussain, & 
Fah, 2000). It was expected that quasiperiodic voiced cycles of the 
vowel /i/ would elicit higher XCO values compared to the aspiration 
and frication noise of the consonant /f/. 

Low-to-high 
ratio of spectral 

energy 

LHR LHR is a measure of spectral tilt, and is calculated by comparing 
spectral energy above and below a specified frequency. Using a cut-
off frequency of 4 kHz (Hillenbrand et al., 1994; Hillenbrand et al., 
1996), the LHR may be able to distinguish harmonic energy due to the 
vowel, /i/, from high-frequency aspiration and frication noise (above 
2–3 kHz) that may occur when producing the voiceless consonant, /f/. 
As such, it was hypothesized that larger LHR values will occur in the 
/i/ than the /f/ of /ifi/ productions. 

Median  
Pitch Strength 

MPS MPS was included in the current study as an alternative to APS. 
Similarly, it was expected that MPS would be greater in voiced 
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segments corresponding to the vowel /i/ than unvoiced segments of 
the consonant /f/. 

Median Voice fo Mfo Mfo was incorporated as an alternative to Afo. Mfo was hypothesized to 
be different between /i/ and /f/ segments, with values corresponding to 
/f/ segments exhibiting lower, more variable values due to errors in fo 
estimation within unvoiced segments. 

Normalized 
Cross-

correlation 

NXCO A variant of the simple XCO, NXCO also compares a segment of a 
voice signal with a different segment of the signal. NXCO is often 
considered more robust than XCO in voiced/unvoiced classification 
since the amplitude of the compared windows are normalized, thereby 
removing differences in signal amplitude as a factor. It was expected 
in the current study that voiced cycles of the vowel /i/ would elicit 
higher NXCO values compared to windows of the voiceless consonant 
/f/ due to increased periodicity. 

Normalized 
Peak-to-peak 
Amplitude 

PTP PTP is computed as the range of the amplitude of a windowed voice 
signal. Because vowels generally exhibit higher amplitudes than 
consonants, it was postulated that the amplitude of the vowel (/i/ in the 
current study) would be greater than that of /f/, leading to higher PTP 
values.  

Number of Zero 
Crossings 

NZC NZC refers to the number of sign changes of the windowed voice 
signal. It was expected that NZC would be greater in the voiceless 
consonant compared to the vowel due to stochastic aspiration and 
frication noise in producing /f/. 

Short-time 
Energy 

STE STE is the energy of a short voice segment, wherein high energy 
would result from a voiced signal segment and lower energy would 
correspond to a unvoiced signal segment (Dong, Liu, Zhou, & Cai, 
2002; Jalil et al., 2013; Swee, Salleh, & Jamaludin, 2010). In the 
context of the current study, it was expected that STE values of the 
vowel /i/ would be substantially greater than those of the voiceless 
consonant, /f/. 

Short-time Log 
Energy 

SLE SLE is a common parameter in automated speech recognition systems 
and is calculated as the logarithm of the energy of a short voice 
segment. It is used in the current study as an alternative to STE. As 
with STE, it was expected that /i/ segments would elicit higher SLE 
values than /f/ segments due to greater signal energy occurring within 
the vowel than voiceless consonant. 

Short-time 
Magnitude 

STM STM is the magnitude of a short voice segment, wherein high 
magnitudes would refer to a voiced signal segment and lower 
magnitudes would refer to an unvoiced signal segment (Dong et al., 
2002; Jalil et al., 2013; Swee et al., 2010). STM was expected to be 
greater in windows of time pertaining to the vowel /i/ than of the 
voiceless consonant, /f/. 
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Signal-to-noise 
Ratio 

SNR SNR is an estimate of the power of a signal compared to that of a 
segment of noise. In the current study, SNR was postulated to be 
greater in windows containing vocal cycles of the vowel, /i/, compared 
to windows containing aspiration and frication noise of the voiceless 
consonant, /f/. 

Standard 
Deviation of 

Cepstral Peak 
Prominence 

SD 
CPP 

Calculated as the standard deviation of CPP values within a window, it 
was expected that SD CPP would be greater in /f/ segments than /i/ 
segments due to variations in signal periodicity as a result of 
aspiration and frication noise. 

Standard 
Deviation of 

Voice fo 

SD fo Calculated as the standard deviation of fo values within a window, it 
was expected that SD fo would be greater in /f/ segments than /i/ 
segments due to errors in fo estimation (as the unvoiced segments 
would not have a valid fo value). 

Waveform 
Shape 

Similarity 

WSS WSS is computed as the normalized sum of square error between the 
current window of time and the previous window of time. It is 
calculated in reference to a window of time in the voiceless consonant, 
such that another window in the voiceless consonant would elicit 
higher WSS values than would a window in the vowel. 

Thirteen of the 18 features were calculated directly from the microphone signal: 

ACO, CPP, XCO, LHR, NXCO, NZC, PTP, STE, SLE, STM, SNR, SD CPP, and WSS. 

The remaining five features were calculated using a processed version of the microphone 

signal. Specifically, Auditory-SWIPE′ (Camacho, 2012; Camacho et al., 2008)—the fo 

estimation method used in the aRFF-AP algorithm—was used to extract the fo contour 

and pitch strength contour from the microphone signal of each /ifi/ production. Three 

features were calculated from the fo contour (Afo, Mfo, SD fo), and two features were 

computed using the pitch strength contour (APS, MPS). 

In addition to examining the 13 acoustic features extracted from the raw 

microphone signal, filtered versions of these features were also considered. The aRFF 

and aRFF-AP algorithms employ a version of the microphone signal when band-pass 

filtered ±3 ST around the average fo of the speaker to identify peaks and troughs in signal 
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amplitude. The aRFF-AP algorithm also used this filtered version of the signal to 

compute PTP (whereas NZC and WSS were calculated using the raw microphone signal). 

With filtering, a total of 31 acoustic features were considered for further analysis. 

Feature Set Reduction 

The acoustic feature set was examined to (i) remove features that did not 

appropriately capture the transition between voiced and unvoiced segments, and (ii) 

reduce multicollinearity amongst the selected features. To do so, the discrepancy in 

boundary cycle identification (i.e., voicing offset cycle 10, voicing onset cycle 1) was 

first quantified between HSV-derived voicing transitions and acoustic features operating 

on the microphone signal.  

Acoustic features were assessed by simulating a sliding window process to 

calculate features across time, ranging from the midpoint of the voiceless consonant and 

into the vowel. The sliding window was positioned using methodology described in 

Vojtech et al. (2019; see Chapter 2) such that features were computed as a function of the 

number of pitch periods4 away from the “true” boundary cycle. In this previous work, the 

true boundary cycle was in reference to vocal cycles that were identified through manual 

RFF estimation. Here, however, the true boundary cycle was set to reference the time of 

voicing offset (i.e., toff) and the time of voicing onset (i.e., ton) to investigate the 

relationship between these acoustic features and the physiologically derived termination 

and initiation of vocal fold vibration, respectively. Acoustic features were analyzed as a 

                                               	
4 “Pitch period” refers to the duration of one glottal cycle, and was computed per /ifi/ production 
using the average fo determined using Auditory-SWIPE′. 
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function of ±10 pitch periods from the true boundary cycle to comprehensively examine 

trends in feature values. In this way, each /ifi/ production resulted in 21 feature values 

(i.e., one feature value for each pitch period) for each of the 31 acoustic features. The 

feature values were then visually inspected to determine which acoustic features failed to 

exhibit a substantial change in feature magnitude during the transition between the 

voiceless consonant and vowel; such features were removed from subsequent analysis. 

Useful acoustic features were then input into a stepwise binary logistic regression 

to determine the probability of feature values corresponding to a voiced or unvoiced 

segment. In this model, acoustic feature values were input as continuous predictors when 

calculated -10 to +10 average pitch periods away from the true boundary cycle. This 

resulted in 21 feature values for each /ifi/ production for each acoustic feature. The 

response variable corresponded to whether the segment analyzed was voiced (1) or 

unvoiced (0). For voicing offset, -10 to 0 pitch periods from the true boundary cycle were 

considered voiced, whereas 1 to 10 pitch periods from the true boundary cycle were 

considered unvoiced. For voicing onset, -10 to -1 were considered unvoiced and 0 to 10 

were considered voiced. Importantly, the data values for each feature were assumed 

independent in the regression model to identify which features were significantly related 

to voicing status rather than to create a regression equation for predicting voicing status. 

Variable significance was set to p < .05. Highly correlated features (variable inflation 

factor > 10) were removed from the model to reduce multicollinearity. Acoustic features 

that exhibited significant predictive effects and were sufficiently independent were 

retained for further algorithmic refinement.  
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Algorithmic Modifications 

After identifying an acoustic feature set, the features were implemented into the 

semi-automated RFF algorithms. In order to do this, the methodology for refining these 

algorithms from Chapter 2 was adapted to the current study. First, the pitch strength 

rejection criterion set for the aRFF-AP algorithms was carried over to the current study, 

such that VCV productions with an average pitch strength < .05 were rejected from 

further analysis. The remaining productions were then examined to identify potential 

vocal cycles. As described in detail in Chapter 2, a sliding window based on the 

speaker’s average fo advanced from the voiceless consonant and into the vowel of interest 

(either to assess voicing offset or voicing onset); within each window of time, the set of 

acoustic features were calculated. In the current study, the selected acoustic features were 

computed rather than the acoustic feature set used in the aRFF and aRFF-AP algorithms 

(i.e., PTP, NZC, WSS). Rule-based signal processing techniques were then implemented 

to identify the boundary cycle that separates the vowel from the voiceless consonant. To 

locate this cycle, the algorithm identified a feature value that maximized the effect size 

between left and right components of each acoustic feature vector (i.e., such that the 

vector could be split into a “voiced” segment and “voiceless” segment). The cycle index 

that corresponded to this identified feature value was selected as the boundary cycle 

candidate for that feature. The median of these candidates was then calculated as the 

boundary cycle. 

Distinct from the rule-based signal processing techniques of the aRFF-AP 

algorithms, pitch strength categories were not implemented in the present study. As such, 
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the boundary cycle identification methods used in aRFF-APH algorithms more closely 

mirrored that of the original aRFF algorithms (see Lien, 2015 for more details). To 

summarize, the aRFF-APH algorithms comprised the (a) physiologically relevant 

acoustic features and (b) pitch strength rejection criterion, such that:  

1. If the average pitch strength of the VCV production did not meet (b), the 

production was rejected.  

2. For both voicing offset and onset, boundary cycle candidates were identified 

for (a) using effect size methodology implemented in the aRFF and aRFF-AP algorithms.  

3. The median of the boundary cycle candidates was calculated as the predicted 

boundary cycle for the offset or onset instance. 

Algorithmic Performance 

To assess the effectiveness of introducing physiologically relevant acoustic 

features into the semi-automated RFF algorithms, the capacity of the aRFF-APH 

algorithms to locate the true boundary cycle (referenced to toff for voicing offset and ton 

for voicing onset) was compared against that of manual estimation and the aRFF-AP 

algorithms. The 7709 VCV productions from the 122-speaker dataset were first examined 

using each RFF estimation method. The accuracy of each method in identifying the true 

boundary cycle was quantified as the distance between the true boundary cycle (relative 

to toff for voicing offset and ton for voicing onset) and the estimated boundary cycle for 

each voicing offset and onset instance when using each RFF estimation method. This 

distance was measured in average pitch periods from the true boundary cycle, as 

described in Acoustic Feature Selection. The distance between true and estimated 
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boundary cycles was then compared across RFF estimation methods to determine which 

method corresponded most closely to the vibratory characteristics of the vocal folds.  

Statistical Analysis 

To determine whether there was a relationship between RFF estimation method 

(manual, aRFF-AP, aRFF-APH) and resulting boundary cycle classification accuracy, 

two chi-square tests of independence were performed (one for voicing offset and onset 

for voicing onset). In each analysis, a contingency table was developed to describe the 

frequency of correctly classified boundary cycles—wherein the distance between true and 

estimated boundary cycles was zero—versus misclassified boundary cycles (i.e., non-

zero distance between true and estimated boundary cycles). Significance was set to a 

priori to p < .05. Cramer’s V was used to assess effect sizes of significant associations. 

Post hoc chi-square tests of independence were then performed for pairwise comparisons 

of the three RFF estimation methods using a Bonferroni-adjusted p value of (.05/3 =) 

.017.  

Results 

Acoustic Feature Selection 

Fig. 3.3 shows the relationship between acoustic features and the true boundary 

cycle (relative to toff) for 7709 voicing offset instances. Similarly, Fig. 3.4 shows this 

relationship (relative to ton) for 7709 voicing onset instances. Acoustic features calculated 

directly from the microphone signal are shown when calculated from the raw signal as 

well as from the band-pass filtered signal. It may be observed that acoustic features that 

depend on signal energy (PTP, LHR, STE, STM, SLE, SNR) are greatest when calculated 
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within a window of time pertaining to a vowel rather than the voiceless consonant. 

Similar trends are exhibited by the majority of features that depend on signal periodicity 

(CPP, XCO, NXCO, ACO) and fo (APS, MPS, Afo, Mfo). The opposite is true for NZC 
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(when calculated from the raw microphone signal) and WSS, which are both greatest 

when calculated within a window of time pertaining to the voiceless consonant. The 
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features that examine the standard deviation of values (SD fo and SD CPP) exhibit a 

similar yet less pronounced trend to that of NZC and WSS.  

Interestingly, the majority of raw and filtered counterparts showed similar trends 

for both voicing offset and onset. This included PTP, STM, STE, XCO, NXCO, WSS, 

LHR, SD CPP, SNR, and LE. For NZC, CPP, and ACO, however, raw and filtered signal 

counterparts exhibited discrepant trends. In particular, NZC was low in the vowel and 

increased toward the voiceless consonant (positive pitch period distance in Fig. 3.3 and 

negative pitch period distance in Fig. 3.4) when calculated using the raw microphone 

signal, but was relatively constant when estimated using the filtered signal. ACO 

exhibited a similar trend in stationarity when calculated from the band-pass filtered 

signal. CPP, on the other hand, demonstrated higher values nearest the vowel when 

calculated using the raw microphone signal, but the opposite was true when using the 

band-pass filtered signal.  

Manual inspection of these 31 features resulted in the removal of the filtered 

NZC, raw and filtered ACO, filtered CPP, filtered LHR, raw and filtered SD CPP, and 

SD fo due to a lack of discrimination between voiced and unvoiced segments. All further 

analyses were completed using the remaining 23 features.  

Stepwise Binary Logistic Regression 

Table 3.6 shows that filtered WSS, Mfo, CPP, NZC, STE, APS, NXCO, and XCO 

were all significant predictors of voicing status for voicing offset (p < .05). When using 

these eight features, the model for voicing offset accounted for 61.8% of the variance in 

voicing status (adjusted R2 = 61.8%), with an area under the receiver operating 
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characteristic (ROC) curve of .96. Inspection of the coefficients and corresponding odds 

ratios indicated that the log odds of voicing decreased per one unit increase in STE, 

NXCO, NZC, or filtered WSS (i.e., negative coefficient). On the other hand, the log odds 

of voicing increased per one unit increase in Mfo, CPP, APS, or XCO (i.e., positive 

coefficient). For voicing onset, the stepwise binary logistic regression revealed that 

filtered WSS, Mfo, CPP, NZC, APS, SNR, filtered STE, and filtered LE were all 

significant predictors of voicing status (p < .05; see Table 3.6). The model for voicing 

onset accounted for 76.0% of the variance in voicing status (adjusted R2 = 76.0%), with 

an area under the ROC curve of .98. The model for voicing onset indicated that the log 

odds of voicing decreased per one unit increase in NZC or filtered STE. The log odds of 

Table 3.6. Summary of significant variables in the stepwise binary logistic regression 
statistical model. 

Model Acoustic Feature Coef SE Coef z p Odds Ratio 
O

ff
se

t 

Constant 0.12 0.07 1.68 .09 — 
Filtered WSS -1.51 0.05 -30.04 <.001 0.22 
Mfo 1.43 0.04 34.26 <.001 4.19 
CPP 1.20 0.06 19.53 <.001 3.34 
NZC -3.30 0.04 -78.53 <.001 0.04 
STE -5.69 0.15 -38.04 <.001 0.01 
APS 9.26 0.12 78.81 <.001 10535.03 
NXCO -0.84 0.05 -16.92 <.001 0.43 
XCO 1.01 0.16 6.35 <.001 2.74 

       

O
ns

et
 

Constant -2.18 0.10 -22.46 <.001 — 
Filtered WSS 1.43 0.08 18.66 <.001 4.20 
Mfo 2.16 0.06 39.29 <.001 8.65 
CPP 1.09 0.08 12.95 <.001 2.98 
NZC -2.56 0.06 -41.07 <.001 0.08 
APS 8.93 0.15 59.13 <.001 7527.75 
SNR 0.51 0.06 8.92 <.001 1.67 
Filtered STE -3.67 0.10 -36.61 <.001 0.026 
Filtered LE 3.23 0.07 46.45 <.001 25.33 

Note. “Filtered” refers to using the band-pass filtered version of the microphone signal to calculate the 
corresponding acoustic feature. 
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voicing increased per unit increase in filtered WSS, Mfo, CPP, APS, SNR, or filtered LE. 

The resulting acoustic features were then incorporated into the aRFF-APH algorithms to 

identify the boundary cycle of voicing. 

Algorithmic Performance 

The comparison of aRFF-APH, aRFF-AP, and manual RFF estimation techniques 

in identifying the true 

boundary cycle is shown 

in Fig. 3.5. Out of 7709 

offset instances (see Fig. 

3.5a), the aRFF-APH 

algorithms resulted in the 

greatest number of 

correctly identified 

boundary cycles (N = 

5567, 72.2% of instances), 

followed by aRFF-AP (N 

= 5016, 65.1% of 

instances) then manual (N 

= 984, 12.8% of 

instances). For each RFF 

estimation method, the 

majority of offset 

 
Figure 3.5. Boundary cycle identification of each relative 
fundamental frequency estimation method (manual, aRFF-AP, 
aRFF-APH). For (a) voicing offset and (b) voicing onset. 
Results for manual RFF estimation are shown in yellow, for 
aRFF-AP are shown in orange, and for aRFF-APH are shown 
in blue. 
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misclassifications occurred closer to the vowel, including 67.4% of total instances when 

using manual RFF, 25.7% when using aRFF-AP, and 31.6% when using aRFF-APH. The 

aRFF-APH algorithm rejected the least number of offset instances (N = 154; 2%), 

followed by the aRFF-AP algorithm (N = 160; 2.1%), then manual estimation (N = 838; 

10.9%). A total of eight offset instances were automatically rejected by the aRFF-AP and 

aRFF-APH algorithms due to pitch strength values < .05. The remainder of these 

rejections were due to errors in identifying voiced cycles (N = 150 for aRFF-AP, N = 146 

for aRFF-APH), or post-processing of resulting RFF values (e.g., glottalization; N = 2 for 

aRFF-AP, N = 0 for aRFF-APH). 

Out of 7709 onset instances (see Fig. 3.5b), the aRFF-APH algorithms also 

resulted in the largest amount of correctly identified boundary cycles (N = 6290, 81.6% 

of instances). The aRFF-AP algorithm produced the second greatest number of correctly 

identified cycles (N = 5984, 77.8% of instances), followed by manual RFF (N = 2137, 

27.7% of instances). For voicing onset, the majority of misclassifications for the semi-

automated RFF algorithms (aRFF-AP, aRFF-APH) occurred within the voiceless 

consonant (12.2% for aRFF-AP and 4.0% for aRFF-APH). Misclassifications using 

manual RFF estimation were more concentrated within the vowel (41.2% of onset 

instances). The aRFF-AP algorithm rejected the least number of onset instances (N = 782; 

10.1%), followed by the aRFF-APH algorithm (N = 1107; 14.4%) and manual RFF (N = 

1913; 24.8%). A total of 236 onset instances were automatically rejected by the aRFF-AP 

and aRFF-APH algorithms due to a pitch strength < .05; the remainder of these rejections 

were due to errors in identifying voiced cycles (N = 531 for aRFF-AP, N = 851 for aRFF-
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APH), or post-processing of resulting RFF values (e.g., glottalization; N = 15 for aRFF-

AP, N = 20 for aRFF-APH). 

The results of the chi-square tests of independence are shown in Table 3.7. This 

analysis showed that the relation of RFF estimation method and ability to identify the true 

boundary cycle was significant, resulting in a large effect sizes for both voicing offset (p 

< .001, V = .53) and voicing onset (p < .001, V = .51). The relation of manual and aRFF-

AP methods with boundary cycle accuracy had a significant, large effect for voicing 

offset (p < .001, V = .54) and voicing onset (p < .001, V = .50), wherein aRFF-AP was 

more likely to correctly identify the true boundary cycle than manual estimation. 

Similarly, the relation of manual and aRFF-APH method with boundary cycle accuracy 

had a significant, large effect for both offset (p < .001, V = .60) and onset (p < .001, V = 

.54), such that aRFF-AP was more likely to correctly identify the true boundary cycle. 

Finally, the relation of semi-automated RFF algorithms (aRFF-AP, aRFF-APH) was 

Table 3.7. Chi-square (Χ2) tests of independence to examine the association between RFF 
estimation method and accuracy of boundary cycle identification for voicing offset (top model) 
and onset (bottom model). 

Model RFF Estimation Methods df N Χ2 p V Effect Size 
Interpretation 

O
ff

se
t 

Manual vs. aRFF-AP vs. aRFF-
APH 2 23127 6497.0 <.001 .53 Large 

Manual vs. aRFF-AP 1 15418 4435.7 <.001 .54 Large 
Manual vs. aRFF-APH 1 15418 5575.0 <.001 .60 Large 
aRFF-AP vs. aRFF-APH 1 15418 91.5 <.001 .08 Negligible 

        

O
ns

et
 

Manual vs. aRFF-AP vs. aRFF-
APH 2 23127 5917.8 <.001 .51 Large 

Manual vs. aRFF-AP 1 15418 3850.5 <.001 .50 Large 
Manual vs. aRFF-APH 1 15418 4513.8 <.001 .54 Large 
aRFF-AP vs. aRFF-APH 1 15418 37.4 <.001 .05 Negligible 

Note. Effect size interpretations of Cramer’s V are based on criteria from Cohen (1988). 
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significant for both voicing offset and onset (p < .001); however, the size of this effect 

was negligible (V = .08 for offset and V = .05 onset). 

Discussion 

The goal of this study was to conduct an exploratory analysis toward 

understanding the physiological factors that influence acoustic outputs within the RFF 

algorithm. To do so, a large set of speakers produced the utterance, /ifi/, while altering 

vocal rate and vocal effort. Acoustic signals were collected via a microphone in 

conjunction with laryngeal images via a flexible nasendoscope. The resulting database of 

voiced–unvoiced–voiced productions were used to determine the relationships between a 

range of acoustic features and the termination (voicing offset) and initiation (voicing 

onset) of vocal fold vibration. A stepwise binary logistic regression was conducted to 

identify the acoustic features that best coincided with the time of voicing offset and/or 

onset. After implementing these features into the semi-automated RFF algorithm (“aRFF-

APH”), algorithmic performance was assessed by quantifying the distance between 

algorithmically and physiologically identified boundary cycles (i.e., the vocal cycles 

immediately adjacent to the intervocalic fricative, or voicing offset cycle 10 and voicing 

onset cycle 1). This accuracy was compared against that of two other methods of 

calculating RFF: manual RFF estimation and semi-automated RFF estimation in the 

absence of physiologically determined acoustic features (“aRFF-AP”).  

The results of this work indicate that incorporating acoustic features that coincide 

well with voicing transitions leads to increased correspondence between the algorithmic 

and physiologic boundary cycles. By examining the discrepancy in boundary selection 
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between RFF estimation methods, the aRFF-APH algorithm led to the greatest overall 

percentage of correctly identified boundary cycles (71.8%) compared to that of the aRFF-

AP algorithm (66.5%) and manual estimation (21.4%) methods. Indeed, the aRFF-APH 

algorithm was significantly more likely to identify the physiological boundary cycle than 

the aRFF-AP algorithm or manual estimation.  

Despite the promising results obtained for the aRFF-APH algorithm, however, the 

aRFF-AP algorithm remains the gold-standard method for semi-automatically estimating 

RFF. This is because the aRFF-AP algorithm was developed to increase the clinical 

applicability of RFF, whereas the aRFF-APH algorithm was developed to improve the 

physiological relevance of RFF. Due to the inherent differences in the aims of these 

works, pitch strength-tuned algorithm parameters were not developed in the present 

study. Whereas the dataset used in Chapter 2 to develop the aRFF-AP algorithms 

comprised a broad range of vocal function (across the spectrum of dysphonia severity and 

recording conditions), the sample used in the current study was more limited. The 

participants in the current study exhibited a with a narrower range of diagnoses (57% 

typical, 16% MTD, 3% nodules, 2% polyp, 1% scarring, 1% lesion, 20% Parkinson’s 

disease) and resulting dysphonia severity (0–51.3). The range of overall severity of 

dysphonia demonstrated a substantial overlap across groups; for instance, dysphonia 

severity ranged from 1.7 to 34.2, whereas adults with a voice disorder exhibited an 

overall severity of dysphonia ranging from 0.9 to 38.5. Speakers were therefore 

instructed to produce the RFF utterances across a range of vocal rates and amounts of 

vocal effort to simulate a range of laryngeal muscle tension levels. Yet the range of voice 
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sample characteristics captured in the current study was still limited, as all speakers were 

recorded in the same location (i.e., a sound-attenuated booth in the presence of constant 

noise from the endoscopic light source). As such, pitch strength categories were not 

incorporated in the current study. Instead, the methodology described by Lien (2015) was 

used to implement the physiologically relevant acoustic features in the development of 

the aRFF-APH algorithm. 

In spite of the differences between the aRFF-AP and aRFF-APH algorithms, both 

resulted in a greater correspondence between acoustically and physiologically identified 

boundary cycles than did manual estimation. These results are surprising since manual 

estimation was considered the gold-standard technique for calculating RFF. Manual 

estimation serves as the gold standard for RFF estimates since trained technicians can 

exercise trial and error to identify the boundary cycle in difficult scenarios (e.g., poor 

recording environment and/or equipment, severe dysphonia) when boundary cycle 

masking, such as from concurrent aspiration and frication from articulation, is present. 

Yet the findings of the current study call into question whether manual RFF estimation 

should still be considered the gold-standard method. It is possible that the characteristics 

of the speaker database of the current study confounded this outcome, as all speakers 

were recorded in a sound-attenuated booth while undergoing an endoscopic examination. 

In particular, noise from the endoscopic light source could have masked the voice signals 

and/or speaker productions may have deviated from the norm due to the flexible 

nasendoscope. If so, manual RFF estimation techniques may not have been sensitive 

enough to isolate the physiological boundary cycle. Building on this theme, the 
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algorithms identify potential vocal cycles by leveraging a filtered version of the 

microphone signal. Specifically, the microphone signal is band-pass filtered using the 

estimated range of the speaker’s fo, which may reduce the effects of coarticulation from 

concurrent aspiration and frication during the production of the voiceless consonant. As 

such, the algorithms may not have been as affected by these recording conditions since 

the aRFF-AP algorithms were designed to account for such variations and the aRFF-APH 

algorithms were refined based on the physiologically determined vocal fold 

characteristics. 

It is important to note that even though manual estimation resulted in the least 

number of correctly identified boundary cycles, most of these misclassifications occurred 

within two pitch periods of the true boundary cycle for both voicing offset and onset. 

These findings are similar to those comparing differences in boundary cycle selection 

between microphone- and accelerometer-derived RFF estimates using manual estimation 

techniques. Because a neck-surface accelerometer is able to capture the vibrations of the 

glottal source in the absence of vocal cycle masking due to frication and aspiration (as 

may occur during the production of an intervocalic fricative; Cheyne et al., 2003), the 

accelerometer signal is more sensitive in capturing the physiological vibrations of the 

vocal folds. Lien et al. (2015a) estimated that offset RFF values were extracted 

approximately two cycles closer to the vowel when using a microphone signal rather than 

an accelerometer signal. Onset RFF values, on the other hand, were computed less than 

one cycle away from the voiceless consonant when using a microphone signal relative to 

when using an accelerometer signal. The results of the current study support these 
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findings, wherein the majority of misclassifications occurred closer to the vowel for both 

voicing offset and onset when using manual RFF estimation. 

Although the current study elucidates some factors that affect the acoustic outputs 

of the semi-automated RFF algorithm, the source of the discrepancy between acoustic 

and physiological boundary cycles using manual RFF estimation is still unclear. It is 

suspected that this discrepancy is the result of the algorithms leveraging a filtered version 

of the microphone signal to reduce the amplitude of vocal tract resonances, coarticulation 

due to concurrent frication and aspiration, and radiation of the lips. The algorithms use 

this filtered signal to identify potential vocal cycles. By only using the raw microphone 

signal to identify vocal cycles, the RFF values resulting from manual estimation may not 

reflect the true offset or onset of voicing as expected. Further investigation is necessary to 

examine this hypothesis, and should include an analysis of both laryngeal imaging and 

acoustics to comprehensively assess the relevance and validity of manual estimation as 

the gold-standard technique for calculating RFF. In doing so, laryngeal imaging would 

provide physiological confirmation of vocal fold vibrations that are indirectly captured 

via RFF. In addition to comparing manual and semi-automated boundary cycle 

selections, this investigation should aim to compare the boundary cycles obtained via 

manual RFF estimation when using each version of the acoustic signal. In the event that 

manual estimation is no longer considered as gold-standard RFF method, efforts should 

be made to develop new metrics of algorithmic performance, as current measures (e.g., 

root-mean-square error, mean bias error) are calculated in reference to RFF values 

obtained via manual estimation. 
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Limitations and Future Directions 

Although the findings of the current study show promise for using RFF as a 

clinically relevant tool for assessing laryngeal muscle tension, steps must be undertaken 

to improve the clinical applicability of the aRFF-APH algorithm. As previously 

mentioned, the speaker database examined in the current study was limited in terms of 

voice sample characteristics (e.g., overall severity of dysphonia, recording conditions). 

Future work should therefore validate this algorithm in a larger set of speakers (using a 

training and test set) across a broad range of vocal function. In doing so, the aRFF-APH 

algorithm could be modified to include pitch strength categories to account for variations 

in voice sample characteristics.  

In addition to algorithmic validation, it is worth pointing out that the current 

version of the aRFF-APH algorithm was only refined for use in microphone signals. Even 

though the majority of studies on RFF employed microphone signals, there has been 

increasing interest in using neck-surface vibrations generated during speech for 

ecological momentary assessment and ambulatory voice monitoring (e.g., Cheyne et al., 

2003; Cortés et al., 2018; Fryd et al., 2016; Ghassemi et al., 2014; Hillman et al., 2006; 

Mehta et al., 2016; Mehta et al., 2015; Mehta et al., 2012a; Popolo et al., 2005; Švec, 

Titze, & Popolo, 2005; Van Stan et al., 2015a). Using an accelerometer, the physiological 

mechanisms of speech production can be non-invasively assessed in a way that 

minimizes the effects of supraglottic resonance, aspiration and frication due to 

coarticulation, and radiation of the lips. Moreover, accelerometers are less sensitive to the 

effects of background noise (Zanartu et al., 2009) and cannot be used to construct 
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intelligible speech (Cheyne et al., 2003). By capturing daily vocal behavior through a 

neck-surface accelerometer, vocal behaviors associated with excessive or imbalanced 

laryngeal muscle forces could be identified and monitored via RFF. An accelerometer-

tuned RFF algorithm has been developed (Groll et al., 2020); however, future work 

should examine this algorithm to identify physiologically tuned features to identify the 

termination and initiation of vocal fold vibration. Doing so would further improve the 

clinical relevance of using RFF to assess and track laryngeal muscle tension. 

Conclusions 

Although RFF has demonstrated marked potential for clinical implementation as 

an estimate of laryngeal muscle tension, the theoretical understanding of the 

physiological factors that influence the semi-automated RFF algorithm have largely 

remained unclear. The current study therefore examined the relationship between 

acoustic outputs from the algorithm and physiological vocal fold vibratory characteristics 

during voicing offsets and onsets. By enhancing the physiological relevance of the 

acoustic features used to estimate RFF, algorithmic accuracy increased with respect to 

identifying the true termination and initiation of vocal fold vibration. This accuracy was 

greater than that of the previous version of the RFF algorithm as well as the gold-

standard, manual method for calculating RFF. These findings highlight improvements in 

the precision of using RFF to reflect the underlying physiological mechanisms for 

voicing offsets and onsets. 
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CHAPTER 4. The Relationship between Vocal Fold Abductory Kinematics and 

Relative Fundamental Frequency: An Analysis across Young Adults, Older Adults, 

and Adults with Parkinson’s Disease 

Abstract 

Purpose: Relative fundamental frequency (RFF) is an acoustic measure that is 

thought to capture changes in laryngeal muscle tension and vocal fold abductory 

kinematics as a speaker devoices. Older adults typically exhibit lower RFF values than 

young adults, which has thus far been attributed to a prolonged abductory gesture for 

devoicing. Older adults with Parkinson’s disease (PD) are reported to exhibit even lower 

RFF values than similar age controls, perhaps due to the interplay of a prolonged 

abductory gesture and increased levels of baseline laryngeal muscle tension. Despite 

these speculations, the contribution of vocal fold abduction to RFF has not yet been 

characterized. Thus, this study aimed to examine abductory patterns in young adult 

controls, older adult controls, and older adults with PD in order to elucidate the 

contribution of abduction to RFF during intervocalic voicing offsets.  

Methods: Twenty-four individuals with Parkinson’s disease (M = 62.8 years, SD 

= 9.6 years), twenty-four young adult controls (M = 21.8 years, SD = 3.4 years), and 

twenty-four older adult controls (age- and sex-matched to individuals with PD; M = 63.1 

years, SD = 11.3 years) produced strings of the utterance, /ifi/ at their typical vocal pitch 

and loudness. Simultaneous recordings were made using a microphone and flexible 

nasendoscope. RFF was calculated from the acoustic signal, whereas the duration of the 

abduction gesture and glottic angle at voicing offset were identified through the 
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laryngoscopic images. Three separate analysis of variance models were constructed to 

examine differences in mean RFF at offset cycle 10, abduction duration, and glottic angle 

at voicing offset across speaker groups. An analysis of covariance model was then used 

to examine the relationship of RFF and abduction duration, glottic angle at voicing offset, 

speaker age, and speaker group. 

Results: There were no statistically significant differences across groups for RFF 

at offset cycle 10 (p = .084, ηp2 = 0.07), abduction duration (p = .105, ηp2 = 0.06), or 

glottic angle at voicing offset (p = .502, ηp2 = 0.02). However, speaker age (p = .023, ηp2 = 

0.08) and glottic angle at voicing offset (p = .001, ηp2 = 0.16) were statistically significant 

predictors of RFF at offset cycle 10.  

Conclusions: Vocal fold abductory patterns were not significantly different 

across young adult controls, older adult controls, and older adults with PD. However, 

speaker age and glottic angle prior to the termination of vocal fold vibration were found 

to be significantly related to RFF estimates obtained at acoustic voicing offset. The 

findings of this study indicate that RFF is, as hypothesized, related to abductory patterns 

during devoicing. Furthermore, speaker age is a predominating factor in the assessment 

of RFF, and should be considered in future studies aiming to assess differences in RFF 

within and across speakers.  
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Background 

Human speech production arises from the integration of aerodynamic, kinematic, 

and acoustic mechanisms. According to the classic source-filter theory of voice 

production, these mechanisms converge into a sound source and filtering process to drive 

speech production (Fant, 1960; Stevens, 2005). Sound sources are generated from airflow 

passing through narrow constrictions within the larynx, whereas the resonance 

characteristics of the vocal tract filter the sound source to produce speech sounds. 

Different sources are responsible for different speech sounds; for instance, the vibrating 

vocal folds serve as a sound source during the production of vowels, whereas airflow 

passing through oral articulatory constrictions (e.g., tongue elevated toward the hard 

palate) serves as the sound source for voiceless consonants. In the English language, the 

transition between a vowel and a voiceless consonant is marked by a change in source, 

specifically from the vibrating vocal folds to aspiration noise. This transition is associated 

with characteristic physiological patterns that are primarily attributed to laryngeal muscle 

tension and vocal fold kinematics (Löfqvist et al., 1989; Stepp et al., 2011d; Van Den 

Berg, 1958; Watson, 1998).  

Laryngeal muscle tension is a crucial component in the termination of voicing that 

occurs when transitioning from a vowel to a voiceless consonant (“voicing offset”). This 

is because the regulation of laryngeal muscle tension is necessary to tense and abduct the 

vocal folds to cease vocal fold vibration (Boone et al., 2014, p. 42; Löfqvist et al., 1989). 

Numerous mechanisms have been posed to describe the physiological underpinnings of 

increased vocal fold tension during voicing offset; these include increased cricothyroid 
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activity (Stevens, 1977), increased thyroarytenoid activity (Hirano, 1974), and increased 

vocal fold stiffness from passive stretching that occurs as the result of changes in 

laryngeal height (Sonninen, Hurme, & Laukkanen, 1999; Stevens, 1977). Voice 

fundamental frequency (fo) increases as a result of increased tension across the 

aforementioned mechanisms at voicing offset.  

In addition to laryngeal muscle tension, vocal fold abductory kinematics may play 

a key role in enabling voicing offset. The posterior cricoarytenoid muscle is the sole 

intrinsic laryngeal muscle that contributes to vocal fold abduction. It supports the larynx 

during devoicing by acting as an antagonist to the cricothyroid and adductor muscles (i.e., 

thyroarytenoid, interarytenoid, lateral cricoarytenoid; Choi et al., 1993a; Faaborg-

Andersen, 1957; Fujita et al., 1989; Hirano, 1988). Vocal fold abduction has been 

observed during vowels that precede voiceless consonants (Fukui & Hirose, 1983), which 

reduces the duration of vocal fold contact as the vocal folds continue to open (Rothenberg 

& Mahshie, 1988). Watson (1998) hypothesized that vocal fold abduction leads to lower 

fo values during voicing offset. The interplay of laryngeal muscle tension and vocal fold 

abduction are suspected to counteract each other during voicing offset to cease vocal fold 

vibration. These mechanisms may be captured by a non-invasive, objective measure 

called relative fundamental frequency (RFF). 

RFF reflects short-term changes in fo during voicing offsets and onsets, and is 

typically extracted from the ten vocal cycles immediately preceding and following the 

voiceless consonant in a vowel–voiceless consonant–vowel production. The fo values of 

these 20 vocal cycles are then normalized to a relatively steady-state fo value of the 
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corresponding vowel (i.e., first vowel for voicing offset, second vowel for voicing onset) 

to enable comparisons of fo changes within and across speakers.  

The pattern of RFF values during voicing offsets is thought to reflect the interplay 

of laryngeal muscle tension and vocal fold abduction that enable devoicing. In particular, 

RFF values of young adults typically exhibit a characteristically stable or slightly 

decreasing trend during voicing offset (Goberman et al., 2008; Watson, 1998). On the 

other hand, older adults typically demonstrate significantly lower offset RFF values 

(Stepp, 2013; Watson, 1998). The dissimilarity in offset RFF trends in these groups 

would suggest a possible difference in the mechanisms used for devoicing. As the mean 

fo value at voicing onset was found to match the highest mean fo value prior to voicing 

offset, Watson (1998) proposed that older adults may not be able to produce transient 

increases in vocal fold tension to assist in devoicing. Instead, it was suggested that older 

adults rely on a prolonged abductory gesture as their primary mechanism for devoicing, 

rather than a combination of tension and abduction. A prolonged abductory gesture 

implies that the gesture begins earlier during the preceding vowel and may include an 

increased glottic angle at the time of voicing offset (i.e., due to the vocal folds opening to 

cease vibration; Fukui et al., 1983). This mechanism was suggested as a byproduct of 

age-related vocal fold atrophy frequently observed in older adults, which is often 

characterized by changes in voice quality (e.g., breathiness, weakness, hoarseness, 

inability to sustain phonation; Takano et al., 2010), and atrophy of the vocalis muscle 

(Honjo & Isshiki, 1980; Rodeño, Sánchez-Fernández, & Rivera-Pomar, 1993).  

The theoretical implications of a prolonged abductory gesture in older adults is 



	

	

194 

interesting to consider when comparing RFF values between adults with Parkinson’s 

disease (PD) and age-matched controls (Goberman et al., 2008; Stepp, 2013). PD is a 

progressive neurodegenerative disease that typically develops in middle to late life (with 

incidence rates rising rapidly after 60 years of age; Van Den Eeden et al., 2003) and 

affects the central and peripheral nervous systems (Braak et al., 2003; Schapira et al., 

2017). Thought to be a product of neural processes and morphological changes to the 

muscles, increased muscle tension is one of the hallmark motor symptoms exhibited in 

PD (Dietz et al., 1981; Edstrom, 1968; Mu et al., 2012; Rossi et al., 1996; Watts et al., 

1986). The presence of tension in PD has been well-documented in the extremities 

(Berardelli et al., 1983; Cantello et al., 1991; Cantello et al., 1995; Edstrom, 1970; Meara 

et al., 1993; Prochazka et al., 1997; Robichaud et al., 2009; Rossi et al., 1996) axial 

muscles (e.g., hips; Anastasopoulos et al., 2009; Gurfinkel et al., 2006; Kroonenberg et 

al., 2006; Mak et al., 2007; Nagumo et al., 1993, 1996), and—more recently—in the 

laryngeal muscles. Specifically, excessive tension of the intrinsic laryngeal muscles has 

been reported in adults with PD when compared to age-matched controls (Zarzur et al., 

2013; Zarzur et al., 2007). Prior work suggests that RFF is able to reflect this disparity in 

baseline tension, wherein adults with PD exhibit even lower RFF values compared to 

controls (Goberman et al., 2008; Stepp, 2013). Since voicing offset is thought to require 

the interplay of laryngeal muscle tension and vocal fold abduction to devoice, however, it 

is possible that the low RFF values observed in older adults with PD are due to an even 

more prolonged abductory gesture rather than from increased baseline levels of laryngeal 

muscle tension. Since the contribution of vocal fold abduction to RFF has not been 
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physiologically examined, it is thus unclear how tension and abduction play a role in RFF 

values in older adults with PD. 

Although there is theoretical backing to support a prolonged abductory gesture in 

older adults and concurrently increased levels of baseline laryngeal muscle tension in PD, 

these conjectures have yet to be confirmed in relation to RFF. This is largely because 

RFF is estimated via an acoustic signal. Using a microphone to estimate RFF is useful for 

non-invasive clinical voice assessments; however, the acoustic signal indirectly reflects 

the glottal source. As such, vocal fold vibratory and abductory kinematics during 

devoicing cannot be characterized in relation to RFF when only examining the acoustic 

signal. Thus, it remains unclear (i) whether the observed discrepancies in RFF values 

between young and older adults truly correspond to a greater reliance of older adults on 

vocal fold abduction for devoicing, and further, (ii) whether the observed lower offset 

RFF values in PD reflect an increased reliance on abduction to cease voicing, increased 

levels of baseline laryngeal tension that arise with PD, or some other cause (e.g., 

laryngeal height).  

Purpose of the Current Study 

RFF has been proposed as an acoustic estimate that reflects the degree of baseline 

laryngeal muscle tension. This measure shows promise in the clinical assessment and 

tracking of tension, as excessive and/or imbalanced laryngeal muscle forces have been 

implicated in a large proportion of voice disorders (Ramig et al., 1998). However, the 

specific contributions of the abductory gesture to RFF have not been physiologically 

assessed. As such, the goal of the current study was to examine the relationship between 
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vocal fold abductory kinematics and RFF. Three groups of speakers were assessed in the 

present study: young adult control speakers, older adult control speakers, and older adults 

with PD. These groups were chosen to explore hypothesized differences in laryngeal 

muscle tension and abductory mechanisms used to devoice.  

To carry out this investigation, RFF measures were extracted during voicing 

offset and compared to time-aligned abductory measures obtained via high-speed 

videoendoscopy. These HSV measures included glottic angle at voicing offset and 

abduction duration. The relationships between RFF and these measures were used to 

characterize abductory patterns, as well as to elucidate the contribution of abductory 

characteristics to differences in RFF typically observed in older adult controls and older 

adults with PD when compared to young adult controls. As such, four hypotheses were 

proposed: 

1. RFF values at voicing offset (offset cycle 10) will be significantly lower in 

older adult controls than in young adult controls due to a greater reliance 

on vocal fold abduction. Furthermore, RFF values at offset cycle 10 will 

be significantly lower in older adults with PD compared to age- and sex-

matched controls due to increased baseline laryngeal muscle tension. 

2. Older adult controls will exhibit significantly longer abduction durations 

and larger glottic angles at voicing offset compared to young adult 

controls. 
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3. Abduction duration and glottic angle at voicing offset will not 

significantly differ between older adults with PD and age-/sex-matched 

controls. 

4. Abduction duration and glottic angle at voicing offset will be significantly, 

negatively related to RFF at voicing offset (i.e., larger abduction duration 

or glottic angle at voicing offset will be associated with lower RFF values 

at offset cycle 10). 

Methods 

Participants 

A total of 72 participants from the database described in Chapter 3 were analyzed 

in the current study. This subset comprised individuals with PD (N = 24), age- and sex-

matched control speakers (N = 24), and a set of sex-matched young control speakers (N = 

24). All individuals with PD and age-matched controls were administered the Montreal 

Cognitive Assessment (MoCA) to determine cognitive status. An a priori cut-off of ≥21 

was set to ensure all included participants had the capacity to consent to the study tasks 

(Dalrymple-Alford et al., 2010).  

Speakers with Parkinson’s Disease 

A group of 24 individuals with idiopathic Parkinson’s disease (6 female, 18 male) 

aged 43–75 years (M = 62.8 years, SD = 9.6 years) were enrolled in the study. This sex 

distribution is consistent with the higher incidence of PD in men compared to women 

(Gillies, Pienaar, Vohra, & Qamhawi, 2014; Van Den Eeden et al., 2003). All speakers 

were fluent in English, reported no history of hearing problems, and were diagnosed with 
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idiopathic Parkinson’s disease by a neurologist. Individuals with PD were recorded while 

on their usual carbidopa/levodopa medication schedule to preserve typical vocal function. 

Individuals who used deep brain stimulation devices were requested to turn their device 

off for the duration of data collection to minimize the potential impacts of deep brain 

stimulation on laryngeal function.  

Table 4.1 shows demographic information for the 24 individuals with PD. A 

speech-language pathologist specializing in voice disorders assessed the overall severity 

of dysphonia5 of each participant using the Consensus Auditory-Perceptual Evaluation of 

Voice (CAPE-V; Kempster et al., 2009), as described in detail in Chapter 3. The average 

overall severity of dysphonia (OS) score was 17.9/100 (SD = 11.8, range = 4.0–40.9). 

Additionally, the Movement Disorder Society-Sponsored Revision of the Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) was administered to each participant 

with Parkinson’s disease to determine the extent of both motor and non-motor 

complications; each examination was administered and scored per protocol by a certified 

MDS-UPDRS administrator. The average severity of motor complications were moderate 

(M = 47.7, SD = 20.1) and ranged from mild to severe (range = 13–91; Martínez-Martín 

et al., 2015). The average Hoehn-Yahr score was 2.0 (SD = 1.1) and ranged from 0 (no 

disability) to 4 (severe disability; Goetz et al., 2004; Hoehn et al., 1967).  

	  

                                               	
5 Overall severity of dysphonia describes the “global, integrated impression of voice deviance” 
from normal, and is rated on a 100-millimeter visual analog scale out of 100 (wherein higher 
scores indicate a greater deviance from normal). 
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Table 4.1. Demographic information of participants with disordered voices. 

Participant Sex Age CAPE-
V OS 

Parkinson’s Disease Characteristics 
Years Post-

Dx 
MDS-UPDRS-

III 
Hoehn-Yahr 

Scale 
PD1 M 60 30.1 7 54 2 
PD2 M 49 5.8 7 47 1 
PD3 F 62 5.6 9 49 3 
PD4 M 45 10.4 10 51 2 
PD5 F 70 14.7 6 77 4 
PD6 M 50 7.1 0 17 0 
PD7 M 55 18.4 21 49 3 
PD8 M 62 10.0 3 50 2 
PD9 F 74 30.6 24 59 2 
PD10 M 73 33.6 9 19 1 
PD11 M 67 6.4 4 63 3 
PD12 M 67 19.4 2 38 2 
PD13 M 62 27.9 13 47 2 
PD14 M 59 4.0 2 23 2 
PD15 M 73 6.8 3 23 1 
PD16 M 68 5.0 6 38 2 
PD17 M 72 40.9 7 81 4 
PD18 F 73 33.3 8 52 2 
PD19 M 75 22.1 1.5 68 2 
PD20 F 65 15.4 10 48 3 
PD21 M 68 8.5 1 52 3 
PD22 M 43 35.8 5 91 3 
PD23 M 65 28.3 1 35 0 
PD24 F 51 9.7 5 13 0 

Note. Dx = Diagnosis, CAPE-V OS = Consensus of Auditory-Perceptual Evaluation of Voice, 
Overall Severity of Dysphonia, PD = Parkinson’s disease, MDS-UPDRS-III = Movement Disorder 
Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale: Part III, Motor 
Examination. 

Control Speakers 

A group of 48 individuals without voice disorders (12 female, 36 male) were 

recruited to participate in the study. Of the 48 participants, 24 speakers (6 female, 12 

male; M = 63.1 years, SD = 11.3 years, range = 41–81 years) were recruited to serve as 

age6- and sex-matched controls to the group with Parkinson’s disease; the remaining 24 

                                               	
6 Control speakers were matched to those with Parkinson’s disease within six years of age. 
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individuals were young adults (6 female, 12 male; M = 21.8 years, SD = 3.4 years, range 

= 18–31 years), of whom were sex-matched to the older controls and individuals with 

PD. All participants without voice disorders were fluent speakers of English, and had no 

history of speech, language, hearing, neurological, pulmonary or disorders. Participants 

had no trained singing experience beyond grade school in order to minimize variability in 

phonatory behaviors that may occur when differentiating between singers and non-

singers (Stepp et al., 2011b). All were non-smokers and were screened by a certified 

voice-specializing speech-language pathologist for healthy vocal function via auditory-

perceptual assessment (CAPE-V OS) and flexible nasendoscopic laryngeal imaging; the 

average OS score was 5.4 (SD = 1.2, range = 1.9–23.5) for young controls and 10.6 (SD 

= 7.7, range = 1.7–34.2) for older controls. 

Hearing Status 

Hearing screening data were collected for 67 of 72 participants. The five 

participants for which this data was not collected were young adult controls who reported 

no history of hearing disorders. Each of the remaining 19 young adult controls passed a 

hearing screening of pulsed pure tones (Burk et al., 2004) at frequencies of 125, 250, 500, 

1000, 2000, and 4000 Hz under 25 dB HL in both ears (American Speech-Language-

Hearing Association, 2005). All 24 older adult controls and 17 older adults with PD 

passed a hearing screening of pulsed pure tones (Burk et al., 2004) at frequencies of 125, 

250, 500, and 1000 under 25 dB HL and at 2000 and 4000 Hz under 40 dB HL in at least 

one ear (Schow, 1991). One participant with PD (PD16 in Table 4.1) demonstrated a 

threshold of 45 dB HL at 2000 Hz. Two participants with PD (PD19, PD23) had a 
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threshold of 45 dB HL at 4000 Hz, and an additional two participants with PD (PD13, 

PD18) demonstrated a threshold of 50 dB HL at 4000 Hz. One participant with PD 

(PD17) had thresholds of 50 dB HL at 2000 Hz and 70 dB HL at 4000 Hz. Finally, one 

participant with PD (PD12) wore hearing aids during the course of the study, and 

demonstrated thresholds of 45 dB HL at 125 Hz and 30 dB HL at 1000 Hz.  

Recording Procedures 

All data analyzed in the current study were collected during the nasendoscopic 

examination described in detail in Chapter 3. In brief, participants were trained to 

produce iterations of the utterance, /ifi/, across three vocal rates (slow, regular, fast) and 

three levels of vocal effort (mild, moderate, maximum). Participants were then 

instrumented with a directional headset microphone (Shure SM35 XLR) and neck-surface 

accelerometer (BU series 21771 from Knowles Electronic, Itasca, IL). The microphone 

was placed 45° from the midline and 7 cm from the lips, and the accelerometer was 

positioned on the anterior neck, superior to the thyroid notch and inferior to the cricoid 

cartilage. These signals were pre-amplified (Xenyx Behringer 802 Preamplifier) and 

digitized at 30 kHz (National Instruments 6312 USB).  

A flexible routine endoscope (Pentax, Model FNL-10RP3, 3.5-mm) was passed 

transnasally and into the hypopharynx for laryngeal visualization. A flexible slim 

endoscope (Pentax, Model FNL-7RP3, 2.4-mm) was used in the event that participant 

anatomy or comfort interfered with the acquisition process. Laryngeal images were 

recorded at 1 kHz via a camera (FASTCAM Mini AX100l; Model 540K-C-16GB; 256 × 

256 pixels; 40-mm optical lens adapter) attached to the endoscope. A frame rate of 1 kHz 
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was used in this analysis to (i) track the fundamental frequency of vibration of the vocal 

folds, which is estimated to be 85–255 Hz during modal phonation in adults (Baken et al., 

2000, p. 156), and (ii) capture gross abductory gestures, which occur within 104–227 ms 

(Dailey et al., 2005).  

During the nasendoscopic examination, participants were instructed to produce 

eight /ifi/ utterances at each vocal rate and level of vocal effort, in the following order: 

slow rate, regular rate, fast rate, mild effort, moderate effort, maximum effort. This 

number of repetitions was selected based on the recording limitations of setup: the high-

speed imaging, the synchronized microphone, accelerometer, and HSV recordings were 

restricted in duration to 7.940 seconds when the 3.5-mm endoscope was used and 8.734 

seconds when the 2.4-mm endoscope was used. To account for trials in which 

productions at the end of the recording were incompletely captured or in cases where less 

than eight /ifi/ utterances were produced, each condition was repeated a minimum of two 

times (additional trials were recorded in the event that the vocal folds were not 

sufficiently captured). The length of this procedure lasted approximately 5–10 minutes.  

Because the current study sought to isolate the relationship between RFF and 

vocal fold abduction during typical speech, only /ifi/ productions produced at a regular 

rate without intentional increases in vocal effort were retained for further analysis. Of the 

total productions, there were 200 instances in which 16 full /ifi/ productions were not 

captured for a speaker. This process resulted in total of 952 /ifi/ productions ([72 

participants × 16 /ifi/ productions] – 200 incomplete or missing /ifi/ productions) across 

the three speaker cohorts. 
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Data Analysis 

High-speed Video Image Processing 

Glottic Angle Waveform 

The methods used for HSV data extraction have been described in detail in 

Chapter 3, but will be summarized here in the context of the current study. The HSV 

images were first processed to determine /ifi/ usability. Trained technicians7 manually 

inspected the video images comprising each /ifi/ production to determine whether the 

videos effectively captured the vocal folds during the transition into and out of the /f/. In 

the event that the vocal folds were obstructed (e.g., by the epiglottis) or not visible (e.g., 

due to poor image contrast) during the recording, the production was regarded as 

“unusable” and removed from further analysis. For usable videos, the trained technicians 

then ran an automated glottic angle extraction algorithm (Diaz-Cadiz et al., 2019) to track 

the glottic angle over time. If the vocal folds were not appropriately tracked, the 

technician could intervene by manually extracting vocal fold angles to inform the 

algorithm before running again. If errors still persisted following manual intervention, the 

trained technicians marked the /ifi/ production as unusable.  

Nine trained technicians used the semi-automated MATLAB algorithm to extract 

                                               	
7 Technicians were first trained in glottic angle identification at a conventional framerate of 30 
frames per second (fps). The technicians were required to meet a training standard via two-way 
mixed-effects intraclass correlation coefficients for consistency of agreement [ICC(3,1]) ≥ .80 
when marking glottic angles at 30 fps. The technicians were then trained to use a semi-automated 
glottic angle extraction algorithm developed in MATLAB (version 9.3; The MathWorks, Natick, 
MA) to extract glottic angles at 1000 fps. Similarly, the technicians were required to meet 
reliability standards of ICC(3,1) ≥ .80 compared to a gold-standard technician, described in Diaz-
Cadiz et al. (2019). See Chapter 3 for more details about this training scheme and the resulting 
technician reliabilities. 
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the glottic angle waveform for each /ifi/ production (N = 952). A single technician 

determined whether the /ifi/ production was usable and, if so, proceeded to extract the 

glottic angle waveform for the production. The technicians accepted the automated 

algorithmic results in 62.6% of productions (N = 596), and accepted the algorithmic 

results after performing manual extraction techniques on 20.8% of productions (N = 198). 

Of the remaining productions, 10.4% were considered unusable (N = 99) and a further 

6.2% were rejected due to errors in algorithmic estimation (N = 59); an average of 2.2 

/ifi/ productions (SD = 3.3) were classified as unusable or subject to algorithmic errors 

for each speaker. All productions that demonstrated problems in video usability or 

algorithmic processing were removed from subsequent analysis. As described in Chapter 

3, algorithmic reliability was not assessed since prior work indicates that the algorithm 

yields good reliability (ICC ≥ .80; Diaz-Cadiz et al., 2019). However, this initial data 

processing was then rechecked by a second trained technician. The additional analysis 

resulted in 794 usable /ifi/ productions for subsequent processing. 

Vocal Fold Abduction Time 

 To assess vocal fold abductory kinematics, two metrics were extracted from the 

/ifi/ productions using methodology described in Chapter 3. Technicians were presented 

with a MATLAB (version 9.3; The MathWorks, Natick, MA) graphical user interface 

that showed time-aligned high-speed video frames, the microphone signal, the previously 

extracted glottic angle waveform, and the quick vibratory profile (QVP).  

The QVP is a one-dimensional waveform that uses changes in light intensity of 

the video frame to estimate the vibratory motion of the vocal folds. Whereas the glottic 
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angle waveform is only sensitive to the vibration of the vocal folds, the QVP captures 

vocal fold vibration in addition to non-glottic activities such as camera or epiglottic 

motion (Ikuma et al., 2013). The QVP was therefore included as a supplement to the 

glottic angle waveform to assist technicians in discriminating the vibrating glottis in 

images of poor resolution, as well as to identify the time window containing the vowel to 

voiceless consonant transition. To calculate the QVP, the HSV frame was first centered 

over the glottis using methodology described in Diaz-Cadiz et al. (2019). Distinct from 

the typical QVP—which is calculated as the average of the minimum intensity of each 

row of the HSV frame—the QVP was computed here using a method that localizes the 

vibrating glottis (Ikuma et al., 2013). Specifically, changes in light intensity were 

examined in both the vertical and horizontal directions of the HSV frame; the average of 

the minimum pixel intensity per row (for vertical profile) or column (for horizontal 

profile) was then calculated. The horizontal and vertical profiles were then summed 

together to produce the QVP. From here, the QVP was high-pass filtered using a 7th order 

Butterworth filter using a cut-off frequency of 50 Hz to attenuate signal noise below a 

minimum fo of 50 Hz. 

With this information, three technicians were instructed to use the time-aligned 

glottic angle waveform and QVP to identify two time points within the /ifi/ production. 

These time points were the start of abduction, described as the last full or maximum 

contact of the vocal folds during voicing offset, as well as the time of voicing offset, 

described as the termination of the last vibratory cycle before the voiceless consonant. In 

cases where the arytenoid cartilages blocked the view of the vocal folds (e.g., anterior-
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posterior supraglottic constriction) during voicing offset, the start of abduction was 

marked as the time point in which the arytenoid cartilages began to move away from one 

another. The technicians then corroborated the selected time points via manual 

visualization of the raw HSV images (e.g., in the event that the glottic angle waveform 

failed to capture small glottic angle changes during the vibratory cycles). The 

microphone signal was presented to technicians in case the glottic angle waveform and 

QVP both failed to track the vibrations of the vocal folds (i.e., determined by comparing 

the waveforms against the raw HSV images). In such cases, technicians were able to 

mark the /ifi/ production to be rejected or re-processed using the aforementioned 

methodology. This analysis resulted in a total of 794 measures corresponding to the start 

of abduction and time voicing offset. 

Technician intrarater reliability was assessed using the larger speaker database (N 

= 122) in Chapter 3 by reanalyzing 10% of participants in a separate sitting. Intrarater 

reliability was assessed in regard to extracting the start of abduction and time voicing 

offset via two-way mixed effects intraclass correlation coefficients (ICCs) for absolute 

agreement, producing an average intrarater reliability of .94 (95% CI = .88–1.0). 

Technician interrater reliability was assessed by instructing the three technicians to 

analyze the HSV images of the same participant. Interrater reliability was examined in 

regard to extracting the start of abduction and time voicing offset via two-way mixed-

effects ICCs for consistency of agreement (single measures), resulting in an average 

interrater reliability of .83 (95% CI = .77–.89).  
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Laryngeal Image-based Metrics of Vocal Fold Abduction 

To comprehensively investigate the relationship between vocal fold abduction and 

RFF, a series of HSV-derived measures were collected from the aforementioned 

analyses. The start of abduction and time of voicing offset were used to compute the 

duration of the abductory gesture (Tabd). In addition, the abductory gesture was also 

characterized by extracting the glottic angle at toff from the glottic angle waveform, called 

θoff. Fig. 4.1 shows an example of these measures when extracted from the glottic angle 

waveform and QVP. 

Acoustic Signal Processing 

Semi-automated RFF estimation was first performed on the microphone signals of 

the 794 /ifi/ productions with HSV data using the aRFF-AP algorithm in MATLAB 

(version 9.3). For this analysis, the aRFF-AP algorithm (developed in Chapter 2) was 

	
Figure 4.1. (a) View of the vocal folds under flexible nasendoscopy, with the glottic angle 
marked from the anterior commissure to the vocal processes, (b) Raw glottic angle waveform 
(gray) with smoothed data overlay (purple), and (c) Filtered quick vibratory profile (QVP). 
Solid lines indicate the start of vocal fold abduction (orange) and time of voicing offset (blue). 
The start of abduction (Tabd) and glottic angle at voicing offset (θoff) are identified. 
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used instead of the aRFF-APH algorithm (developed in Chapter 3), as this version was 

validated in a large speaker cohort (N = 483) that spanned a range of dysphonia severity 

and recording conditions. As detailed in Chapters 2 and 3, the semi-automated RFF 

algorithms requires the user to confirm the location of the voiceless consonant, /f/, in 

each /ifi/ production; as such, incorrect locations were manually adjusted. RFF values 

were then calculated using the vocal cycles closest to the /f/. In order to examine the 

association of RFF with group and vocal fold abductory kinematics, RFF at voicing offset 

cycle 10 was retained for further analysis. Voicing offset instances that were rejected 

during algorithmic processing (e.g., due to voicing during the voiceless consonant, 

glottalization, or misarticulation) were removed from further analysis (215 /ifi/ 

productions). 

Statistical Analyses 

The analyses performed on the high-speed video images and microphone signals 

resulted in the following measures for each /i/-to-/f/ transition of 580 /ifi/ productions: (1) 

abduction duration, (2) glottic angle at voicing offset, and (3) RFF at voicing offset cycle 

10. There was one older adult with PD for which fewer than two RFF productions were 

available for averaging (e.g., the algorithm could not identify potential vocal cycles, or 

resulting RFF values exhibited sharp transitions and were therefore rejected) and was 

subsequently removed from further processing. The result of this analysis yielded one 

abduction duration, one glottic angle at voicing offset, and one RFF value at voicing 

offset cycle 10 for each of the remaining 71 speakers.  

The resulting measures were then evaluated with a series of statistical models to 
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determine the relationship between RFF values and vocal fold abductory kinematics. 

First, three separate analysis of variance (ANOVA) models were constructed to examine 

the effect of group (young controls, older controls, and individuals with PD) on voicing 

offset measures of RFF offset cycle 10, abduction duration, and glottic angle at voicing 

offset. In these models, each voicing offset measure was set as the response variable and 

group was set as a fixed factor. For these ANOVA models, significance was set a priori 

to p < .05, and partial eta squared (ηp2) was calculated as an effect size. Additional post 

hoc analyses were conducted to examine trends in RFF at offset cycle 10, abduction 

duration, and glottic angle at voicing offset with respect to speaker age, sex, and MDS-

UPDRS-III score (for older adults with PD only). Speaker age and MDS-UPDRS-III 

score were examined against the three voicing offset measures using Pearson’s product-

moment correlation coefficients. Sex was examined using a two-sample t-test. 

An analysis of covariance (ANCOVA) model was then constructed to examine 

the effects of covariates of age, abduction duration, and glottic angle at voicing offset, as 

well as the fixed factor of group, on RFF offset cycle 10 (response variable). For this 

model, significance was set a priori to p < .05, and partial eta squared (ηp2) was 

calculated as an effect size.  

Results 

Relationship between Group and Measures of Voicing Offset 

Table 4.2 shows the results for the models examining the effects of group on each 

of the three voicing offset measures. Group was not a significant factor in the model for 

RFF at offset cycle 10 (p = .084, ηp2 = .07), abduction duration (p = .105, ηp2 = .06), or 
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glottic angle at voicing offset (p = .502, ηp2 = .02).  

Mean RFF values for offset cycle 10 were greatest in young controls (M = -1.12 

ST, SD = 1.28 ST), followed by older controls (M = -1.23 ST, SD = 0.99 ST) then 

individuals with PD (M = -1.81 ST, SD = 1.17 ST). Mean abduction duration was longest 

for individuals with PD (M = 65.1 ms, SD = 17.8 ms), with young controls (M = 57.1 ms, 

SD = 15.2 ms) and older controls (M = 54.2 ms, SD = 20.1 ms) producing similar values. 

Finally, glottic angle at voicing offset was greatest in young controls (M = 16.4 degrees, 

SD = 4.1 degrees), followed by individuals with PD (M = 15.4 degrees, SD = 4.7 degrees) 

then older controls (M = 15.2 degrees, SD = 5.8 degrees). 

Effects of Sex on Voicing Offset 

Fig. 4.2 shows the distribution of voicing offset measures based on speaker sex 

and group. The results of the two-sample t-test indicate that sex did not play a significant 

role in estimates of RFF at offset cycle 10, t(31) = -0.35, p = .730; however, post hoc 

examination of trends in RFF at offset cycle 10 (see Fig. 4.3a) indicate that RFF was 

greatest in young adult women (M = -0.75 ST, SD = 1.34 ST), and lowest in older adult 

women with PD (M = -2.19 ST, SD = 0.97 ST). Young adult men (M = -1.25 ST, SD = 

1.26 ST) exhibited lower RFF values than older adult men (M = -1.16 ST, SD = 1.12 ST), 

but greater RFF values than older adult men with PD (M = -1.68 ST, SD = 1.22 ST). 

Table 4.2. Results of the analysis of variance (ANOVA) models examining the effects of group 
on RFF at offset cycle 10, abduction duration, and glottal angle at voicing offset. 

Model Effect df F p ηp
2 Effect Size 

Interpretation 
RFF Offset Cycle 10 Group 2 2.57 .084 .07 Small 
Abduction Duration Group 2 2.33 .105 .06 Small 
Glottic Angle at Voicing Offset Group 9 0.70 .502 .02 Small 

Note. Effect size interpretations are based on criteria from Witte and Witte (2010). 
 



	

	

211 

Interestingly, older adult men 

demonstrated greater RFF values than 

older adult women (M = -1.46 ST, SD = 

0.41 ST).  

Young adult men exhibited the 

greatest glottic angle at voicing offset 

(M = 16.8 degrees, SD = 4.6 degrees), 

followed by older adult men (M = 16.0 

degrees, SD = 6.2 degrees; see Fig. 

4.2b). Older adult women showed the 

smallest glottic angles at voicing offset 

(M = 12.6 degrees, SD = 4.0 degrees). 

Angles were of similar magnitude 

between young adult women (M = 15.1 

degrees, SD = 2.2 degrees), older adult 

women with PD (M = 15.4 degrees, SD 

= 4.0 degrees), and older adult men 

with PD (M = 15.4 degrees, SD = 5.1 

degrees). As with RFF values at offset 

cycle 10, however, sex did not have a significant effect on glottic angle at voicing offset, 

t(44) = -1.53, p = .134. 

As shown in Fig. 4.2c, older adult men with PD (M = 69.0 ms, SD = 18.3 ms) 

	
Figure 4.2. Individual speaker (orange) and 
mean (blue) values for (a) relative fundamental 
frequency (RFF) at offset cycle 10, (b) glottic 
angle at voicing offset, and (c) abduction 
duration based on speaker sex and group. Error 
bars show 95% confidence intervals. 
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demonstrated the longest duration of abduction, which was, on average, 15.1 ms longer 

than that of older adult women with PD (M = 53.9 ms, SD = 10.9 ms). Similarly, young 

adult men (M = 57.3 ms, SD = 9.0 ms) 

produced longer abduction durations than 

young adult women (M = 56.5 ms, SD = 

28.1 ms). In contrast, older adult men (M 

= 51.6 ms, SD = 16.0 ms) exhibited a 

trend for shorter abduction durations than 

older adult women (M = 61.8 ms, SD = 

30.1 ms). However, sex ultimately did not 

exhibit a significant effect on abduction 

duration, t(22) = -0.29, p = .772. 

Effects of Age on Voicing Offset 

Fig. 4.3 describes trends in age 

across voicing offset measures of RFF at 

offset cycle 10, abduction duration, and 

glottic angle at voicing offset. Since sex 

was not a signficant factor in any of the 

measures of voicing offset, the effects of 

age were examined across males and 

females. Lines of best fit were not 

calculated for young adult controls due to 

	
Figure 4.3. Scatterplot of speaker values for (a) 
relative fundamental frequency (RFF) at offset 
cycle 10, (b) glottic angle at voicing offset, and 
(c) abduction duration based on speaker age 
and group. Older adult controls (OAC) are 
shown in light blue, younger adult controls 
(YAC) are shown in gray, and older adults 
with Parkinson’s disease (OAwPD) are shown 
in purple. Lines of best fit are shown for OAC 
and OAwPD groups. 
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the small range of ages within the group. 

The relationship between RFF values at 

offset cycle 10 and age resulted in a 

negligible8 correlation coefficient of r = -

.15 (p = .487) for older adult controls and 

a significant, low correlation coefficient 

of r = -.46 (p = .026) for older adults 

with PD (see Fig. 4.3a). The relationship 

between glottic angle at voicing offset 

and age resulted in negligible correlation 

coefficients of r = -.20 (p = .362) for 

older adult controls and r = .15 (p = .495) 

for older adults with PD. Finally, the 

relationship between abduction duration 

and age produced negligible correlation 

coefficents of r = 0 (p = .984) for older 

adult controls r = .28 (p = .192) for older 

adults with PD.  

                                               	
8 Hinkle, Wiersma, and Jurs (2003) report that Pearson product-moment correlation coefficients 
ranging from 0 and .30 reflect a negligible correlation between variables, whereas values between 
.30 and .50 correspond to a low degree of correlation. 

	
Figure 4.4. Scatter plot of speaker values for 
(a) relative fundamental frequency (RFF) at 
offset cycle 10, (b) glottic angle at voicing 
offset, and (c) abduction duration relative to 
score on the Movement Disorder Society-
sponsored revision of the Unified Parkinson’s 
Disease Rating Scale: Part III, Motor 
Examination (MDS-UPDRS-III) scale (for 
older adults with Parkinson’s disease only). 
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Effects of MDS-UPDRS-III Score on Voicing Offset 

Fig. 4.4 shows the relationship between voicing offset measures and the scores 

obtained by adults with PD from the motor examination section of the MDS-UPDRS 

(part III). The relationship between MDS-UPDRS-III score and each voicing offset 

measure was negligible, with all r < .1.  

Relationship between Vocal Fold Abduction and RFF 

Table 4.3 summarizes the ANCOVA model examining the relationship between 

speaker age, glottic angle at voicing offset measures, abduction duration, and speaker 

group on RFF offset values. The model accounted for 26.3% of the variance in the data 

for RFF at offset cycle 10 (adjusted R2 = 20.6%). Whereas group and abduction duration 

did not exhibit a significant effect in the model for RFF at offset cycle 10, glottic angle at 

voicing offset (p = .001, ηp2 = 0.16) produced a significant, medium effect on RFF at 

offset cycle 10 and age produced a significant, small effect (p = .023, ηp2 = 0.08). The 

coefficient for glottic angle at voicing offset indicates that RFF at offset cycle 10 

decreases by 0.09 ST per one degree increase in glottic angle at voicing offset. Similarly, 

the coefficient for abduction duration indicates that RFF at offset cycle 10 decreases by 

0.04 ST per one year increase in speaker age (the other significant effect).  

Table 4.3. Results of the analysis of covariance model examining the effects of speaker age, 
abduction duration, glottic angle at voicing offset, and group on RFF offset cycle 10. 

Effect df Coef F p ηp
2 Effect Size 

Interpretation 
Speaker Age 1 -0.04 5.43 .023 .08 Small 
Glottic Angle at Voicing Offset 1 -0.09 13.08 .001 .16 Medium 
Abduction Duration  1 -9.73 1.82 .182 .03 Small 
Group 2  2.09 .131 .06 Small 

Note. Effect size interpretations are based on criteria from Witte et al. (2010). 
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Discussion 

This study aimed to investigate the relationship between vocal fold abductory 

kinematics and RFF. Three distinct groups of speakers were enrolled to carry out this 

analysis: individuals with PD, older controls, and young controls. Simultaneous acoustic 

recordings and laryngeal images were captured via a microphone and flexible 

nasendoscope, respectively, as speakers produced the utterance, /ifi/, at their typical pitch 

and loudness. RFF was extracted from the acoustic signal, whereas glottic angle at 

voicing offset and abduction duration were computed from the laryngeal images. The 

relationships among these measures were used to characterize the abductory patterns in 

the three speaker groups, as well as to determine the contribution of the abductory gesture 

to measures of RFF. 

In examining the role of vocal fold abduction in measures of RFF during 

intervocalic voicing offsets, it was determined that age (ηp2 = .08) and glottic angle at 

voicing offset (ηp2 = .16) were both significant predictors of RFF at offset cycle 10. 

However, group and abduction duration were not significant predictors in the model. The 

results of this analysis lend support to the hypothesis that glottic angle at voicing offset 

would be significantly, negatively related to RFF at offset cycle 10 (wherein larger glottic 

angles at voicing offset were related to lower RFF values). Yet these findings do not 

support the hypothesis that the other measure of vocal fold abduction—namely, 

abduction duration—would be significantly negatively related to RFF at offset cycle 10. 

As neither measure (glottic angle at voicing offset, abduction duration) significantly 

differed between young and older adults, the results of the current study do not support 
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the hypothesized role of vocal fold abduction for devoicing, wherein it was suspected that 

older adults exert a greater reliance on vocal fold abduction over laryngeal muscle 

tension for devoicing. Each voicing offset measure (i.e., RFF at voicing offset cycle 10, 

glottic angle at voicing offset, and abduction duration) is discussed relative to speaker 

factors of group, age, sex, and MDS-UPDRS-III score in detail below. 

Physiologically Derived Measures of Vocal Fold Abduction 

Glottic angle at voicing offset and abduction duration were both measured relative 

to the physiological cessation of vocal fold vibration. It was hypothesized that both 

measures would be greater in older controls and individuals with PD as compared to 

young adult controls, and moreover, that these measures would not be statistically 

significantly different between older controls and individuals with PD. The results of 

each measure relative to these hypotheses are described in detail below. 

Glottic Angle at Voicing Offset 

Group was not a statistically significant factor in the model for glottic angle at 

voicing offset. Mean glottic angles at voicing offset were substantially similar across 

groups, ranging from a mean of 12.6–16.8 degrees. Post hoc examinations to understand 

potential driving factors in this analysis did not result in any noteworthy effects. In 

particular, the effect of sex on glottic angle was not statistically significant, whereas the 

relationship between glottic angle at voicing offset and both age and MDS-UPDRS-III 

score resulted in negligible correlations across group. Not only is it difficult to extract 

trends from these data because the means are similar across groups, but the range of angle 

magnitudes is fairly broad. In particular, the mean glottic angle at voicing offset was 15.6 
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degrees, but ranged from 5.6–27.8 degrees across speakers.  

Although not captured in the same linguistic context, studies examining glottic 

angle magnitudes in the literature indicate similar findings. For instance, Dailey et al. 

(2005) saw that maximum abduction angles ranged from 31.0 to 77.0 degrees across 21 

vocally healthy speakers during an /i-sniff/ task. Similarly, Iwahashi, Ogawa, Hosokawa, 

Kato, and Inohara (2016) observed an average maximum abduction angle of 59.6 degrees 

during a vowel phonation task. However, the observed range of maximum angles varied, 

with a standard deviation of 13.2 degrees. Taken together, these findings suggest that 

glottic angles are subject to a wide range of within-speaker variability. Although glottic 

angles at voicing offset may provide some insight into the abductory mechanisms used 

for devoicing during intervocalic voicing offsets, this measure is not able to distinguish 

across young adults, older adults, and adults with PD. As such, the results of the current 

study do not support the hypotheses that older controls exhibit larger glottic angles at 

voicing offset compared to young adult controls, or that the magnitude of these angles do 

not significantly differ from those with PD.  

Abduction Duration 

The results surrounding abduction duration do not support the proposed 

hypotheses, as group was not a statistically significant factor in the model for abduction 

duration. Moreover, the observed trends in abduction duration values across group do not 

correspond with the proposed hypotheses, with older controls exhibiting shorter mean 

abduction durations (M = 54.2 ms, SD = 20.1 ms) than individuals with PD (M = 65.1 ms, 

SD = 17.8 ms) as well as young controls (M = 57.1 ms, SD = 15.2 ms).  
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The duration values in the current study are substantially higher than those 

reported in the literature. For instance, Patel et al. (2017) examined the relationship 

between the offset of the acoustic signal and post-phonatory oscillatory events. The 

authors found a mean abduction duration of 39.0 ms in females and 40.1 ms in males 

when comparing the complete cessation of the vocal folds to the time of first incomplete 

vocal fold closure. Unfortunately, it is difficult to compare the magnitudes obtained here 

to those obtained by Patel et al. (2017) due to differences in methodology. The authors 

examined 92 young adults using rigid laryngoscopic techniques, whereas the current 

study examined 72 adults (24 young controls, 24 older controls, 24 individuals with PD) 

using flexible laryngoscopy. As rigid laryngoscopy requires the tongue to be restricted 

during the endoscopic examination, participants were limited to producing repetitions of 

the syllable /hi/. It is possible that the differences in laryngoscope type (i.e., flexible 

versus rigid) affected vocal behaviors when producing the speech stimuli. Moreover, the 

mechanisms necessary to produce a /h/ may differ from those necessary to produce the /f/ 

of the /ifi/ productions examined in the current study. 

Watson, Roark, and Baken (2012) investigated the relationship between acoustic 

and physiologic voicing offsets by comparing the acoustic signal to electroglottograph 

recordings of a sustained /ɑ/. The authors implemented electroglottography to track the 

contact of the vocal folds for comparison against the acoustic signal. The duration of the 

abductory gesture was identified as 20.0 ms from the time of acoustic voicing offset, 

which is approximately 15.6 ms lower when compared to older controls and 24.7 ms 

lower compared to young controls of the current study. The discrepancy in these values 
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may be the result of differences in methodology. In particular, Watson et al. (2012) 

examined abduction duration in a linguistically unconstrained context (i.e., sustained /ɑ/ 

vowel). The production of a sustained /ɑ/ will likely result in different abduction 

durations, as the /ifi/ productions examined in the current study require produce the 

intervocalic /f/. Additionally, the instrumentation and processing methods used to capture 

voicing offset differ between studies. Whereas the current study captured the initiation of 

abduction directly from images of the vibrating vocal folds (i.e., as the time of last full or 

maximal contact of the vocal folds), Watson et al. (2012) identified this time point from 

the cross-correlation of the amplitude of an electroglottograph signal that was band-pass 

filtered ±40% of the speaker’s fo. In combination with inherent differences in the 

definition of the abduction duration between studies, the electroglottograph signal is also 

known to suffer from artifacts caused by vertical movements of the larynx, irregular 

vocal fold vibratory motion, mucous on/around the vocal folds, as well as difficulties in 

obtaining sufficient waveforms in female speakers (e.g., due to vocal fold mass and 

amount of adipose tissue; Childers et al., 1990; Colton et al., 1990). Moreover, the 

termination of the abduction gesture was computed using acoustic voicing offset; 

however, the current study identified this time point as the cessation of vocal fold 

vibration from laryngoscopic images. As it is not uncommon for voicing offset to occur 

earlier in the acoustic signal than the true cessation of vocal fold vibrations (Patel et al., 

2017), it is unsurprising that the absolute durations of the abductory gesture differ 

between studies.  

It remains unclear why adults with PD exhibited a substantial (albeit, not 
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significant) increase in abduction duration compared to young and older controls. One 

mechanism that could explain this trend is a prolonged abductory gesture to counteract 

the increased baseline laryngeal muscle tension observed in PD (Zarzur et al., 2013; 

Zarzur et al., 2007). Adults with PD may not be able to further increase tension from 

baseline to control the rapid changes in vocal fold vibration at voicing offset. This would 

suggest that increased laryngeal muscle tension at baseline could reduce the speaker’s 

ability to modulate the vocal folds to promote devoicing. Instead, exerting a greater 

reliance on vocal fold abduction via carrying out a prolonged abductory gesture may be 

necessary in order to cease vocal fold vibration during intervocalic voicing offsets. Thus, 

while these findings do not support the hypothesis that vocally healthy adults use 

prolonged abductory gesture for devoicing, it is feasible that older adults with PD require 

such a gesture to effectively cease vocal fold vibration.  

RFF at Voicing Offset Cycle 10 

In the current study, RFF at voicing offset cycle 10 was originally hypothesized to 

be significantly associated with group. It was expected that older controls would exhibit 

smaller values than young adult controls due to an increased reliance on vocal fold 

abduction to enable devoicing. Furthermore, it was hypothesized that older adults with 

PD would demonstrate smaller values for RFF at offset cycle 10 due to an increased 

reliance on vocal fold abduction to enable devoicing as well as increased baseline 

laryngeal muscle tension.  

The results of the current study do not support these hypotheses, as group was not 

a significant factor in the model for RFF at offset cycle 10. However, mean RFF trends at 
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offset cycle 10 corresponded to the hypotheses: RFF was greatest in young adult controls 

(M = -1.12 ST), followed by older adult controls (M = -1.23 ST), then older adults with 

PD (M = -1.81 ST). Samples from the young adult controls were slightly lower than mean 

RFF values for offset cycle 10 described in the literature, but were still within the range 

of RFF values reported in typical speakers for offset cycle 10 (Goberman et al., 2008; 

Robb et al., 2002; Stepp et al., 2010b; Stepp et al., 2012; Watson, 1998). In contrast, 

samples from the older adult controls were well within range of those reported in the 

literature. In older adult controls, mean RFF values for offset cycle 10 have been 

observed between -1.66 ST and -1.09 ST (Goberman et al., 2008; Stepp, 2013; Watson, 

1998), corresponding well with the mean value of -1.23 ST obtained here. Likewise, the 

mean RFF value at offset cycle 10 observed in older adults with PD (M = -1.81 ST, SD = 

1.17 ST) was similar to those reported in the literature for older adults with PD while on 

medication (as speakers were in the current study). Goberman et al. (2008) reported an 

average offset RFF value of approximately -2.20 ST at cycle 10 for older adults with PD 

while on medication and Stepp (2013) saw a mean offset RFF value of approximately -

1.90 ST for older adults with PD while on medication.  

The results of the current study suggest that age was a greater indicator of change 

in vocal fold abductory kinematics than the broad age groupings used to separate young 

adults from adults who were age- and sex-matched to speakers with PD. In particular, 

speaker groups (young adult controls, older adult controls, older adults with PD) were 

constructed to assess general trends in RFF in individuals who were suspected to use a 

modified abductory gesture to devoice (older adult controls, older adults with PD) as well 
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as individuals who exhibited increased levels of baseline laryngeal muscle tension (older 

adults with PD). However, the older adult control group (SD = 11.3 years) consisted of 

vocally healthy individuals as young as 41 years old, whereas the older adults with PD 

group (SD = 9.6 years) included speakers as young as 43 years old. As a result, the range 

of ages examined across these groups was extremely broad, and was met with an equally 

variable range of OS: the OS for older adult controls spanned 1.7 to 34.2, whereas that of 

the older adults with PD ranged from 4.0 to 40.9. Because age was a significant factor in 

the model for RFF, and because group was not, it is possible that age-specific changes to 

the laryngeal mechanism, such as presbylarynges (age-related vocal fold atrophy), may 

be a contributing factor to the differences in vocal fold abductory kinematics that are 

reflected in RFF. Unfortunately, there is no standardized mechanism for assessing vocal 

fold atrophy other than through a subjective examination of the vocal mechanism. 

Moreover, it is unclear whether suspected cases of vocal fold atrophy—including 

characteristics of vocal fold bowing, spindle-shaped glottal gap, prominent vocal 

processes, and thinning of the vocal fold mucosa (Angerstein, 2018; Bloch & Behrman, 

2001; Isshiki, Shoji, Kojima, & Hirano, 1996; Omori et al., 1997; Pontes, Brasolotto, & 

Behlau, 2005; Rodeño et al., 1993; Takano et al., 2010)—are the result of morphologic 

and/or neuromuscular changes. As such, an investigation into objectively characterizing 

and quantifying the effects of age on the laryngeal mechanism is necessary. Elucidating 

these effects will provide insight into age-specific changes to laryngeal muscle tension 

and vocal fold abduction that are reflected in RFF. 
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Limitations and Future Directions 

This study analyzed the contributions of vocal fold abduction to measures of RFF 

during intervocalic voicing offsets. Abductory patterns were characterized in three 

speaker groups, including young adult controls, older adult controls, and older adults with 

PD. Yet the identified relationships between vocal fold abduction and RFF may not be 

generalizable to speakers outside of these groups, as older adults with PD are merely a 

subset of individuals who exhibit excessive levels of intrinsic laryngeal muscle tension. 

For instance, speakers with vocal hyperfunction may exhibit excessive or imbalanced 

laryngeal muscle forces (Hillman et al., 1989). However, the manifestation of vocal 

hyperfunction is broad, wherein hyperfunctional vocal behaviors may occur in the 

presence or absence of organic pathology (e.g., vocal nodules), and may be the primary 

cause of a voice disorder or as a compensatory adaptation to glottal insufficiency. It is 

therefore unclear whether speakers that exhibit signs of vocal hyperfunction would 

demonstrate similar trends in vocal fold abductory kinematics as the older adults with PD 

examined here. Although this work attempts to elucidate the contribution of vocal fold 

abduction to RFF, future work should aim to expand upon the patterns described here. 

Characterizing abductory kinematics in speakers with other voice disorders associated 

with excessive tension may be a useful step toward isolating the differential contributions 

of tension and abduction in intervocalic voicing offsets. 

Hearing screening data were collected to confirm that participants were able to 

hear experimenter instructions during the nasendoscopic procedures. However, these data 

were not collected for 5/72 participants (all young adult controls who reported no history 
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of hearing disorders), and moreover, not all participants passed at the standard hearing 

thresholds reported in the literature (see American Speech-Language-Hearing 

Association, 2005; Schow, 1991). As the goal of the current study was to directly 

examine the relationship between vocal fold abductory kinematics and RFF, hearing 

ability was not assessed. Although outside the scope of the current work, it is important 

to consider that hearing ability could be a contributing factor to the physiological 

mechanisms used for devoicing. Future work should therefore aim to comprehensively 

examine the effects of hearing ability on the known devoicing mechanisms of laryngeal 

muscle tension and vocal fold abduction, as well as on acoustic estimates of RFF. 

Upon examining the relationship between speaker group and measures of voicing 

offset, it was determined that speaker group did not exhibit significant effects on RFF at 

offset cycle 10, glottic angle at voicing offset, or abduction duration. The results showed 

only small effect sizes (ηp2 = .07, ηp2 = .06, and ηp2 = .02, respectively) between the 

voicing offset measures and speaker group, yielding non-significant p values at the < .05 

level. Based on these findings, a cohort of 447 participants (159 per speaker group) 

would be needed to report a significant small effect (ηp2 = .02) with p < .05 (G*Power 

v.3.1.9.2; Faul, Erdfelder, Buchner, & Lang, 2009). The results of this power analysis 

suggest that there may be differences in RFF at offset cycle 10, glottic angle at voicing 

offset, or abduction duration across speaker group; however, any significant differences 

in the voicing offset measures would be extremely small. 

Prior work indicates that syllable stress is a contributing factor to measures of 

RFF (Park & Stepp, 2019); however, this variable was not controlled for in the current 
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study. Stressed syllables are generally produced using more vocal effort than unstressed 

syllables (Eriksson & Traunmüller, 2002), wherein unequal stress may substantially alter 

laryngeal muscle tension during recording. The current study instructed speakers to 

produce the maximum number of /ifi/ tokens possible within the limitations of the 

recording setup, resulting in an average of 7.8 (SD = 4.0, range = 2–19) /ifi/ tokens per 

speaker. Although speakers were trained to produce /ifi/ tokens with equal stress, syllable 

stress was not precisely monitored during the endoscopic procedure. Speaker RFF values 

for offset cycle 10 were then computed by averaging across the values obtained for 

individual productions in order to produce a more reliable estimate of RFF. Yet it is still 

possible that introducing first-syllable stress (i.e., /ifi/, with syllable stress denoted by the 

underline) altered laryngeal muscle tension during recording to, in turn, affect the fo 

contours of the captured /ifi/ productions. As such, future work should take care to 

instruct speakers to produce equal stress on the stimuli used to calculate RFF. 

Finally, the recordings collected in the current study were acquired under flexible 

laryngoscopy. A numbing agent was not used during the scoping procedure so as not to 

affect laryngeal function (Dworkin et al., 2000b), yet the insertion of the flexible 

nasendoscope may have caused speakers to deviate from their typical vocal function by 

inducing stress and tension during recordings. For instance, a study by Hay, Oates, 

Giannini, Berkowitz, and Rotenberg (2009) described observable increases in general 

muscle tension (e.g., eyes shut tight, body stiffness, clenched jaw) as children underwent 

a flexible nasendoscopic procedure. If the insertion of the flexible nasendoscope were to 

increase laryngeal muscle tension during the recording procedure, then resulting RFF 
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values at offset cycle 10 would likely be lower than those typically reported. However, 

the values obtained across young adult controls, older adult controls, and older adults 

with PD were all well within the range of those reported in the literature. Thus, although 

possible, it is unlikely that the laryngoscopic procedure substantially affected the 

recordings collected in this study. 

Conclusions 

Despite reasonable conjectures of a prolonged abductory gesture in older adults, 

vocal fold abductory patterns were not significantly different between young adult 

controls, older adult controls, and older adults with PD. However, measures of RFF at 

voicing offset were found to be related to speaker age and the glottic angle at voicing 

offset. In addition to corroborating abductory behaviors as a potential mechanism of RFF, 

these results further indicate that speaker age is an important factor to consider in the 

assessment of RFF. The findings from this study provide a framework for future 

investigations aimed at understanding the relationship between vocal fold abduction 

measures of RFF in disordered voices. 
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CHAPTER 5. DISCUSSION 

This work sought to improve the semi-automated relative fundamental frequency 

(RFF) algorithm for the objective quantification of laryngeal muscle tension, and then use 

the refined algorithm to determine the role of vocal fold abductory kinematics in 

estimates of RFF. The first study (Chapter 2) evaluated the effects of voice sample 

characteristics and fo estimation method on the correspondence between semi-automated 

and manual RFF estimates. The second study (Chapter 3) examined the relationship 

between acoustic features and vocal fold vibratory characteristics during voicing offset 

and onsets. The third study (Chapter 4) investigated the relationship between vocal fold 

abductory kinematics and RFF. The purpose of this final chapter is to link these studies 

together and provide recommendations to improve the future clinical applicability of 

RFF. 

The Role of Laryngeal Muscle Tension in Voice Disorders 

Laryngeal muscle tension is a crucial component of voice production. The 

intrinsic laryngeal muscles are used to tense, abduct, and adduct the vocal folds for 

phonation, whereas the extrinsic laryngeal muscles stabilize, raise, and lower the larynx 

during speech and swallowing movements. Excessive or unbalanced laryngeal muscle 

forces may arise from overuse and/or misuse of the laryngeal mechanism in the absence 

of organic pathology (e.g., yelling), pathological changes to the vocal fold tissues (e.g., 

nodules), and neurological disorders affecting the laryngeal mechanism (e.g., Parkinson’s 

disease; Boone et al., 2014; Ghassemi et al., 2014; Hillman et al., 1989). The 

development of these pathologies may cause functional changes in the tension of the 
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laryngeal mechanism in compensation for additional effort associated with achieving 

phonation.  

It has been estimated that approximately 65% of individuals with voice disorders 

exhibit excessive laryngeal muscle tension (Ramig et al., 1998). Despite this prevalence, 

there currently exists no single, objective measure that is able to quantify the degree of 

tension present in the laryngeal mechanism. Clinical assessments typically include non-

instrumental methods, such as acquiring a case history, patient-reported outcomes, 

auditory-perceptual judgments of voice, as well as carrying out manual palpations of the 

(para)laryngeal musculature (Morrison et al., 1986; Roy et al., 2013; Schwartz et al., 

2009). Instrumental methods, on the other hand, comprise laryngeal visualization (e.g., 

flexible nasendoscopy), electroglottography, electromyography, accelerometry, and/or 

acoustic signal analysis techniques. Despite the availability of techniques for assessing 

extrinsic laryngeal muscle tension, many of these methods fall short in terms of validity, 

reliability, and/or specificity. As such, clinical assessments of laryngeal muscle tension 

remain heavily based on unreliable auditory-perceptual impressions of voice quality and 

manual palpations of the extrinsic laryngeal muscles. (Dejonckere et al., 2001; Maryn & 

Weenink, 2015; Stepp et al., 2011a)  

Relative Fundamental Frequency as an Estimator of Laryngeal Muscle Tension 

Relative fundamental frequency (RFF) has received attention as a promising 

acoustic estimate for assessing and tracking the degree of baseline laryngeal muscle 

tension. RFF reflects short-term changes in instantaneous fundamental frequency (fo) of 

voice during a vowel–voiced consonant–vowel (VCV) production. Voice fo relates to the 
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vibratory rate of the vocal folds, which is, in turn, associated with vocal fold length, 

mass, and tension (Van Den Berg, 1958). During a VCV production, the vocal folds 

vibrate to produce the vowel. However, the vocal folds must cease vibrating to transition 

into the voiceless consonant (voicing offset), then reinitiate vibration to transition into the 

second vowel (voicing onset). As the vocal folds stop and start vibrating, RFF is able to 

capture the changes in vibratory rate (i.e., fo) that must occur to successfully produce the 

intended utterance. RFF is specifically calculated from the ten vocal fold vibratory cycles 

immediately before and after the voiceless consonant. The fo values of each of these 

cycles are normalized to a steady-state fo value obtained from the adjacent vowel. In 

doing so, RFF values may be compared within and across speakers. 

Currently, the gold-standard method of calculating RFF is through tedious manual 

estimation techniques. A trained technician must visualize the acoustic waveform to 

extract the twenty vocal cycles of interest, wherein the majority of time is spent using 

trial and error to identify the vocal cycle closest to the voiceless consonant. A single 

reliable RFF estimate typically requires 20–40 minutes of time via manual estimation 

(Eadie et al., 2013; Lien et al., 2017).  

Semi-automated RFF Estimation 

A semi-automated RFF algorithm (“aRFF”) was developed to combat the time- 

and training-intensive nature of manual RFF estimation. The aRFF algorithm carries out 

rule-based signal processes techniques to identify the vocal cycles closest to the voiceless 

consonant in a VCV production, then uses these cycles to estimate RFF. This aRFF 

algorithm is advantageous over manual estimation since technicians do not need to be 
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extensively trained to use it, and moreover, the algorithm minimizes the need for manual 

intervention. Yet this method of calculating RFF is limited in that the accuracy of semi-

automated RFF values varies across a wide range of voice signals (Lien et al., 2017). 

Thus, the current work sought to improve the accuracy and precision of semi-automated 

RFF estimates across a broad spectrum of vocal function. Detailed in Chapter 2, a new 

version of the semi-automated RFF algorithm (“aRFF-AP”) was developed by 

implementing a new method of fo estimation as well as accounting for differences in 

voice sample characteristics (e.g., overall severity of dysphonia, signal acquisition 

quality) based on the acoustic measure, pitch strength (Camacho, 2012; Camacho et al., 

2008; Kopf et al., 2017; Shrivastav et al., 2012). Algorithmic performance was compared 

between the aRFF and aRFF-AP algorithms, ultimately showing that errors related to the 

accuracy and precision of the algorithms (with respect to manual estimation) were 

reduced by 88.4% and 17.3%, respectively.  

The development of the aRFF-AP algorithm was a crucial step toward applying 

RFF in the clinic. However, the results of this analysis elicited non-zero errors, 

suggesting that pitch strength categories alone were not sufficient to account for 

variations in voice samples and/or that manual estimation is not a true gold standard. The 

source of these potential issues likely involve the identification of the vocal cycle closest 

to the voiceless consonant: whereas manual estimation requires a trained technician to 

use trial and error to identify this boundary, the semi-automated RFF algorithm uses 

acoustic features. The process of manual RFF estimation is subjective in nature, such that 

the selected boundary between voiced and voiceless segments may not precisely 
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correspond to the true initiation or termination of voicing. The aRFF-AP algorithm, on 

the other hand, uses rule-based signal processing techniques to locate this boundary. 

Specifically, acoustic features are examined in time, and the pitch strength-tuned 

thresholds are used to assist the algorithm in choosing a potential location of the 

boundary between voiced and voiceless segments. Although these pitch strength-tuned 

thresholds were shown to improve the accuracy and precision of the algorithm relative to 

manual RFF estimation, it is possible that errors continue to occur because the acoustic 

features used to identify this boundary did not correspond with true initiation or 

termination of voicing. Chapter 3 details the steps taken to examine these possibilities. 

By examining simultaneous recordings made using a microphone and flexible 

nasendoscope, the initiation and termination of vocal fold vibration were related to 

acoustic features extracted from the acoustic signal. A new set of acoustic features that 

coincided well with voicing transitions were introduced into the semi-automated RFF 

algorithm, leading to an increased correspondence between the algorithmic and 

physiological boundary cycles. Not only was the algorithm developed from this work— 

“aRFF-APH”—significantly more likely to identify the true, physiological boundary 

cycle than aRFF-AP, but both versions of the semi-automated RFF algorithm were 

significantly more likely to identify this true boundary than manual estimation 

techniques. This progress may be due, in part, to the ability of the algorithms to leverage 

a filtered version of the microphone signal that amplifies the contribution of the speaker’s 

fo and attenuates extraneous noise (e.g., from coarticulation due to concurrent aspiration 

and frication during the voiceless consonant).  
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Despite these promising results for the aRFF-APH algorithm, the aRFF-AP 

algorithm remains the gold-standard method for semi-automatically estimating RFF. This 

is because the overarching goals in refining the RFF algorithm were dissimilar between 

the two algorithm versions. As noted in Chapter 2, the aRFF-AP algorithm was 

developed to increase the clinical applicability of RFF, as the voice signals recorded in a 

clinic would presumably vary in terms of the severity of the speaker’s dysphonia as well 

as the recording conditions when acquiring the voice signal. The acoustic measure, pitch 

strength, was therefore used to account for these variable sample characteristics by 

creating pitch strength-tuned categories for calculating RFF. This was possible since the 

speaker database used in Chapter 2 incorporated a wide range of vocal function from 483 

independent speakers: Not only were speakers recorded in a series of environments 

(waiting room, quiet room, sound-attenuated booth), but over 20 different primary voice 

complaints were included within the database. The resulting overall severity of dysphonia 

of the 483 speakers ranged from 0 to 100 in the study. Clear trends in pitch strength were 

identified when examining the acoustic features obtained from the microphone signal 

over time, such that algorithmic parameters could be tuned to estimate RFF based on a 

speaker’s pitch strength.  

On the other hand, the overarching goal of the work described in Chapter 3 was to 

elucidate the physiological relevance of RFF. As previously mentioned, there is no 

objective, quantitative measure that is singlehandedly able to assess and track laryngeal 

muscle tension. Although RFF has been considered as a potential acoustic estimate of 

baseline laryngeal muscle tension, the relationship between RFF and vocal fold vibratory 
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offsets and onsets has not yet been characterized. This is because the primary means of 

calculating RFF is by using the microphone signal, which indirectly captures the glottal 

source. The speech acquired using a microphone may be affected by supraglottic 

resonance, effects of radiation from the lips, as well as boundary cycle masking due to 

coarticulation (Cheyne et al., 2003). It may not only be difficult to identify the boundary 

cycle because of these issues, but it is unclear if the selected boundary cycle truly 

represents the physiological termination or initiation of vocal fold vibration. The work 

described in Chapter 3 thus sought to use these true time points to tune the current RFF 

algorithm to improve the precision with which the algorithm identifies voicing offsets 

and onsets. In doing so, an RFF algorithm tuned to vocal fold vibratory characteristics 

could then be used clinically to non-invasively, objectively, and quantitatively assess and 

track changes in laryngeal muscle tension. Future work should therefore validate the 

aRFF-APH algorithm using independent training and test sets constructed from a larger 

set of speakers across a broad range of vocal function. 

The Relationship between Vocal Fold Abduction and RFF 

The steps taken in Chapters 2 and 3 sought to improve the semi-automated RFF 

algorithm for use as a clinical estimation of baseline laryngeal muscle tension. However, 

there is evidence to suggest that RFF does not only reflect the degree of baseline 

laryngeal muscle tension. The characteristic pattern of RFF during voicing offset has 

been attributed to the interplay of laryngeal muscle tension and vocal fold kinematics 

(Löfqvist et al., 1989; Stepp et al., 2011d; Stevens, 1977; Watson, 1998). In particular, 

voicing offsets in young adults are characterized by a stable or slightly decreasing trend 
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in RFF (Goberman et al., 2008; Robb et al., 2002). These values may be due, in part, to 

transient increases in laryngeal muscle tension before, during, and after the production of 

the voiceless consonant to cease vocal fold vibration (Löfqvist et al., 1989; Stevens, 

1977). It is also suspected that vocal fold abductory kinematics act in concert with 

elevated muscle tension to achieve devoicing during voicing offsets (Watson, 1998). 

However, the specific contribution of the abductory gesture is unclear.  

Limitations in our understanding of the role of vocal fold abduction during 

intervocalic voicing offsets has led to difficulties in interpreting resulting RFF values. 

Specifically, older adults typically exhibit lower RFF values than young adults, which 

would suggest a difference in the mechanisms used for devoicing. Thus far, the 

dissimilarities in RFF values have been attributed to a prolonged abductory gesture for 

devoicing (Watson, 1998).Yet older adults with Parkinson’s disease (PD)—a progressive, 

neurodegenerative disease with symptoms of increased intrinsic laryngeal muscle tension 

(Zarzur et al., 2013; Zarzur et al., 2007)—typically exhibit even lower RFF values than 

older adult controls. It is therefore unclear whether the observed discrepancies in RFF 

values between young and older adults is the result of a prolonged abductory gesture for 

devoicing, and further, whether the observed lower offset RFF values in PD reflect an 

increased reliance on abduction to cease voicing, increased levels of baseline laryngeal 

tension that arise with PD, or some other cause (e.g., laryngeal height).  

Detailed in Chapter 4, it was found that vocal fold abductory patterns were not 

significantly different across young adult controls, older adult controls, and older adults 

with PD. These findings do not support the use of a prolonged abductory gesture by older 
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adults for devoicing. However, speaker age and glottic angle prior to the termination of 

vocal fold vibration were significantly related to RFF estimates obtained at acoustic 

voicing offset. The results of this study indicate that RFF is, as hypothesized, related to 

vocal fold abduction during voicing offsets. However, the identified relationships 

between vocal fold abduction and RFF must be extended to speakers outside of these 

groups, as older adults with PD are merely a subset of individuals who exhibit excessive 

levels of intrinsic laryngeal muscle tension. As such, future work should aim to expand 

upon the patterns described here by characterizing abductory kinematics in speakers with 

other voice disorders associated with excessive laryngeal muscle tension. 

Conclusions 

The work detailed in this dissertation sought to (1) improve the accuracy and 

precision of the RFF algorithms for the objective quantification of laryngeal muscle 

tension, and (2) use the refined algorithm to determine the role of vocal fold abductory 

kinematics in estimates of RFF. Refining the method of fo estimation and accounting for 

variations in voice sample characteristics within the semi-automated RFF algorithm led 

to improved accuracy and precision relative gold-standard, manual RFF estimates. 

Incorporating acoustic features that captured the physiological termination and initiation 

of vocal fold vibration led to additional improvements in algorithmic accuracy. In 

examining the contribution of the vocal fold abduction to estimates of RFF, it was 

determined that abductory patterns play a significant role in resulting RFF measures at 

voicing offset. Taken together, these studies improved the clinical applicability of using 

RFF in conjunction with current clinical voice assessment techniques for assessing the 
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degree of baseline laryngeal muscle tension. 
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