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AN INVESTIGATION INTO GLOTTAL
WAVEFORM BASED SPEECH CODING

C.J. BLEAKLEY

ABSTRACT

Coding of voiced speech by extraction of the glottal waveform has shown promise 1n improving
the efficiency of speech coding systems This thesis describes an mvestigation 1nto the performance of
such a system

The effect of reverberation on the radiation impedance at the lips 1s shown to be neghgible under
normal conditions Also, the accuracy of the Image Method for adding artificial reverberation to
anechoic speech recordings 1s established

A new algonthm, Pre-emphasised Maximum Likelihood Epoch Detection (PMLED), for Glottal
Closure Instant detection 1s proposed The algorithm 1s tested on natural speech and 1s shown to be both
accurate and robust

Two techmques for glottal waveform estimation, Closed Phase Inverse Filtering (CPIF) and
Iterattve Adapuve Inverse Filtering (IAIF), are compared In tandem with an LF model fitting
procedure, both techniques display a lmgh degree of accuracy However, IAIF 1s found to be shghtly
more robust.

Based on these results, a Glottal Excited Linear Predicive (GELP) coding system for voiced
speech 1s proposed and tested Using a differential LF parameter quantisation scheme, the system
achieves speech quality similar to that of US Federal Standard 1016 CELP at a lower mean bit rate

while incurning no extra delay



CHAPTER 1

INTRODUCTION

1.1 AIMS OF THE THESIS

Glottal waveform processing has shown promise 1n mncreasing the efficiency of speech coders
[Hedelin, 1984, 1986}, improving the naturalness of speech synthesisers [Rosenberg, 1971, Holmes,
1973] and increasing the accuracy of recogmtion systems [Blomberg, 1991] This thesis aums to
mvesugate the performance of existing techmques and proposes new methods for glottal waveform
processing In particular, the thesis focuses on the applicauon of glottal processing techniques to the
problem of low bit rate speech coding

To thus end, four main studies have been undertaken Firstly, models for representing the effects
of reverberaugn on the recorded speech signal are wnvestigated This study 1S made with special
reference to the mmpact of reverberation on the accuracy of glottal waveform esumation by nverse
filtering Secondly, an improved method for 1dentfication of the Glottal Closure Instant (GCI) from the
speech signal 1s proposed and tested Thirdly, two algonthms for glottal estumation, Closed Phase
Inverse Filtering (CPIF) [Berouu, 1976, Wong et al , 1979, Deller, 1981] and Iterauve Adapuve Inverse
Filtering [Alku, 1992a,b,c], are evaluated Fourthly, a Glottal waveform Excited Linear Prediction
(GELP) coding system for voiced speech 1s developed The performance of the system, in comparison
with that of three standard conventional coders, 1s assessed experumentally

It 1s behieved that the research described herein will aid system developers 1n algorithm selecuon
and will give direction to future research in the area Although the thests focuses on techniques for
speech coding, the results of the mvesugation are, nevertheless, of relevance to the related areas of

speech synthesis and recognition

12 PLAN OF THE THESIS
The thests contains eight chapters and three appendices Broadly speaking, Chapters two and
three provide background matenal concerming speech coding and glottal processing, Chapters four

through seven present origsal research wnto glottal processing and Chapter eight concludes the thesis

Chapter 2 Background Theory

This chapter presents an overview of the pnnciples of speech coding It 1s intended to provide a
context for the research descnbed tn the remainder of the thesis Three main topics are covered - the
physiology of the human speech production system, models for the system and techniques for speech
coding

The anatomy of the speech production system 1s described briefly and the physiological processes
mvolved in generaung speech are expiained Modelling the system 1s discussed with special reference to

the source-filter theory and the Linear Predicuon vocal tract model Current speech coding techniques



are detailed, together with the standards based upon them Lastly, the state of the art in speech coding 1s

]
assessed, focusing on methods for low bt rate transmission

Chapter 3 Focal Theory

Theory directly concerned with glottal waveform based speech coding 1s dealt with in Chapter 3
The chapter covers five areas - the fundamentais of glottal processing, methods for glottal waveform
estunation, models for the voice source, techmques for determiming the GCI and a summary of glottal
processing applications

The prninciples and assumptions underlying glottal processing are examuned The two main
approaches to glottal waveform esumaton, inverse filtering and joint source-tract esiumation, are studied
with reference to the hiterature Sumilarly, dynamic and flow models for the voice source are reviewed
Methods for idenuficanon of the GCI are considered in three sub-secuons These cover
electroglottography, epoch detection and closed phase detecuon Lastly, the application of glottal
processing techniques to the problems of speech synthesis, recogmion and coding 18 descnibed In

particular, the literature regarding glottal based speech coding 1s reviewed 1n detail

Chapter 4 Reverberation Modelling

Chapter 4 studies models for representing the effects of reverberauon on speech recordings made
m a typical room Two effects are considered - the vanation of the radiation impedance at the lips and
the inclusion of sound reflections in the signal received at the microphone

The vanauon of the lip radiation impedance 1s studied by developing theory for predicting the
effect of reverberaton on the radiation impedance at a vibrating piston set i an infinite baffle The
theory 1s confirmed by companng the results of Monte Carlo simulations with measurements of the
radiation mmpedance vanation at a loudspeaker The venfied theory 1s applied to the problem of
predicting the lip radiaton impedance vanation which occurs 1n normal enclosures

Reverberant speech material can be generated by convolving anechoic speech signals with typical
room inpulse responses One convenient method for creaung these responses 1s the Image Method of
Allen and Berkley [Allen and Berkley, 1979] The accuracy of the Image Method 1s studied by
companng artficially generated room umpulse responses with measured responses The Image Method

1s employed throughout the remainder of the thesis for the generauon of reverberant speech matenial

Chapter 5 Glottal Closure Detection

A new and improved method for GCI identification 1s proposed in Chapter 5 The nadequacies of
the previous method, Maximum Likehhood Epoch Detection (MLED) [Cheng and O'Shaughnessy,
1989], are illustrated and the ncreased rehability of the new system, Pre-emphasised Maximum
Likelihood Epoch Detection (PMLED), 1s established The performance of the new techmque 1s
evaluated across a vanety of speech matenal, both male and female, and assessed under condizons of

noise and reverberation



Chapter 6 Glottal Waveform Extraction

The performance of two exisung aigonthms for glottal waveform estimation, CPIF and IAIF, 1s
evaluated in Chapter 6 The two methods are tested in conjunction with an LF model [Fant et al , 1985]
fitung procedure for glottal waveform parametentsauon The accuracy and robustness of the techmques
are assessed m experuments mnvolving the processmng of voiced speech recorded by subjects of both sexes
under noisy and reverberant condiions The LF parameters extracted in this way are compared with the

results of previously published studies and are discussed 1n this context.

Chapter 7 Glottal Excited Speech Coding

Chapter 7 proposes a GELP coding system and evaluates 1ts performance compared with that of
three standard conventional coders

The GELP system models voiced speech as an LF glotial waveform excitauon applied to a Linear
Predicuon vocal tract filter The GELP encoder detects the GCI by the new PMLED method and
esumates the glottal excitation during voiced speech by mnverse filtering The LF model 1s fitted to the
esumated waveform and the LP synthesis filter 1s determined by an ARX procedure [Astrom and
Eykhoff, 1971] Two configurations of the coder are tested - one using CPIF and the other employmng
IAIF A vanable rate quantusation scheme is developed whereby the LF parameters are encoded
differentially on a period-by-penod basis

The speech quality, bit rate and robustness provided by the GELP system 1s compared empincally
to those of LPC-10, CELP and GSM The test data used 1n the investigation consists of conunuous all-
voiced male and female speech with added white noise and reverberation The speech quality provided
by the systems 1s evaluated using an objectuve quality measure, the Bark Spectral Distorion (BSD)
{Wang et al, 1992] Lastly, the performance of the GELP system 1s discussed and contrasted to that of
the standard techniques

Chapter 8 Conclusion
A bnef summary of the thesis 1s gtven 1n Chapter 8 Following this, the contributions made by the

invesugauon are assessed and the thesis concludes with a number of suggesuons for future research

Appendices

Three appendices are included at the end of the document The first two are copies of papers
which were wnitten by the author and published dunng the course of thts investigation Although they do
not directly pertain to the main thrust of the thesis, they are relevant and have been included for this
reason The third appendix concerns the capture of the speech test data used in the mvesugation

Appendix A repnnts the paper "The vanation of the hp radiation umpedance 1n a reverberant
enclosure” which was onginally published in the Proceedings of the European Signal Processing
Conference (EUSIPCO) 1994, vol 3, pp 1689-1692

Appendix B reprints the paper "New formulae for predicung the accuracy of acousucal
measurements using the averaged m-sequence correlation technque” which was onginally pubhished 1n

the Journal of the Acoustical Society of America, 1995, vol 97, no 2, pp 1329-1332



Appendix C describes the recording of the speech material and suppiies an explanaton of how

the noisy and reverberant test data was created



CHAPTER 2

BACKGROUND THEORY

21 INTRODUCTION

This chapter presents an overview of the pnnciples and techniques of digital speech coding
Three main elements are considered - the anatomy and physiology of the human speech producuon
system, digital models for that system and techniques for speech coding

The anatomy of the human speech production system 1s described, together with an explanation
of the acoustic processes nvolved in speech production In particular, the two marn types of excitation,
voiced and unvoiced, are detailed

In this context, the source-filter theory of speech production, which underlies most of today's
speech processing systems, 1s presented The main discrete-ume models for the human speech
producuion system are covered Special attention 1s paid to the lossless tube and Linear Predicuon vocal
tract models As will be seen, the Linear Predicuon model 1s the foundatton of the vast majority of low
rate speech coding systems

Finally, the main methods of speech coding are presented, together with the standards based upon
them The present state of the art i speech coding 1s assessed, especially those coding techmques
currently under mvesugation by the speech research community

The chapter 1s divtded 1nto five sections - this introduction, a description of the physiology of the
buman speech production system, a description of the acousuc theory of speech producton, an overview

of speech coding and a conclusion

2.2 PHYSIOLOGY OF THE SPEECH PRODUCTION SYSTEM

For the development of efficient speech processing systems, an understanding of the human
speech production system 1s essential The means by which we generate speech sounds 1s determined by
the anatomy of our vocal mechanmisms In turn, the nature of the sounds generated 1s determined by the
acoustic processes within those mechanisms To explan these 1tems clearly, this section 1s divided into
four sub-sections The first descnbes the anatomy of the speech production system, the second describes
how speech 1s actually produced by the system, the third covers the various types of excitations used in
producing speech sounds and the fourth sub-section fooks in detaul at the voiced excitation

For further informaton see [Fant, 1970, Flanagan, 1972, Ladefoged, 1975, Rabwner and Schafer,
1978, O'Shaughnessy, 1987, Deller et al, 1993)

2.2.1 Anatomy

By defimtion, the speech signal 1s an acousuc sound pressure wave that 1S generated by the

movements of the anatomical structures which make up the human speech production system
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1993]

Crcod
cartilage

Fig 22 Cross-section of the larynx as viewed from the front [after O'Shaughnessy,
1987]



Fig 2 1 shows the anatomy of the human vocal mechanism The organs of the system, that 1s, the
larynx, vocal tract and nasal tract, generﬁté' the speech signal by modulating air flow from the lungs The
largest organ of the system, the vocal tract, has an average length of about 17 cm 1n an adult male and
roughly 14 cm 1n an adult female Movements of the vocal apparatus or articulators (e g the lips,
tongue, jaw, etc ) effect changes 1n the shape of the vocal tract, the cross-secuonal area of which can
vary between zero (closure) and 20 cm? ormore The cross-sectional area of the nasal tract 1s fixed, with
a length of roughly 12 cm 1n an adult male Acoustic coupling between the vocal and nasal tracts 18
controlled by the velum The velum can be opened or closed to permit or prevent sound propagation
through the nasal ract.

A cross-section of the larynx 1s shown in Fig 22 The function of the larynx 1s to provide a
pentodic or voiced excitation 1o the rest of the speech production system It achieves this by repeatedly
opening and closing the vocal folds, altenately permittung and prevenung air flow tnto the vocal tract
The folds themselves are a pair of elastic bands ¢f muscle and mucous membrane that stretch over the
trachea or windpipe from the thyroid cartilage in the front to the arytenoid cartilage at the back The
thyroid cartifage can be seen at the front of the neck and 1s commonly known as the Adam's apple The
cartilage of the larynx is held together by a network of ligaments and membranes that control the
positioning of the vocal folds dunng speech This posittoning determines the setting of the vocal folds,

1¢ open, clesed or vibraung, and the mode of therr vibration, 1 ¢ frequency and uming

2.2.2 Speech Production

To produce speech, air flow from the lungs 1s converted into an excitation signai This signal
excites the acoustic resonances of the vocal tract cavaty and, if the velum 1s open, those of the nasal
cavity The nature of the vocal tract resonances 1s determined by the shape of the cavity Thus, the
resonances can be controlled by the posiioming of the articulators The resonances or formants are
perceived by the listener as high concentrauons of acoustic energy at certain frequencies It 1s by the
pattern of these formants that the listener determines the phonetic content of the utterance So, for
example, the vowel [1] of the word "he" can be disinguished from the vowel [&] of the word "had"
because thewr formant patterns are different In tum, the formant patterns for the two vowels differ
because they are generated using dissimilar vocal tract configurauons The [1] sound 1s produced by a
high tongue positon at the front of the mouth, while the [&] sound 1s generated using a low tongue
position Note that the International Phonetic Alphabet (IPA) symbols used herein represent a speaker of
Bntsh English

The nasal cawity, 1f acoustically coupled to the vocal tract, ntroduces anti-resonances into the
speech signal This 1s perceived by the hstener as nasalisation and leads to a specific class of speech
sounds, known as the nasals (e g {m] and [n])

In summary, the speaker provides lingwisic information to the hstener by controlling the

excitation to, and the position of, the articulators of the speech production system



2.2 3 Excaitation Types

There are two fundamental excitauon types, voiced and unvoiced, and three lesser types, mixed,
whasper and plosive

Voiced sounds are produced by forcing atr through the larynx or glotus The tension in the vocal
cords 1s adjusted so that oscillations are set up and maintatned This periodic interruption of the air flow
from the lungs results 1n quasi-pertodic puffs of air that excite the vocal tract This process is known as
phonation and occurs dunng all vowels and some consonants (e g [w], [1] and [m])

Unvoiced sounds are formed by forcing atr through a constricuon in the vocal tract This causes
wmrbulence 1n the air flow, which 1s perceived by the listener as a "hissing” or noisy sound Unvoiced
excitation 1s used for all the fricatives (e g [s] and [f])

The two fundamental excitations can be combined to produce a mixed excitation This mvolves
sumultaneous use of the voiced and unvoiced excitations, leading to a class of sounds known as the
voiced fricatives (¢ g {z])

A whisper 1s created by forcing ar through a partually open glottis to excite an otherwise
normally articulated utterance The air flow constricuon at the glotus creates a turbulent or noisy
excitation which replaces the normal voiced excitauon to give a glottal fricauve A related form of
voicing 1s the breathy voice type This occurs durning voiced speech when the glotis undergoes
mcomplete closure Thus, a hissing excitaton 1s produced duning what would normally be the closed
phase

Plosive sounds are produced by closing the vocal tract completely, allowing air pressure to build
up behind the closure and suddenly releasing 1t Plosives can be further categonised based on whether the
sound following them 1s voiced or unvoiced For example, the sound [t] 1s an unvoiced plosive, while [b]

from "boot” 1s a voiced plosive

2.2.4 Voice Production

The myoelastic/acrodynamic theory of phonation descnbes how the voiced excitation 1s generated
[van den Berg et al , 1957, van den Berg, 1958] The process 1s tllustrated by the sequence of laryngeal
cross-sections 1n Fig 2 3 Imually, the vocal cords are closed and air pressure builds up below the larynx
due to the contraction of the lungs (Fig 2 3 (a)) This pressure forces the cords apart (Fig 2 3 (b) and
(c)) and air flows through the sht-like opening (Fig 2 3 (d)) Due to the giottal constriction, the air flow
has a large velocity As a result of the Bemoulls effect, a negative pressure 1s generated This force
coupled with the elastic tension of the cords, pulls the folds back together again (Fig 2 3 (e)) The glotts
15 again closed (Fig 2 3 (f)) and, as before, air pressure builds up below the vocal folds (Fig 2 3 (a)) In
thrs way, vocal fold vibration 1s set-up and mamntained The air flow increases and decreases pertodically
mn sympathy with the opening and closing vocal folds

The rate and iming of vocal fold vibration 1s controlled by the tension and spreading of the vocal
cords plus the air pressure 1n the lungs The fundamental frequency of the vibration les, typically n the
range 50-250 Hz for an adult male and 120-500 Hz for an adult female [Deller et al , 1993] The timing

of the vibration affects the overall shape of the glottal volume velocity waveform This includes the skew
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Fig 2 3 Sequence of cross-sections of the larynx llustrating a complete glottal cycle
[after Deller et al , 1993]

of the pulse, the rate of glottal opening, the rate of closure, the maximum flow and the ratto of the glottal
closed phase to open phase In combination, these factors control the excitauon waveform and provide
the listener with informatuon on the speaker's meaning, identity and emouonal state [Cummings and
Clements, 1990, 1992, Childers and Lee, 1991]

2.3 MODELLING SPEECH PRODUCTION

For effecuve machine processing of speech, mathematical models of the speech producuon
systems must be developed These models attempt to represent the speech production process in an
accurate and efficient manner allowing for automatic synthesis, recogmtion and coding

The section 1s sphit into four sub-secttons In the first, the basic acoustic theory of speech
production, which 1s the comerstone of most speech processing systems, 15 descnbed In the remaining
three sub-sections, the main components of most speech production models are detailed These are the

excitanon, vocal tract and hip radiation models

2 3 1 Acoustic Theory of Speech Production

As can be seen from the previous section, the human speech productzon mechanism 1s a complex
system incorporaung a large number of component parts To fully represent such a system would
require a large set of equations descnbing the physical process of air propagation within the vocal
mechamsm [Sondhi, 1974] Such a umversal theory would require the characterisation of such elements

as the ume-varymng vocal tract shape, the ime-varying vocal folds, nasal coupling, subglottal coupling,



viscous fnicuon, heat conduction, wall loss and low-viscosity compressible fluid mechanics Such a
theory has not yet emerged

The most commonly used approximation to the speech production system 1s the so-called source-
filter theory [Fant, 1970] In this, the excitation signal, the vocal tract filter (incorporating the effects of
nasalisation) and the lip radiation function are constdered to be separable hnear systems which are
short-ume nvanant. Thus, in the z-domain, the speech pressure signal S(z) can be calculated from the
volume velocity excitation G(2), the vocal tract filter H(z) and the lip radiation R(z)

S(Z)=G(Z)H(Z)R(Z) @21

The model assumes that there 1s no coupling between the sub-systems and that there ts planar
sound propagation within the vocal tract Neither of these assumptions 1s, i fact, vaiid for the real
speech productuon process [Teager and Teager, 1990] However, the simphficatons which they allow
have facilitated the development of computationally feasible techmques for speech modelling, coding
and synthesis In general, systems built on the source-filter theory have shown good performance in

everyday applicauons

2.3.2 Exatation Modelling *

The two fundamental types of excitation, voiced and unvoiced, are generally represented using
models of the excitation waveforms

In the case of the voiced excitauon, the quasi-pentodic glottal sagnal has been represented by very
sumple and very complex models The sumplest model 1s a train of umpulses at the fundamentai period of
phonation [Tremain, 1982] More accurate models, such as the LF model, parametenise the glottal
waveshape and reproduce the uming detals of the glottal excitation as well as the pitch period
[Rosenberg, 1971, Fant et al, 1985] Still more complex models attempt to sunulate the movement of
the vocal cords and the fluid flow through them, often including vocal tract and subglottal coupling
effects [Ishizaka and Flanagan, 1972, Ananthapadmanabha and Fant, 1982, Titze, 1989) Studies 1n
speech perception suggest that accurate modelling of voiced speech 1s crucial for natural sounding
coding and synthesis systems [Borden and Hamns, 1980]

The turbulent unvoiced excitation 1s most commonly represented by a white noise source with
controllable gain Since the human ear 1s insensiuve to the details of the unvoiced excitation, this sumple
model 1s effecuve for synthesising unvoiced speech

The remaming excitations, mixed, plosive and whisper, are frequently ignored 1n the speech
production model When they are inciuded, they are normally represented by a combinauon of the

voiced and unvoiced excitatons

2.3 3 Vocal Tract Modelling

One of the most intuitive vocal tract representations 1s the lossless tube model [Chiba and
Kajiyama, 1941, Dunn, 1950, Stevens and House, 1955, 1961, Fant, 1970, Lindbolm and Sundberg
1971} In thss, the vocal tract 1s considered as a sernies of concatenated lossless acoustc tubes, see Fig
24 The cross-sectonal areas of these tubes are chosen so as to approximate the cross-section of the real

vocal tract Assuming that one-dimensional planar propagauon of sound occurs within the tract, an
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assumption which is reasonable for low frequencies (< 4 kHz), then the movement of air within the tubes
is governed by the Law of Continuity of Mass and Newton's Force Law. Using these relations, the
pressure and volume velocity in each of the tubes depends only on the pressure and volume velocity of
the air in the neighbouring tubes and on the ratio of the cross-sectional area of the tube to that of its
neighbours. In this way, the pressure and flow in each of the tubes can be calculated as a function of
time. Thus, the sound pressure radiated at the lips can be determined by applying a glottal volume
velocity signal to the lossless tube model and calculating the air flow from the glottis to the lips. The
flow at the lips is radiated as a sound pressure wave,

The basic lossless tube model has shown good results in reproducing human vowels from vocal
tract area functions measured in X-ray pictures [Fant, 1970; Flanagan, 1972]. However, various
modifications have heen made to the basic model in order to improve the quality of the speech obtained
from it. These modifications have included vibration loss, thermal loss, conduction loss and an extra
cavity to facilitate the production of nasal sounds.

The basic lossless tube model has proven extremely suitable for implementation in a discrete-time
system [Kelly and Lochbaum, 1962]. To achieve this, the vocal tract can be divided into a number of
tubes of a common fixed length. Analysis of wave propagation proceeds as before, except that each tube
incurs the same time delay. Using this simplification, the overall lossless tube can be represented using a
discrete-time signal flow model as in Fig. 2.5. Sound takes half a sampling period z 1 to traverse each
tube and the flow between tubes k and k\ is determined by the reflection coefficient of the junction v
The reflection coefficient is simply calculated from the cross-sectional area of the tubes A~ and

. -
AK+H\+AK (22)
For simplicity, and without loss of accuracy, the half sample delays in the feedback path can be moved
up into the forward path. The resulting transfer function for a two tube vocal tract model is then of the

form
VUpAz)
T Uglottis(2)
[(HO2 J+HriXi+r/)z' 1
[ +(rrs +rlr,)z~I +rgz 1
Removing the overall delay of the system and generalising the coefficients, the *-section lossless model
has the form

*o (24)

where Ho IS the gain and a are the coefficients of the system. This expression corresponds to the
transfer function of an all-pole filter. The poles of Hez) define the resonant or formant structure of the
vocal tract. In general, an eight section model is required to represent speech at a sampling frequency of
gkHz. This corresponds to an assignment of two poles per formant.

This Linear Prediction model of the vocal tract has proven extremely useful in speech processing
[Markel and Gray, 1976]. It is the basis of most low rate speech coding systems, has been used in many
speech synthesis applications and is a common representation in speech recognition systems [Rabiner
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and Schafer, 1978, Deller et al, 1993] ,The assumptions and approxumations intrinsic to the model are

more than made up for by its flexibility and computational tractability

2.3 4 Lip Radiation Modelling

The volume flow signal at the lips 1s radiated 1n the form of an acoustic pressure wave At low
frequencies, the radiaung area of the mouth can be assumed to have a velocity distibution that 1s
uniform and co-phasic [Flanagan, 1972] Therefore, the radiaung area 1s roughly equivalent to a
vibrating piston set in a baffle corresponding to the head

The most accurate representation of the lip radiation function 1s the piston 1n a sphernical baffle
model [Morse and Ingard, 1962] Unfortunately, the mathematical expression for this funcuon 1s
complex and cannot be expressed 1n closed form More commonly used are the first terms of the series
expansion for the radiation 1umpedance of a piston 1n an nfinite baffle (Flanagan, 1972]

The gross effect of the radiation funcuon s to apply a +6 dB/octave emphasis to the flow signal at
the lips In the digital domain, this can be represented by a first order differentuation

R(z)=1-apz! @5

where 2y~ 09 Although more complex z-domain models, in which the radiation funcuon depends on
the lip area do exist [Laiwne, 1982], the sunple differentation model 1s by far the most common

Frequently i studies of the glottal excttation, the differenuation effects of the lip radiauon
function are apphed directly to the glottal volume velocity signal [Fant et al, 1985] This entails
representing the glottal excitauon by the differentiated volume velocity and removing the radiation
functuon altogether In this study, the differentiated glottal volume velocity signal 1s referred to as the

glottal excitation or glottal waveform

2.4 SPEECH CODING

Due to world-wide demand for advanced telecommunication systems, speech coding remains an
area of intense research acuwity [Jayant, 1990, Gersho, 1994, Rabner, 1994] The continuing goal of
this research 1s to transmiat high quality speech at a low bat rate

Coding systems mumprove the efficiency, and hence reduce the cost, of speech transmisston and
storage However, coding ncurs extra costs, tn terms of the once-off purchase of the encoding and
decoding units The two main applications for speech coding are voice messaging, where disk space
must be conserved, and cellular telephony, where bandwidth must be conserved Today's commercial
coding systems range from low complexity, high bit rate waveform coders to high complexity, low bit
rate vocoders Some of the most common systems are described below

Virtually all speech coding systems are lossy, that s, the decoded speech waveform 1s not the
same as the encoded waveform The key to efficient coding 1s to preserve only the sound information
which 1s perceptually important to the listener As well as this, coders are optumised so as to reproduce
high quatity speech Other sounds, such as music, need not be so well represented Nevertheless the

coding process should under no circumstances ntroduce annoying artefacts
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[after Rabiner, 1994]

Speech coding systems generally operate at a sampling frequency of 8 kHz This allows the
reproduction of speech within the telephone bandwidth of 200 Hz - 3 4 kHz This bandwidth contains
the first four formants and 18 sausfactory for the transmassion of speech

Systems are normally assessed in terms of thewr transmission rate and speech quality Sumple
objecuve quality measures, such as the Signal to Noise Rauo (SNR), show poor performance tn
predicung the quality of the coded speech [Quackenbush et al, 1988] For coding purposes, 1t 1s not
important that the re-synthesised waveform matches the oniginal signal What is important 1s that the re-
synthesised speech sounds hike the ortginal To this end, subjective quahty measures such as the Mean
Opimion Score (MOS), are more effective n assessing the quality of a coding system The Mean Opinion
Score 15 a subjective evaluation of speech quality based on listening tests [IEEE, 1969] In these tests,
subjects are asked to rate coder performance as 1 (bad), 2 (poor), 3 (fawr), 4 (good) or 5 (excellent) The
mean rating 1s taken as the MOS The MOS of some of the coding systems described 1n this section are
shownmmFig 26

Recent, more complex objecve quality measures, such as the Bark Spectral Distortion [Wang et
al, 1992], which model the properues of the human auditory system, have shown promise m predicing
the quality of speech coders However, these measures have not yet been widely used due to the lack of

standards Doubtless, an accurate standard for objective quality assessment will eventually emerge

2.4.1 Waveform Coders

Waveform coders transmit speech data by encoding the speech waveform on a samplie-by-sampie
basis Although numerous waveform coding schemes have been proposed, the two most common
approaches are Pulse Code Modulatton (PCM) and Adaptive Differential Pulse Code Modulauon
(ADPCM)
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The sumplest of these systems 1s PCM In this, the amplitude of the speech waveform 1s sampled
at 8 kHz and the level 1s quantised to an 8 bit integer I\ion-umform quantisation (or companding) 1s
commonly used to umprove the quality of PCM The Telecommunications Standardisation Sector of the
International Telecommumcatnon Union (ITU-T) defined a PCM standard in 1972 [Jayant, 1990) This
standard provides high quality speech 4 3 MOS at a transmusston rate of 64 kb/s

Adaptive Differenual PCM achieves quality comparable to that of PCM at a lower rate by
exploiing some of the redundancies in the speech signal ADPCM uses a Linear Predicuon filter to
predict the next sample from previous samples The coefficients of the Linear Predictor are calculated by
the autocorrelanon method apphied over a block of samples The autocorrelation method determines the
Linear Prediction coefficients which give the mimmum mean squared error in predicting the speech
signal from previous samples The coefficients obtatned are quantused and transmitted to the receuver,
together with the difference between the actual signal and the predicted signal The overall ransmission
rate of the system 1s lower than PCM because, relauve to the raw speech signal, the difference signal has
a reduced dynamic range and so requires fewer bits for transmission The ITU-T standard for ADPCM 1s
G 721 [Jayant, 1990] Setn 1984, 1t has been rated as providing a MOS of 4 1 at 32 kb/s

2.4.2 Vocoders

Vocoders, or voice coders, attempt to charactense speech 1n terms of a speech production model
This requires frame-by-frame analysis of the speech signal and extractton of the parameters of the
model In general, low rate vocoders 1gnore the details of the speech waveform and reproduce the
perceptually important short-term spectral magnitude information The most common forms of vocoder
in use today uuhse a Linear Prediction vocal tract filter and a waveform excitauon model, as shown 1n
Fig 27 Four of the major coder types are described below - LPC-10, Residual Excited Linear Prediction
(RELP), Mulupuise LPC (MP-LPC), Regular Pulse Excuaton (RPE) and Code Excited Linear
Prediction (CELP)

LPC-10 1s based on an extremely sumplisttc model of the speech production system The system
makes a decision as to whether a frame of speech 1s voiced or unvoiced In the case of voiced speech, an
umpulse tram at the pitch penod 15 used to excite a 10th order Linear Prediction filter This filter
represents not only the vocal tract, but also the spectral contribution of the glottal excitauon For
unvoiced speech, a white noise excitauon 1s applied to a 4th order filter The system operates at a very
low but rate but produces poor quality speech The system 1s particularly susceptble to voicing decision
and putch errors These errors cause considerable distortion of the speech signal and lead, m part, to the
poor subjecuve quality raung for the system In additton, duning voiced regions the re-synthesised
speech has a "buzzy" or synthetic quality due, 1n part, to the use of an mmpulse excitauon The U S
Federal Standard 1015 LPC-10e developed 1n the mid-70s, achieves a MOS of 2 5 at 2 4 kb/s [Tremain,
1982]

Multipuise LPC [Atal and Remde, 1982] introduced two key features into speech coding systems
- analysis-by-synthesis and perceptually weighted error measures The basic MP-LPC system uses an LP
filter, calculated by conventional methods over a frame of speech samples A number of candidate

mulupulse excitations are passed through the LP filter to re-synthesise the speech signal The difference
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[after Rabiner and Schafer, 1978]

between the re-synthesised and onginal signals 1s calculated and appited to a perceptual weightng filter
Thas filter de-emphasises errors at frequencies which are present 1n the speech signal and emphasises
errors at frequencies which are lacking n the speech signal Thus, errors which would be heard by a
human listener are emphasised and those masked from a listener by the speech signal uwself are de-
emphasised The energy of the perceptually weighted error signal 1s mmmmised by iterattvely adjustng
the mulupulse excitation The overall process of selecting the best excitatuon by re-synthesising the
speech signal and companng 1t to the onginal 1s referred to as analysis-by-synthesis The analysis-by-
synthests approach avoids the need for hard decisions, such as voicing or pitch, and ensures good quality
speech under most conditons The multipulse excitaton 1s normally a sparse sequence of pulses
separated by zeros This leads 0 a low overall transmission rate for the system An MP-LPC algorithm
at 9 6 kb/s was recently adopted as a standard for aviauon satellite communications [Gersho, 1994]

Inspired by MP-LPC, Reguiar Pulse Excitation coding uses regularly spaced pulse patterns for the
excitation to a conventional LP filter The RPE sub-system operates in combination with a Long Term
Prediction sub-system which removes redundancy in the speech signal due to the siowly changing pitch
pertod RPE-LTP-LP was selected in 1988 as the standard for digital cellular telephony by the Global
System for Mobile telecommunications (GSM) sub-commuttee of the European Telecommunications
Standards Institute (ETST) [ETSI, 1989] The system achieves a MOS of 3 8 at a transmission rate of 13
kb/s [Rabiner, 1994)

Currently, the most important form of vocoding system 1s CELP This approach uses a
conventional LP synthesis filter excited by innovation sequences from a stochastic and an adaptive
codebook. The stochastic codebook contains sparse random puilse sequences, while the adaptive
codebook holds ume lagged versions of previous excitauons Each codebook 1s exhaustively searched to
find the two entnies which minimise the perceptual error between the re-synthesised speech and the
ongmal The opumum codebook indices and gains, together with the quantised LP coefficients, are
wransmutted to the recewver The search procedure 1s highly computanonally expensive - a CELP encoder
requires roughly 30 MIPS {Rabiner, 1994] CELP systems achieve good quality speech at a low bit rate
Standardised CELP coders include the U S Federal Standard 1016, daung from 1989, which attains a
quality rating of 3 0 MOS at 4 8 kb/s [Campbell et al , 1991]
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The principles of CELP have been further developed to produce ITU-T standard G 728, Low
Delay CELP [ITU, 1993] Standardised in 1991, the system achieves high quality speech MOS 4 0 at a
medium rate 16 kb/s with a coding delay comparable to that of ADPCM The system uses only a
stochasuc codebook, and achieves a low transmission rate by backward adapuon of the gain and LP
synthesis filter As in conventional CELP, an exhaustuve codebook search with a perceptually wetghted
error cnterion 1s employed This makes LD-CELP extremely computauonally complex - a LD-CELP
encoder needs approximately S0 MIPS [Rabiner, 1994]

Note that the GSM standard and the US Federal Standards 1015 LPC-10e and 1016 CELP are

described 1n more detail in Section 74 1

2 4 3 State of the Art

In recent years, developments 1n speech coding bave been driven by two main factors Firstly, the
availahlity of low cost, high speed Digital Signal Processors (DSPs) has allowed the implementation of
mcreasingly complex coding algorithms Secondly, mproved knowledge of the human speech
production and auditory mechamsms has allowed the removal of further redundancy from the speech
signal Essentially, systems no longer atlocate bandwidih 1o sounds which cannot be produced by the
speaker or which cannot be heard by the hstener The current state of the art can be summarised by
examumng the performance achtevable at a given transmission rate

The quality of a good connection 1n the Plain Old Telephone System (POTS), 1e toll quality, can
now be achieved at 16 kb/s with LD-CELP G 728 The coder offers low delay and high quality speech

Speech coding at around 8 kb/s 1s currently under standardisation To this end, CELP type
systems are under invesugation for the balf-rate GSM, North Amencan half-rate digital cellular and
ITU-T standards [Gersho, 1994]

At 4-6 kbfs, the best CELP algonthms mtroduce noticeable coding noise, although ntelligibility,
naturalness and identfiability of the speaker's voice are retained The quality at this rate 1s often referred
to as digual cellular

At 2-3 kb/s the performance of CELP 1s further degraded, the speech quality becoming noisy and
"hoarse” The quality at these rates 1s descnbed as communications quality, that is, the speech 1s
intelligible but distorted Research 1s currently under way to develop algonthms which provide better
quality at these rates Amongst the most promising algonthms are Sinuso;idal, Mixed-Excitation,
Prototype Waveform Interpolation (PWT) and Glottal Excited Linear Prediction (GELP)

Sinusoidal coders operate by parametensing the short-term spectrum of the speech signal
[Hedelin, 1981, Almerda and Tribolet, 1982, Marques et al , 1990, McAulay and Quatuen, 1986, 1992,
Brandstem et al, 1990, Nishiguch: et al , 1993] In particular, voiced speech is modelled as a sum of
sinusoids whose frequencies and phases are controlled so as to track the evolving short-term spectra of
the speech Sinusoidal systems suffer from some of the analysis errors typical of LPC-10 but, in general,
provide cleaner speech than CELP at low rates However, Sinusoid systems incur a long coding delay

Mixed-Excitauon coders are based on the LPC-10 system, but replace the binary voicing decision
with a mixed unpulse and white noise excitation [McCree and Barnwell 1992 1993] Separate voicing

decistons are made for each sub-band of the speech signal This reduces the seventy of voicing errors
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and removes the buzzy quality of standard LPC-10 systems. Subjective tests indicate that the quality of
Mixed-Excitation systems at 2.4 kb/s approaches that of U.S. Federal Standard 1016 CELP for clean
speech, and exceeds it for noisy speech.

Prototype Waveform Interpolation coders model the voiced excitation to an LP synthesis filter by
transmitting a single prototype pitch cycle every 20-30 ms and reconstructing the signal by interpolation
[Kleijn, 1991; Kleijn and Ganzow, 1991]. The interpolation can be done in the time or spectral domains
with differential coding of the prototypes. Conventional CELP coding is used for unvoiced speech. An
implementation of PWI has been reported to achieve an impressive quality compared with conventional
schemes at 2.4-4 kb/s [Shoham, 1993a,b].

Glottal Excited Linear Prediction coders operate by extracting and parameterising the glottal
excitation during voiced speech [Hedelin, 1984, 1986; Bergstrom and Hedelin, 1988, 1989; Alku and
Laine, 198%; Alku, 1990a,b, 1991]. The glottal excitation is generally represented by a time-domain
waveform model, the parameters of which are determined by fitting the model to the glottal excitation
estimated from the speech signal by inverse filtering. The parameters of the glottal waveform are slowly
time-varying compared to those of a conventional LP residual model. Thus, the transmission rate
required for the excitation is lower in GELP systems than in conventional coders. Also, in GELP
systems the LP synthesis filter is equivalent to the actual vocal tract filter and so can be quantised very
efficiently. Standard LPC-10 or CELP techniques are used for transmission of unvoiced speech. GELP
systems have been shown to produce high quality speech at low rates. However, they are susceptible to
phase distortion in the incoming speech signal which makes extraction of the time-domain glottal
waveform parameters difficult

At rates below 1 kb/s, speech coders operate on large segments of speech and so incur delays of
hundreds of milliseconds [Liu, 1989, 1990, 1991 Kemp et al., 1991]. The systems range from harely
intelligible to communications quality.

2.5 CONCLUSION

This chapter has described the basic theory underlying today's speech coding systems. The human
speech production system has been explained in terms of its anatomical structures and the acoustic
processes involved in the generation of speech. Various discrete-time models for the speech production
system have been detailed. The lossless tube model for the vocal tract has been described, together with
waveform excitation and lip radiation models. Additionally, the derivation of the Linear Prediction vocal
tract model from the lossless tube model has been presented. Current speech coding standards, both
waveform and vocoding, have been described in some detail. Finally, the state of the art in speech
coding has been assessed. Current research is focused on low rate, medium delay systems which can
achieve digital cellular quality. One such system, Glottal Excited Linear Prediction, has been chosen as
the subject of this investigation. The next chapter describes the history and structure of GELP systems.
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CHAPTER 3

FOCAL THEORY

31 INTRODUCTION

This chapter presents a survey of research that has been conducted i the area of glottal waveform
processing The principles underlyimng glottal processing are considered, as well as techmques for glottal
waveform estimation and modelling Methods for identifying the Glottal Closure Instant (GCI) from the
speech signal are descibed In addition, systems employing glottal processing techniques for speech
recogmuon, synthesis and coding are detaled

The chapter 1s orgamised as follows Section two covers the prnciples and assumptions
underlying glottal processing Secuon three descnbes techmques that have been developed for
esttmating the glottal waveform from voiced speech The fourth section examines the vanous models
which have been proposed for representing the vorce source The associated problem of GCI detection 1s
covered 1n the fifth section Section six describes how glottal processing techniques have been applied 1n

the areas of speech recognition, synthests and coding Section seven concludes the chapter

3.2 FUNDAMENTALS OF GLOTTAL WAVEFORM PROCESSING

Glottal waveform processing 1s based on the source-filter theory of speech production [Fant,
1970] This theory supposes that the human speech production system conststs of three separable linear
sub-systems - a glottal excttation, a vocal tract filter and a bp radiation funcuon Although this
representation of the speech production system has been used extensively and fruitfully in speech
processing, the assumptions underlying 1t are incorrect Lineanty requires planar airflow within the
vocal tract. Direct measurements of flow within the tract suggest that this does not always occur [Teager
and Teager, 1990] Separability requires that the glottal waveform 1s unaffected by the vocal tract
configuraion Measurements show that the giottal flow waveform is skewed, relative to the glottal
opening area, due to the vocal tract load [Rothenberg, 1973, Rothenberg and Zahonan, 1977,
Ananthapadmanabha and Fant, 1982] In addition, coupling between the vocal tract and the subglottal
system increases formant damping during the glottal open phase, particularly for the first formant
[Lindgvist, 1964, Fant, 1979, Knshnamurthy, 1992] This mamfests itself as a formant nipple
supenmposed on the open phase of the glottal flow waveform denived by mverse filtering
[Ananthapadmanabha and Fant, 1982, Fant, 1986, Krshnamurthy and Childers 1986] The
assumptions of lmearity and separabiity are however effecuve 1n simphfying the speech production
model and facilitate the use of computationally efficient algorithms

Assuming that the source-filter theory 1s vahd, the problem of glottal esumation reduces to
separaung the effects of the glottal excitauon from those of the lip radiation funcuion and the vocal tract
filter Generally, the lhp radiatton function is considered to approxumate a sumple first order

differentation As such, 1ts effects can be easidy cancelled by an integranon step or they can be
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incorporated into the glottal model Hence, the differentiated glottal volume velocity 1s often used in
place of the glottal volume velocity Unfz)nunately, the mfluence of the glottal excitation 1s difficult to
separate from the effects of the vocal tract filter The vocal tract filter 1s highly vanable, for example
formant frequencies change dramaucally according to the vocal tract configuration Also, the filter 1s
tume-varyimng, due to the movement of the articulators and due to subglottal coupiing Duning non-nasal
speech, an all-pole Linear Prediction filter 1s effecuve in modelling the tract [Makhoul, 1975] However,
duning nasal speech, a pole-zero filter 1s more appropnate [Steightz and Dickinson, 1977, Atal and
Schroeder, 1978, Fujisaki and Ljungqvist, 1987, Lobo and Ainsworth, 1992] In most systems an all-
pole model 1s used, regardless of whether the segment 1$ nasal or non-nasal

As well as the problem of source-tract deconvolution, careful consideration must be given to the
recording channel [Holmes, 1975, Markel and Gray, 1976] Since the glottal waveform contains
significant low frequency components, the recording must be of high quality Also, since a composite
waveform 18 to be extracted, the signal must not be phase distorted In general, glottal extracton
requires the use of FM or digital recording equipment together with phase linear macrophones and anti-
aliasing filters Although a number of techniques have been proposed to correct phase distortions in the
recording process [Veeneman and BeMent, 1985, Hedelin, 1988], these factors remain obstacles to the

widespread applicatuon of glotial processing techniques

3.3 GLOTTAL WAVEFORM ESTIMATION

Clinical mspection of the larynx has provided a great deal of information on the physiology of the
voice source Methods, such as stroboscopy [Hertegdrd and Gauffin, 1995], high-speed cinematography
[Flanagan, 1958], ultrasound [Hamlet and Reid, 1972] and photoglottography [Hanson et al , 1990],
have all played an important part in extending our knowledge of phonauon Also, techmques for making
acoustic measurements, both within the vocal tract [Cranen and Boves, 1988] and at the lips
[Rothenberg, 1970, 1973, Sondhi, 1975], have provided information on the arrflow through the vocal
cords Unfortunately, these methods, while very accurate, are mvasive and are unsuitable for everyday
speech processing applicauons What 1s required 1s an algonthm that provides accurate glottal waveform
estimation from the speech signal alone Furthermore, the algorithm must be robust to noise and
distortion

Algonthms for esumating the glottai waveform from the speech signal fall into two main
categones - wverse filtering algonthms and joint source-tract esumation algorithms Inverse filtering
algonthms attempt to retnieve the giottal excitatton by esumating the vocal tract filter and applytng its
mverse to the speech signal Joint source-tract esiumation algonthms attempt to determune the glottal
excitation and the vocal tract filter by matching re-synthesised speech to the onginal

This secton consists of two sub-sections The first descnbes nverse filtering algorithms and the

second details methods for joint source-tract esumation
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3 3.1 Inverse Filtering
Inverse filtering mvolves using the mverse of an esumated vocal tract filter H’(z) and lip

radiation functon L’(z) to cancel the formant structure of the speech signal S(z) and so obtamn an
esumate of the glottal excitauon G'(z)

oo S(2)
G (Z)_ H'(Z)L'(Z) @3 1

An example of the inverse filtering process is shownin Fig 3 1

The earliest inverse filtening systems consisted of an electrical filter network which was manually
adjusted to cancel the vocal tract resonances [Miller, 1957, Mathews et al, 1961, Holmes, 1962,
Lindgvist, 1965] The operator tuned the wnverse filter to produce mimmum formant npple durning the
closed phase of the glottal waveform esumate Later studies used Digital Signal Processing techniques,
including automatic formant tracking, to expedite the process [de Veth et al, 1989, Krishnamurthy,
1992] While the manual methods produce good results, they are slow and are restncted to clear modal
voicing durning which the formants are clearly defined Obviously, the technmique 1s very labour intensive,
which may be satisfactory for basic research, but 1s unsutable for most speech processing applicauons

The earliest method for automatic vocal tract filter esumation was Closed Phase Inverse Filtening
(CPIF) [Berouts, 1976, Berouu et al, 1977, Wong et al, 1979, Hunt et al, 1978] This techmque
assumes that the speech signal observed durning the glottal closed phase 1s due solely to the freely
decaying vocal tract resonances Thus, LP analysis performed over the closed phase should idenufy the
vocal tract filter alone, excluding any glottal excitauon This vocal tract filter estunate can then be used
to recover the glottal excitation by inverse filtering of the speech signal

Unfortunately, closed phase analysis may not provide accurate vocal tract transfer function
esttmates for several reasons Firstly, nasal coupling may introduce zeros nto the vocal tract transfer
funcuon This 1s difficult to account for using normal all-pole LP analysis Secondly, the glotus may not
close completely Thus, excitaton will occur during the "closed” phase and, as a result, the vocal tract
estmate will be naccurate [Hunt et al, 1978, Larar et al, 1985] Thurdly, even if the glottis closes
completely, there 1s evidence to suggest that some excitauon of the vocal tract often occurs due to
verucal motuon of the vocal folds [Holmes, 1976, Cranen and Boves, 1988] In the case of modal non-
nasal voiced speech these effects are generally assumed to be negligible A fourth problem with CPIF 15
that the closed phase may be too short to allow accurate LP analysts This 1s particularly evident for high
pitched female voices since dertving LP filters from intervals shorter than | 5 ms gives erratic results A
number of remedial methods have been demonstrated whereby successive glottal cycles can be combined
to allow more accurate LP analysis [Farts and Tumothy, 1974, Chan and Brookes, 1989, Lu et al , 1990]
The fifth and final problem with CPIF 1s that 1t 1s frequently difficult to automaucally 1denufy the closed
phase Inaccurate closed phase 1dentfication leads to the inclusion of glottal effects in the vocal tract
filter and causes poor glottal waveform estimation

Regardless of these problems, CPIF has produced good quality results in a number of
investigations In particular, Krishnamurthy and Childers have reported that closed phase covarance
analysis provides very accurate formant tracking [Knshnamurthy and Childers, 1986] Also, Veeneman

and BeMent have noted that CPIF can provide reliable glottal waveform esumates for both normal and
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Fig 31 Inverse filtening analysis (a) speech signal, male vowel [e], (b) waveform of

Jormant F1, (c) waveform of formant F2, (d) waveform of formant F3, (e¢) waveform of

Jormant F4, (f) double differennated glottal volume velocuty, (g) differentiated glottal
volume velocity, (h) glottal volume velocity [after Hess, 1983]

pathological speakers [Veeneman and BeMent, 1985] However, it must be noted that both
investigauons used mgh quality speech recordings and an electroglottograph for precise idenufication of
the closed phase

Another approach to inverse filtering 1s to attribute certain spectral characteristics of the speech
signal to the glottal exaitanon Once 1dentified, these charactenstics can be removed from the speech
signal, leaving behind an esumate of the vocal tract filter The earliest example of this kind of technique
was published by Miller and Mathews [Miler and Mathews, 1963] They attnibuted the zeros of the
speech spectrum to the glottal excitation and attnbuted the poles to the vocal tract resonances Although
they published some interesting results, the method 1s not generally apphlicable as, for example, nasat
coupling introduces zeros nto the vocal tract filter

In more successful work, Alku has proposed Pitch Synchronous Iterative Adapuve Inverse
Filtering (IAIF) [Alku, 1992b] Developed from asynchronous and non-iterative versions [Alku and
Lane, 1989a,b, Alku, 1990a,b, 1991, 1992a], the technique operates by attnbuting the gross spectral
envelope of the speech signal to the glottal excitauon A low order all-pole LP analysis 1s used to capture
the spectral envelope of the speech signal The speech signal 1s mverse filtered by this 1mtial glottal
esumate The vocal tract filter 1s then obtaned by applying high order all-pole LP analysis to the mnverse
filtered speech This vocal tract filter esumate 1s used to inverse filter the original speech signal to gtve
the first glottal waveform esimate Low order LP analysss 1s performed on the glottal waveform estimate
and the inverse filtering process 1s repeated to give a second, more accurate, glottal waveform The pitch

synchronous version of the algonthm carnies out this procedure twice - once pitch asynchronously, to
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determine the glottal pulse end-points and once more, pitch synchronously, to obtan a precise glotal
waveform estmate

Alku has reported that the method works well for male and female speech, both synthetic and
natural The only problems he notes are 1n processing the vowel [i], dunng which the algorithm fails to
fully cancel the first formant. The method 1s fully automatic and, in contrast to CPIF, does not require
accurate g priort identification of the closed phase The performance of the algorithm has not been
mndependently assessed and the robustess of the procedure 1s unknown A simlar nverse filtering
procedure has also been proposed by Benitez, Galvez, Rubio and Diaz [Bemtez et al , 1992]

In recent years, several other techniques for mverse filtering have been proposed using the
conventional LP residual (Matau$ek and Batalov, 1980], the complex cepstrum [Yegnanarayana, 1981]
and Higher Order Staustics [Chen and Chi, 1993] However, manual, closed phase and spectral
allocation nverse filtering remain the most effecuve tn terms of glottal waveform esumauon and

formant tracking

3.3 2 Joint Source-Tract Eshmation

In recent years, due to the mtroduction of fast and wmexpensive Digital Signal Processors,
computationally complex iterative optimisation algonthms have been designed and applied 1n all areas
of speech research This approach bas also been taken 1n the field of voice source estmation A pumber
of aigonthms for jomt esumation of the glottal waveform and vocal tract filter have been proposed In
general, the algonthms proceed as follows The vocal tract filter 1s imtialised, based on, say,
conventional LP analysis Inverse filtering 1s performed and a glottal waveform model 1s fitted to the
output. Iterauve jomt opumisation of the glottal waveform model G’(z) and vocal tract filter H’(z) then
takes place This optumisation procedure 1s usually based on the now familiar analysis-by-synthesis
technique and often makes use of a subjectuve error criterion Ulumately, the glottal and vocal tract
parameters which minumise the error between the re-synthesised speech $'(z) and the ongmal, are
stored or transmutted and processing continues to the next frame

$'(2)=G'()H'(2)L'(2) 32)

One of the earliest pieces of research on this topic was camed out by Takasugi [Takasugi, 1971]
Since then similar systems have been proposed by other researchers Milenkovic used a polynomial
glottal waveform to excite an all-pole LP vocal tract filter [Milenkovic, 1986, Thomson, 1992] Also,
some studies have been made using a glottal excitation, combined with a pole-zero vocal tract filter, for
the synthesising nasals [Fupisaki and Ljungqvist, 1987, Lobo and Ainsworth, 1992] To ecase the
computational burden of iterauve optimisation, efficient numencal methods were developed by [saksson
and Millnert [Isaksson and Milnert, 1989]

Basing their work on articulatory modelhing of the speech production system, Schroeter et al
{Schroeter et al , 1987] devised a system whereby the results of an acoustc analysis of the speech signal
were used to look up a linked code-book of vocal tract configurations and acoustic parameters These
acoustc parameters were then used to perform inverse filtening before parameter re-opumisaton

Another approach to simultaneous estimation of the glottal source and vocal tract parameters has
been suggested by Krishnamurthy [Knshnamurthy, 1990, 1992] He used a sum-of-exponentals
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representauon for a glottal excited LP speech producuon model The method shows promise but uses a
large number of parameters and requires accurate closed and open phase identufication by means of an
EGG

An ARX formulaton of the speech production model has been used for sumultaneous source-tract
esumatuon by Cheng and O'Shaughnessy [Cheng and O'Shaughnessy, 1993] A glottal model consisting
of a number of polynomial functions 1s used to excite an all-pole filter The parameters of the glottai
model and vocal tract filter are determined by a least-mean-square method which minimises the mean
error between the re-synthesised and onginal speech The accuracy of the glottal waveform estimation 1s
unclear but the system 1s said to produce natural sounding speech

While jomnt esumation methods can provide high quality results, their usefulness for glottal flow
determinauon 1s hmited Unlike mverse filtening algonthms which estimate the glottal excitation
directly, source-tract methods are hmuted by the accuracy of their glottal model This lumitation 1s less of
a problem for speech coding systems which aim to produce good sounding specch regardless of the
accuracy of the model However, for these apphcations the high computational complexity of the

algonthms remains a problem

3.4 GLOTTAL MODELS
Models representing the voice source can be divided 1into two categonies - dynamic models, which
capture the movement of the vocal folds, and flow models, which parametense the air flow from the

glotts nto the vocal tract Models from these categones are detailed 1n the next two sub-sections

3 41 Dynamic Models

The earhest dynamic model for the voice source was proposed by Flanagan and Landgraf
[Flanagan and Landgraf, 1968] This model represents the vocal cords as an acoustic-mechamcal
oscilator wheremn each cord 1s described by a single sprung mass The control parameters are the
subglottal lung pressure, vocal cord tension, rest opentng, vocal tract shape and nasal coupling The
model was later elaborated to incorporate more physiological processes, leading to the development of
the two mass model of Ishizaka and Flanagan [Ishizaka and Flanagan, 1972, Flanagan et al, 1975,
Lucero, 1993]

Later, a glottal model based on the contact area of the vocal folds was developed by Titze [Tutze,
1984, 1989] This work dealt pnmanly with the modelling of the three-dunensional glottis using
kinematic parameters simlar to those employed 1n articulatory vocal tract models In recent years,
computational approaches have been used to study glottal dynamics, including finite element sumulation
of the flow through the glotits using the Navier-Stokes compressible viscous fluid flow model
(Liljencrants, 1991, Ijam et al 1992, N1 and Altpour, 1993, Guo and Scherer, 1993]

Dynamic models are much more computationally complex than flow models Ideally, however,
they are more accurate since they directly model the funcuon of the human larynx This facilitates the

inclusion of source-tract interacuon effects in the overall speech production model
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Unfortunately, dynamic models are difficult to use n speech processing because they employ
parameters which are not easily measured Although some attempts have been made to calculate the
glottal area funcuon from the glottal flow [Rothenberg and Zahonn, 1977], the movement of the vocal
cords can generally only be determined by invasive methods Thus, dynamic models are unsuitable for
speech coding and recognition applicatons They have, however, been used with some success mn speech

synthesis systems [Ishizaka and Flanagan, 1972, Allen and Strong, 1985, Miller et al , 1988]

3 4 2 Glottal Flow Models

Flow models attempt to represent the waveform of the glottal airflow 1nto the vocal tract Usually,
the parameters of flow models are determined by ume-domain fitung to the glottal waveform denved by
mverse filtering or joint source-tract esumation Flow models are defined either 1in terms of the glottal
volume velocity or the differentiated glottal volume velocity The latter formulaton sumplifies the overall
speech producton model since 1t mcorporates the lip radiation effects The major types of model are
polynomual, cosinusoidal and unpulse excited filter

Today, the most commonly used glottal waveform model 1s the LF model [Fant et al , 1985] The
differentiated volume velocity version of the model consists of a cosmnusoidal open phase with
exponentually growing amphitude, followed by an exponential return phase In analysis expenuments, the
model has been shown to capture the main details of the glottal excitauon {Jansen et al, 1991] In
addition, the LF model has been successful in speech research [Gobl, 1988, Karlsson, 1988] and speech
synthesis applications [Childers et al, 1987, Carlson et al , 1990, Childers and Lee, 1991] One of the
advantages of the LF model 1s 1ts flexbility, that 1s, 1t allows the parameterisation of a large range of
glottal wave shapes In particular, the inclusion of a controllable return phase has been determined as
essential for good quahity re-synthesis [Fupisaki and Lyunggvist, 1986] The model only requires four
independent parameters which can be specified in forms suitable for analysis or synthesis One of the
main disadvantages of the model 1s that automauc fiting of the LF waveform requires iterauve
optimisation [Riegelsberger and Knshnamurthy, 1993]

The first polynomial and cosinusoidal models were developed by Rosenberg [Rosenberg, 1971])
He tested listener preferences to six volume velocity models 1n speech synthesis experiments Since that
tume, a plethora of polynomial and cosinusoidal models bave been proposed, see Fig 3 2 [Takasug,
1971 Fant, 1979b, 1982, Rothenberg, 1981, Anathapadmanabha, 1982, Hedelin, 1984, Fujisaki and
Ljunggvist, 1986, Pnice, 1989, Klatt and Klatt, 1990, Cummings and Clements, 1992, Lobo and
Amsworth, 19921

In a development of the polynomial model, Milenkovic has suggested using the sum of a number
of component polynomal functions [Milenkovic, 1986] The idea has been further developed by other
authors and 1t appears that the best structure for the model 1s either the sum of four to ten low order
polynomial basis functions {Thomson 1992 Milenkovic 1993, Cheng and O'Shaughnessy, 1993], or a
singie high order polynomial [Childers and Hu, 1994] In synthesis experiments the method has proven
successful {Childers and Hu, 1994] Although fitung the model 1s less computatonally expensive than

matching the LF model, the technique requires a greater number of parameters
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Another flow model has been proposed by Schoentgen {Schoentgen, 1988, 1989, 1990, 1992a,b]
In a senes of papers, he developed the idea of glottal waveform modelling via nonlinear Volterra
shaping functions dniven by a costnusoidal signal The nonlinear shaping functions can be calculated
over a small number of reference glottal cycles The long-term glottal excitation can then be generated
by controlling the pitch and amplhitude of the dnving signal Schoentgen has reported that the method
accurately tracks the output of the two-mass model and glottal waveforms esimated from natural male
speech The method shows promse for coding apphcauons due to its low update rate However, the
current formulauon requires a large number of parameters Furthermore, the reliability of the model in
capturing the details of phonation across all voices and voicing types has yet to be established

Much less precise glottal models bave been employed by a number of researchers Alku and Laine

proposed the use of Lagrange nterpolation between five reference points [Alku and Lame, 1989ab]



Similarly, Bemitz, Galvez, Rubio and Diaz used spline iterpolation between reference points [Benitz et
al, 1992] Leung et al have used a mulupulse approxmmation to the glottal waveform [Leung et al,
1990]

An unpulse excited filter model has been used 1n several investigations [Matauek and Batalov,
1980, Deller, 1983, Alku, 1990b, 1991, Scordiis and Gowdy, 1990] This representation has the
advantages of requining few parameters, and being easy to implement The LP filter models the spectral
magnitude contribution of the glottal excitaton but loses a great deal of phase informauon Contrary to
the commonly accepted notion that the human ear 1s phase deaf, a number of studies have commented
on the fact that preserving the uming details of the glottal excitaton 1s umportant for high quality
synthests [Flanagan, 1958, Wong and Markel, 1978, Childers et al , 1987] These filter models lose the
glottal uming detatls and so generally provide lower quality re-synthesis than the polynomial and
cosmnusoidal models

Overall, glottal flow modelling by waveform matching has been the most successful means of
incorporating voiced excitations 1n speech processing systems Currendy, polynomial and cosinusordal
representatons dommate In general, system designers are faced with a trade-off between the
computationally expenstve but low dumenstonal LF model and the polynomial models Alternauvely,
coarse glottal waveform models, such as spline interpolaten or filter modelling, are computationally

mexpensive and robust, but are imprecise

3.5 GLOTTAL CLOSURE DETECTION

Accurate reproduction of the pitch contour 1s essential for generating ligh quality speech Over
the years, this requirement has led to the development of a large number of pitch detecuon algorithms
{Hess, 1983] Aside from techmques which employ special apparatus, pitch detection algorithms fall mto
two categonies - those that detect the periodicity of the speech signal and those that identify the Glottal
Closure Instant (GCI) Although idenufication of the GCI 1s the more difficult approach, 1t has the
advantage of preserving the pitch micro-melody which carmes phonemic, lingmistic and speaker
mformation Also, accurate GCI 1denufication 1s a necessity for automatic glottal waveform estimation
by Closed Phase Inverse Filtering

This section, which 1s divided 1nto three sub-sections, describes methods for detecuon of the GCI
In the first sub-section, the most effecuve non-mvasive techmque for GCI denufication
electroglottography (EGQG), 1s descnbed Although himated to research and medical applications, the
techmque 1s important because 1t 1s the standard by which other pitch detection algonthms are assessed
The second sub-section detals algonthms for GCI identfication from the speech signal by epoch
detection The third sub-section covers algonthms for GCI idenufication from the speech signal by

closed phase detection
3 5.1 Electroglottography
The electroglottograph (or electrolaryngograph) remasns the most accurate non-intrustve method

for determining the GCI Invented by Fabre [Fabre, 1957] in the late fifties, the EGG has had extensive
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use n speech research The device measures the electrical umpedance of the glotus by feeding a weak,
high frequency current between two electrodes placed on either side of the thyroid cartlage The
mpedance 1s high when the glotus 1s open due to the large electrical resistance of the air gap between
the vocal folds Conversely, the unpedance 1s low when the vocal folds are in contact In comparative
tesung the EGG has proven to give an accurate measurement of vocal fold activity [Fant et al, 1966,
Fourcin and Abberton, 1971, Fourcin, 1974, 1986, Lecluse et al, 1975, Krishnamurthy and Childers,
1981, 1986, Childers et al, 1985, 1990, Hess and Indefrey, 1987 Orlikoff, 1991]

3.5.2 Epoch Detection

Epoch detecuon techniques attempt o find the GCI from the speech signal by tdentifymng the
abrupt change associated with closure In theory, few events other than glottal closure should excite all
frequency bands coberently In practice, however, the approach 1s sensiave t0 noise and to exciauons
other than at the moment of closure For this reason, recent GCI epoch detecuon techniques have used
secondary identification cnitena, such as the hmted peniod-by-period vanauon of the pitch and the
linear predictability of the speech signal unmedtately followmng closure

GCI detecuon by 1dentfication of jumps in the speech energy was ongmnally used by Smith
{Smuth, 1954] In his method, the signal 1s bandpass filtered nto 20 frequency bands The signal from
each bandpass filter 1s rectified and all the signals are summed to give an all-frequency energy estumate
The mstant of glottal closure s taken to be the moment when the summed waveform, 1¢ the all-
frequency energy, changes from decaying to nsing The method was later employed in a channel
vocoder constructed by Yagg: [Yaggi, 1962] Also, a variation on this method was used by Parthasarathy
and Tufts [Parthasarathy and Tufts, 1987] Thss energy based approach is very sensiuve to noise and
secondary vocal tract excitations

Atal and Hanauer have suggested that the GCI can be 1dentified by a peak in the prediction error
after LP analysis [Atal and Hanauer, 1971] The 1dea 1s that decaying vocal tract oscillauons are
predictable and so can be cancelled by an LP filter, whereas the excitation at closure 15 unpredictable and
so cannot be removed 1n this way Unfortunately, this method fails for certain sounds and for certain
speakers Muluple peaks of either polanty can occur around the instant of closure due to the phase of the
formant resonances and due to the presence of zeros in the speech spectrum In addiuion, the residual
signal becomes very noisy when the prediction error 1s low, e g during vaiced speech, or when frication
1s present Thus, the estimate 1s frequently inaccurate

Strube [Strube, 1974, 1980], basing his work on earhier methods devised by Sobakin [Sobakin
1972], proposed the use of the autocovanance matnix for GCI detecuon The method wmnvolves
calculaung the autocorrelation matrix of a window shd over the speech signal Strube suggested that the
matnx determinant displays 1its short-term maximum when the start of the window coincides with the
GCI He argued that, since the largest excitaton occurs at the GCI, then the instant would be
charactenised by high energy and high prediction error, both of which lead to a high autocorrelation
matrix determinant Strube reported that the method could only be considered 1n the case of vigorous

vocal cord vibration with sharp glottal closure
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Following early work by Young on radar signals [Young, 1965]), Anathapadmanabha and
Yegnanarayana suggested that the moment of glottal closure could be found by identfying the point of
maximum disconunuity 1n the denvauve of the speech waveform [Anathapadmanabha and
Yegnanarayana, 1975] Thetr hypothesis 1s that the glottal closure excitauon causes discontinuities n
the speech signal, whereas freely decaying osculatons exhibit a conunuous waveform This approach
works best when applied to a spectrally flat signal [Larsson, 1977] The 1dea has been umplemented 1n
three different ways In the first unplementation, the output from a bandpass filter was used
[Anathapadmanabha and Yegnanarayana, 1975] In the second, a narrow bandpass filter centred around
the formants was applied [de Mon et al, 1977] Both of these approaches provide results of lumited
resoluton and require the use of clean data since only a narrow frequency band is analysed To
circumvent this problem, the third implementation used a moderate bandpass filter applied to the LP
residual [Anathapadmanabha and Yegnanarayana, 1979] This implementation relies on the accuracy of
LP analysis which 1s unsatisfactory in certain cases, as was explained previously

Very good results have been reported for an epoch detection algorithm proposed by Cheng and
O'Shaughnessy [Cheng and O'Shaughnessy, 1989] Maximum Likelthood Epoch Detection (MLED) 1s
based on the pninciple that the speech signal following the GCI 1s equivalent to the impulse response of
an all-pole system Conventional LP analysis ts applied to the speech signal to obtain the parameters of
the all-pole system A wavelet modellmng the speech signal at, and immediately following, closure 1s
obtained by exciting the all-pole system with a Dirac delta pulse The GCI 1s identified as the maximum
of the cross-correlation between the wavelet and the speech signal Post-processmg 1s applied to the
cross-correlation signal to factlitate the voicing decision and to aid n determining the GCIs Cheng and
O'Shaughnessy report that the method works well for all vowels, nasals, voiced fricatives and vorced
plosives Furthermore, they state that the techmique s resistant to white noise and to certam amplitude
and phase distortions

A sumilar algorithm has since been pubhished by Harris and Nelson [Harns and Nelson, 1993]
Thas algorithm finds the GCls by cross-correlaung the speech signal with a tme-varying adapuve filter
matched to previous glottal pulses The cross-correlation 1s scored by a pseudo-metric which 1s mvanant
under affine transformations of the incoming signal Harris and Nelson claim that the accuracy of the
algonthm 1s comparable to that of hand-marking However, they do not propose an automatic
mtualisation procedure for the adapuve filter The algorithm requires hand-marking of the first glottal
pulse and so 1s unsuitable for many applications

A dsfferent approach to the pitch and GCI detection problem has been suggested by Dologlou and
Carayannis [Dologlou and Carayannis, 1989] Their algornithm extracts the fundamental frequency of
voiced speech by iteratively removing the high frequency components of the signal using a zero-phase
filter with monotomcally decreasing frequency response After each iteration, the results of
autocorrelation and second order LP analysis are compared If only one sinusoid remains the filtering
process is terminated and the remaining sinusoid 1s taken as the fundamental The mintmum of each
cycle of the fundamental 1s marked as the GCI In compansons with EGG output, Dologlou and
Carayannis report good results for the method, both 1n terms of 1ts precision and robustmess However,

some problems associated with the haltng critenon have been reported [Hult, 1991, Dologou and
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Carayannis, 1991]. Also, the precision with which the minimum of the fundamental identifies the GCI is
open to question.

3.5.3 Closed Phase Identification

Algorithms for closed phase identification are based on the assumption that little or no excitation
of the vocal tract takes place during the closed phase. Thus, when the glottis is closed, the speech signal
IS due solely to decaying vocal tract resonances. Most closed phase identification techniques use the
Linear Predictability of this region to distinguish it from the open phase. Once the closed phase has been
identified, the GCI is taken as occurring immediately prior to it

El Mallawany proposed a closed phase detection method whereby low order and high order LP
analysis is carried out on a short-time window, slid one sample at a time over the speech signal [El
Mallawany, 1977]. He suggested that the window was positioned over the closed phase when the largest
decrease in prediction error moving from low order to high order LP analysis was observed. The
procedure is highly computationally complex and sensitive to noise.

Using a similar approach, Wong, Markel and Gray proposed that the close phase could be found
by applying covariance analysis to a short-time window slid over the speech signal [Wong et al, 1979].
They suggested that the close phase is identified as the window position for which the normalised
prediction error is minimum. Veeneman and BeMent found that Wong's method was sufficient for
normal speech but that it gives ambiguous results for high pitched or breathy speech [Veeneman and
BeMent, 1985]. In addition, the method is computationally complex.

Recently, a unifying framework for the Strube and Wong methods has been developed by Ma,
Kamp and Willens [Ma et al, 1994]. The methods were compared under a Singular Value
Decomposition (SVD) approach and a better formulation of the methods was proposed. The new
formulation involves applying a sliding window to the speech signal and calculating the arithmetic mean
of the squared singular values obtained from the Frobenius norm of the window. The mean is a measure
of the predictability of the speech signal within the analysis window and its local maxima coincice with
the GCI. The SVD method is much less computationally expensive than the Strube and Wong
techniques and has been reported to be less sensitive to noise.

Funada has designed a new algorithm for GCI identification based on a re-interpretation of the
AR model [Funada, 1989]. The conventional AR model assumes a white input. Funada suggests the use
of an AR model with an unknown non-white input signal (minput) whose parameters are estimated by a
Kalman filter. The recovered w-input signal captures the dynamics of the glottal excitation and can be
used to determine the GCI. In tests on synthesised and natural male speech, Funada reports good results
for the method. In particular, he finds it to be more successful than Wong's approach. However, he
comments that the results are poor for the vowel [i] due to its low first formant

In a recent paper, Moulings and Di Francesco [Moulines and Di Francesco, 1990] proposed and
tested two new methods for closed phase identification. The first method relies on the assumption that,
due to the effects of subgiottal coupling, the vocal tract resonances during the closed phase are very
different to those during the open phase. It is assumed that the speech signal observed during a single
pitch period is best modeUed by a succession of two (unknown) Gaussian AutoRegressive processes. For
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each possible transition instant the parameters of these models are identified Simultaneously, a single
model 1s 1dentfied over the same period The likelihood rauo between the alternatives of a single
process and two processes with an abrupt change occurring at the transitton 1nstant, is computed and
used as a GCI indicator

The second method proposed by Moulines and Dh Francesco, 1s an adaptation of earher methods
for phonetic segmentaton of speech [Basseville and Benvemiste, 1986, Andre-Obrecht, 1988] The
technique locates glottal events by detecung jumps in the divergence between a short-term Probability
Density Funcuon (PDF) and a long-term PDF Duning steady states the divergence functuon ts convex
because the PDFs are sumilar In contrast, during transient regions such as at the GCI, the divergence
funcuon falls rapidly

In experiments on normal speech both of the methods proposed by Moulmes and D1 Francesco
were assessed as being rehable for all of the vowels However, the algonthms performed poorly dunng
voiced fricatives, nasals and voiced plosives

Based on Moulmes and D1 Francesco's work, Murgia, Mann and Feng have suggested a similar
GCI 1dentificauon techmque [Murgia et al , 1994] The method uses a long-term and a short-term
window applied to the speech signal The windowed signals are analysed using two LP models and the
restdual probability densities are calculated Jumps in the cumulative sum of the log-likelthood ratio 1s
used to test the hypothesis that the short-term model s significantly different to the long-term model
This 1s equivalent to the hypothesis that the GCI occurs within the short-term window Mugia, Mann
and Feng report that the techmique works well for vowels, voiced fricatives and voiced plosives, but has

some difficulty duning transicnts

3.6 GLOTTAL WAVEFORM APPLICATIONS
The preceding techniques for glottal processing have been employed in a number of applications
areas The next three sub-sections survey the use of glottal waveform processing in speech recognition,

synthesis and coding systems

3.6 1 Speech Recogmition

The glottal waveshape carries information on the speaker's emotonal state and idenuty This
adds vanabihity to the speech signal To account for this, Blomberg has proposed a pre-processing
technique whereby source spectrum adaption 1s camed out prior to the recogmtion process [Blomberg,
1991, 1993] The adapuon has proven successful, improving the accuracy of 1solated word recognition
from 88% to 96% Techniques such as this are of particular benefit in recognising speech 1n high stress
environments [Stanton et al , 1989}

Cummings and Clements have published a method for recogmising emouonal states based on the
parameters of the esumated glottal waveform [Cummings and Clements, 1990, 1992] The emouonal
state of the speaker 1s determined by companng the extracted glottal parameters with those of eleven
prototype styles Methods have also been proposed for altering the voicing style, for example to change
stressed speech to modal [Cummings and Clements, 1993, Mizuno and Abe, 1994]
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3 6 2 Speech Synthesis

Glottal excitation models have been used to umprove the naturalness of synthesis systems for
some tume The most common approach 1s to use a glottal waveform excitauon with a LP or formant
vocal tract model Early work was camed out by Rosenberg and Holmes, who concluded that
represenung the glottal pulse shape 1s important for synthesising natural sounding vowels [Rosenberg,
1971, Holmes, 1973] In listening tests, glotial waveform models have repeatedly been shown to provide
more natural sounding speech than mmpulse excitauons [Pinto et al, 1989, Childers and Wu, 1990,
Carlson et al , 1990} In addition, the more precise glottal models have proven capable of synthesising
different voicng styles, such as modal, vocal fry, falsetto and breathy [Childers and Lee, 1991, Lalwam
and Childers, 1991, Childers and Ahn, 1995] Accurate reproducuon of the source waveform has also
proven useful m the synthesis of female voices (Klatt and Klatt, 1990, Karlsson, 1990, 1991, 1992]
Furthermore, there is evidence 10 suggest that naturalness can be further mmproved by using phoneme-
specific glottal parameters [Fries, 1994]

Vanous techmques for represenung source-tract couphing have been mvestigated In general,
glottal flow models capture waveform skewing but do not represent source-tract interactton duning the
open phase Several methods of modetling open phase coupling have been proposed, including the use of
modified glottal volume velocity models [Guénn et al , 1976], different vocal tract filters during the
open and closed phases {Brookes and Naylor, 1988, Krishnamurthy, 1992, Childers and Wong, 1994]
and an elecirical analog synthesiser [Allen and Strong, 1985} The results of these experuments are
inconclusive as to the importance of source-tract coupling for speech synthesis Certamnly the mteraction
effect exists, but, since the human ear 1s relatively insensiive to formant bandwidth changes, 1t does not

appear to be important for re-synthesis purposes

3.6.3 Speech Coding

Glottal waveform based coding schemes have the potential to achieve higher quality speech at a
lower it rate than conventional systems It 1s already well established that glottal waveform excitation
provides high quality speech synthesis Furthermore, the parameters of the glottal excitation are fewer
and are slower ume-varying than those of convenuonal LP residual models The main problem with
glottal based coding 1s that reliable and robust techmiques for automatic extraction of the glottal
waveform from the speech signal have proven difficult to develop

Early work on glottal coding was carmned out by Hedelin, who examined the use of glottal
excitatnon models 1 a LP coding system [Hedelin, 1984] The system mverse filters the speech signal
and fits a polynomal waveform model to the estumated glottal signal Following this, ARX estimation 1s
carmed out to determune the opimum LP synthesss filter, given the glottal excitation A sumple LPC-10
type vorcmg decision 1s used to cope with unvoiced frames Hedelm found that the system produced
much higher quality speech than LPC-10 at a comparable bt rate

Also using an inverse filtenng approach, Alku and Lame reported the use of their Adaptive
Inverse Filtering techmque 1n a speech coding system The mcoming speech signal 1s mverse filtered to
obtain a glottal waveform estimate A flow model 1s fitted to the extracted glottal excitation and speech

1s re-synthesised by applying 1t to the esumated vocal tract filter They studied the use of three glottal
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waveform models - a polynomial [Alku and Lame, 1989b], a Lagrange interpolation scheme using five
reference pomnts [Alku, 1990a) and a two pole filter plus white noise [Alku, 1990b, 1991] They
concluded that the polynomual model was most sensitive to distortions of the incoming speech signal but
that it provided good quality speech at roughly 4 kb/s In contrast, the Lagrange and filter schemes were
more robust but operated at rates of 4-8 kb/s and 5 kb/s, respecavely A simlar iterative mverse filtering
based coding scheme, employing glottal modelling by spline functions, was also developed by Benitez et
al [Benitez et al , 1992)

An analysis-by-synthesis approach was first used 1n glottal coding by Hedelin {Hedelin, 1986] In
this, the imtial mverse filtering, glottal model fitung and ARX estimation steps are executed as before
Next, the glottal and filter parameters are iteratively optmised to minumise a perceptually weighted
error criterion between the re-synthesised speech and the onginal Hedelin claimed that the system gave
good speech quality at a rate of 3 kb/s However, due to the iterative optimusation procedure the
techtuque 18 very computatonally complex

In order to mmprove the robustness of the procedure, Bergstrom and Hedelm later proposed the
use of a mixed excitation consisting of glottal waveform, umpulse and noise sources operating in tandem
[Bergstrom and Hedelin, 1988] The glottal and vocal tract parameters are esumated and optumised as
before Following this, a standard multipulse technique 15 employed to determine the optimum fune
instants and amplstudes for the impulses Finally, the energy of the noise source 1s calculated from the
prediction error of the model From prehminary experiments, Bergstrom and Hedelm determmined that
the speech quality was superior to that of LPC-10, at a transmission rate of approximately 5 kbis
Furthermore, due to the mixed excitation, the system 1s much more robust than either of Hedelin's
carlier glottal coding schemes

The principles of multipulse systems have also been applied to glottal codmg by Leung et al
[Leung et al, 1990] Dunng voiced speech, a glottal pulse function and a standard impulse source are
used to excite an LP filter As before, the parameters of the glottal pulse and the impulse source are
chosen to mimumise the perceptually weighted error 1n an analysis-by-synthesis scheme In this case, the
glottal pulses are thinned to reduce the computational burden The system ts robust and provides a SNR
gain of 2-3 dB over standard mulupuise coding for voiced speech

Bergstrom and Hedelm also invesugated the performance of a codebook-driven glottal coding
scheme [Bergstrom and Hedelin, 1989] A codebook of two double differentiated glottal pulses 1s used in
tandem with a stochastuic codebook and a long-term predictor The combined excitauon 1s passed to a
conventional LP filter for synthesis The codebook indices and gains are determined via a perceptually
weighted analysis-by-synthests scheme Bergstrom and Hedelm found that the coder produced higher
qualtty speech than conventional CELP and was robust to both noisy and phase distorted speech The
coder achieved an overall transmission rate of 7-9 kb/s

In a recent development, Cheng and O'Shaughnessy have apphed the principles of the glotial
estimation (o very low bat rate speech coding [Cheng and O'Shaughnessy, 1993] The method uses an
all-pole vocal tract model with a glottal excitatron provided by two polynomial basis functions operating
1n tandem with a white noise source The parameters of the model are determined by a least mean square

error method A large reducuon in coding rate 1s achieved through short-term temporal compression of
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the speech and vector quantisation. In addition, finite-state vector quantisation is introduced to further
decrease the coding rate. The system provides natural-sounding speech at a bit rate of 450-600 kb/s with
a delay of about 200 ms. Due to the provision of a mixed excitation, the system is robust to noise and
voice classification errors,

3.7 CONCLUSION

Glottal modelling is based on an accurate representation of the human speech production system.
As such, it is a powerful tool for capturing the dynamics of voiced speech, especially the acoustic effects
associated with speaker identity and voicing style,

Various techniques for extracting the glottal waveform from the speech signal have been
proposed. Most fall into one of two categories - inverse filtering or source-tract estimation. Of the two
approaches, inverse filtering is by far the most computationally efficient. Currently, the most successful
inverse filtering algorithms are Closed Phase Inverse Filtering and Iterative Adaptive Inverse Filtering.
CPIF is the older method and has been studied in the greatest detail. IAIF has the advantage of not
requiring precise a priori GCI identification. No studies comparing the performance of the two
algorithms have been published as yet

Two types of model have been used to represent the glottal excitation. Dynamic models capture
the movement of the vocal cords and flow models parameterise the airflow from the glottis into the vocal
tract. Flow models are generally the easiest to use since dynamic models require the use of anatomically
based control parameters which are hard to measure. Currently, the most common flow model is the LF
model which has been shown to capture the essential characteristics of the glottal excitation using just
four independent parameters. Matching the LF model to estimated glottal waveforms can he
computationally expensive compared to the fitting of polynomial models.

Determining the GCI is important for extracting the micro-melody of voiced speech. Precise
identification of the GCI is also a pre-requisite for CPIF. Aside from using special apparatus, such as the
EGG, techniques fall into two classes - those that detect the epoch associated with closure and those that
detect the closed phase following the GCI. The most modern methods use both of these criteria to
improve the reliability of their GCI estimates. Although no comparative experiments have been carried
out the most effective methods currently available appear to be MLED, SVD and Murgia's method.

All of these glottal processing techniques have been applied in a number of ways to the
fundamental speech processing problems of recognition, synthesis and coding. Cancelling the glottal
excitation from voiced speech removes variability and has improved the accuracy of recognition systems.
In addition, using a glottal excitation has considerably improved the naturalness of speech synthesis
systems. The use of glottal models has also shown promise in coding applications. The slowly time-
varying nature and smooth trajectory of the glottal parameters make them ideal for low rate coding.
However, as has been explained, extraction of the glottal parameters from voiced speech is difficult
particularly under conditions of noise and phase distortion. This has led to the use of very coarse glottal
waveform approximations, together with impulsive or stochastic innovations. The rationale is that since
precise extraction is difficult then only rough glottal models can be used. In general, this approach is
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counter-productive as the advantages of glottal coding cannot be gained without using precise glottal
models As yet, no detailed quantitative study has been made of the speech quality, transmission rate and
robusiness achievable by precise glottal coding systems in compartson to conventonal coders A study of
this nature 1s umportant since 1t would define the limats of glottal codmg techmques and provide a

direction for further research in the area
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CHAPTER 4

REVERBERATION MODELLING

4.1 INTRODUCTION

Glottal waveform extracuon algonthms show poor performance 1n processing reverberant speech
[Holmes, 1975, Markel and Wong, 1976] Echoes from previous pitch penods can corrupt the current
speech signal Thus, for example, the echo of a previous GCI may be misinterpreted as a new glottal
closure Alternatively, the echo may be incorrectly judged to be an abnormally strong glottal opening,
etc In order that glotial extraction algorthms may be used m conventional speech coding applicauons,
1t 1s mmportant that thewr reverberation sensiivity be determined experimentally Obviously, test
reverberant speech data must be employed in these expenments This chapter describes two
vestiganons carned out (o ensure that the procedure used to generate the test data accurately models
the true reverberation process

Since a human speaker cannot repeat the same phonation pattern on different occasions, 1t is
desirable that a noseless, anechotc recording be made and have reverberaton added to 1t In this way,
the true glottal parameters may be estunated by applying glottal extraction algonthms to the noiseless
speech After this, the errors induced by reverberatton may be easily identified by comparing these
results to those obtamed by processing the same speech segment with added reverberation

Consider the reverberauon process [Kuttruff, 1991] When a sound source operates 1t displaces a
volume of gas either by its movement, ¢ g a loudspeaker, or by the emission of air, ¢ g human speech
This volume flow produces a pressure wave which moves away from the source When the source 1s
operating 1n a room, some of the sound energy striking the walls 1s reflected back into the room This 1s
picked up by a microphone as echoes of the direct signal Obviously, these echoes may themselves be
agaim reflected and so on In this manner, a reverberant sound field 1s created in a normal room

The amount of reverberation captured wm a speech recording depends on the nature of the room 1n
which the recording 1s made and on the lip to microphone distance Rooms with hard walls reflect more
sound energy and so corrupt the speech signal to a greater extent than rooms wath soft furnishings The
sound energy directly received at a microphone falls off with increasing source-receiver distance In
contrast, the reverberant sound energy remains relatively constant throughout the room Thus, the
energy of reverberation increases, relative to that of the direct field, as the microphone 1s moved away
from the source Generally, echoes returning t the source 1tself are much weaker than the direct signal
from the source Therefore, the pressure generated for a given flow from the source 1s normally assumed
to be constant 1n all enclosures, regardless of the reflected signal In other words, 1t 1s assumed that the
operation of the source 1s independent of the enclosure into which 1t radiates This assumption must be
correct 1f the conventonal approach of adding reverberation to anechoic recordings 1s to be used That
15, the signal recorded under anechoic conditions must be the same as the signal which would be
generated at the source if 1t were actually 1n a reverberant room In the next section, the vahdity of this

assumption 1s examned theoretically and tested expenimentally
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Making the above assumption, reverberation approximates to a linear time invariant process
[Kuttruff, 1991]. The pressure signal at the receiver ping can be calculated as a convolution of the
pressure signal at the source psceyand the impulse response between the source and the receiver n@

(4.)
The impulse response depends only on the characteristics of the room and on the positions of the source
and receiver. Thus, if the room impulse response is known then reverberant speech can he produced
from anechoic recordings.

Two options exist for the determination of typical room impulse responses - measurement or
simulation. Obviously, measurement produces the more accurate results. However, it is difficult to
construct an apparatus which can make reliable impulse response measurements over the entire speech
bandwidth (20-4000 Hz). Thus, the decision was taken to obtain the room impulse responses by
simulation. A standard technique, the Image Method [Allen and Berkley, 1979], was selected for this
purpose. The third section of this chapter describes experiments carried out to establish the accuracy of
the Image Method. In this work, narrowband room responses were measured and compared to those
produced by the Image Method.

In summary, this chapter addresses two key issues in the generation of reverberant speech from
anechoic recordings. Firstly, the assumption that source-reverberant field interaction is negligible for
speech in normal rooms is investigated. Secondly, the accuracy of the Image Method in generating
artificial room impulse responses is studied.

The chapter is divided into four sections. The next section describes the experiments undertaken
to ensure that the pressure signal radiated from the lips is independent of the enclosure. The section
develops theory for predicting the variation in the radiation impedance due to reverberation at a piston
in an infinite baffle. This theory is validated by comparisons with in-room measurements and is applied
to the problem of predicting the variation in the lip radiation impedance due to reverberation. Section
three explains the Image Method and compares impulse responses generated by it to those measured in
normal rooms. This comparison is made in terms of the decay rate and the spectral variation of the
responses. Section four concludes the chapter.

42 VARIATION OF THE RADIATION IMPEDANCE

This section examines the variation in the lip radiation impedance due to reverberation. At low
frequencies, less than 4 kHz, the radiating area of the mouth approximates to a piston in an infinite
baffle [Flanagan, 1972; Miki et al., 1987]. Theory is developed below for predicting the variation in the
radiation impedance due to reverberation at a piston in an infinite baffle. This theory is tested by
measuring the radiation impedance variation at a loudspeaker in a normally reverberant room. Based on
these results, simulations are conducted to determine the variations which would be encountered at the
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The section 1s broken into four sub-secttons The relevant acousuc theory 1s developed in sub-
secion one The experimental method and results are presented n sub-sections two and three,

respectively Lastly, the findings of the mvestgation are then discussed 1n sub-secuon four

4.2.1 Theory
The pressure produced in the near-field of an acoustuc source can be charactensed by the
mechamcal radiation impedance funcuon [Kinsler et al, 1982] This 1s defined as the rauo of force

applied by the source to the particle velocity of the source
2 P(w)

U(w) @2)

where P(®) 1s the pressure amphtude at the source, U(w) 1s the particle velocity amplitude of the source

Zi(w)=7 a

and a s the radus of the source The radiation impedance of a circular piston set in an infimte baffle

placed m the free-field 1s given by [Morse and Ingard, 1968]

Zp(0) =7 a’p,c(R(2ka)+ jX(2ka)) @3)

where
2J,(x) X2 x*
= - +
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) [3 #s }

R(x)=1-

n 3?57
This expression specifies, for a baffled source 1n the free-field, the pressure generated per unit particle
velocity of the source Plots of the functions R(x) and X(x) are showninFig 41
The power radiated away from such a source 1s determined by the real part of the radiauon
impedance [Kinsler et al , 1982]

n(m)=§ug(m) Re(Zy(w)) @

where U o{(®) 1s the magmtude of the amplitude of the particle velocity of the source
In order to make statisticai predictions about the behaviour of the reverberant sound field, 1t 1s
necessary to assume that the field 1s diffuse [Kuttruff, 1991}, that 1s, the average energy density 1s the
same throughout the volume of the enclosure and all directions of propagation are equally probable Thss
model over-simplifies the actual behaviour of sound mm a room, particularly at low frequencies It
neglects the presence of normal modes, the distnbution of absorpuve matenials and the shape of the
room Schroeder has calculated that the model 1s reasonable, provided that there are at least three
overlapping normal modes at the frequency under consideration [Schroeder, 1962] Thus, the model s
assumed to be valid above the Schroeder frequency given by

fs= 2000(&’-] ?

d @3)
where Tgp 1s the reverberaton ume of the enclosure and V 1s the volume of the enclosure The

reverberation ume of a room 1s the length of tme from when a source m the steady-state 1s switched off
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Normalised acoustic resistance R(x} and reactance X(X)

Fig 41 Radwation impedance functions for a piston in an infinute baffle solid line - real

part R(x), dotred line - imaginary part X(x)

unt] the sound pressure level in the room drops by 60 dB When the sound field 1n a reverberant room
reaches the steady state, the sound power lost from the room equals the power generated by the source
Assumang that the reverberant sound field 1s diffuse, 1t can be shown that the spaually averaged, ume

averaged squared sound pressure amphitude of the reverberant field 1s given by [Kinsler et al , 1982]
4T w)p ¢
A (46)
where A 1s the total sound absorption of the room, py 1s the air density and ¢ 1s the speed of sound The

total sound absorption can be obtamned from [Kinsler et al , 1982]
A= 0161V

Tso @7

From Eqs (4 2), (4 3), (4 4) and (4 6) 1t can be shown that the ratio of the mean square pressure

level of the reverberant field to the squared magnitude of the near-field pressure 1s given by
Pi®w) = 2m a’R(2ka)

|Py() Al R(2ka)’ + X(2ka)’

43
Herein, this quantty 1s referred to as the reverberant pressure ratio For low frequencies or small pistons

(ka< <) 1t reduces to

Pi(w) _9n'a’
|Py(w)] 644

49
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Fig 42 Resultant pressure calculated as the complex sum of the direct and reverberant

components

It can be seen that the reverberant pressure ratio 1s directly proporuonal to the area of the piston
Thus, as piston area decreases, the reverberant pressure decreases with respect to the pressure at the
source This suggests that source-reverberant field interacton becomes increasingly small for sources of
reducing surface area

In the diffuse reverberant field, the pressure at any pont 1s due to a number of pressure
components which combine 1n a random fashion Under the assumption that these components each
have a Gaussian distnbution, Schroeder has demonstrated that the resultant reverberant pressure
amplitude has a distnbuuion given by [Schroeder, 1954]

W(z) = exp(z-exp(2)) 4 10)

where
2= In{ P2 () PZ(w))

When the direct and reverberant sound fields interact, the pressure expenienced 1s the complex
sum of the direct and reverberant pressures, see Fig 4 2 Assuming umt direct pressure at the source, the
mean square pressure level of the reverberant field 1s given by Eq (49) The distnbution of the
reverberant pressure magmtude s governed by its average level as per Eq (4 10) and the phase of the
reverberant pressure has a uniform distnbution

Using these relations, a Monte Carlo method [Schroeder and Kuttruff, 1962] can be used to
simulate the varation 1n the pressure at the source Reverberant pressures are generated according to the
above statistical process and the resultant pressure 1s calculated as the sum of the direct and reverberant
components The vanation between the resultant pressure and the free-field pressure, that 1s, the direct
pressure, can then be calculated

Simulations such as these allow the prediction of the vanation 1n the radiation impedance which
will occur at a piston-like source placed 1n a room with a known reverberation ume Thus, the radiation

unpedance vanation which occurs at the lips during speech in normal rooms can be determined The

40



next sub-section describes experiments conducted to compare the predictions of this model to actual
radiation impedance measurements carried out using a loudspeaker.

4.2.2 Method

In order to confirm the above theory, measurements were made of the variation in the radiation
impedance occurring at a loudspeaker in a reverberant enclosure. There are two main approaches to
measuring acoustic impedance functions. In the first, a source of constant volume velocity is used and
the pressure signal is measured using a normal microphone. This technique is simple to use. However,
sources of constant volume velocity are difficult to manufacture, particularly over the frequency range
and Signal to Noise Ratio required in this experiment. The second approach is to use a normal sound
source but to measure its volume velocity. This method is more cost effective. The method of Salava
[Salava, 1988], which conforms to the second approach, was chosen for use in these experiments. The
accuracy of the method has been confirmed experimentally [Anthony and Elliott, 1991].

Salava’s method involves the measurement of pressure with a normal microphone and the
measurement of flow with an inverted loudspeaker. The inverted or passive loudspeaker is acoustically
coupled to an identical driver unit, see Fig. 4.3. The driver unit is excited by a pseudo-random sequence
and the inverted cone vibrates in sympathy. The movement of the passive cone generates an e.m.f. in its
speaker coil and the acoustic signal is radiated from its back. At low frequencies the passive cone
behaves as a rigid piston of constant area. Thus, the induced e.m.f. is directly proportional to the velocity
of the cone and so to the volume velocity of the air displaced by it. The pressure at the source is
measured by placing a microphone close to the back of the passive cone.

The radiation impedance Z/\(x5,u)) is calculated using the cross-spectral technique [Bendat and
Piersol, 1971] as the transfer function between the volume velocity, measured by the passive cone, and
the pressure, measured by the microphone

"EXT (SIS0

§1 o (4.10)

where X (x"y(o) and KOtE,(0) are the Fourier Transforms of the cone jofm) and microphone y{n) sequences
respectively and N is the number of recordings made for the source location xs.

The experiments were performed using a PC and a Loughborough Sound Images DSP data
acquisition card with on-board ADC/DAC. The driver speaker was excited by a pseudo-random
maximal length sequence (length 32767) [Kuttruff, 1991] at a sampling frequency of 16 kHz. The
excitation signal was anti-aliased using a passive 5kHz lowpass filter and amplified by a JVC AX-11
amplifier. The speaker, a Radionics 8 ohm 6.5 in. bass/mid-range unit, was installed in a 30 cm by 20
cm by 13 cm wooden speaker cabinet which was lined with sound absorbing foam. The acoustic
coupling between the speakers was stiffened by reducing the air volume between the cones. This was
achieved using a perforated wooden plate with metal bolts attached to it. This increased the frequency
range over which the cones moved in sympathy. The pressure signal was measured using a Briiel and
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Aig- 4.3. Room inpedance measurement garatLs

Kjaer microphone (model 4006) with diffuse head and, like the passive cone e.m.f., was amplified using
an Alice Soundtek pre-amplifier.

For each measurement, 5 records of the pressure and flow signals were taken Q\=5). Each of
these records was obtained by repeating the excitation signal 11 times, discarding the results of the first
cycle and averaging the remaining 10 cycles in the time-domain. The coherence function between the
cone and microphone signals and the excitation signal was estimated within an individual recording to
ensure linearity [Bendat and Piersol, 1971]. The 95% confidence limits for the measurements were
found to be +0.2 dB and £0.02 rads in the frequency range 50-2000 Hz.

In order to determing any change in the impedance function due to the enclosure, it was decided
to perform the measurements in two very different rooms. A hemi-anechoic studio was used to make an
almost free-field measurement of the radiation impedance. For comparison purposes, a small highly-
reverberant room was used for the other radiation impedance measurement. The studio measured 3.0 m
by 3.0 m by 2.7 m. The walls were lined with acoustic wadding and heavy curtains, the floor was
carpeted and acoustic tiles were fixed to the ceiling. The reverberant room was 34 mby2.6 mby 2.7 m
with smooth plastered walls, acoustic ceiling tiles, a concrete floor and no windows. Neither room
contained any furniture.

To provide information on the reverberant process in the two rooms, the reverberation times were
determined using Schroeder's integrated impulse response technique [Schroeder, 1965]. The impulse
response measurements were made using the m-sequence cross-correlation method, again proposed by
Schroeder [Schroeder, 1979]. As in the impedance experiments, the measurements were made using a
PC and LSI development board. An m-sequence pseudo-random signal was emitted by a Fostex 6301B
active loudspeaker and recorded using the B&K microphone. The impulse response was measured at six
receiver locations for each of four source locations. These responses were filtered into third-octave bands
[Beranek, 1992] and the integrated impulse responses were calculated. The reverberation time was
estimated for each source-receiver position by manually fitting a straight line to the early (-5 to -35 dB)
decay of the sound pressure level. The resulting average third-octave reverberation times of the two
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rooms are shown in Fig 4 4 From these results, the Schroeder frequency for the reverberant room was
calculated as approximately 300 Hz Further information on the error analysis procedure used in the
umpulse response measurements ts provided in [Bleakley and Scaife, 1995) (Appendix B)

To compare the radiation mmpedance measurements with the newly developed theory, Monte
Carlo sumulations were carmed out The frequency band 1-16 kHz was modelled based on a
reverberation time of 0 68 s and a loudspeaker radius of 8 95 cm The reverberant pressure ratio for the
room was calculated from the reverberation tume using Eq (4 8) From the resulting average reverberant
pressure and following the probability density function given in Eq 4 10, 10000 samples of the
combined direct and reverberant pressure fields were calculated The distnbution of the impedance
vanation so generated was then compared to that measured for the loudspeaker by Salava's method

In order to determune the vanation in radiation umpedance occurring for speech, the Monte Carlo
simulauons were repeated using typical lip radiation areas A man articulating a rounded vowel, such as
[u], produces a mouth opening of appropnately 0 9 cm? [Flanagan, 1972} For an open vowel, such as
[a], the mouth area increases to S cm? These areas correspond to circular pistons with radn of 0 5 cm
and 1 3 cm, respecively The Monte Carlo simulations were repeated using the same room parameters
and these new piston radn In this way, the radiation impedance vanation occurring at the lips dunng

speech was determined
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4.2.3 Results

The measured radiation umpedance of the loudspeaker 1n the studio and the room are shown 1n
Figs 4 5 (a) and (b), respectively Clearly, the randomisation caused by reverberation is at a low level

Fig 46 shows the vanauon m magntude and phase of the radiation impedance between the
room and studio The vanation increases with frequency as does the reverberation une, cf Figs 4 4 and
4 6 Increased reflection of sound energy from the walls at higher frequencies leads to greater energy 1n
the reverberant field and so to greater vanaton in the radiation unpedance

The distribution of the measured magnitude and phase vanation occurnng between 1 kHzand 1 6
kHz 1s shown n Fig 4 7 From these graphs 1t can be seen that, in this middle frequency band, 90 % of
the magmitude variation occurs tn a band less than 4 dB wide Smmilarly, 90 % of the phase vanation
occurs 1n a band less then 0 4 rads wide

The calculated reverberant pressure ratio (Eq 4 8) for the loudspeaker 1n this room 1s shown in
Fig 48 The mean ratio n the frequency range under consideration 1s -216 dB The resulung
distribution of the variation of the simulated radiation impedance 1s shown in Fig 4 9 Over 95 per cent
of the vanation occurs 1n a band less than 4 dB and 0 4 rads wide

Comparing Figs 47 and 49, the stmilanty between the measurements and the Monte Carlo
sumulations can be seen However, the sumulatons predict shghty less varaton than 1s actually
encountered There are two possible explanations for this Firstly, the studio 1s not truly anechoic As a
result, the vartation between the n-studio and in-room measurements 1s larger than that which would be
observed between free-field and in-room measurements Secondly, the reverberant field in the room 1s
not diffuse, that is, the energy density 1s not the same at ail points mn the room Thus, the actual acoustic
measurements may differ from the predicuons due to the position of the source Nevertheless, the
discrepancy 1s small and, overall, the results support the accuracy of the derived formulae and the Monte
Carlo simulaton technique

Applying Eq (4 8) to the hip areas, the reverberant pressure ratios for the vowels [u] and [a] are -
47 dB and -39 dB respectively The vanation in the radiation umpedance for the two vowels, as
determmed by Monte Carlo simulations, 1s shown Fig 4 10 In both cases, the magnitude and phase
vanations are negligible

On further experimentation 1t has been found that, even for open vowels, a radiation impedance
vanation of £0 5 dB would require the room to have a reverberation tume of 3 s Reverberation tumes of

this length are not normally encountered in small enclosures
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4.2.4 Discussion

The theory and results presented above indicate that the steady state vanation in the radiation
mpedance at the lips due to reverberation ts, 1n general, less than +) 5 dB and 20 05 rads Of course,
steady state conditions are never reached by a person talking 1in a room The amplitude of the direct
pressure from the source nises and falls according to what 1s being said At onsets there 1S no tune for
reverberation to build up Therefore, there will be no vanation in the radiation unpedance due to
reverberauon Dunng prolonged segments of speech, however approximate steady state conditons will
be reached At these umes, the preceding findings are applicable and the radiation impedance vanauon
1s neghgible In contrast, at offsets the direct pressure falls rapidly, while the reverberant pressure
decreases slowly The above results indicate that, for the lips, the sieady state rauo of the reverberant to
the source pressure level 1s less than -39 dB This means that the source and reverberant pressure levels
will be almost equal 1if the energy 1n the speech signal falls by 40 dB 1n a short ume A fall of this kind 1s
quite possible at offsets Therefore, some interaction may occur at these times As a result, glottal

extracuon algonthms may fail at voicing offsets due to reverberauon
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For pracucal purposes, however, the vamation mn the radiation impedance of the lips due to
reverberation 1s negligible It can be concluded that, for radiation areas equal to or smaller than the
mouth, the interaction between the source and the reverberant field can be ignored Therefore, modelling
reverberation by filtenng speech data recorded under anechoic conditions 15 a vahd procedure
Addiuonally, the results indicate that glottal waveform extracuon 1s always possible under reverberant

conditions, provided that the recording microphone can be placed sufficienty close the lips

4 3 REVERBERATION SIMULATION

This section descnbes expermments carned out to ensure the accuracy of the Image Method for
generating artificial room impulse responses The first sub-secton descnibes the Image Method and
analyses some of its inherent assumptions Sub-section two explans the expenmental method used to
measure actuali room unpulse responses The third sub-section presents the results of the unpuise
response measurements and compares them with those generated by the Image Method Following this,

the section 1s concluded with a discussion of the results

4.3 1 Theory

There are two commonly used approaches (0 generating artficial room impulse responses - ray
tracing and the Image Method [Kuttruff, 1991] The Image Method was chosen for use in this
mvesugauon for two reasons Firstly, the ray-tracing approach may muss valid source-receiver paths
since the scheme only samples the emussion space Secondly, the Image Method 1s of lower
computauonal complexity for the small rectangular enclosures under consideration

The Image Method [Allen and Berkley, 1979] 1s based on the 1dea that each wall 1s a "murror” for
sound Thus, a mirror mnage of a room can be mmagined as existing on the other side of each wall
Furthermore, each wall in the marror unage s itself a mirror and so the process repeats itself finitely
For a rectangular room this leads to a gnd of virtual or umaginary rooms as shown i Fig 4 11 Each
virtual room contains a virtual source The impulse response between the source and receiver can be
sumulated by imagining that all the sources emit a pulse at t=0 The energy of each pulse 1s attenuated
by the walls that the signal "passes through" on 1ts way to the recewver This attenuation 1s modelled by
the reflecuon coefficient of the wall That 1s, the pulse armving at the receiver 1s muluphed by the
reflection coefficients of all the walls that 1t passes throngh The mmpulse response 1s the record of the
total energy recerved at each samphing instant Finally, a highpass filter with cut-off at 50 Hz 1s used to
remove the DC offset of the response Typical room inpulse responses generated using the Image
Method are shown n Fig 4 13

The basic Image Method of Allen and Berkley does have a number of lumitauons, some of which
have been addressed 1n later work by other authors
(a) The pressure produced at the source s assumed to be tndependent of the enclosure mnto which

it radiates Thas assumption was found to be vahd for speech, as explamned 1n the previous

secuon
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Fig 4 11 A two dimensional slice through the image space showing how the images are
arranged spaually The solid box represents the original room, the crosses denote the

poswion of sources and the circle denotes the recewer position [after Allen and Berkley,

1979}
®) Only angle independent, frequency independent, specular reflections are modelled Allen and
Berkley do not believe that this mtroduces serious problems
©) The wall reflection coefficients must be greater than (0 7 This 1s reasonable for normal rooms
(d) Only smple, omni-directional sources and recervers are included in the basic model For the

purposes of this investigaton, the mouth roughly approximates a point source, particularly at
low frequencies In additton, at low frequencies most microphones are not direcuonal It
should be noted that these effects could be included with some computational cost [Czyzewski
and Nabelek, 1991, Kompis and Dillier, 1993, Culling et al , 1994]
() Pulses are shifted to the nearest sample, regardless of the actual armval ume In this
vesugauon, this was corrected by using lowpass filter impulse responses centred on the
exact amval ime {Peterson, 1986, Culling et al , 1994]
These lumitations are nvestigated 1n the next sub-sectton by companng measured umpulse

responses with those generated by the Image Method

4 3.2 Method

Real room impulse responses were obtained by measuring the transmission unpedance of a
speaker 1 a normally reverberant room The unpedance measurements were made using Salava's
method (see Section 422) The room umpulse responses were calculated from the transmission
umpedance funcuons as follows

The sound field generated by an acoustic source ts often charactenised by use of the transmission
impedance This 1s defined as the rato of the pressure observed at some recerving point o the volume

velocity of the source
P(xg, )
V(xs, u))

Zr(xn» Xs» ®)=
(4 12)
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where P(xg,w) 15 the pressure amphtude at the receiving point xg and V(xg,w) 1s the volume veloctty of
the source positioned at xg

Consider a pomnt source operating in the free-field The transmission tmpedance only depends on
the source-receiver distance d [Kinsler et al , 1982]

ZF (4 0) = 222
V(0, w) @13)

Now consider a sumple source operaung in a reverberant room Assuming that source-reverberant
field interaction 1s negligible, as shown in the previous section, and that reverberation 1s a hinear ume
invarnant process, then the pressure signal recorded at the recewver 1s the convolution of the pressure
signal radiated by the source and the room mnpuise response (Eq 4 1) Therefore

ZF (xg, x5, 0) = H(xg, x5, 0)ZF (0, 0) “14)
where H(xg,xg,w) 1s the room transfer funcuon for that source-receiver configuration

Analysing this expression, it can be seen that the room transfer function incorporates a tume delay
and a scaling factor The delay 1s equal to the time required for sound to travel directly from the source
to the receiver The scaling factor 1s equal o the reduction in amphitude of the direct signal between the
source and the recetver Altering the formula to remove the delay and normahise the transfer function
and assum:ing an omm-directional source, we obtain

Z;EV(XR:xs'm) H'(xg, x5, ®)Zf (x, 'xs:m) 4 15)

Thus, the room impulse response can be obtained from the free-field and in-room transmssion

ZT (xz —x5,0) @16)

where IFT(x) 1s the Invesse Founer Transform

impedances

Based on this result, real room umpulse responses were calculated from the transmission
mmpedances measured by Salava's method In the previous section, the acoustic radiation impedance was
measured by recording the pressure at the speaker In this experiment, however, the transmission
mmpedance was measured by placing the mucrophone some distance from the source Aside from this, the
umpedance measurement procedure was carried out in exacdy the same manner as before

The free-field transmission unpedance of the speaker was estunated by measuring the spataily
averaged transmission mmpedance in the studio This was done by measuring the transmission
unpedance at certain fixed on-axis source-receiver distances (7, 12, 32, 62 and 100 cm) for four different
source locauons The results were averaged over the four source locations This spaually averaged
transmission umpedance tends to the free-field value At high frequencies, the impedance vanation 1s
due to the sum of many overlapping modes and 1s a random function of source and receiver position
These effects cancel by averaging over a number of source and receiver locations [Davy, 1981] At low
frequencies, the high damping of the room wall coverings minmmiscs the impedance vanations caused by
standing waves The spaually averaged transmission impedances obtained in this way are smooth
functons of frequency to within ) 5 dB This strongly supports the assumption that reverberant effects
were mimimised by the averaging process and that the spaually averaged studio measurements

approximate the free-field values
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The transmission impedance of the speaker was measured 1n the reverberant room at the same
source-recetver distances The room unpulse responses were calculated using Eq 4 16 A phase linear
highpass filter, with cut-off at 100 Hz, and a phase lmnear lowpass filter, with cut-off at 2 kHz, were
applied to remove frequencies at which the measurements were unreliable

Artifictal room umpulse responses corresponding to the xgeasured responses were generated using
the Image Method The parameters of the stmulations consisted of the room dunensions, the source and
receiver positons and the wall reflection coefficients The average wall reflecuon coefficient B was
calculated from the total sound absorption of the room obtained from the reverberation ume by Eq 4 7

Bi=1-A/S @17)
where § 1s the surface area of the room Using a reverberation tume of 0 6 s (see Fig 4 4) leads to an
average wall reflection coefficient of 0 935 The values 093, 092 and 0 92 were chosen for the walls,
ceiling and floor, respectively The resulting mmpulse responses were then bandpass filtered 1n the same

manner as the measured responses

4.3.3 Results

The measured room impulse responses are shown in Fig 4 12 and the corresponding sumulated
room mmpulses are shown 1n Fig 4 13 Clearly, the envelopes of the measured and simulated responses
are very sumilar

In order to compare the responses in more detail, energy decay curves were calculated The
energy decay curve 18 the average sound pressure level decay occurrmg at the receiver after a white noise
source 1n the steady state 1s switched off Schroeder has shown that the decay curve for a particular
source-recerver configurauon can be calculated as the ume reversed integraton of the squared unpulse
response [Schroeder, 1965]

E(r)= [n* ()t
t (413)

In the case of the decay curves calculated for unpulse response measurements, Chu's method was used to
compensate for the effects of residual background noise [Chu, 1978] The calculated energy decay curves
are shown in Fig 4 14 Again, a good match was found between measurement and simulation

Another unportant property of room impulse responses 18 the spectral randomisation occurring
due to reverberation As source-receiver distance increases, the direct-to-reverberant energy ratio
decreases and the amount of spectral vanation increases The standard deviation of the spectral response
was calculated for the measured and simulated responses 1n the range 500-1500 Hz The results show
close sumilanty and are shown i F1g 4 15

The standard deviation of the spectral response was investgated by Jetzt [Jetzt, 1979] Using
Monte Carlo simulation experunents, he determined the standard deviation of the spectral response
which would occur for centain source-receiver distances These distances were normalised according to

the reverberation distance of the enclosure The reverberauon distance s defined as the source-receiver
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distance at which the direct and reverberant fields have equal energy For an omni-directional source,

the reverberation distance 1s equal to

%
rey =0 1[ 4 )

T Tgp

4 19)
Jetzt supported his findings with actual measurements of the vanauons occurring 1z real rooms

The reverberauon tme of 06 s leads to a reverberation distance of 36 cm Based on this
normalisation, the predictons of Jetzt are included in Fig 4 15 The close correspondence between

theory, measurement and sumulation 1s clearly illustrated

4 3 4 Discussion

The results presented in this section support the accuracy of the Image Method 1n generating
aruficial room impulse responses The measured and simulated impulse responses show a high degree of
sumilarly 1in terms of their decay rate and spectral response These two properties define the nature of the
reverberant response Therefore, the sausfactory performance of the Image Method has been established

Recently developed algonthms for synthesising room impulse responses avoid some the
hmuauons of the Iinage Method [Lewers, 1993, Nakagawa et al , 1993, Heinz, 1993] However, these
new systems are significantly more computationally complex and remain, to some extent, iumprecise For

the purposes of this invesugation, the Image Method has been shown to be sufficiently accurate
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4.4 CONCLUSION

Since reverberauon has a significant effect on the glottal extraction algonithms under
investigation, the accuracy of the proposed method for adding reverberation to anechoic recordings was
verified by expernnment and sumulaton Two main i1ssues were addressed

Firstly, the assumption that source-reverberant field interaction 1s neghgible at the hips was
investigated New theory was developed for predicting the vanation m the radiation inpedance of a
piston 1n an nfimte baffle source operating 1n a reverberant enclosure The theory was confirmed by
comparing the results of Monte Carlo sunulations and measurements made m real rooms using a
loudspeaker Predictions were then made for the vanation which would occur at the Iips These results
indicated that the radiation umpedance vanation occurring at the mouth in a normally reverberant
enclosure 1s negligible Therefore, source-reverberauon field interaction can be 1gnored for the purposes
of adding reverberation to anechoic speech

A further umplication of this result 1s that close to the lips, the pressure signal i a room 15 almost
equal to that which would occur if the speaker were in the free-field Therefore, glottal extracton
algonthms will operate sausfactonly in any normally reverberant enclosure, provided that the
microphone can be placed sufficiently close to the lips The question of how close the microphone must
be 15 mvestigated n later chapters Further experiments conducted by the author on the effects of
reverberation on glottal waveform extraction are described 1n [Bleakley and Scatfe, 1994] (Appendix A)

Secondly, the assumption that the Image Method produces reasonable room acoustic unpulse
responses was tested Room impulse responses generated by the Image Method were compared with
actual room responses measured by Salava's impedance method The simulated impulse responses were
found to capture correctlly the maimn features of the reverberant process Hence, the techmque of
generating reverberant speech data by filtering noiseless, anechoic speech with mmpulse responses
produced by the Image Method was established as being reasonably accurate

Regardless of its broad underlying assumpuons, the general accuracy of the Image Method has
been venfied Moreover, the relatonship between the reflection coefficient parameter and the sound
decay of the resulting impulse response has been confirmed These findings support the use of the Image
Method :n room impulse response sitmulations Such simulations facilitate the synthests of in-room
sound fields for applications such as auditory experiments [Wattel et al , 1981, Culling et al , 1994} and

hearing aid research [Kompis and Dillier, 1993]
~
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CHAPTER 5

GLOTTAL CLOSURE DETECTION

5.1 INTRODUCTION

Automatic detection of the Glottal Closure Instant (GCI) 1s an mmportant problem in speech
science Correct detection of the GCI 1s necessary 1n order to determine penod-by-period vanauons in
the pitch of the speech signal This micro-melody carries phonemic, hnguistic and speaker information
Accurate reproduction of the mcro-melody can improve the quality of speech coding and synthesis
systems Furthermore, identficauon of the mucro-melody can unprove the accuracy of speech
recognition strategies

As detailed in Chapter 3, GCI detectton systems fall into two main categories Algorithms in the
first category detect the presence of the closed phase, which occurs immediately after the GCI, by the
high linear predictability of the region These methods tend to fail for certain vowels due to the presence
of large residual pulses around the GCI They are also computationally complex Algornthms in the
second category detect the GCI by the discontinuues or epochs associated with closure The main
drawback with these methods 1s their sensitavity to ambient and excitation noise

One of the most promising methods for GCI detection 18 Maximum Likelthood Epoch Detection
(MLED), as proposed by Cheng and O'Shaughnessy [Cheng and O'Shaughnessy, 1989] This method
uses both the presence of a discontnuity and the linear predictability of the subsequent waveform to
idenufy the GCI This makes the system robust to both noise and different types of voicing
Unfortunately, as will be shown later, the system fails for certain vowels

This chapter proposes a re-formulation of the MLED technique called Pre-emphasised Maxamum
Likelihood Epoch Detection (PMLED) The new approach improves the accuracy of GCI identificauon
and works for all voices and voicing types Furthermore, new pitch tracking and post-processing
algonithms, which facilitate the use of the PMLED technique 1n a speech coding system, are detailed
The performance of the new system for natural male and female speech 1n noise and reverberauon is
assessed

In the next section, Cheng and O'Shaughnessy's MLED technique 1s descnibed Section three
details why the method fails for certain voiced sounds Section four descnibes the new PMLED

algonthm In section five the performance of the system 1s studied and section six concludes the chapter

5.2 MAXIMUM LIKELIHOOD EPOCH DETECTION

Maximum Ikehhood theory for epoch detection was mitally developed for use in radar
apphicauons [Helstrom, 1960, Young, 1965] Cheng and O Shaughnessy adapted this theory for use tn
GCI detecuon They assumed that the speech signal within a pitch penod 1s cansed by a single pulse at
the Gloual Closure Instant Assuming that speech production can be modelled as an all-pole hnear

system, then the wavelet due to the GCI can then be expressed as
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s(n)=4G n
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S

0 otherwise
L GSn

where G 1s an arbitrary constant and p 1s the order of the all-pole system They supposed that the

difference between the observed signal s(n+n;,) and the wavelet 15 a Gaussian process X with N

independent observations, each with unit vanance ¢

X=5-§
where
x=[x(0) x(n) x(2) x(N-1)]
S=[s(n,,) s(ny+1)  s(n,+2) s(n,,+N—1)]
s=[s0) (1) $2) s(N-D)] 52)

Maxtmum likelithood estimation states that the epoch occurs when the parameter values, Q={a;,

az, ap no ¢} maxiumse the conditional probability density or hikelthood function

] N-1 , 2 5
p(X/Q)= 7z €XP{ — p3 [s(n+ No)—S$ (n)] 2c
(Zm 2) n=0
53)
Cheng and O'Shaughnessy demonstrated that maximising the ikehihood function as a funcuon of
n, 1s equivalent to maxmmsing the cross-correlation of the observed signal and the wavelet Thus, the

opumum closure pont can be found as the maximum of
N-1

f(ng)="Y s(n+ny)s'(n)
n=0 (5 4)

where f '(no) 18 referred to as the MLED signal Furthermore, they found that the AutoRegressive

coefficients of the wavelet which produce the maximum likelihood function are the speech Linear

Prediction coefficients produced by the autocorrelation method
P
Y a®(i-k)=d(k)
=]

where
N1
®(k)= Y s(n)s(n—k)
n=k (5 5

and Nfls the frame size

Fig 5 1 shows typical speech and MLED signals for the vowel {a] The MLED signal can be seen
to display a strong peak about 0-8 samples after the GCI Based on this empincal evidence, Cheng and
O'Shaughnessy proposed that the best mark for the GCI was the 50 percent amplitude pomt on the rising
edge of the strongest posive peak n the MLED signal

As can be seen m Fig 5 1, a number of weaker pulses occur close to the strong epoch pulse
These represent sub-optimal epoch candidates In order to improve the strength ratio between the correct
epoch pulse and the sub-pulses, Cheng and O'Shaughnessy proposed the use of a selection signal This

signal 1s designed to have a symmetric and real spectrum which has 1ts maximum amplitude at the
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Fig 51 Typical signal in Maximum Likelthood Epoch Determination (MLED) for vowel
[a] top - speech signal, bottom - MLED signal [after Cheng and O'Shaughnessy, 1989]

ongm, gradually fatling off with increasing frequency They recommended use of the Hilbert Envelope
of MLED signal
_[p2 2(, V2
g(no)_[f (no)+fH (no)] (5 6)
where f7; (n,) 15 the Hilbert Transform of the MLED signal f’(n,) The Hilbert Transform can be

described as a filter [Ansan, 1987] with transfer function

-] O<w<x
H(w)=40 0=00
J -t<o<0 67

and discrete-tume tmpulse response
2sim%(x n/2)

#0
W(m)={ T"
0 n=0
S8
Thus selectzon signal 1s made more pulse-like by average value subtraction
¢(n)= 8(n,)-g(n,}  g(n,)2g(n,)
) =
0 8(n,) < 8(n,)
where
g Voot
8("0) = N, Zg('lo)
! n=0 (59)

The GCI Determination Signal (GCIDS) s calculated by muitiplying the MLED signal by the

selecuon signal
8(n,) = f'(n,) g'(n,) (5 10)

A block diagram of the overall system can be seen in Fig 52 The system mmplemented by Cheng
and O'Shaughnessy operated at a sampling frequency of 10 kHz An anu-aliasing filter with a 4 3 kHz
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Fig 52 Block diagram of the GCI determination system [after Cheng and
O'Shaughnessy, 1989]
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Fig 53 The results of GCI determination for the male vowel [a] from top to bottom -
speech, the GCI determunation signal (GCIDS), the selection signal, and the MLED signal
[after Cheng and O'Shaughnessy, 1989]

cut-off frequency was apphied before sampling and a no-delay, lowpass filter (NDLPF) after sampling
The NDLPF was designed to decrease high frequency noise and had a cut-off frequency of 2 5 kHz with
a gradual spectral roll-off An analysis frame length of 256 samples (Nf=256), with an overlap between
successive frames of 56 samples, was chosen Twelve coefficients and a rectangular window were used
1n the Linear Predicuon analysis The length of the wavelet was chosen to be 40 samples (N=40) Also,
ume-shifung adaptation was introduced to compensate for the ume difference between the 50 percent
amphtude point and the maximum amplitude point

Fig 5 3 shows the resulis obtained by Cheng and O'Shaughnessy 1n applying the systems to male
speech The segment reproduced 1s for the vowel [a]

Cheng and O'Shaughnessy report good results for vowels, nasals, voiced fncatives and voiced
plosives The system 1s also shown o be robust to white noise as well as to certain phase and amplitude

distorions All of the tests conducted by Cheng and O'Shaughnessy used male speech
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5.3 WHY MAXIMUM LIKELIHOOD EPOCH DETECTION FAILS

The MLED technique developed by Cheng and O'Shaughnessy has been found to fail for certain
vowel sounds This section explains the causes of this failure

Furstly, consider a segment of male speech for which the method works well Fig 5 4 (a) shows
the components of the MLED techmque as calculated over a single analysis window Fig 5 4 (b) shows,
supenimposed on the magmtude spectrum of the speech signal, the spectral response of the 10th order
all-pole LP filter esumated over the analysis window Fig 54 (c) shows the unpulse response of the
filter (1 e the wavelet) which was used n calculaung the MLED signal Note that 10th order LP analysis
was used 1n this experiment since the speech signal was recorded at a sampling frequency of 8 kHz, see
Appendix C

Examining the speech spectrum, Fig 54 (b), it can be seen that it rolls off with increasing
frequency The roll-off 1s due to a combination of the -6 dB/octave de-emphasis charactenistic of natural
speech and the lowpass filtering effects of the NDLPF In order to model this spectrum, the LP filter
allocates two poles to each formant and two poles to the roll-off These roll-off poles constitute a high
energy low frequency resonance The resonance can be clearly seen to dominate the impulse response of
the filter, Fig 54 (c)

The MLED signal 1s calculated by cross-correlating the wavelet with the speech signal Due to
the form of the wavelet, that 1s a broad positve peak followed by a broad negative peak, the MLED
stgnal, Fig 5 4 (a) second panel, displays 1ts maxima just before strong positive-to-negative transitions
in the speech signal and 1ts minuma just before strong negauve-to-positive transitions in the speech
signal As a result, the MLED signal has 1ts local mmima just before the GCls and 1ts local maxuma just
after the GCls

Now consider the selection signal The mnpulse response of the Hilbert transform filter 1s shown
mn Fig 55 Obviously, the output from this filter will show 1ts maximum at the mstant of strongest
negative-to-positive transition n the wnput signal Therefore, the selection signal, calculated as the
Hilbert envelope of the MLED signal, shows broad maxima around points of strong negative-to-posiive
transition 1n the MLED signal, see Fig 5 4 (a) third panel

The MLED and selection signals are multiphed to give the final GCIDS In the example, the
broad maxima of the selection signal emphasise the negative-10-positive transitions in the MLED signal
Thus, the GCIDS displays sharp peaks close to the GCI, see Fig 5 4 (a) fourth panel

Now consider a segment of speech for which the method fails Fig 5 6 shows the components of
the MLED techmque calculated over a single analysis window for the female vowel [1] from "year” As
before, the MLED signal shows 1ts local maxima just before the instants of strongest positive-to-negative
transition 1n the speech signal However, in this case, the point of strongest positive-to-negative
transition does not occur immediately after the GCI Consequently, the final GCIDS does not correctly
idenufy the GCls

Since the speech signal always has a similar spectral roll-off, the all-pole LP model always
contamns a low frequency resonance As a result of this, the wavelet invanably consists of a broad
posiave peak followed by a broad negative peak Consequently, the overall MLED procedure identifies

the nstant of strongest transiion with a pitch penod As has been illustrated, the instant of strongest
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Fig 54 The results of GCI determination for the male vowel [1] (a) from top to bottom -
speech, MLED signal, selection signal and GCIDS (b) solid - magnitude spectrum of

speech, dotted - spectrum of all-pole filter estimated over speech, (c) wavelet
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Fig 55 Impulse response of the Hilbert transform filter
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transition does not necessarily coincick with the GCI. The re-formulation proposed in the next section
corrects this problem by applying pre-processing to ensure that low frequency poles are excluced from
the LP filter. This allows the new GO detection algorithm to correctly icentify the GCls of the incoming

Speech signal.

54 PRE-EMPHASISED MAXIMUM LIKELIHOOD EPOCH DETECTION

This section describes the new reformulated MLED techniue. The new method removes the
spectral effects of the glottal waveform by applying a +6 dBloctave pre-emphasis filter to the speech
signal. A standardl one pole filter can be used for this purpose

H(z) =1~ f6~ 1 (511)
In order to retain the timing information in the speech signal, the filter must be pass forwards and
backwaras across the speech signal. This ensures that the overall filtering operation hs zero phae.

A schemtic diagram of the overall system is shown in Fig. 5.7. The MLED signal is calculated
as before, except for the lowpass filtering operation (NPLPF) which is removed. Since the spectral roll-
off of the speech signal has been cancelled, only an 8th order all-pole filter is neeced to mocl the
formant resonances. Furthermore, in calculating the wavelet to be used in the cross-correlation operation
(Eq. 5.1), the constant G is chosen to be negative. This is because the glottal closure pulse, whose
position is to be determined, is itself negative. In order to improve the contrast of the resulting MLED
signal, a mean subtraction is applied and negative samples are set to zero. This new MLED signal is
termed the Pre-emphasised Meximum likelinood Epoch Detection (PMLED) signal. Fig. 58 shows the
speech signal, pre-emphasised speech, wavelet and the PMLED for a typical male vowel.

A pitch detection algorithm is used o select the true GO from the candidate pulses provided ty
the PMLED technique. A lowpass filter with sharp cut off at 1 kHz is passed, forwerds and backwerds,
across the speech and PMLED signals. This removes high frequency noise and improves pitch
determination. Next, autocorrelation is performed on the filtered speech and PMLED signals. The celays
associated with the mexima of these autocorrelation functions are candidate pitch periods. The two
candidates and the pitch period from the previous window are then compared. If two or more of the
candiates metch to wathin 10 % then that pitch is chosen as the period length for this window. If no
candicates metch, the values of the two autocorrelation functions at the three candicate periods are
multiplied. The candicate pitch period wath the largest prodict is chosen as the pitch.

Once the pitch has been determined, the celay between the start of the window and the first GO
must be found. To o this, a metched pulse train of broad peaks at the pitch period is cross-correlated
with PMLED signal. The resulting cross-correlation function clisplays a peak at the optimum lag
between the matched pulse train and the PMLED signal. The PMLED signal is multiplied by the
appropriately lagged matched pulse train to give the Pre-empHesised GCIDS (PGODS). The instant of
the maximum in the PGODS within each peak of the matched pulse train is then marked as the instant
of glottal closure (see Fig 5.8).

For high pitched speech (FO > 2 kiHz) significant pitch drift may occur within a single analysis
window, Therefore, when high pitched speech is encountered, the pitch and lag determination
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algorithms are applied to half of the analysis window at a time. This allows for more accurate pitch
tracking and GCI determination.

Voicing onsets and offsets present a special problem for GCI determination. At these times,
voicing is weak and the pitch period may change vary rapidly. Thus, the pitch estimation algorithm may
produce ambiguous results. In the case of offsets, the system searches backwards for the nearest
occurrence of strong voicing. PMLED is applied from the last closure in the strongly voiced segment to
the beginning of the silence region. A search is conducted across the PMLED signal for peaks at, or
below, the pitch of the strongly voiced region. For voicing onsets the technique is similar, except that the
system searches forwards for the nearest strong voicing and backwards for the onset closures. Fig. 5.9
shows this technique applied to a typical voicing offset

55 PERFORMANCE STUDY AND RESULTS

The PMLED method was tested for different voicing types under noise and reverberation. Input
speech was anti-aliased using a zero-phase filter with a 3.8 kHz cut-off and sampled at 8 kHz, for more
details see Appendix C. The analysis frame length was chosen to be 256 samples, A*=256, with a 56
sample overlap between frames. Eighth order Linear Prediction (@=8) and a wavelet 32 samples in
length (N=32) were used in all of the experiments.

Fig. 5.10 shows the results of the PMLED technique applied to male and female vowels. The
vowel segments are the same as those tested on the previous MLED system, Figs. 5.4 and 5.6.
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Fig 511 The resuits of PMLED for male vowel [u] from top to bottom - speech signal,
pre-emphasised speech signal, PMLED signal, matched pulse train and GCIDS
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Fig 512 The results of PMLED for male voiced fricative [v] from iop to botiom -
speech signal, pre-emphasised speech signal PMLED signal, matched pulse train and
GCIDS
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Fig 513 The results of PMLED for male voiced plostve [b] from top to bottom - speech
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Fig 5 14 The results of PMLED for male nasal consonant [n] from top to bottom -
speech signal, pre-emphasised speech signal, PMLED signal, matched pulse train and
GCIDS

71



On examining Fig. 5.10 (a), it can be seen that the Speech signal displays a flat negative peak
around the GCls. This makes it difficult to manually determine the exact instant of closure. Similarly,
the PMLED technique has difficulty, showing a number of equal peaks representing candidate closure
points. The matched pulse train selects the most promising peaks based on the estimated pitch period
and pitch lag. Comparing Figs. 5.10 (a) and 5.4, it is clear that PMLED has chosen GCls slighdy earlier
than those selected by MLED. In this case, it is unclear which algorithm is the more accurate. However,
the general character of both GCIDS is correct.

In Fig. 5.10 (b) it is obvious that the new system has correctly determined the instants of glottal
closure. This is in stark contrast to the performance of the MLED technique, see Fig. 5.6. On examining
Fig. 5.10 (b) in detail, it can be seen that, in this case, accurate pitch determination was essential in
removing secondary peaks from the PMLED signal.

Performing accurate glottal closure identification on the vowel [u] has proven difficult [Strube,
1974; Ananthapadmanabha and Yegnanarayana, 1979]. Most epoch detection methods try to detect the
high frequency energy associated with a waveform discontinuity. The vowel [u], however, contains little
energy at these frequencies, most being concentrated at low frequency. MLED was one of the first
algorithms to succeed for this vowel. Fig. 5.11 shows the performance of PMLED for a male [u]. The
method correctly identifies all the closure points, even though the amplitude of the vowel is steadily
decreasing.

Voiced fricatives are another class of sound for which the MLED method works well. In this type
of speech, voiced and unvoiced excitation occur simultaneously. This makes it difficult to determine the
excitation point associated with glottal closure. Fig. 5.12 shows PMLED applied to the consonant [v].
Again, the closure point is difficult to determine manually. Comparing the speech signal and the
GCIDS, it can be seen that the marked GCls occur before the maximum negative peak in the speech
signal. However, comparing the pre-emphasised speech and the GCIDS, it is clear that the chosen GCls
are actually at the points of maximum energy innovation to the vocal tract. Thus, the PMLED system
has correctly identified the glottal closure points. Again, the importance of accurate pitch determination
i obvious.

Voiced plosives present difficulties for conventional pitch detection algorithms. These sounds are
characterised by a sudden burst of energy at the start of the consonant. In addition, there are often
associated rapid changes in pitch. Fig. 5.13 shows the results obtained from applying PMLED to the
voiced plosive [b]. Strong peaks in the PMLED signal clearly indicate the instants of glottal closure.

Another category of sound which can cause problems for glottal closure detection algorithms is
nasal consonants. This is due to the presence of zeros in the Speech spectrum caused by anti-resonances
in the nasal tract. The results of PMLED applied to the nasal [n] are shown in Fig. 5.14. Obviously, the
performance of PMLED is unaffected by nasal coupling.

To be of use in speech coding applications, @ GCI detection algorithm must be accurate over
prolonged segments of voiced speech and robust to noise. Fig. 5.15 (a) and (b) show the pitch contours
produced by PMLED when applied to the sentence "\We were away a year ago™ as spoken by a male and
a female subject, respectively. The top panel shows the recorded speech signal. The second panel
displays the manually determined pitch contour. The third panel shows the pitch contour produced by
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PMLED applied to the clean speech signal The fourth, fifth and sixth panels show the piich contours
calculated by PMLED over the speech signal with added noise

The accuracy of the new system can be clearly seen by comparing the manual pitch contour and
that produced by PMLED on the clean speech (second and third panels) The pitch contours match to a
high degree of accuracy The sudden changes in patch at voicing onsets and offsets are particularly well
1dentified This 1s difficult to achieve with conventional pitch prediction algorithms In the case of the
male segment, some dither can be seen in the early part of the PMLED generated pitch contour (Fig
515 (a) third panel) It must be noted that this region corresponds to the {x] vowel of the first word "we '
As can be seen in Fig 5 10 (a), the closure points in this region are difficult to determine Thus, some
deviation from the manually marked GCIs must be expected

The performance of glottal closure detecuon algonthms tends to detenorate in the presence of
white noise Noise has a twofold effect. Firstly, discontinuities 1n the noise signal can be misinterpreted
as epochs Secondly, noise reduces the predictability of the overall signal and so can disguise the
AutoRegressive decay which follows a glottal closure Fig 5 15 panels three, four and five show the
patch contour produced by PMLED applied to speech segments with Signal to Noise Rauos (SNRs) of
35dB, 25dB, and 15 dB, respecuvely In general, the PMLED algorithm remains reasonably robust wath
mncreasing noise The dither of the idenufied pitch increases slowly with the noise In addition, patch
halving and doubling occurs at some of the voicing offsets It must be remembered that the quoted SNRs
are average values calculated across the entire segments As a result, the actual SNRs at the offsets are,
in fact, much lower than the nominal values given above Using a more complex expert system for the
pitch decision maght alleviate this problem

Reverberat:on creates a special problem for GCI detection systems Generally, sound reflections
have properues very sumilar to the ongmal signal Thus, a reflected glottal pulse can be easily
masinterpreted as a new pulse coming directly from the sound source In particular this presents great
difficulties at voicmg offsets At these points the energy of the direct signal 1s low, while the reflected
energy 1s high Fig 5 16 panels three, four and five show the pitch contour produced by PMLED apphied
to speech segments with simulated reverberation equivalent to source-receiver distances of 10cm, 30cm
and 50cm, respecuvely The performance of the PMLED algorithm deteriorates rapidly with increasing
source-receiver distance At a distance of 50cm the techmique ts unsatusfactory for speech coding
purposes However, this 1s well beyond the distances normally used for teiephone speech The problem
could be alleviated somewhat by the use of a directional microphone This would reduce the level of the
reverberant sound energy relauve to the direct.

To further mvesngate the accuracy of the new system, the temporal differences between the GCIs
identified by PMLED applied to the clean speech and those marked manually were calculated Fig 5 17
shows histograms of the error 1n closure nstant detection ustng the PMLED system The tests indicate
that the PMLED 1dentfied alt of the closures marked manually, for both the male and female segments
Furthermore, 1t was found that over 75% of the PMLED estimated GCIs were within +2 and £1 samples
of the manually identified GCls for the male and female segments, respectively The better accuracy in
the case of the female segment can be attributed to the higher fundamental frequency of the speech In

general, this means that the closure pomnts are associated with a sharper negative peak 1n the speech
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signal Consequently, the GClIs are easier to 1dentify precisely It must also be noted that the accuracy of
the PMLED algonithm may be greater than 1s indicated by these results When marking the GCls
manually, the operator tends to place the closure pomt at the mmmmum of the negative peak n the
speech signal associated with the closure Often, this 1s not the point of maximum vocal tract excitauon
Thus, the manual marking system may be biased n 1ts esmation of the GCIs This may explain the +1
skew visible on Fig 517 (a)

To invesugate the performance of the algorithm on narrowband speech, a typical bandpass filter
was apphed to the segments before processing with PMLED The charactensucs of the filter are shown
in Fig 5 18 The filter was of Butterworth design, consisting of a first order highpass section, with cut-
off at 100 Hz, and a second order lowpass secuon, with cut-off at 3600 Hz The results of PMLED
performed on the filtered speech segments are shown i Fig 519 As mught be expected, the
performance of the algorithm on the male segment 1s reduced For the male segment, significant low
frequency energy 1s removed by the filter Also, the filter mtroduces considerable phase distoruon at
these frequencies Thus, much of the pitch information tn the speech signal 1s removed or distorted This
leads to 1naccurate identfication of the GClIs and an increase 1n pitch dither In contrast, the algorithm
performs well on the filtered female segment In this case, the only significant difference from the
manually marked pitch contour 1s the pitch doubling at the final offset. On re-examination of the speech
signal at this pont, 1t 1s unclear which pitch value 15 correct In all hikelihood, erther pitch would
produce good re-synthes:s 1n a coding system

Finally, the new system was applied to segments of male and female speech recorded in a normal
office environment The pitch contours calculated by PMLED over the segments "Early one morning a
man and a woman ambled along a one mile lane" are shown in Fag 520 The results show reasonable
pitch contours in both cases Some dither can be seen but 1t rarely exceeds 10 % Partcularly well
captured m the female segment are the longer than normal pitch periods occurring at voicing onsets and

offsets

5.6 CONCLUSION

This chapter has proposed a re-formulauon of an existing algorithm for GCI detection from the
speech signal The deficiencies of the previous method have been explained and the improved accuracy
of the new approach 1llustrated The performance of the new method has been analysed for various types
of voicing under noise and reverberauon The results have shown that the method 1s both accurate and
robust to noise Furthermore, the method 1s rehiable 1n normally reverberant conditions up to source-
recewver distances of approximately S0cm

The new algonthm provides a more accurate and robust method for glottal closure detection This
facihitates the use of pitch-synchronous analysis techniques under normal recording conditions These
techmques, in tum, provide greater accuracy and reliability 1n the analysis of voiced speech One such

techmque, nverse filtenng for extraction of the glottal excitatuon is examined wn the next chapter
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CHAPTER 6

- GLOTTAL WAVEFORM EXTRACTION

6 1 INTRODUCTION

This chapter assesses the performance of two algonthms for glottal waveform esumation The
techniques under mvestigation are Closed Phase Inverse Filtering [Berouts, 1976, Wong et al, 1979,
Deller, 1981] and Pitch Synchronous Iterative Adaptive Inverse Filtening [Alku, 1992a,b,c] Closed
Phase Inverse Filtering (CPIF) 1s a well established method, having been studied in a number of
invesugations {Knshnamurthy and Childers, 1986] This chapter aims o determine its robustness to
noise and reverberation, and to determine 1its suitability for use 1n a glottal excited speech coding system
Iterauve Adapuve Inverse Filtering (IAIF) 1s a newer technique, developed by Alku The method shows
promise 1n that, unlike Closed Phase Inverse Filtering, 1t does not require a priorn: idenufication of the
Glotial Closure Instant Thus, it 1s likely to be more robust than the closed phase procedure This chapter
compares the performance of the two algonthms under various conditions of noise and reverberation

For purposes of speech transmission, the estmated glottal waveform must be parametentsed The
approach chosen 1n this mvestigation 1s parameterisation by fitting of a ume-domain glottal waveform
model One of the most successful models, the LF model [Fant et al , 1985] 1s used for this purpose The
LF model has shown good results in glottal waveform analysis [Gobl, 1988, 1989] and in speech
synthesis experuments [Childers et al , 1987, Childers and Wu, 1990, Carlson et al , 1990] The accuracy
of the LF model in representing the estimated glottal waveforms 1s examined n this chapter The effects
of noise and reverberation on the accuracy of the proposed fitung procedure are also assessed

Thas chapter 1n spht into five sections Section two descrnibes the mverse filtering and glottal
fitting aigorithms The third section details the experuments carried out to determune the performance of
the algorithms Section four discusses the LF data obtained dunng the experuments in the light of

previous studies on voice source dynamics Lasty, section five concludes the chapter

6.2 DESCRIPTION OF THE SYSTEMS

This secuon descnbes the algonthms under investigation n this chapter The first sub-section
descnbes the CPIF algonthm The second sub-secton explains the IAIF procedure The third and final
sub-section describes the techmques used to fit the LF model to the glottal waveforms esumated by the

nverse filtenng algonthms

6.2.1 Closed Phase Inverse Filtering

Closed Phase Inverse Filtering operates on the assumpuons that for a few mlliseconds after
glottal closure the glotts 1s closed and that, dunng this tume, there 1s no excitation of the vocal tract
Thus, duning the closed phase, the speech signal consists of the decaying vocal tract resonances alone

Linear Prediction (LP) analysis performed over this tume will therefore only identafy the vocal tract filter
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and will exclude any components due to the glottal excitation. The glottal waveform can then be
determined by applying the inverse of the closed phase filter to the entire pitch period. As has been
explained in Section 3.3.1, the method does not work in all cases, for example - there may be some
residual excitation during the so-called “closed" phase, the closed phase may be too short to perform
accurate Linear Prediction analysis, or the presence of noise and reverberation may cause inaccurate
estimation of the vocal tract filter. The effects of these limitations are investigated in the performance
analysis contained in the next section.

A schematic diagram of the CPIF algorithm used in this investigation in shown in Fig. 6.1. Input
speech is recorded using phase linear equipment at a sampling frequency of 8 kHz. Glottal Closure
Instant (GCI) identification precedes Closed Phase Inverse Filtering. Inaccurate GCI identification
might introduce artefacts into the inverse filtering process which would put CPIF at a disadvantage
compared with IAIF. Therefore, in these experiments, GCI identification is performed manually to
ensure that the results of these experiments depend only on the accuracy of the inverse filtering
algorithms. The effect of automatic GCI identification on the glottal extraction procedure is examined in
the next chapter.

Once the GCIs have been identified, the inverse filtering algorithm proceeds by assuming that a
short closed phase immediately follows the GCI. Based on the results of preliminary experiments, the
closed phase is assumed to be 30 samples long and to start 2 samples after the closure instant. If the next
pitch period is less than 60 samples long then the closed phase is taken as ending half way between this
GCl and the next. The vocal tract filter is estimated by covariance analysis [Wong et al., 1979]
performed over the assumed closed phase. Covarience analysis was chosen in preference to
autocorrelation analysis since it is more accurate over short time windows. The resulting vocal tract
filter is validated by removing poles that cannot be attributed to the vocal tract resonances [Childers and
Lee, 1991]. Thus, poles at frequencies less than 250 Hz and with bandwidths greater than 500 Hz were
removed from the filter,
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In prelimmary expenments the esumated vocal tract fiiter often proved to be accurate This was
generally due to noise or excitauon duning what was presumed to be the "closed” phase The basic
mverse filtening algorithm was expanded by adding a new procedure which uses vocal tract filter
esumates from previous pitch penods

In manual mverse filtering experiments, the filter ts adjusted for maximum formant canceilatton
1n the presumed closed phase [Fant, 1993] However, the true glottal flow always contains components
related to uncompensated vocal tract modes that depend on the ume-varying nature of the speech
producuon system within a single glottal cycle The setting for maximum formant cancellauon in the
closed phase 1s generally used since 1t provides a pragmauc basis for synthesis In this mvestigaton, the
mverse filter 1s adjusted to achieve maximum formant cancellation throughout the entire glottal cycle
That 1s, the estmated glottal waveform should be a smooth functon of ume except at the GCI Based on
this principle, the most accurate vocal tract filter 18 viewed as the one which produces the smoothest
glottal waveform esumate

The new muluple filter procedure involves inverse filtering each pitch penod with four candidate
vocal tract filters These candidates are the filter esumated over the current peniod, the filter esumated
over the previous penod, the filter estimated over the second previous pertod and a filter constructed by

averaging the pole locations of these three filters The current pitch penod 1s inverse filtered using these
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four candidate filters to obtain four glottal waveform estimates Two second order polynomuals are fitted
to each of the estunated glottal waveforms One polynomial 1s fitted between the previous and the
current GCIs The second polynomial 1s fitted between the current GCI and the end of the closed phase
The accuracy of each candidate inverse filter 1s calculated as the Signal to Noise Rauo (SNR) between
the estumated glottal waveform and the fitted polynomials The candidate vocal tract filter giving the
maxmnum SNR 1s taken as the smoothest glottal estumate and used as the inverse filter for the current
pitch period An example of the inverse filtered and fitted waveforms can be seen in Fig 6 2 Clearly
the filter calculated over the current closed phase 1s maccurate In this case, the second previous filter
produced the maximum SNR and was chosen as the best inverse filter for use mn the current penod

In early experiments, a fifth vocal tract filter estunate was tested This was a filter esumated over
a concatenation of the current and two previous closed phases The technique was onginally proposed by
Chan and Brookes [Chan and Brookes, 1989] Unfortunately, the esumates proved to be inaccurate due
to disconunuities at the concatenation points This technique was therefore abandoned
6.2.2 Iterative Adaptive Inverse Filtering

Proposed and developed by Alku, Iterauve Adaptive Inverse Filtering (IAIF) operates on the
principle that the overall spectral ult of the speech signal can be attnibuted to the glottal waveform In
the case of vowels, speech production can be viewed to consist of a glottal excitation, filtered by the
vocal tract and radiated at the ips The spectra of these three components can be seen in Fig 6 3 Alku's
contention 1s that the tlt of the speech spectrum 1s due to the combined glottal excitauon and lip
radiation spectra The vocal tract transfer function 1s itself wide-sense flat with some high energy
regions corresponding to the formants The IAIF algorithm operates by repeatedly removing the glottal
and radiation effects using low order Linear Prediction analysis and wverse filtenng This removes the
overall spectral tlt of the speech and allows accurate estunauon of the vocal tract filter using high order
Linear Predicuon analysis The estumated vocal tract filter 1s used to mverse filter the ongnal speech
signal to obtain the differentiated glonal flow

A schematic diagram of the IAIF technique 1s shown 1n Fig 6 4 In the first iteration, the effect of
the glottal excitation and the lip radiation 1s modelled by computing a Linear Predicuon analysts of
order 1 Refernng to Fig 6 3, this means that the combined glottal (a) and hip spectra (¢) are estimated
by calculating a crude envelope to the speech spectrum (d) The combined glottal flow and lip radiation
functions correspond to the differentiated glottal flow or glottal waveform Thus, the spectral effect of
the glottal waveform can be cancelled by inverse filtening the speech signal using the first order Linear
Prediction esttmate A prelumnary model for the vocal tract filter 1s obtained by performing 10th order
Linear Predicuon analysis on the nverse filtered signal The first estimate for the glottal waveform 1s
produced by inverse filtening the o’ngmal speech signal using this vocal tract filter esumate

In the second 1teration, the spectral effect of the glottal waveform 15 re-estumated by 4th order
Linear Predicuon analysis pertormed over the glottal waveform esumated in the first iteration As
before, the spectral contribution of the glottal waveform 1s cancelled from the speech signal by nverse
filtering The vocal tract filter 1s re-estimated using 10th order Linear Prediction over the nverse filtered

speech The final glottal waveform estimate 1s obtained by mverse filtering the onginal speech with this
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vocal tract filter esumate In all cases, the LP analysis 1s carried out by the autocorrelaton method with
Hamming windowing of the data.

The method used 1n this invesugation 1s shightly altered from that proposed by Alku Firstly, for
the proposes of fitung the LF model the differentiated glottal flow 1s esumated, whereas Alku's method
esumates the glottal flow This was remedied by removing the integration steps for converting the
differenuated flow to the flow Secondly, Alku's method used asynchronous IAIF to determine the pitch
penod before applying pitch synchronous IAIF to estumate the glottal waveform In this mvestigation,
the pitch contour was provided to the IAIF algorithm manually In this way, the accuracy of the glottal
waveform estimates produced by IAIF can be directly compared with those produced by CPIF

6.2.3 Glottal Model Fitting

Developed by Fant, Liljencrants and Lin, the LF model represents the differentiated glottal flow
using a tune-domain waveform model A typical LF waveform 1s depicted Fig 65 The waveform
parameters of the model are - ¢, mstant of glottal opening, tp nstant of maxunum flow, ¢, wnstant of
glottal closure, f, effecuve return phase duration, ¢, end of the gloual cycle and E, rate of flow change
occurnng at glottal closure For convemence, ¢, 1s set equal to ¢, of the next glottal cycle This imphes
that the model lacks a closed phase In pracuse this 1s not a drawback since for small values of 7, the tail
of the exponential curve will fit closely to the zero line providing, for all intents and purposes, a closed
phase The fundamental penod 7, 1s therefore equal to £.-1,

The model consists of two parts The first part represents the glottal open phase by an
exponentially growing sinusoid

g(t)= E,e™ sinoyyt t,<t<t, ©1)

where wg 18 the pitch period 1n rad/s, E, 1s a scale factor and o controls the growth of the sinusoid

The second part of the model 1s an exponential segment represenung the residual flow after the

nstant of glottal closure This return phase 1s represented by

gl)= _._Ei.(e'E(f-f.) _ e—s(tc-r,})

Et, teStStc 6 2)

where € controls the slope of the return phase As shown 1n Fig 6 5, the parameter £ 1s the projection of
the gradient of g(¢) at the glottal closure instant onto the time axts For small 7,
e=1t, 63)
otherwise, € can be iteratively determined from
ety =1~ ettt ©64)
Finally, the entire waveform 1s generated according to the constraint that there 1s zero net gain of
flow duning a fundamTemal peniod
fe()=0
0 (65)
Using these relatons, the waveform parameters can be converted to the corresponding synthesis
parameters and the waveform constructed Another altermauve set of parameters, the analysis

parameters, 1s frequently used in the study of glottal waveform dynamics These are defined as
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where rg1s the gloual frequency, ry 1s the skewness factor, r; 1s the dynamic leakage and 0g 1 the open
quotient The analysis parameters are related to the spectrum of the LF waveform [Fant and Lin, 1988]
The glottal gain E, controls the overall level or intensity of the spectrum The dynamuc leakage r,
controls the roll-off of the glottal spectrum Due to the exponential waveshape of the return phase its
spectrum approxunaies that of a first order lowpass filter with a cut-off frequency of F; = 1/2r 1) =
Fy/2r rg) This means that the larger r,, the lower the cut-off frequency and the greater the high
frequency energy reduction Together the parameters re and rj determine the skewing of the glottal
waveform and so control the level of the lower harmonics and the depth of the zeros in the source
spectrum

A schematic diagram of the LF fitung procedure used in this invesugauon 1s shown in Fig 6 6
The LF model 1s fitted to a single fundamental penod of the estimated glottal waveform based on
mimmisauon of the mean square error between the two signals The fitung procedure ts carmied out in
three stages Firstly, the penod start and end points are 1dentfied Secondly, starung values for the LF
waveform parameters are found by using a polynomial approximation to the LF model Thurdly, the
mean square error between the estumated glottal waveform and the LF waveform 1s mimmised using a
mulu-dmensional optimisation routine apphed to the LF parameters

As for the mverse filtering algorithms, the fitung algonthm requires that reasonably accurate
GCI 1dentfication has been performed beforehand The parameter f,, marking the start of the cycle, 1s
set equal to the end of the previous period In the case of onsets, ¢, 1s taken as one pitch period before
the first closure The starung value for the glottal closure nstant f, 1s opumised by searching for the
mimmum of the estimated glottal waveform within +/-8 samples of the closure instant identufied
manually The amplitude of the minimum 1s taken as the starung value for the gain parameter £, The
parameter ¢, marking the end of the glottal cycle 1s found by fitung a second order polynomial between
the closure point £, and the halt pont, which 1s set one quarter of the way between the current closure
and the next The polynom:al smoothes out any noisy fluctuations 1n the estimated glottal waveform and
so allows accurate determination of the pomnt at which the glottal waveform has zero amplitude The
zero crossing of the polynomual 1s taken as the end of the glottal cycle £, The end point 1s lumted so that
1t 15 at least one sample after 7, and before the halt point

The staring values of the remaining parameters are determined by using a second order
polynomial approximaton to the LF model Unlike the LF model, a polynomial waveform can be fitted
10 a curve 1n the least square sense without iterauon Therefore, polynomaal fits to the estimated glottal
waveform are quickly computed and can be used to provide staring values for the LF waveform
parameters An example of such a fit 1s shown in Ftg 6 7 A second order polynomial 1s fitted to the
open phase, between the glottal opening nstant 1, and the glottal closure instant I, The zero crossing
point of this curve gives the imtial estimate tor the instant of maximum flow ' If the zero crossing does
not occur between (1,+1,)/2 and ¢, then 1t 15 arbitranly set t0 (¢;+/,)/2+2 In a similar manner, another
second order polynomal 1s fitted to the return phase, between the GCI 1, and the end of the cycle 1, The

gradient of the polynomal at the GCI 1s used to calculate the starung value for the parameter 1, The
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overall quality of the LF fit Examining the LF waveform, Fig 65, 1t can be seen that the waveform
changes very rapidly around ¢y, ¢, and 1, In contrast, the waveform is quite smooth in the region of ¢,
and t. Thus, the precise values of 7, and 1, are not only difficult to determine, but also make httle
difference to the LF waveshape As well as this, the ear 1s mainly sensiuve to the pitch, controlled by ¢,
and the spectral shape of the glottal waveform, controlled by ty and ¢; [Gobl and N1 Chasaide, 1992]
Hence, accurate determination of these parameters 1s necessary for high quality speech synthesis Exact

1denuification of the cycle start and end pounts, 7, and 7, 1s not as crucial for re-synthesis

6 3 PERFORMANCE STUDY

This secuion descnibes the experiments carried out to determune the performance of the glottal
waveform extraction aigonthms Four main investigations were undertaken Firstly, the effect of the LF
fit opumisation routine was assessed Secondly, the impact of the new muluple filier procedure on the
accuracy of CPIF was exanuned Thirdly, the CPIF, IAIF and LF fiting algonthms were invesugated by
analysing the results obtained for various types of voiced speech Fourthly, the robusmess of the mverse
filtenng and fitung algorithms was assessed by performing glottal waveform extraction on continuous
speech under notseless, noisy and reverberant condiuons

In order that the accuracy of the extracuion algonthms be quantfied, 1t was necessary that suitable
error measures be defined However, the true glottal flow 1s difficult to determuine dunng natural speech
Therefore, the accuracy of the extracted glottal waveform cannot be determined directly Assuming that
the LF model can represent all possible glottat waveform shapes, the accuracy of the verse filter can be
assessed by determining the neamess of the LF fit to the estmated glottal waveform The neamness of the
fit was quantified as the LF SNR This 1s defined as the SNR of the LF fit relauve to the estumated
glottal waveform averaged over all pitch penods of the signal

For speech coding apphcations, the accuracy of the glottal estinate 1s really not that important
What 1s important, 1s that speech re-synthesised from the extracted LF waveform 1s sumilar to the
ongmal input speech In order to investugate this, speech was re-synthesised from the extracted LF
waveforms and compared to the input signal

To ensure high quality synthess, the vocal tract filter and glottal gain were re-opumised for each
pitch period of the speech signal The nput and output signal were segmented using a Hamming
window applied from #,,-1 25 ms 10 1,+1 25 ms and an 8th order Linear Predicuon vocal tract filter was
determined by ARX esumation [Astrom and Eykhoff, 1971} between the excitation, the LF waveform,
and the desired output, the ongnal speech The glottal gain E, was re-opumised by mimmising the
difference 1n the energy between the re-synthesised signal and the onginal signal Using the new vocal
tract filter and glottal gain, the speech signal was re-synthesised and compared to the original Note that
the re-synthesis process 1s explained m greater detail in Chapter 7

The quality of the re-synthesised speech was quantfied as the re-synthesised SNR Thus 1s defined
as the SNR of the re-synthesis speech rejatve to the ongnal, averaged over all pitch penods of the
signal
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Three types of speech data were used 1n the experiments - noiseless, noisy and reverberant The
noiseless data consists of the sentence "We were away a year ago”, spoken by a male and female subject,
and recorded under noiseless anechoic condibons The noisy data was produced by adding various
intensiies of white noise to the noiseless recordings Similarly, the reverberant data was produced by
convolving the noiseless recordings with simulated room umpulse responses For more information on
the generation of this data, the reader 1s referred to Appendix C Of parucular relevance to the foliowing
discussion 1s the fact that the male speech has been informally assessed as being slightly breathy

The performance study 1s described 1n the next four sub-sections The first sub-section describes
the investigation of the LF fit optumsation procedure The second sub-section describes the expenments
undertaken to determine the mmpact of the multiple filter procedure The third sub-section assesses the
accuracy of the inverse filtering and LF fitung algorithms across various phonetic categories of male and
female speech Lastly, sub-section four investigates the performance of the algonthms in processing

continuous natural speech under noiseless, noisy and reverberant conditions

6.3 1 LF Optimisation

The effects of the LF optimisation procedure were invesugated by performing LF fitung with and
without optimisatton The speech matenal consisted of the noiseless male and female recordings Both
CPIF and IAIF were used to perform the inverse filtering operation

Table 6 1 shows the improvements m the LF SNR obtained by using optimisation Optumisation
produces an average unprovement of 3 79 dB wn the LF SNR This, 1in tum, causes a 1 dB average
mprovement 1n the re-synthesis of the male speech and an average unprovement of 3 dB for the female
speech These improvements n accuracy are significant However, the results also indicate that the
polynomial LF approximation 1s reasonably accurate and could be used in applhications where the

computational burden precludes optimisation

SUBJECT CPIF IAIF

LF Male 278 332

LF Female 493 411
Re-synthesised Male 099 104
Re-synthesised Female 340 2 68

Table 6 1 Improvement in LF and re-synthesised SNR due to LF fuir optimusation,

notseless recordings

The robustness of the fit opttmisaton procedure was tested by performing LF extraction, with and
without optimisauion, on speech corrupted by the addition of noise and reverberation Figs 6 8 and 6 9
show the improvement in LF and re-synthesised SNR due to fit optimusation when processing noisy and
reverberant speech

Clearly the improvement in SNR due to optimasation becomes less with increasing distortion tn
the speech signal Increased distortion 1n the speech signal leads to reduced smoothness in the glottal
waveform estmates This complicates the error function of the LF fit with respect to the glottal

parameters As a result, under conditions of increased distortion, the optimisation routine finds the
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global minimum of the error function less frequently. This has the effect of reducing the improvements
in SNR brought about by the use of fit optimisation.

For the female subject, the results show a greater improvement due to optimisation than for the
male. This may be explained by the breathiness of the male voice. The breathy noise means that the
male glottal waveform estimates lack smoothness, resulting in the optimisation procedure settling for
local, rather than global, minima of the error function.

As might be expected, the LF SNR shows a greater improvement due to optimisation, than the re-
synthesised SNR. The LP coefficients determined by ARX estimation provide some compensation for
inaccuracies in the extracted glottal waveform. Thus, an improvement in the LF fit has less effect on the
quality of the re-synthesised speech. Nevertheless, the improvement in the re-synthesised speech is
significant and supports the contention that improved LF fitting to the inverse filtered speech is
equivalent to more accurate fitting of the LF model to the true glottal excitation.

Overall, the improvement in accuracy due to optimisation is significant and supports the use of
optimisation when the computational requirement is not prohibitive. Additionally, the results suggest
that the polynomial LF approximation is reasonably accurate and could be used independently of
optimisation in some glottal extraction applications.

6.3.2 Multiple Closed Phase Filter Estimates

To investigate the effect of the new multiple filter procedure, the LF SNR and re-synthesised SNR
were determined for glottal waveforms extracted by CPIF using only the current filter estimate and using
the multiple filter procedure.

The improvements in SNR obtained due to the use of multiple filter procedure are presented in
Table 6.2. In the case of the male speech, the new procedure leads to an improvement of approximately
1dB in both the LF and re-synthesised SNRs. Little improvement is seen in either SNR for the female
subject This difference is probably due to the breathiness of the male voice. The presence of this noise
makes each closed phase filter estimate less reliable. Thus the robustness provided by using multiple
filters gives an improvement in SNR for the male subject even under noiseless conditions. In contrast
the extra robustness is not needed for processing the modal female voice.

Table 6.3 shows the percentage of times that each of the inverse filters was chosen by the
automatic procedure. As might be expected, the current estimate is chosen most often, followed by the
previous, the second previous and the average filter. Comparing the male and female results shows that
the current estimate is chosen more often in the case of the female speech. This fact concurs with the
small change in SNR due to the use of multiple filters experienced for the female subject

SUBJECT CPIF

LF Male 10

LF Female 0.39
Re-synthesised Male 10
Re-svnthesised Female -0.03

Table 62. Improvement in LF and resynthesised S\R due to the nultiple closed phase
filterprocedure, noiseless recordings.
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I\/Iale3 g%bject Female subject

urrent estimate . 35.0
rgwous estimate 30.9 28.4
Second previous estimate 248 24,6
Verage 107 120

Table 6.3. Frequency offilter selection during the nultiple closed phase filterprocedure,
roiseless recordings.

The robustness of the multiple filter procedure was tested by performing LF extraction on speech
corrupted by the addition of noise and reverberation. Figs. 6.10 and 6.12 show the improvement in the
LF and re-synthesised SNR due to use of the multiple filter procedure for noisy and reverberant speech,
respectively. Figs. 6.11 and 6.13 show the percentage of times each filter was chosen by the multiple
filter procedure when processing the noisy and reverberant speech, respectively.

In almost all cases, the SNR improvement increases with increasing distortion. As the amount to
distortion increases, the inverse filter estimated over the current closed phase becomes less reliable.
Thus, it becomes more likely that one of the previous filters, or the average filter, is more accurate than
the current estimate. This fact is corroborated by three of the graphs showing the percentage times each
filter is chosen. At low distortion levels, the current filter estimate is chosen most often by the automatic
procedure and the averaged filter estimate is chosen least often. In contrast, at the highest distortion
levels studied, the average filter estimate is chosen most frequently and the current estimate second.

Again, the SNR improvement is greater for the male speech than for the female speech. As
before, this is probably linked to the intrinsic distortion associated with breathiness of the male voice.

Overall, the multiple filter procedure provides a useful improvement to the accuracy of the CPIF
algorithm. The procedure is particularly effective in making the closed phase method more robust to
distortions in the speech signal. The procedure carries little computational overhead and is
recommended for use in all CPIF applications.

@ &)

Fig. 6.10. Improvement inSNR due onultaplefilterprocedure, moisy speech: @) LF
SNR; () regynthesisad SNR - x -male subject; o -female abject.
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6.3 3 Phonetic Categories

The performance of the mverse filtenng and LF fitung algonthms was tested by processing
segments of speech recorded under noiseless conditons

Figs 6 14 (a) and (b) show the male vowel [3], obtained from the end of "ago”, inverse filtered
using the CPIF and IAIF algonthms, respecuvely The glottal waveform estmates provided by the
mverse filtering algonthms are very sumilar Both are reasonable, with the TAIF algorithm providing the
best formant cancellation and a shightly smoother wavefornn esumate The LF fitung procedure performs
well n both cases, accurately capturing the dynamics of the esumated glottal waveforms

The results obtained when processing the male vowel [1] are shown in Fig 615 Agamn, both
mverse filtenng algonthms provide good glottal waveform estunates The CPIF estumate 18 noisier than
that produced by IAIF However, the IAIF esumate shows incomplete formant tdentification at the start
of the open phase As before, the LF model gives a close fit to the esumated glottal waveforms

The results of inverse filtering of the same vowel [1] phonated by a female subject, are presented
in Fig 616 In this case, poor results would be expected from the CPIF algorithm due to the short
duration of the closed phase However, CPIF and IAIF perform equally well Again, [AIF provides a
slightly smoother waveform estumate, particularly at the start of the closed phase Regardless of ths, the
fitted LF waveforms are very sumilar

The results obtained from the female vowel [®] are shown 1n Fig 6 17 In this test, the results
obtained by CPIF and [AIF are extremely sumilar The only difference 1s duning the open phase, when
the CPIF estumate 1s almost flat and the IAIF estumate contains some residual formant nipple The fitted
LF waveforms match almost exactly

Inverse filtering of the vowel [u] 1s difficult due to 1ts low first formant Fig 4 18 shows CPIF and
1AIF applied to [u] as phonated by a male subject. The difficulties of the nverse filtering operaton can
be clearly seen 1n the poor glottal waveform estumates In both cases, a large dip occurs n the middle of
the open phase This leads to poor LF model fitung n the fourth cycle of the IAIF glottal waveform
esumate Overall, the CPIF algorithm performs shightly better than [AIF The IAIF algorithm separates
the source and vocal tract effects 1n the spectral domain In the case of a vowel with a low first formant,
discnnmiation of the FO and F1 peaks 1s difficult and this approach results in incomplete Ft cancellation
and poor glottal esumation

Voiced fricatives present further problems for mverse filtering algorithms Accurate formant
estumation 1s difficult to achieve due to excitanon noise occurring during the glottal cycle Fig 619
shows the resuits obtained by applying the nverse filtenng algonthms to the male voiced fricauve [v]
The waveform esumales produced by the two algonthms are surprisingly similar Excitation noise
duning the closed phase was expected to cause tnaccurate formant 1denufication 1n the case of the CPIF
algonthm It may be that the closed phase 1n this segment is long enough to allow the noisy effects to be
averaged out. Higher pitched voriced fricatives might cause greater problems The fitted waveforms
illustrate an important property of the LF model, that 18, the ability to represent sinusoidal waveforms as
well as those with sharp discontinuities at the closure nstant

Voiced plosives are another category of sound for which nverse filtering 1s difficult Voiced

plosives are produced by rapid removal of an airflow obstruction within the vocal tract At the start of a

96



0 S 10 15 20 25 30
Time (ms)

(a)

0 5 10 15 20 25 30
Time (ms}

(b)
Fig 6 14 Glontal extraction applied to male [3] (a) CPIF, (b) IAIF top - speech nuddle

- estimated glottal waveform, bottom - fitted LF waveform.
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Fig 6 15 Glonal extracton applied to male [1] (a) CPIF, (b) IAIF 1op - speech, middle

- estmated glontal waveform bortom - fitted LF waveform.
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Fig 6 16 Glottal extraction applied to female [1] (a) CPIF, (b) IAIF top - speech,

muddle - estimated glottal waveform bottom - fitted LF waveform.
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Fig 6 17 Glortal extraction applied to female [®] (a) CPIF, (b) IAIF top - speech,

middle - estmated glottal waveform, bottom - fitted LF waveform.

100



o} 5 10 15 20 25 30
Time (ms)

(a)

0 5 10 15 20 25 30
Time {ms)

(b)
Fig 6 18 Glottal extraction applied to male {u] (a) CPIF, (b) IAIF 1top - speech, middle

- estimated glottal waveform, bottom - fitted LF waveform.
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Fig 6 20 Gloual extraction apphed to male [b] (a)} CPIF, (b) [AIF top - speech muddle

- estmated glottal waveform, bottom - fitted LF waveform.
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Fig 6 21 Glotial extraction apphed to male [m] (a) CPIF, (b) IAIF top - speech,

muddle - estmated glottal waveform bottom - fitted LF waveform.
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plosive, the excitation is sudden and so may not be well represented by the LF model. Fig. 6.20 shows
the inverse filtering algorithms applied to the voiced plosive [b]. It is difficult to determine which
algorithm performs best - both perform poorly at the start of the phoneme. Examining the first two
glottal pulses, it can be seen that the LF model is inappropriate for representing the first excitation pulse
at the start of the phoneme.

Inverse filtering of nasals is often inaccurate due to the presence of zeros in the vocal tract
transfer function. This is illustrated in Fig. 6.21 which shows the results of applying the algorithms to a
male [m]. CPIF fails completely - the inverse filtered waveform is little different to the original speech.
The LF waveform is, effectively, just fitted to the original speech signal. 1AIF does better - a reasonable
glottal waveform is extracted and LF fitting is performed correctly. Interestingly, the LF waveform
generated from the IAIF glottal estimate and from the CPIF estimate are very similar, even though CPIF
fails. Presumably this is coincidental. However, it should be noted that the speech signal often preserves
some of the details of the glottal excitation.

In general, CPIF and IAIF, coupled with LF modelling, provide accurate glottal waveform
extraction for male and female vowels. With the exception of vowels with a low first formant, 1AIF
outperforms CPIF, providing better formant cancellation and more reasonable glottal waveform
estimates. In the case of voiced fricatives and plosives, the inverse filtering algorithms perform
reasonably well. However, in these cases, the LF model is incapable of fully representing the dynamics
of the excitation. For nasal sounds, CPIF fails completely while IAIF produces useful results.

6.3.4 Continuous Speech

The performance of the inverse filtering and LF fitting algorithms was further investigated by
applying them to a sentence of all-voiced speech recorded by a male and a female subject The speech
was recorded under noiseless conditions and was subsequently corrupted by the addition of white noise
and reverberation.

Fig. 6.22 (a) and (b) show the LF parameter tracks estimated for the noiseless male recording by
CPIF and IAIF, respectively. The parameter tracks produced by the two algorithms are generally very
similar. However, those produced by IAIF are much smoother than those generated by CPIF. During
steady voicing regions, the parameters estimated by CPIF change rapidly on a period-by-period basis,
whereas those estimated by IAIF are nearly constant. Notably, at transients such as onsets and offsets,
the parameters estimated by IAIF change as rapidly as those produced by CPIF. This suggests that IAIF
is capable of identifying rapid changes in the glottal waveform but produces more consistent results
when the rate of change is low.

The LF parameter tracks estimated for the female speech are shown in Fig. 6.23. Again, the
general shape of the tracks are similar. In this case, the variation of the parameters estimated by IAIF is
little different from that of those estimated by CPIF.

Figs. 6.24 and 6.25 show the distribution of the LF parameters extracted for the male and female
subjects by CPIF and IAIF, respectively. Table 6.4 gives the mean and standard deviation of the LF
analysis parameters. Clearly, the distributions produced by CPIF and IAIF are very similar. This
indicates that neither algorithm has a bias for producing waveforms of a particular shape. Notably, for
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the male subject, CPIF produces a greater standard deviauon for three out of the four parameters In

contrast, for the female subject, JAIF produces greater standard deviation for all the parameters

CPIF IAIF
rg rk ra oq rg rk ra oq
Male subject 81 4 29 89 80 47 27 92
86 105 31 55 74 82 34 51
Female subject 78 30 80 84 78 31 80 85
92 12 1 58 56 110 122 69 69

Table 6 4 LF waveform parameters (%) automatically estimated from noiseless

recordings wuithin each row, top line - mean, bottom hine - standard deviation

The values calculated for the LF and re-synthesised SNR are shown 1n Table 6 5 Examining the
results, 1t can be seen that CPIF performs better than IAIF for the female subject. However, IAIF
outperforms CPIF for the male subject. It was onginally thought that CPIF would perform better for the
male subject than for the female subject. Since male speech 1s of lower pitch than female, the closed
phase tends to be longer and so 1t was thought that the closed phase filter esumates would be more
accurate for the male subject. It 1s postulated that the breathmess n the male voice leads to poor vocal
tract filter 1denuficauon during the closed phase and to inaccurate mverse filtering Notably, IAIF seems
to be robust to the breathmess of the male voice Apparently, the longer analysis window serves to
average out the effects of the noise In addition, the high fundamental frequency 1n the case of the female

recording may prevent accurate discnminauon of the first formant in the case of IAIF

SUBJECT CPIF IAIF

LF Male 6 84 857

LF Female 8 51 809
Re-synthesised Male 676 7 56
Re-synthesised Female 871 847

Table 6 5 LF and re-synthesised SNR, noseless recordings

The performance of the algorithms was tested on speech degraded by noise White noise was
added to the noiseless recordings to produce speech data with signal to noise ratios (SNR) of 35, 30, 25,
20, and 15 dB

Fig 6 26 (a) shows the vartauon of LF SNR with the nominal SNR of the input speech For both
the male and female speech, IAIF outperforms CPIF at all nose levels Again, the CPIF shows poor
performance 1n processing the male speech compared to the female speech The re-synthesised SNR 1s
shown 1 Fig 626 (b) In the case of the male speech, IAIF outperforms CPIF by a constant 1 dB In
contrast, for the female speech IAIF only gamns a 0 5 dB advantage at the highest input noise level
tested

Comparing the SNR results for the LF fit and the re-synthesised speech 1t can be seen that the
accuracy of the LF fit 1s governed by the choice of inverse filtering aigorithm In contrast, the quality of
the re-synthesised speech 1s governed by the speech matenal This can be explamned by considering the

nature of the various algorithms Since the IAIF algorithm estimates the vocal tract filter over the enure
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pitch period, it is less susceptible to nowse than CPIF Therefore, under condiuons of noise, 1t
outperforms CPIF 1n terms of the accuracy of the extracted waveform In contrast, for the quality of the
re-synthesised speech, the breathiness of the male speech becomes the limiting factor The breathiness
cannot be reproduced by the LF model Hence, the quality of the re-synthesised female speech exceeds
that of the re-synthesised male speech at all noise levels Nevertheless, for the male and female subject
mdividually, the greater accuracy of the LF waveform extracted by the IAIF algorithm leads to a higher
SNR for the speech re-synthesised from the IAIF glottal excitation estunates

Reverberation was added to the noiseless recordings to produce speech data corresponding to
recordings made 1n a normal room at source-receiver distances of 10, 20, 30, 40 and 50 cm The glottal
extraction algonthms were then applied as before

The LF SNR was calculated and 1s plotted in Fig 6 27 (a) As under conditions of white noise,
IAIF outperforms CPIF, in this case by a marg:n of approximately 1 dB at 50 cm As before, the longer
analysts window of IAIF makes i1t more robust to distoruon Both algonthms show a graceful
degradation 1n performance with tncreasing source-recetver distance, around 1 dB per 10 cm This 1s
encouraging for the application of these techmiques to speech coding, where drastic errors 1n speech
reproductuon must be avoirded

As before, speech was re-synthesised from the LF data Fig 627 (b) shows how the re-
synthesised SNR varies with respect to the simulated source-receiver distance In the main, the re-
synthesised SNR follows the trend determined by the quality of the LF fit IAIF performs slightly better
than CPIF and the degradation with source-recetver distance 1s gradual

Overall, the experiments indicate that, under noisy and reverberant condittons, IAIF performs
more accurate LF extracuon than CPIF This leads 1o higher quality re-synthesises of the speech
matenal from the glottal waveform extracted by IAIF Both algonthms show increasing errors 1n glottal

extraction with increasing distortion Fortunately, in both cases, the performance degradation 1s gradual

6.4 DISCUSSION

In this section the LF data obtamed in these experuments 1s compared with that obtained 1n
previous studies by other authors A number of earlier investigauons extracted the LF parameters from
voiced speech using manual mverse filtering and waveform fitung Companison of the results heremn
with those obtained manually allows the accuracy of the automatic algonthms to be established
Furthermore, the automatic inverse filtenng and fitung procedures facilitate the processing of much
larger amounts of speech matenal than 1s possible manually Thus the LF data extracted in these
experunents constitutes a substantial database for invesugating the nature of the glottal excitation

Encouragingly, the LF parameter tracks extracted by the automatic algonthms tn this study show
similar trends to those :dentufied manually 1n an invesugauon by Gobl [Gobl, 1988] In his paper, Gobt
reports the results of manual inverse filtering and LF fiting experiments performed on 12 seconds of
conunuous Swedish speech recorded by three male subjects Gobl notes that when voicing 1s terminated,
for example by a pause, the value of E, decreases and the values of r,; and 7y increase Furthermore,

Gobl states that maximum values of r,; are normaily found at the termination of the sentence These
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effects can be clearly seen in Figs 622 and 623 Gobl also records higher than normal values for r; and
ri at voice onsets These features are again prominent in the results recorded by the automauc
algonthms In additon, Gobl finds evidence for glottal waveforn vanatuon due to the stress and
phonetic content of the utterance This conclusion s supported by the parameter tracks presented above
The LF parameter distnbutions for the male recording fall within the range recorded by Gobl in
the same study However, the mean values deviate from those presented by Gobl In another study, Gobl
mnvesugated the relatnonship between giottal waveform shape and voice quality [Gobl, 1989] In this
work, he recorded a Brniush male phonetician reproducing the phrase "Say babber agamn” using four
different voice types - modal, breathy, whispery and creaky Manual mverse filtering and LF model
fitung was performed on the vowel [®] extracted from the nonsense word babber The means and
standard deviations of the extracted LF parameters are reproduced in Table 6 6 The mean parameters
obtained 1n this study for the male subject, Table 6 4, correlate most strongly with those of the breathy
voice type This finding confirms the earlier subjecuve supposition that the male speech is of breathy
type and supports the accuracy of the automatic mnverse fiitenng and LF fitung algonthms In all
likelihood, the differences between the mean breathy parameter values and those measured here for the

male subject occur due to the differing phonetic content of the data sets

re rk ra oq

Modal voice 117 34 1 55
74 10 0 22

Breathy voice 88 41 25 81
24 19 06 12

Whispery voice 94 32 7 70
38 29 12 38

Creaky voice 113 20 08 53
110 24 05 41

Table 6 6 LF waveform parameters (%) manually estimated from the male vowel [@] -
mean and standard deviation [after Gobl, 1989]

In a cross-language study, Gobi and Nf Chasaide extracted LF parameters from female speech by
manual nverse filtening [Gobl and N1 Chasaide, 1988] In the text of the document, they state that the
female voice displays a r; 2-4 umes hgher than the maie Also they found that rg values should be 10-
20 % lower than the male and r; values tend to be either the same or shghtly higher These correction
factors make the parameter values recorded for the female subjects in this investigauon Table 6 4
compatble with Gobl's results for the modal male voice, Table 6 6 In another study Karlsson [Karlsson,
1988] manually extracted the LF parameters for two vowels phonated by seven female subjects The
mean results are shown 1n Table 6 7 The values of the r, and r; parameters are very close to those
reported for the female subjects 1n this study However, the re value 1s sigmficantly greater than, and the
0 value 15 much less than, those reported here This seems to be due to a difference 1n the LF fitting
procedure Karlsson's model allows the nstants £, and ¢, to be placed at different umes, creating a
period of zero flow between glottal cycles As stated earher 1n this investigation the instant f. from the

previous period 1s set equal to the instant ¢, from the current period This leads to lower values for p

and ¢, mn Karlssons study This, in turn, increases the value of re and decreases the value of o, n
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Karlsson's study, relattve 1o those in this investigation Allowing for this discrepancy, Karlsson's data

seems to confirm the modal nature of the female speech

rg rk ra 2q
Female subjects 103 30 99 64

Table 6 7 Mean LF waveform parameters (%) manually estimated from two vowels

recorded by seven female subjects [after Karlsson, 1988]

Table 6 8 shows the correlation coefficients calculated between the vartous glottal parameters
over the noiseless recordings, both male and female These relatonships are of interest, not only for
provading an understanding of the underlying dynamics of the voice source, but also for the purposes of
vector quantisation of the glottal parameters

Surpnisingly, the fundamental frequency F, displays a negative correlation with the glottal gain
E, The negauve correlauon observed may be due to the small size of the test data The female speech 1s
more highly pitched and softer than the male Thus, there 1s some correlation between the presence of a
high fundamental frequency and low glottal amplitude, cf Fig 6 24 (a) In general, 1t 1s expected that, at
normal voicing levels, the pitch and amphtude are controlled by the speakers so as to provide semantic
information to the histener and are therefore determined independently of each other, based on the
Iinguistic content of the utterance

In an investigation using CPIF and an adaptive non-linear least-squares LF fitung algorithm,
Strik and Boves [Strik and Boves, 1992] measured the correlations between a number of LF parameters
in continuous spontaneous male speech They found the following correlations with pitch period 7, g
004, r 022, and r; 0 18 The correlauon between T, and rg s close to that determined by CPIF 1n this
invesugation As well as this, the correlation coefficient for T, and r; approximates that found 1 this
study However, the correlaton between T, and r,; determined by Stik and Boves 1s opposite to that
found herein This difference could be due to the diffening phonetic content of the data.

The uming parameters r,, ry, and r, all show negauve correlations with the glottal gain £, This
can be explamed by considering the physiological process of glottal fold vibration Increased glottal gain
corresponds to more rapid glottal closure To achieve this, the folds must move together more quickly
Thas leads to greater skewing and reduced re and r; Addiuonally, faster closure leads to firmer sealing
of the vocal folds and reduced leakage, corresponding to a shorter return tume and decreased r,
Previously, these effects have been noted by Gobl, N1 Chasaide and Pierrehumbert [Gobl, 1988, Gobl
and N1 Chasaide, 1988, Pierrehumbert, 1989] Linked to this 1s the strong covanation between g and
ry, both of which control glottal skewing Stmularly, there 1s a reasonably strong correlation between re
and r, In general, greater skewing 1s associated with faster closure and less dynamic leakage

The strong negauve correlation between the fundamental frequency F,, and the open quotient Oq
has been previously identified mn semi-antomatic experiments by Lobo and Amnsworth [Lobe and
Amsworth, 1988] The open quotient 0gq also shows a strong negative correlanon with the glottal
frequency re and the return time r; Assuming relauvely constant skew, a longer opening phase (e an

increased lp) leads to a longer overall open phase and so to an increased ¢, Hence, 0q 18 mversely
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related to rg In the case of breathy speech, the glotus barely closes As a result the return tume ¢,
extends until the opening instant of the next penod ¢,, therefore 0q+ra=1 This effect also occurs, to
lesser extent, 1n modal speech Thus, an overall negative correlation exists between the open quotient og

and the dynamic leakage r,, and between the open quouent 0q and the fundamental frequency F,

Fo Ee reg rk ra

Ee -021 - - - -
-023

rg 004 033 - - -
0 08 -027

rk -028 017 073 - -
-025 -007 0 68

ra 043 042 035 -0 02 -
051 -034 052 005

oq -035 028 -048 024 -056
-040 030 -0 62 015 -0 67

Table 6 8 Correlanon coefficients calculated berween LF parameters top line - CPIF,
bottom hine - IAIF

6 S CONCLUSION

This chapter mvestigates the performance of two algonthms for glottal waveform extraction -
Closed Phase Inverse Filtering and Iteraive Adaptive Inverse Filtering The glottal waveform estunates
provided by the two mverse filtering algonthms were parametenised using the LF model via a ume-
domain least squared error fitung procedure

'(I'wo error measures were proposed for determining the accuracy of the extracted glottal
waveform The LF SNR was defined as the mean of the SNR calculated between the fitted LF waveform
and the esumated glottal waveform, averaged over each pitch period of the signal Similarly, the re-
synthesised SNR was defined as the mean of the SNR calculated between the speech signal re-
synthesised from the LF waveform and the ongmnal speech, averaged over each pitch penod In ail
expenments, a strong correlauon was found between both of these measures

The LF fitung techmque proceeded by matching a polynomial LF approximation to the glottal
esumate Based on this imtial fit, a multi-dmmensional optimisation routine was employed to find the
parameters which mimmised the mean squared error between the LF waveformn and the glottal estumate
The effects of opumusing the LF fit were invesugated by determining the LF and re-synthesised SNRs
for the glottal waveform extracted with and without opumisatuon In all cases, opumisation gave an
mprovement in SNR However, the fit provided by the polynomial LF approxiumauon also gave good
results Thus, optimisation 1s useful but the parameters obtained from the polynomuial fit are appropriate
for use when the optimisation routine 1s too computationally complex to be employed

A new muluple filter procedure was proposed to improve the robusiness of CPIF The scheme
mvolved using filters estunated over the current, previous and second previous closed phases and an

average of the three The inverse of each filter was apphed to the current pitch pertod and a polynomal
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was fitted to the estumated glottal waveforms The filter giving the least squared error between the
polynomial and the esumated glottal signal was chosen as best for that pertod In expeniments, CPIF was
performed on natural speech with and without the multple filter procedure The results showed that the
muluple filter procedure improved the LF SNR and re-synthesised SNR Furthermore, the improvement
due to the procedure increased with mcreasing distortion n the speech signal The increasing impact of
the multuple filter procedure was emphasised by results showing that the number of umes the average
filter 1s chosen increases dramatcally with increasing distortion

The performance of the CPIF and IAIF algonthms was compared 1n tests on vanous categories of
speech sounds for both male and female subjects The findings indicated that, for most voiced sounds,
both CPIF and IAIF provide adequate glottal waveform extractton However, apart from dunng vowels
with a low first formant, IAIF performs slhightly better than CPIF, providing more effecuve formant
cancellauon and smoother glottal waveform estumates The zeros introduced 1nto the transfer functuon of
the vocal apparatus due to nasalisation cause CPIF to fail In contrast, IAIF provides useful results
Duning vorced fricatives and plosives, although the mverse filtenng algonthms seem to perform
satisfactonly, the LF model lacks the flexibility to accurately represent the excitatton signal

In tests on the performance of the mverse filtering algonthms applied to noisy and reverberant
speech, IAIF produced the best results tn terms of the LF and re-synthesised SNRs This s probably due
10 1ts longer analysis window The greater window length reduces the effect of distortions by averaging
them out over a greater number of samples For both algorithms, the degradation mn performance with
increasing distortion 1s gradual and graceful, a necessary criterion for applications 1n speech coding

The stausucs of, and relatonships between, the LF parameters extracted 1n this study show close
similarity with those determined in manual imvesugations by other authors This finding further supports
the accuracy of the automatic algorithms In addition, the results herein provide a useful database for
study of the glottal excitation

The nvestigation described 1n this chapter proposes a new LF fitting procedure, provides a more
robust method of CPIF, quanufies the effect of LF opumisation and establishes IAIF as supenor to CPIF
1n terms of formant cancellation and robustness to distortion These findings provide a basis for future
studies of the glottal excitation during voiced speech Furthermore, the reliability of the inverse filtering
methods 1s such that they may be considered for mncorporation m a speech coding scheme This

possibility 1s examined 1n the next chapter
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CHAPTER7

GLOTTAL EXCITED SPEECH CODING

7 1 INTRODUCTION

This chapter descnbes experiments carred out to determune the transmission rate and speech
quality achievabie by a Glottal Excited Linear Predicuon (GELP) coding system for voiced speech

GELP systems synthesise sf)eech by applying a parametensed glottal waveform to a Linear
Predicuon vocal tract filter This approach bas the potential to produce higher quality speech at a lower
bit rate than conventional systems for two reasons Firstly, the parameters which descnibe the glottal
excitaton are slower ume-varying than those of conventional LP restdual models [Cheng and
O'Shaughnessy, 1993] Thus, GELP systems should be capable of transmitting the voiced excitation
more efficiently Secondly, the speech producuon model incorporated in GELP more closely
approxmmates the human speech production mechamism [Pinto et al, 1989, Childers and Wu, 1990]
Therefore, higher quality speech 1s likely to be provided by GELP

Unfortunately, there remain two obstacles to the widespread use of glottal based speech coding
Firstly, glottal esumation by mverse filtenng 1s sensittve to phase distornon 1n the speech stgnal
(Holmes, 1975, Markel and Gray, 1976) Secondly, the fitung of glottal waveform models to the
estimated glottal excitauon can be computationally expensive [Fant et al, 1985] The investigation
described heremn attempts to establish an upper bound on the performance achievable using inverse
filtenng based GELP systems Consequently, throughout this work the recording channel 1s assumed to
be phase linear and the normally severe run-tume constraints imposed on coding systems are relaxed

The GELP system proposed 1n this chapter estmates the glottal excitauon duning voiced speech
by mverse filtering Two mnverse filtening techniques are studied - Closed Phase (CPIF) and Iteratuve
Adapuve Inverse Filtering (IAIF) The estimated glottal excitation 1s parametenised by fitng the LF
model 1n the time-domain The LP filter coefficients are then determined by ARX esttmation The pitch,
LF and filter parameters are quantised and transmitted to the decoder The GELP receiver re-synthesises
the speech signal by re-generatng the LF excitation and applying it to the LP filter The coding system
18 designed to operate at a low bit rate 2 4 - 4 8 kb/s, and to incur medium delay, approxunately 0 1 s
overall

The development of the quantisation scheme for the GELP coder s described tn detail The filter
parameters are quanused as Line Spectral Pairs, while the pitch quantisation scheme 1s based on that of
US Federal Standard 1016 CELP The LF parameters are quantised differentially Based on LF
distnbutions obtained from processing natural speech, opttmum non-linear quantisers are generated by
mimmisation of the distortion rate In order to determine the best bit allocauon for the LF parameters,
the specch quality and bt rate provided by a number of configurauons were tested using a knockout
procedure The coded speech quality was assessed by an objective quality measure, the Bark Spectral
Distorion (BSD) [Wang et al, 1992] The BSD measure 1s based on the perceptual properues of the
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human auditory system and has shown good correlaon with subjective quality measures, such as the
Mean Opinion Score

The performance of the finalised GELP coding system was assessed in comparative tests with the
standard speech coders - LPC-10, CELP and GSM All the systems were applied o the same test data
and the output speech quality was assessed by the BSD measure Additionally, the robustess of the
systems was determined by processmng noisy and reverberant speech matenal

The chapter 1s divided 1nto five sections Section two describes the coding and BSD systems used
n this mvestigation Section three descnibes the development of the GELP quanusation scheme Section
four details the expermments camed out to determune the performance and robustness of the coders

Lastly, section five concludes the chapter

7.2 DESCRIPTION OF THE CODING SYSTEMS

This section describes the systems used i the investgation The operauon of the GELP coder 1s
explamned, together with that of the three conventional systems - LPC-10, CELP and GSM Also, the
method used for computation of the BSD speech quality measure 1s described

The section 1s splht mto five sub-secuons, each covermmg one of the algonthms under
consideratton - GELP, LPC-10, CELP, GSM and BSD

7.2.1 GELP System

A schematic diagram of the GELP encoding system 1s shown inFig 71 The system consists of a
number of sub-processes First of all, the speech signal 1s segmented nto 240 sample (30 ms) frames to
allow block processing Automauc GCI idenuficauon 1s performed by Pre-emphasised Maximum
Likelthood Epoch Detection (PMLED), see Chapter 5 This sub-process determines the pitch of the
signal and passes a vector of Glottal Closure Instants to the mverse filtering algonthm From the
incoming speech signal the mverse filtening algorithm produces an estumate of the glottal excitauon
Herem two algonthms are tested for this purpose, these being CPIF and IAIF, see Sections 62 1 and
62 2 respecuvely The LF model 1s fitted to each penod of the esumated glottal waveform by
mimmisauon of a mean square error cnitenion, see Section 6 23 The opumised LF parameters are
passed to the quanuser and the re-generated LF waveform s used to calculate the LP coefficients for the
frame The LF and speech signal vectors from the current frame are pre-emphasised, Hamming
windowed and apphed to an ARX procedure [Astrom and Eykhoff, 1971] This sub-process returns the
all-pole coefficients which, when applied to the re-generated LF excitauon provide the least squared
error between the re-synthesised speech and the ongmal The pre-windowing helps to ensure the
stability of the esumated filter and mummises disconunuities between frames For stability, any poles
outside the unit circle are reflected back inside After ARX estmauon the glottal gan E, of the LF
excitation 1s optimised so as to match the energy of the re-synthesised and onginal speech This s done
for two reasons Firstly, the gain of the inverse filter may be different to that of the ARX estmated filter
Secondly, the human ear 1s very sensitive to the energy contour of the speech signal Thus, the coder

must ensure that the energy of the re-synthesised signal closely matches that of the onginal recording
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Fig 71 Schemanc diagram of the GELP coding system.

The gain 1s optumised via a Simplex search of the gamn quantisation levels, starting at the value closest o
that onginally determmed dunng LF fitung To avoid discontinuities, the energy of the two signals is
calculated from the start of the current period until half way through the next period

At the GELP recerver, the bit stream from the transmitter 1s decoded and the pitch penod, LF
parameters and LP coefficients determmed The LF excitation 1s re-generated, based on the pitch and LF
parameters, and 1s passed to the LP filter for re-synthesises of the speech signal

In this study only the coding of voiced speech 1s considered The strategy employed for unvorced
speech 1s similar to that of LPC-10 and consists of a simple binary voicing decision at the encoder and a
white noise excitation 1n the decoder A]th(;ugh the approach 1s sensitive to voicmg decisions errors, 1t

does provide for low rate transmission

7 22 LPC-10 System

The basic LPC vocoding strategy has been used tn many speech coding appiications The
vocoding system used in this tnvestigauon ts based on the US Federal Standard 1015 LPC-10e
[Tremain, 1982, Campbell and Tremain, 1986], developed by the U S Department of Defence in the
70s The system operates at a total transmisston rate of 2 4 kb/s and achieves a Mean Opinion Score of
approxumately 2 5 [Jayant, 1990] The system used 1n this study 1s a UI:IIX C umplementation which was
released 1nto the public domain by the U § National Secunty Agency

Fig 72 shows a block dsagram of the LPC-10 system Speech s partitioned into 180 sample
(225 ms) frames A voicing decision 1s made using the Average Magnuude Difference Function
(AMDF) [Ross et al, 1974}, zero crossing rate, energy measures, LP reflection coefficients and

predicton gains In the case of an unvoiced decision, speech 1s re-synthesised using a white noise
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system [after Tremain, 1982]

excitatton to a 4th order all-pole filter In the case of a voiced decision, a train of bandpass filtered
umpulses at the pitch penod, determined by the AMDF, 1s used to excite a 10th order all-pole filter The
coefficients of the LP filter are obtained by covanance analysis over the pre-emphasised speech signal
The voicing decision, pitch and LP coefficients are quantised and transmitted to the receiver
Additionally, the energy of the frame 1s forwarded to the decoder

The decoder proceeds, depending on the voicing indicator, either by generating a white noise
excitation or by generating an impulse train at the pitch period The appropriate signal 1s passed through
the synthesis filter determined by the received LP coefficients, de-emphasised and scaled to match the
energy of the onginal speech signal

The quality of the speech produced by LPC-10 1s lunuted by its excitaton model The umpulse
train 1s a very coarse approximation to the true glottal waveform Partly as a result of this, LPC-10 coded
voiced specch has a "buzzy" quality Also, the binary voicing decision leads to poor sound quality for
phonemes which naturally have a mixed excitattion, for example voiced fricatives Moreover, the scheme

produces extremely distorted speech when the voicing deciston 1s incorrect.

7.2 3 CELP System

The CELP coding system used n this study was developed by the U S Department of Defence
US Federal Standard 1016 [Campbell et al , 1991, Fenichel, 1991, 1992] The system was proposed 1n
1989 and 1s based on analysis-by-synthesis techniques proposed by Atal and Schroeder n the mid 80s
[Schroeder and Atal, 1985] The system achieves a Mean Opinion Score of 3 0 at a bt rate of 4 8 kb/s
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{Jayant, 1990] The implementation used for these expermments was written 1n UNIX C and was placed
m the public domain by the U S Natonal Secunity Agency

Schematics of the CELP coder and decoder are shown in Fig 73 The coder uses a 240 sample
(30 ms) frame si1ze with four equal sub-frames CELP analysis consists of three basic functions - short-
term Linear Prediction analysis, long-term adaptive codebook search and stochastic codebook search
Linear Prediction analysis 1s performed once per frame by open-loop, 10th order autocorrelation with a
30ms Hamming window The adapuve codebook 1s searched exhaustively to determune the delay and
gain whach, when applied to the previous excitaton and passed through the synthesis filter, miniumises a
perceptually weighted prediction error critenion The predicion error signal 1s calculated as the
difference of the re-synthesised signal and the onginal speech The predicuion error 1s perceptually
weighted by passing 1t though a modified version of the LP filter This perceptual weightng filter 1s
designed to de-emphasise errors which are masked by the speech signal and wiich are, therefore,
wnaudible to the listener The resulting perceptually weighted prediction error signal ts squared and
summed to provided the perceptually weighted prediction error criterton  The stochastic codebook search
proceeds tn a sumilar manner Each of 512 stochastic excitations 1s scaled, added to the adaptive
excitatton and passed through the LP filter Agan, the opumum 1nnovation is chosen as the entry giving
the minimum perceptually weighted prediction error A sparse (70% zero), overlapped and ternary
valued (-1,0,+1) codebook allows fast computauon The indices of the opumum codebook entnes the
gain for each codebook and the coetficients of the LP filter are quantised and transmitted to the recerver

The CELP decoder generates the adaptive excitaton by delaying previous mnovatons and

scaling them according to the transmitted adapttve gain  Simularly, the stochastic excitation 1s created by
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selecting the appropnate entry from the stochastic codebook and scaling 1t by the stochastic gain The
speech signal 1s re-synthesised by summing the excitauons and applying them to the LP filter

CELP produces digital cellular quality speech at low bit rates The analysis-by-synthesis scheme
allows the coder to select the excitaton which will sound best to a human listener Unfortunately, the
exhausuve codebook searches make the system extremely computationally complex - the CELP encoder
operates at roughly 30 MIPS [Rabiner, 1994] Also, the sound quality produced by the system 1s said to
be slightly "reverberant” or muffled This may be because the adaptive codebook can only build up a

penodic excitation gradually over several sub-frames

7.2.4 GSM System

GSM 1s the current pan-European cellular telephony standard The GSM speech coding system
operates at a bit rate of 13 kb/s and 1s a Regular Pulse Excitation - Long Term Prediction - Linear
Predicuon (RPE-LTP) scheme [ETSI, 1989) The GSM system used n this study 1s a public domain
implementation wnitten in UNILX C

A schemauc diagram of the GSM system 1s presented in Fig 74 The coder uses a frame stze of
160 samples (20 ms), divided into four sub-frames GSM analysis consists of three main functions -
short term Linear Prediction analysis, Long Term Prediction analysis and Regular Pulse Excitation
analysis Eighth order Linear Predrction analysis is performed over each pre-emphasised frame using the
autocorrelaion method The quantsed LP coefficients are used to comstruct an mverse filter which 1s
apphed 1o the pre-emphasised speech signal to give the short-term residual Each sub-frame of the
residual ts coded using a Long Term Predictor and a Regular Pulse Excitation The delay and gain of the
Long Term Predictor 1s determined by finding the maxamum of the cross-correlation between the current
residual and the re-synthesised residual from previous sutz-frames The quanused delay and gamn
parameters are used to generate the Long Term Predicuon signal which 1s subtracted from the short-
term residual to give the long-term residual This long-term residual 1s subjected to Regular Pulse
Excitation analysis Each sub-frame of the long-term residual 1s filtered and down-sampled into four
interleaved candidate sub-sequences The candidate sub-sequence, or gnd position, with the maximum
energy 1s selected for quanusation by Adaptive Pulse Code Modulatuon The resulting quantised Regular
Pulse Excutation 1s reconstructed and added to the Long Term Predictor output to give the re-synthesised
restdual for this sub-frame The APCM coded Regular Pulse Excitauon, the grid position, the Long
Term Predictton lag and the LP coefficients are transmitted to the receiver

The GSM decoder reconstructs the Regular Pulse Exciation sub-sequence from the APCM
information and a sub-frame of the long-term restdual 1s created by up-sampling based on the received
grd posiuon The output from the Long Term Predictor, a lagged and scaled version of previous
excitauons, 1s added to the long-term residual This excitaton signal 1s applied to the decoded LP filter
to re-synthesise the speech signal

The GSM system closcty models the residual obtained by passing the LP wnverse filtier over the
mput speech signal This ensures a close match between the re-synthesised and onginal waveforms

This, 1n turn, means that the speech quality produced by the GSM system 1s very high However 1t must
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be noted that the improvement in quality relative to CELP and LPC-10 is achieved at the expense of a
much higher bit rate.

7.2.5 BSD Algorithm

The Bark Spectral Distortion is a perceptually based objective measure for evaluating speech
quality. The measure, computed from original and coded versions of an utterance, exhibits a monotonic
relationship with the Mean Opinion Score (MOS) and has proven extremely effective in predicting MOS
scores for low it rate coders. As such, the measure provides a consistent and accurate means of
objectively evaluating coder performance.

Fig. 7.5 shows a schematic diagram of how the BSD is computed. The original >@®) and coded
speech yeare separately converted to their Bark spectra Lx(i) and Ly(i). The Bark spectra represent the
perceptual auditory characteristics of each signal. The subjective quality of the coded speech is defined
as the distance between the Bark spectra.

The process of converting the speech signal to the Bark spectra is designed to model the
properties of the human auditory system. Three main factors are considered in the model. Firstly, the
human auditory system is known to have poorer tone discrimination at high frequencies than at low
frequencies. Secondly, the human ear is not equally sensitive to stimulations at different frequencies.
Thirdly, the perceived loudness of a tone is a nonlinear function of the relative acoustic level.
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To model these perceptual effects, the critical band filtenng and frequency dependent sensttvity
of the human ear are mapped nto the linear frequency domain as a set of fifteen pre-computed
weighting functions, Fig 7 6 The conventional power spectrum of the speech signal 1s converted to the
Bark spectrum by applying these weighted averaging functions and a non-linear loudness
transformation These operations effectively represent the pre-processing of the human auditory system
and allow the low dimensional Bark spectrum to capture the perceptual characteristics of the speech
signal The operations are carried out on a frame-by-frame basis using an 80 sample Hamming pre-
window with a 50% overlap between consecutive frames

The distortion between the onginal and coded speech frames 1s calculated as the Euchdean
distance between the onginal and coded Bark spectra The final BSD score 1s obtained by calculating the
mean distortion and normalising 1t by the mean Bark energy of the onginal signal Thus, overall

$[8(e0-0f

k=1li=1

i[ﬁ(w]

BSD =

k=1Lr=1 an

where N 1s the number of frames 1n the speech signal

The BSD measure allows the subjective quality of speech coding systems to be determined by
objecuive means Thus, the speech quahty provided by the GELP systems can be reliably assessed
without the need for tume consuming histener tests Furthermore, the BSD measure is extremely sensitive
and allows incremental improvements to be made to a coding scheme Unfortunately, the BSD
computation procedure has not been standardised Hence, the scores presented herein are not comparable

with those pubhished elsewhere

7.3 GELP QUANTISATION

This section descnbes the development of the GELP quantisation scheme The vocal tract
parameters are encoded via Line Spectral Pars This 1s an efficient quantisauon scheme and has been
used 1n a number of low rate systems The opumum order of the LP synthesis filter 1s determined by
examtning the vanauon of GELP speech quality with filter order The quanusation levels of the LSPs
are selected by examining their distnbution during GELP coding of natural speech The pitch
quantisation scheme 1s based on that used in U § Fed Std 1016 CELP

The quantisation of the LF parameters s studted 1n some detail To provide efficient quanusation,
a differenuial scheme 1s proposed whereby only the change in the LF parameters relative to the previous
period 1s quanused and transmitted The differential LF parameter distributions are modelled by fitung
standard Probability Density Funcuons to the distnbutions observed dunng natural speech Based on
these PDF models optumum non-linear quantisation schemes are determined by minumising the induced
distortuon Quanusers of varying resolution are developed for all of the LF parameters The optimum bt
allocaton for the LF model 1s then determined by a knockout procedure Based on this procedure the bit
allocauon providing the best trade-off between speech quality and bt rate 1s selected for further study in

the next section
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The section is divided into three sub-sections. The first sub-section describes the quantisation of
the LP coefficients. The second describes the quantisation of the pitch. The third sub-section details the
development of the LF parameter quantisers, while the fourth sub-section covers selection of the final bit
allocation scheme. The fifth, and final, sub-section presents a summary of the overall GELP quantisation
scheme.

1.3.1 Filter parameters

The optimum order of the LP filter was determined by applying unquantised GELP coding to
segments of natural speech. Fig. 7.7 shows the variation in BSD with filter order observed when GELP
coding was applied to all-voiced noiseless male and female recordings (see Appendix C). Clearly, the
best compromise between filter order and speech quality is 8th order. This is consistent with previous
work which suggests that two poles are required to model each vocal tract formant and the spectral
envelope [Markel and Gray, 1976]. Since the LF model captures the spectral envelope, and since there
are normally four formants in the range 0-4 kHz [Fant, 1956], this implies that eight poles are required
to accurately reproduce the vocal tract resonances.

The decision was taken to quantise the LP coefficients as Line Spectral Pairs [Sugamura and
Itakura, 1981; Crosmer and Barnwell, 1985]. This representation has been shown to lead to efficient
quantisation and is used in U.S. Federal Standard CELP. The LSPs are obtained from the z-domain
representation of the all-pole transfer function of the LP filter H(z)

L ()
where m is the order of the filter and  are the LP coefficients. The inverse filter is given by
Mz)= )
=1 “3
A(z) can be decomposed into two (Af+1) order polynomials
/(D~4Dz" (WD D
0D=AD-Z-MH(Z-D 74
S0 that
2 (7.5)

It turns out that P(z) has a real zero at z=-1and Q(z) has a real zero at z=1. All the other zeros of the
polynomials are complex and are interleaved on the unit circle. These zeros comprise the LSP
parameters. Although the zeros are complex, their magnitudes are known to be unity so that only their
frequency or angle is required to specify each one.

Fig. 7.8 shows the distribution of LSPs obtained by applying unquantised GELP coding to the
noiseless recordings. The LSP bit allocation scheme for the GELP coder is based on that used in U.S.
Federal Standard CELP. Since CELP operates close to the target bit rate for GELP, it is viewed that
similar spectral resolution is required in the GELP coder to provide good quality re-synthesis. As in the
CELP system, four bits are allocated to the perceptually significant LSPs (two, three and four) while
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three bits are allocated to the remainder The quanuisation levels were selected arbitranly based on the

observed LSP distributions and are shown in Table 7 1

LSP OUTPUT LEVELS (Hz)

1 200 270 325 350 380 440 520 600

2 310 335 365 395 425 460 500 540 580 620 660 710 770 840 910 980

3 720 760 800 840 885 940 1005 1075 1150 1250 1350 1450 1550 1660 1750
1850

1000 1050 1130 1210 1285 1350 1430 1510 1590 1670 1750 1850 1950 2050
2150 2250

1670 1770 1890 2030 2200 2400 2600 2800

1975 2150 2275 2400 2550 2700 2900 3100

2610 2730 2850 2950 3050 3160 3280 3400

3190 3270 3350 3420 3490 3590 3710 3830

PN

RN [N

Table 71 Output quanusation levels for LSPs

7.3.2 Patch Parameter

The fundamental voice source parameter 15 the pitch period Accurate reproduction of pitch 1s
essenual for high qualhity synthesis Therefore, the pitch period 1s transmitted for every glottal cycle and
15 quantised to a resolution of 8 buts, according to the scheme defined in U S Federal Standard CELP,
see Table 72 This scheme provides fracuonal resolution at certain frequencies This has been shown to
reduce the roughness perceived 1n the reproduction of voiced speech Moreover, since the LF analysis
parameters are denved from the fundamental frequency, the accuracy of the re-synthesised excitation 18
dependent on the resolution of the pitch Thus, the patch 1s quantised to a high resolution and 1s

transmitted tndependently for each glottal cycle

PITCH RANGE (in samples) RESOLUTION (in samples)
20-2523 1/3
26 -333/4 1/4
34-792/3 1/3
80 - 147 1

Table 7 2 Puch quantisation scheme [after Fenitchel 1991, 1992]

7 3 3 LF Parameters

The LF analysis parameters were deemed best for transmusston since they are most closely retated
to the spectral charactenstics of the glottal excitaon [Fant and Lin, 1988] Furthermore, the analysis
parameters are ratios of the pitch period and so easily adapt to a changing fundamental frequency The
LF analysts parameters are as follows - the glottal gan E,, the glottal frequency r, , the dynamic
leakage r, and the open quouent 04 (defintuons are supphied m Section 6 2 3)

The distnbutions of the LF parameters extracted from two sentences of noiseless voiced speech,
one male and one female, are shown 1n Figs 6 24 and 6 25 Ewidently, the vanance of the parameters 1s
quite large On examining the parameter contours, Figs 6 22 and 6 23 1t was noted that there 1s a high

degree of correlation between successive glottal parameters In order to remove this redundancy, 1t was
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decided that the LF parameters be quanused differentially That 1s, the differences between the current
glottal parameters and the previous are quanused and transmitted Fig 7 9 shows the distribution of the
differential LF parameters calculated over the noseless 1ecordings Clearly, the vanance of the penod-
by-peniod difference in the parameters 1s significandy less than that of the parameters themselves For
the purposes of coding, the default values for the LF parameters were taken as rg= 75%, rgy = 2%, and

0g= 92 5% At voicing onsets the differential parameters are calculated relative to these defaults
Opumum independent quanusation of the differential parameters can be achieved by finding the
non-linear quantiser which provides minimum distorton [Max, 1960, Jayant, 1974] The distortion D
generated by a L level quanusauon scheme 1S given by

x
D=ifﬂn—aﬂ@¢

F=ly, (76)

where x;. 15 the end-point of level k (xp=-= and xy== ), yj 1s the output value of level k, flx) 1s the

PDF of the parameter to be quantised and h(x) 1s the distortton measure The necessary conditions for
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minumum distorton are obtained by differenuating D with respect to {x;} and {y;} The result of ts

differentiation 1s the pair of equauons

By, —xi)=myes - %) k=12,

fh'(yk -E)f (§)dE =0 k=12 ,L

k-1 am
In the special case of a squared error distortion measure
and so
x,F% k=12, ,L-1
X
ye= [EE)E k=12, ,L
Te-1 79

Thus yy, 1s the centroid (mean) of fx) between xg_1 and x; These equauons may be solved numertcatly
for any given f{x)

In order that a quantisauon scheme be generated for the LF parameters, a PDF suitable for
integration must be defined Examining the distnibutions of the differenual LF analysis parameters 1t can

be seen that, with the exception of the glottal gan, they approxiumate to the Normal PDF given by

7= —J=en| - {x-n o

where ¢ and [ are the standard deviation and mean of the distnbution, respectively The Normal PDF

was matched to the observed differential LF distnbutions based on a mmmmum squared error criterion
The mean was set to zero and the standard deviation of the PDF was numencally optumised by a
gradients method to mimmise the mean squared eror between the distnbutions The error was
calculated between the matched and measured PDFs at sample points 2% apart from -40% to +40% The
Normal PDFs fitted to the measured distnbutions are shown mn Fig 79 Table 7 3 lists the optumum

standard deviations values determined by the least mean squared error procedure

LF PARAMETER STD DEVIATION MEAN SQUARED ERROR
rg 234 3 3e4
ra 124 1 Qe-3
oq 199 1 6e-4

Table 7 3 Standard deviation of Normal distributions giving the best fit to the differential

LF distributions

Based on the matched PDFs, optmum non-hinear quantisers were generated numerically via Eqs
(76), (79) and (710) To ensure that the quanusation schemes could parametense smooth LF
parameter contours, 1t was necessary to provide a zero quantisation level for all of the differenual LF
parameters Obviously, this produces an odd number of quanusation levels which 1s unusual for such a
scheme Nevertheless, the decision was taken to use 2+1 output levels i each of the quanusers under

test The optumum quanusers are shown n Table 7 4
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NO OF rg ra oq

LEVELS
3 285 152 243
5 179403 095214 152342
9 104215345527 055114183280 088182293448

17 057115175240 030061093127 0480971492042 064
311393497649 165209 264345 334422552

Table 7 4 Output levels of the optimum non-linear quantisers for the differential LF
parameters Since the distributions are symmetric only the levels greater than zero are

shown.

The quanusauon scheme for the glottal gain parameter E, was developed wn a sumilar fashion
Fig 7 9(d) shows the distnbubion obtained for the glottal gain over the noiseless recordings The
Gamma PDF was found to most closely approximate the distnbution

£ = {(x/[i)m—1 e'(’/a)/l“(a) x20
0 x<0 (7 11)
where o controls the skew of the distnbution and [ governs the scale
o) = Tx“"e"dy
0 (712)

As for the other LF parameters, the PDF was fitted to the observed distrnbution by numerical
mmmusatuon of the mean squared error, Eqs (7 6), (79) and (7 11) Following the mimmisation
process, the near-opumal PDF parameter setungs, a.=2 and B=2000, were chosen to reduce the
computatonal burden of generaung the quanuisation scheme The PDF fit obtained using these
parameters 1s shown 1n Fig 7 9(d) Optumum four, five and s1x bit non-hinear quantisers were obtamed
by numenical minimsation of the distortion Table 7 5 shows the denved quantisation schemes

It must be noted that in quanusing the glottal gain parameter, only positsve levels have been
considered For re-synthesis purposes, 1t 1S wrrelevant whether the parameter 1s posiive or negative Thus
the polarity of the glottal gain need not be transmitted By convention, the synthesiser produces negative
glottal pulses at closure In the encoder, the polanty of the glottal pulse 1s important for the purposes of
LF fitung However, 1t 1s constant for a given recording configuration and a sumple positive/negative

adaption scheme can be implemented at connection ime '
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NO OF LEVEL OUTPUTS
BITS
4 613 1306 1956 2604 3269 3964 4701 5494 6360 7321 8409 9672 11190 115753
20123
5 368 763 1118 1457 1789 2119 2449 2783 3122 3469 3824 4189 4566 4956 5362
5785 6229 6698 7193 7719 8283 8889 9547 10269 11069 11966 12992 14194
15647 17492 20041 24221
6 218 446 647 835 1014 1188 1359 1528 1695 1861 2027 2194 2360 2527 2696
2866 3037 3210 3384 3562 3741 3923 4108 4295 4485 4679 4877 5078 5284
5494 5710 5930 6155 6387 6624 6868 7119 7379 7646 7923 8209 8507 8816
9138 9475 9827 10196 10584 10994 11427 11888 12382 12911 13483 14106
14789 15548 16401 17376 18517 19894 21626 24789 15548 16401 17376
18517 19894 21626 23982 27706

Table 7 5 Output levels of the opumum non-linear quanuser for the glonal gain, E,

(assurming a 16 it quanuser)

7.3.4 LF Bit Allocation

Selection of the best bit allocauon scheme for the LF parameters necessitates a compromise
between speech quality and bit rate In order to determune the opumum bit allocation scheme, a
knockout strategy was employed In each round of the knockout, GELP coding was performed on the
noiseless male and female recordings using four candidate bit allocation schemes These four candidate
schemes were formed by adding one extra bit to the scheme which won the previous round The
candidates differed in which parameter the extra bit was allocated to - either Eg, rp, 14 or 04 The
performance of the four candidate schemes was determined by companng the BSD of the re-synthesised
speech segments The candidate giving the lowest BSD, averaged over the male and female scores, was
chosen as the winner and proceeded to the next round The knockout started wath four bits allocated to
the glottal gain and zero bits allocated to the LF parameters Thus, n the first round the LF parameters
were fixed For the purposes of the knockout procedure the zero quantisation levels used for the LF
analysis parameters are 1gnored, for example, replacing the fixed dynamic leakage with a three level
quantser 1s treated as being equivalent to adding one bit to the glottal gain quanuser To the author's
knowledge the knockout strategy for determining bit allocation 1s unique to this investigation

The results of the knockout procedure are shown 1n Figs 7 10 and Table 76 Fig 7 10 shows the
vanauon of mean BSD with the knockout round and Table 7 6 shows the winning bit allocation 1n each
round Also, Fig 7 11 (a) and (b) shows the mean periodic SNR of the LF signal, relative to the inverse
filtered speech, and the mean periodic SNR of the re-synthesised speech, relative to the onginai

recording, respectively

ROUND 1 2 3 4 5 6
WINNING Ee ra rg Ee rg Ee
PARAMETER
MEAN BSD 0067 | 0014 | 0035 | 0012 | -0003 | -0002
CHANGE

Table 7 6 Winners of knockout rounds showing change in mean BSD obtained since the

previous round
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Fig. 712. \ariationofmean kitratewrthfuckmental freq e oy.

7.4 PERFORMANCE STUDY

This section describes experiments carried out to determine the performance and robustness of
the GELP system compared to the three conventional coders.

The speech quality provided by the system was assessed by calculating the BSD introduced by
each of the schemes when applied to four all-voiced recordings. These consisted of a male and a female
subject recorded under noiseless conditions and a male and a female subject recorded in a typical office
environment. The robustness of the GELP algorithms was investigated by testing the coders on the noisy
and reverberant recordings. These were generated by adding white noise and artificial reverberation to
the noiseless male and female recordings.

It should be noted that the BSD speech quality scores which will be presented for the GELP
system may be overly generous to all but the office recordings for two reasons. Firstly, the LF parameter
distributions obtained from the noiseless recordings were employed in the design of the quantisation
scheme, Section 7.3.3. Secondly, manual identification of the GCI was used in GELP processing of the
noiseless, noisy and reverberant recordings. The impact of these factors on the BSD measured for the
GELP systems is thought to be minimal. Firsdy, since a differential coding scheme is employed, the
GELP coder should quickly adapt to the voice source characteristics of any speaker. Secondly, for the
distortion levels under investigation the PMLED technique has already displayed good performance, see
Chapter 5, therefore the results obtained using the automatic system are likely to be little different from
those obtained using manual marking. Thirdly, the BSD scores obtained for the office recordings are
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entirely consistent and compatible with the results based on the noiseless recordings. The office
recordings (which were not employed in the design of the LF quantisation scheme) were GELP coded
using automatic GCI detection. Overall, it is viewed that the experiments using the noiseless, noisy and
reverberant speech provide reliable information on the quality of GELP coding. Furthermore, the use of
a large data set is crucial for reaching valid conclusions regarding the performance of the GELP system.

The section is divided into two sub-sections. The first sub-section describes the performance of
the coding systems in processing the noiseless and office recordings. The second sub-section considers
the robustness of the system in processing the noisy and reverberant test data. Both sub-sections include
a full discussion and assessment of the results. Further information on the capture of the speech data
used in this section is provided in Appendix C.

7.4.1 Speech Quality
The speech quality provided by the coding systems is shown in Fig. 7.13 while Table 7.9 shows

the mean pitch of the segments plus the mean and peak bit rates for the GELP coders.

NOISELESS RECORDINGS ~ OFFICE RECORDINGS
MALE FEMALE MALE FEMALE

MEAN PITCH (Hzg) 89 160 113 194
MEAN BIT RATE (K /sf 2.52 3.75 2.96 4.39
PEAK BIT RATE (kbls 3.33 4.53 393 5.3

Teble 7.9. Mean pitchofgoeaech nateriial plus mean and pesk it ratesfor GELP axirs.

A number of factors influence the speech quality achieved by the coding systems. Examining the
results for the LPC-10 coder and relating them to the pitch of the processed speech, it can be clearly seen
that the distortion introduced by LPC-10 coding reduces with increasing pitch. The standard coders
examined in this study are designed for application in telecommunications systems. As such, they need
only process speech in the telephone bandwidth of 300-3600 Hz. Thus, LPC-10 does not preserve the
low frequency information in the speech recordings. This introduces significant distortion in the cases of
the low pitched male speech but less for the female subjects.

The CELP system also removes low frequency energy from the speech signal. As for LPC-10, this
causes an improvement in BSD with increasing pitch, for example, compare the male noiseless
recording and the male office recording. The removal of low frequency energy in CELP is caused by a
175 Hz highpass post-processing filter. Due to their high pitch, the filter has little effect on the two
female recordings. What is significant in this case, is that the office recording is the noisier of the two.
Background noise is hard to account for in a low rate coding scheme, hence the BSD for CELP increases
when moving between the female noiseless and office recordings.

In contrast to the lower rate systems, GSM has only a slight highpass filtering effect and, due to
its greater transmission rate, is more robust to distortions of the incoming speech signal. As a result, the
BSD observed for GSM is roughly constant across all of the speech material.

The two GELP systems accurately preserve the low frequency components in the speech signal.
Thus, pitch has less immediate impact on their BSD scores. In all but one case, the IAIF based system
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recording

outperforms the CPIF system This appears to be due to the robustmess of the IAIF procedure In the
female noiseless recording there 1s an absence of nput distortion, hence both techniques perform equally
well In contrast, noise is present in the two male recordings - breathy noise, 1n the case of the noiseless
recordmg, and ambient noise, 1n the case of the office recording As a result, the more robust [AIF based
coder outperforms the CPIF based system for both of these recordings The only test data for which CPIF
provides better speech quality than IAIF 1s the female office recording In this case 1t appears that IAIF
has problems separating the glottal source and vocal tract filter 1n the spectral domain, due to the high
pitch of the voice This effect 1s evident for high pitched voices, parucularly dunng phonemes with low
first formants, such as the vowel {1] Although CPIF outperforms [AIF in this case, it must be
remembered that for voices of still higher pitch CPIF fails completely because the closed phase becomes
too short for accurate LP analysis

Companng IAIF based GELP with LPC-10, 1t can be seen that GELP produces better BSD scores
for all of the speech matenal This performance advantage 1s because of the more accurate low frequency
modelling 1 GELP due (o the inclusion of a parametenc glottal excitation Overall, the BSD scores
f)btamed for GELP increase relauve to LPC-10 as pitch and noise increase The advantages of glottal

modelling become less significant as fundamental frequency and distorion nse For the low pitched
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male speech, GELP achieves a mean transmission rate comparable to that of LPC-10, while for the
female speech material, the mean bit rate rises to 1.5 or 2 times that of LPC-10.

GELP only succeeds in providing better quality than CELP for the lowest pitch male subject
under noiseless conditions. Inall of the other tests, CELP gives adequate low frequency performance and
is more robust to distortions of the incoming speech. However, the quality advantage of CELP is paid for
at the cost of a higher mean bit rate. In particular, for the male noiseless data the mean GELP bit rate is
almost half that of CELP.

In order to determine the advantage bestowed on the GELP systems by measuring the BSD over
frequencies not represented by the standard systems, the BSD scores were re-calculated over a
bandwidth typical of telephone systems. Before determining the BSD, two Chebychev filters were
applied, forwards and backwards, to the input and output speech data. The filters were a tenth order 300
Hz highpass filter and an eighth order 3600 Hz lowpass filter. Both were specified to incur 60dB
attenuation in the stop-band and, at most, a 0.5 dB ripple in the passband. The resulting BSD scores are
shown in Fig. 7.14. Note that the bandpass filtering operation was not applied to the speech input to the
coding systems. For correct GELP processing, the incoming speech material must preserve the low
frequency information.
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Removal of low frequency energy results 1n a significant improvement 1n the BSD scores obtained
by LPC-10 Since CELP incorporates more moderate highpass filtering, its band-limited BSD scores
only show an improvement for the lowest pitched male subject. Also, for the GSM coder, which
incorporates a good low frequency model, band-limitation leads to higher BSD figures tn all cases For
all of the coders, the lowest BSD results are obtained for the female speech This effect has already been
commented on by Wang et al and 1t prevents companisons between the BSD scores obtained for the
male and female subjects

In all but one case, the BSD values attained by the GELP systems are greater than those obtained
before band-limutation This clearly points to the accurate low frequency modelling of the GELP
approach As before, IAIF based GELP outperforms the CPIF based system, except for the highest
pitched test data

Overall, the application of the telephone bandwidth limutation to the calculauon of the BSD
scores leads to a deterioration in the performance of GELP relauve to the standard systems However,
the perceptual quality achieved by GELP still exceeds that of LPC-10, except for the highest pitch
female subject. With the nclusion of band-limitation, CELP outperforms GELP 1n all of the test
segments Under these conditions, the only advantage GELP offers over CELP 1s a reduced bt rate

So that the performance of the coders can be analysed more fully a new quality measure, the
mean square criical band distortion, 1s proposed The critical band distortion 1s calculated as the
difference 1n Bark spectra calculated for the onginal and coded versions of the recordings As in the
BSD procedure, the Bark spectra are determined by applying a frequency domain weighting function
and a loudness transformation to the short-term magnitude spectra of the signals The mean square
critical band distortion is calculated as the squared distortion observed in each cntical band averaged
over the entre speech recording The mean square cnitical band distortion 1s thus a measure of the
frequency-dependant perceptual distortion introduced by the coding process Fig 7 1S shows the mean

square cntical band distortions calculated over the test recordings and Table 7 10 shows the centre

frequencies of the cntical bands
BAND NUMBER 1 2 3 4 5 6 7 8
CENTRE 101 204 313 430 560 705 870 1059
FREQUENCY (Hz)
BAND NUMBER 9 10 11 12 13 14 15
CENTRE 1278 | 1532 | 1828 | 2176 | 2584 | 3064 | 3630
FREQUENCY (Hz)

Table 7 10 Centre frequencies of cnitical band weighting functions

The graphs clearly show the improved speech quality of GELP relative to LPC-10 1n the low
frequency range For all but the female office recording, the perceptual distortion mtroduced by GELP s
less than that induced by LPC-10 1n all of the cnitical bands up to 8 or 9, that 1s up to roughly | kHz
CELP displays speech quality similar to GELP across most of the cntical bands However, 1t presents
some obvious advantages in the range 3-7, that 1s 250-900 Hz Unsurpnisingly, GSM 1s substantiaily
better than any other scheme over most of the frequency range However, the perceptual quality of all of

the systems 1s very similar tn the top cntical bands, approxinately 3000 - 4000 Hz Reproducing data at
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these frequencies generally requires a mgh transmussion rate Additionally, there may be some distoruon
incurred by the presence of unmodelled high order formants Consequently, the spectral distortion
incurred by low rate coders tends to be significant at high frequencies

In most of the cnitical bands, the performance of the two GELP systems 1s very sumiar Perhaps,
the most noticeable difference ts in bands 10-15 (1400-4000 Hz) of the male recordings for which [ATF
based coding clearly outperforms the CPIF based system It may be that LP analysis over the closed
phase sometimes mcludes dynamuc leakage effects and this prevents accurate determination of the r,
parameter This would, in turn, alter the spectral balance of the re-synthesised speech and cause
distortion in the medium to high frequency region

The BSD scores presented concur with the findings of limited wnformal listening tests

7 4 2 Robustness

The speech quality obtained when coding the noisy and reverberant recordings was also assessed
using the BSD measure The results for the five coding systems are shown in Figs 7 16 and 7 17 The
bit rates achieved by the GELP coders for these segments are the same as those obtained dunng the
noiseless recordings, see Table 79 Note that no band-hmitaton 1s performed

Clearly, the GELP coders are less robust than the conventional systems At low distortion levels
the speech quality achieved by both GELP systems 1s comparable to that of CELP, particularly for the
male subjects However, as the degree of mput distortton increases, the speech quality provided by the
GELP coders decreases more rapidly than that of any of the standard systems In the case of the female
recordings, the speech quality of the GELP systems approaches that of LPC-10 at the highest distortion
levels tested For the male speech, the GELP technique provides significantly better quality than LPC-10
at all distortion levels

Under conditions of significant distortion to the mput speech, the choice of mverse filtering
procedure makes hittle difference to the subjective quality of the GELP coded speech In all of the
experiments, except perhaps for the female subject at the maximum source-recerver distance, both GELP
systems produce sumular re-synthesis quality This finding 1s surpnsing, given that [AIF has been found
to provide more accurate glottal esimation under conditions of noise (see Chapter 6) In the case of
speech coding, the coarse quantisation of the LF parameters probably prevents the greater robustness of
IAIF from impacting the overall perceptual quality of the re-synthesised speech

Although the GELP systems are not as robust as the conventional systems, the performance
degradauon of GELP with increasing distortion 1s sull quite gradual For example, for the male subjects,

the quality of GELP still outstrips LPC-10 when the microphone 1s placed 0 5 m from the subject.
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7 5§ CONCLUSION

This chapter has descnibed an investigation into Glottal Excited Linear Predicuon coding A low
bit rate, medium delay GELP coder system has been proposed The system performs GCI detectuon by
Pre-emphasised Maximum Likelthood Epoch (PMLED) detection (Chapter 5) For coding voiced
speech, the GELP system uses an LF model excitauon applied to an LP filter Two different procedures
for glottat waveform esumation, Iterauve Adaptive and Closed Phase Inverse Filtering, have been tested
m the coding system To facilitate efficient coding, a differential vantable rate LF parameter quantisation
scheme has been proposed The performance of the GELP systems has been assessed tn comparisons
with that of the standard speech coders - LPC-10, CELP and GSM

Expenuments show that the use of a parametensed glottal model presents advantages, in terms of
speech quality, over a fixed glottal pulse excitation, especially in the low frequency range 0-1 kHz
Furthermore, 1t has been shown that allocating bits to the transmission of the LF model parameters, T
and r,; can be more effecuve in terms of improving subjecuve speech quality than increasing the
resolution of the gain parameter The glottal open quouent parameter, Ogr has been shown to have little
impact on speech quality and 1s therefore not used in the proposed GELP system The use of a
controllable glottal exctation signal also permits reduction of the LP filter order from 10th to 8th giving
further savings in coding rate

Using a perceptual error measure, Bark Spectral Distortion, GELP has been shown to provide
better speech quality than LPC-10 for male speech under condittions of telephone bandwidth
measurements, input SNRs of up to 15 dB or source-receiver distances up to 50 cm For female speech,
GELP has been shown to provide better BSD scores than LPC-10 under condittons of reasonably low
distoruon For low pitched male subjects, the mean GELP transmission rate 1s stmilar to that of LPC-10
while 1t nises to roughly twice that of LPC-10 for high pitched female speakers

In the case of high quality low pitched male speech matenal without band-limitauon, GELP
achieves speech quality in excess of CELP at roughly half the bit rate However, with increasing pitch
and distortion, the quality provided by GELP rapidly falls below that of CELP Even for high pitched
female subjects, the mean transmission rate provided by GELP 1s less than that of CELP

Although the test-bed GELP system descrnibed 1n thes investigation 1s computationally expensive,
it seems hikely that a more efficient system could be developed In partcular the LF fitting scheme could
be modified to determine the best quanused fit, rather than quantse the best fit Modificauons such as
this would sigmficantly reduce the computational complexity of GELP encoding - probably to much less
than that of CELP encoding

Overall, the GELP approach shows promise for speech coding applications In this study, the
advantages of using a parametenised glottal model have been clearly demonstrated However due to 1ts
lack of robustness, the system, in 1ts present form, 1s unsuitable for telecommunication purposes
Nevertheless, GELP may be of use n voice messaging applications for which low rate coding of high
quality speech 1s essenual It 1s believed that a further reduction of the bit rate of GELP can be achieved
by using adaptive or vector quanusation of the LF parameters Also, as has been demonstrated
elsewhere, the robusmess of the system can be tmproved by using a stochastic or multr-band excitation

1in tandem with the glottal signal
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CHAPTER 8

CONCLUSION

8 1 INTRODUCTION

The purpose of this chapter 1s threefold - to summanse the research described 1n the thesis, to
evaluate the contribution of the work and to suggest directions for further investigation To this end, the
remainder of the chapter 1s split into three sections, each covering one of these elements For further

details and references, see the relevant chapters 1n the body of the thesis

8.2 SUMMARY OF THE THESIS

The aimm of the investigation has been to develop and evaluate glottal processing techniques, with
partucular reference to glottal based speech coding For this purpose, four main studies were undertaken
- a study of models for representing the effects of reverberaton on speech recordings, development of an
umproved algorithm for Glottal Closure Instant (GCI) idenufication, a companson of two automatic
mverse filtering techniques and, finally, the propesal and evaluaton of a Glottal Excited Linear
Prediction (GELP) coding system for voiced speech

Reverberation has two effects on the recording of speech Firstly, the lip radiation impedance 1s
altered from tts free-field value due to interaction between the source and the reverberant field
Secondly, the signal picked up at a mucrophone 1s distorted, relative to that observed 1n the free-field,
due to the presence of secondary source to recerver transmission paths

The effect of reverberation on the lip radiation impedance was examined by the development of
theory for predictng the vanation n the radiation mmpedance at a vibrating piston set in an nfinite
baffle and operating 1n a reverberant enclosure The theory was confirmed by companng the resuits of
Monte Carlo simulations with measurements of the radiation unpedance at a loudspeaker placed 1n a
normally reverberant room Followang this simulations using typical lip opening areas were conducted
The results of these experiments venfied that, for speech processing applications m typical enclosures,
the vantation of the lip radiation impedance due to reverberation 1s negligible

The sumplest way to determine the effects of reverberation on speech processing algorithms 1s to
process a single recording several tumes using different levels of added reverberaton To aruficially add
reverberauon to speech matenal requires the convoluton of anechoic recordings with room impulse
responses The Image Method of Berkley and Allen 1s one method for generatng these responses In this
thesis, the Image Method was evaluated by comparing narrowband mmpulse response measurements
made 1n a typical room, to arufictal responses generated by the Image Method It was found that the
measured and simulated responses displayed a high degree of similanty in terms of decay rate and
spectral vaniation The Image Method was therefore deemed sausfactory for the generation of artificially
reverberant test speech matenal and was used for this purpose throughout the remainder of the

mnvestigation
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Maxmmum Likelihood Epoch Detection (MLED) has shown promise as an accurate automatc
technique for determining the GCI from voiced speech However 1n this invesugation, the techmque was
shown to fail for certain speech matenal The cause of the problem was determined and a new
formulauon of the technique, Pre-emphasised Maximum Likelihood Epoch Detection (PMLED), was
proposed Also, new post-processing techniques were developed to improve the robustness of PMLED by
lumiung the GCT search based on the penodicity of the speech and PMLED signals In tests, the PMLED
technique was shown to be rehable 1n processing the matenal for which MLED fatled Furthermore,
PMLED was found to be accurate in determining the GCls for vowel sounds, voiced fricauves, voiced
plosives and nasals recorded by male and female subjects under conditions of noise and reverberation

The performance of two exisung algorithms, Closed Phase (CPIF) and Iterauve Adaptive Inverse
Filtering (IAIF), for automatic glottal waveform estumation from the speech signal was evaluated 1n
comparative tests In addition, glottal waveform parameterisation by time-domain fitung of the LF
model was studied The conventional CPIF algonthm was augmented by the inclusion of a new multuple
filter procedure for improving the robustness of the technique Also, LF fitung was expedited by the
incorporation of a new polynom:al based imtialisation procedure In experiments mvolving natural
speech matenal, both verse filtering algonthms were found to be effecuve in terms of formant
cancellation and glottal estimation for subjects of both sexes over most phonetic categories However, 1t
was noted that in most nstances [AIF provided smoother glottal waveform esumates indicating more
effecve formant cancellation The only category for which CPIF consistently outperformed IAIF was 1n
the case of vowels with low first formants IAIF was also found to be more robust to distortions of the
mcoming speech signal, probably due to its longer analysis wmdow The LF model was observed to
provide close matches to the estimated glottal excitauon in almost all cases, with the exception of voiced
fnicatives and voiced plosives The statistics of, and correlations between, the extracted LF parameters
were presented and discussed wath reference to previously published results

A low bt rate, medium delay GELP voiced speech coding system was proposed, developed and
tested The system was based on a speech producuon model consisung of an LF glottal excitation
applied to an all-pole vocal tract filter In the GELP encoder, PMLED was employed for GCI
1denufication and glottal eststmation was carried out by inverse filtening Both CPIF and IAIF algorithms
were tested for this purpose The LF parameters were determined by time-domain fitung to the esumated
glottal excitation Based on the quanused and re-synthesised LF nput signal, the LP coefficients were
calcnlated by an ARX estimation procedure Subsequently, the glottal gain parameter was optumised by
matching the energy of the onginal and re-synthesised speech signals

Pitch quantisauon was based on that of U S Federal Standard CELP, while the quantsers for the
LP and LF parameters were derived from the processing of natural speech matenial In particular,
opumum non-linear quantisers were developed for the LF parameters based on a Probability Density
Funcuon model matched to the observed parameter distributions The optumum bit allocauon scheme for
the source parameters was determined by a knockout procedure whereby bit allocation was tested by
coding natural speech The experiments clearly demonstrated the importance of the dynamic leakage

and glottal frequency parameters for providing good quality re-synthesis The final quantisation system

8
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was a variable rate scheme in which the LP coefficients were transmitted once per frame and the LF
parameters were refreshed once per pitch period.

The performance of the GELP systems was established in comparison to that of three standard
conventional coders - LPC-10, CELP and GSM. The same test data was used for all five systems and the
quality of the coded speech was assessed using the Bark Spectral Distortion measure. Under low noise
conditions, for all but the highest pitched speaker, IAIF based GELP coding was observed to provide
better speech quality than CPIF based coding. At higher distortion levels, the difference in performance
between the two GELP systems became less pronounced and less consistent. The speech quality provided
by the 1AIF GELP system was found to be in excess of that provided by LPC-10, especially in the low
frequency range 0-1 kHz. Furthermore, under conditions of low distortion in the incoming speech
signal, the speech quality of GELP was shown to be comparable with that of CELP. In experiments
involving noisy and reverberant speech material, GELP was observed to be less robust than any of the
conventional systems. Nevertheless, the performance degradation of the GELP systems was reasonably
graceful. For low pitched male speech, GELP achieved a mean bit rate equivalent to that of LPC-10,
while during high pitched female utterances GELP’s mean coding rate rose close to that of CELP.

In conclusion, the thesis has proven that the effect of reverberation on the lip radiation impedance
Is negligible and that the Image Method is effective in generating artificial room impulse responses. An
improved method for automatic GCI identification from the speech signal has been proposed and tested.
In addition, the 1AIF algorithm has been demonstrated to be superior to the CPIF technique, except in
circumstances of proximate fundamental and first formant frequencies. The advantages, in terms of
speech quality and coding efficiency, of using a controllable glottal waveform excitation in an LP based
coder have been clearly demonstrated and GELP coding has been shown to be fairly robust to low levels
of noise and reverberation.

8.3 CONTRIBUTION OF THE THESIS

The thesis has made a number of contributions to the body of knowledge regarding glottal based
speech processing. This has included the proposal of new processing algorithms and the evaluation of
existing techniques.

Inverse filtering algorithms attempt to extract the glottal excitation waveform from voiced
speech. In order that the composite glottal signal may be accurately estimated, the speech signal must
undergo little or no phase distortion prior to inverse filtering. One possible cause of such distortion is
deviation of the lip radiation impedance from its free-field value due to the presence of reverberation. In
this thesis, it has been established that, in normal enclosures, the variation of the lip radiation
impedance due to reverberation is negligible. This establishes that glottal extraction by inverse filtering
is always possible in normal rooms, provided that reverberation in the source-receiver channel is
minimised. This can be done either by placing the microphone sufficiently close to the speaker or by
applying de-reverberation techniques. More generally, the experiment confirms that any phase sensitive
speech processing algorithm can be successfully applied in reverberant enclosures.
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The Image Method provides a simple techmique for the generation of artificial room impulse
responses This facilitates the producuion of reverberant test data for evaluatng speech processing
algorithms (Chapters S, 6 and 7), conducting auditory experuments [Culling et al , 1994] and developing
echo cancellauon systems [Mourjopoulos, 1985] The experiments descnbed m this thesis have
demonstrated that the Image Method 1s effecuve in generating reasonably accurate artificial room
responses This result confirms the vahdity of the assumptions underlymng the Image Method and
supports 1ts use 1n all of the above applicauon areas

The pitch micro-melody of voiced speech carnes phonetic, speaker and linguisuc information to
the human listener Clearly, idenufication of this quantity 1s important for speech recognition, while 1ts
reproducuon is crucial for natural sounding speech synthesis Conventional pitch detection algorithms
operate by determining the long-term peniodicity of the speech signal This approach smoothes out any
short-term vanauon 1n the pitch and prevents 1dentification of the micro-melody Determination of GCls
1s one method for idenufying the pitch micro-melody In this thesis an mmproved techmique for GCI
determinauon, PMLED, 1s proposed and demonstrated to be more rehable than a previously used
method, MLED As explaned, the new GCI identufication techmique 1s of use in speech recognition,
synthesis and coding applicauons Furthermore, accurate and robust idenufication of the GCI 1s essential
prior to Closed Pbase Inverse Filtering

Over the years, numerous methods have been proposed for esimation of the glottal waveform
from voiced speech Today, the most common approach 1s Closed Phase Inverse Filtering
[Knishnamurthy and Childers, 1986] Another technique, Iterative Adaptive Inverse Filtering [Alku,
1992a,b,c], has recently been proposed and has shown promise for automauc glottal estmation This
thesis presents the first comparative evaluauon of the two algorithms The results indicate that both
methods perform well over most speech material However, 1t was found that, in most cases, [AIF
provides slighdy more accurate glottal estimation and 1s more robust to distortion of the mcoming
speech signal Additionally, IAIF has the advantage of not requunng accurate a priont GCI
idenufication These findings clearly ndicate the supertonity of the IAIF procedure and support the
contention that 1t should replace CPIF in most glottal esumation applications Since the algorithm 1s
fully automatic, IAIF allows the processing of large amounts of speech data and presents a clear advance
from the manual systems often cited m the literature

Two new procedures to aid tn glottal extracuon were proposed and tested in the thesis Firstly, a
method for expediting LF model fitung based on a polynomial approximaton was proposed This
technique provides reasonably accurate imttalisation of the LF parameters at low computational cost and
18 useful 1n most analysis experiments wnvolving the LF model Secondly, a multiple inverse filtering
procedure was incorporated 1n the CPIF algonthm This procedure was demonstrated to mmprove the
robustness of the Close Phase algorithm and 1s of use 1n apphications where CPIF is the chosen method
of glottal estimation

A spm-off from the study evaluatng the mnverse filtenng algonthms was the extraction of LF
parameters from a vanety of natural speech matenal The staustics of and correlations between the
denved LF parameters are published herein and provide a useful database for the study of vorce source

dynamuics tn connected speech
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Glottal based speech coding has the potenual to provide umproved naturalness relative to
convenuonal coding systems because 1t 1s based on a more accurate speech producton model Moreover,
glottal coding techmques promise to provide low bit rate transmmssion since the glottal waveform
parameters follow a smooth slowly ume-varying vector trajectory The Glottal Excited Linear Prediction
coding system developed in this study clearly demonstrates that allocating transmission bandwidth to the
glottal parameters 1s effecuve in mmproving speech quality A full quantisation scheme 1s developed for
the coder, including the specification of differential LF quanusers This is the first tme that a GELP
coding scheme bas been quanutatively compared with conventional systems The findings clearly
illustrate the potentuial of GELP, especially in modelling the low frequency content (0-1 kHz) of the
voiced speech signal Also, the low transmission rate required for the LF parameters presents obvious
advantages to the use of a conventional stochastic or inpuise excitauon signal Unfortunately, due to its
phase sensiivity, GELP remains unsuitable for certain coding applications However, the approach
seems very suntable 0 voice messaging applications which require high quality speech, wmexpensive
decoders and low transmission rates To the author's knowledge this was the first investigation of a
GELP system with an LF excrtaton model In addition, this was the first published work to provide a
quantitative evaluaton of the transmission rate and speech quality achievable by a low rate, medium

delay glottal coder in direct comparisons with standard conventional coders

8 4 SUGGESTIONS FOR FURTHER WORK

The work described n this thesis poimnts to several avenues of potentially fruitful further
investigation

The Image Method has been shown to be adequate for the generation of room reverberant
responses 1n small rectangular enclosures However, the method lacks precision While newer methods
model the room reverberation process in greater detail, they too fail to exactly predict room impulse
responses In order to provide precise methods for the prediction of room responses, a better
understanding of the reverberaion process is required In particular, more detailed analysis must be
made of measured reverberant responses and thewr relanonship to the rooms under nvestigation
Certainly, due to the introductuon of faster Digital Signal Processors (DSPs), 1t seems that the tume 1s
right for the development of more complex and more precise methods for simulating the reverberation
process

In the last few years a number of new algonithms for GCI 1dentificaton have been developed, the
most promising of which appear to be PMLED (Chapter S), Singular Value Decomposition (Ma et al ,
1994) and Murgia's method [Murgia et al , 1994} To aid system developers 1n algorithm selection and
to provide direcuion for future research, a comparative evaluauon of these GCI 1denufication algonthms
1s required Ideaily, the evaluation should cover a wide range of speakers and recording conditions

Deconvolution of the glottal excitation and vocal tract transfer function 1s a perennial problem in
speech science The IAIF algonthm has been demonstrated to provide accurate and reasonably robust
glottal waveform estimation under most recording conditions However, the method provides poor

gloual esumation when the first formant nears the fundamentat frequency Some investigatton of thrs
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problem s required and unprovements may be achieved by the mtroduction of tume or frequency
selective LP analysis techmques

The LF model 1s an accurate and efficient low-dumenstonal representation for the glottal
waveform However, the gradient based minmumsation procedure normally used for LF fitung s
extremely computationally complex Although polynomial based imtialisation of the LF fit alleviates the
problem, a much more computationaily efficient method must be developed if automauc fiting of the LF
model 1s to be used more extensively Note that some work has already been published on this topic [Q1
and B, 1994] g

Although the GELP coding system proposed 1n this thesis provides promising results, 1t 18
thought that its performance could be enhanced in a number of ways The LF quantsation scheme could
be made more efficient by the use of adaptive or vector quanusation techniques The GELP system could
be modified for fixed rate transmissions by luniting the refresh rate for the LF parameters The LP filter
and pitch quantisation schemes were selected purely arbitranly - an empincally based enquiry 1s needed
to create more efficient schemes The robusmess of the coder could be unproved by the inclusion of a
multi-band or stochastic excitauon operating in tandem with the glottal model [Bergstrom and Hedelun,
1988, 1989] Also, supplementary work 1s required to extend the coder to provide for the transmission of
unvoiced speech Lastly, methods for modelling other phonetic categornies, such as voiced plostves or
nasals, should be considered

Finally, extensive subjecuve tests should be carnied out to assess the quality of GELP coded
speech While the BSD measure provides useful information, the ultumate judge of speech quality must

be the human hstener
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1. Introduction

In experiments on non-reverberant speech, it has been shown that
extraction of the glottal waveform can improve the performance
of low bit rate sPeech coders [1J and speech recognition systems
l2] Thus, one of the goals of current research is fo find miethods
or glottal waveform extraction that are effective in hoth
reverberant and non-reverberant conditions,

The major obstacle for glottal waveform extraction  under
reverberant conditions is the complex nature of the acoustic load
seen looking outwards from the lips into the enclosure. There are
two related effects - firstly, a non-smooth transfer function
between the lip flow signal and the pressure at a microphone and,
secondly, an unknown Eerturbanon of the vocal tract resonances.

Thi$ paper describes experiments which are designed to
determine the conditions under which extraction, of thé' glottal
waveform is possible without the use of adaptive filtering or echo
cancellation.” A realistic srfreech production model for speech
generation and an inverse filter for glottal waveform extraction
were implemented in Matlab on a PC. Actual reverberant
Impedance functions were then measured and apolred to the
madel in order to assess the effect of room reflections on the
accuracy of glottal waveform extraction by inverse filtering.

2. Room Acoustic Measurements

2.1_Impedance Functions
The performance of loudspeakers is generally characterised

by their acoustic impedance. It is definéd as the ratio of the
pressure enerated by the speaker to the volume velocity of the
s eaker, eacousnc impedance measurement method of Salava

l was chosen for these experiments since it is both cost
effective and accurate. Flow I1s measured with an inverted
loudspeaker which is acoustically coupled to an identical driver
unit, see Figure 1. The driver unilt IS driven by a pseudo random
sequence and the mverted or Passrve cone moves in sympathY
This generates an e.m.f. 'in its_ speaker coil which i directly
proportional to the volume velocity of air displaced. In the case of
ragliation |mPedance measuremerits, pressure .is measured %/
microphone fixed close to the back of the passive speaker. When
measurrn? transmission impedance, the microphone is fixed some
distance from the speaker.
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The experrment Was controlled by a PC usrn%r
Loug hborougn Sound Images developmerit card with a Texas
Instruments “TMS320C30 and on-board ADC/DAC. The driver
speaker was excited with a maximal length sequence (length
32767) atasam ling frequency of 16kHz hrs excitation signal
was dnti-aliase usrn% nassrve 5kHz low pass filter “and
amplified with a JVC AX-11 amplifier. The speakers, Radionics
8ohm 6.ain. bass/mid-range unrts were installed in 3 30cm bK
20cm by 13cm Wooden S eaker cabinet whrch was lined wit
sound absorb mgf foam. The acoustic coupling between the
speakers Was stiffened by partrally filling the air gap between the
cones. ressure Signal  wias measured using a B&K
mrcrophone 006? with diffusion cap and, like the passive cone
signal, was amplified using a Alice Soundtek pre-amplifier. For
each measurement 50 records of the pressure and flow signals
were obtained. The impedance functions were calculated Using
the cross-spectral technigue [51.

The free field impedance of the speaker was estimated, by
measuring the impedance at certain fixed on-axis source receiver
distances”(Ocm, 3cm, 7cm, 13cm, 32cm, 62cm) at four different
locations In a hemi-aneochic chamber.” The sgatraly averaried
impedance, which tends to the free field value [6], was ca Culate
for each source-receiver distance. The chamb er is well damﬁd
with the walls covered in acoustic Waddrng and mesh behind
heavy curtains. The chamber measures 3.0m by 3.0m by 2.7m.
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Figure 2 Measured transmission umpedance for source-
recerver distance of 32cm (solid line - spanally averaged
hems-aneochic, dashed line - 1n room speaker posiuon 1)

The reverberant measurements were performed 1n a sumular
manner to the free ficld measurements but without spatial
averaging The room used for the reverberant measurements was
34m by 2 6m by 2 7m with smooth plastered walls a concrete
floor and no windows

A example of the measured free field and reverberant
transmission impedances can be seen 1n Figure 2

2 2 Reverberation Measurement
In order to relate the inpedance fluctuation measurements to the
acoustics of the rooms under investigation the reverberation
times of the rooms were determined using the wntegrated iumpulse
response method of Schroeder [3] The reverberation tune of a
room 1s defined as the time wmnterval dunng which the reverberant
sound field drops by 60dB Schroeders method involves exciting
the room with a maxunal length sequence measuring the
response 1n the reverberant field and calculating the impulse
response by circular cross-correlanon The average sound decay
can then be calculated as the integral of the time reversed
unpulse response squared The reverberation time was estimated
by fitang a straight line to a manually selected portion of the
early sound decay

Agawn the measurements were taken using a PC and LSI
board The excitaton signal (length 32767) was emitted by a
Fostex 6301B loudspeaker and recorded using the same
mucrophone and pre-amplifier The reverberanon time was
measured at six recciver posttions for each of four source
locations and averaged The iumpulse responses were split nto
third octave bands using digital third-order Butterworth filters
The results are shown 1n Figure 3

An associated reverberation measure 1s the reverberation
distance [3] This 1s defined as the source receiver distance at
which the direct energy density 1s equal to the reverberant energy
density The reverberation distances have been calculated as
0 9m in the hemi-aneochic chamber and as 0 4m 1n the room

3 Reverberant Speech Modelling

3 1 Speech Production Model

The speech production model of Kelly and Lochbaum (7],
sampled at a frequency of 16kHz, was used to synthesise specch
Thus lossless tube model was augmented with glottal terminatuon
lp terminaton and wall loss models The glottal termination
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Figure 3 Measured reverberation times 1n third octave
bands (solid line - room, dashed line - hemu-aneochic
chamber)

model was based on that of Badin and Fant [8] The wall loss
model followed the proposal of Liljencrants [9] For sumplicity,
these models were lumped together at the glottis and represented
by fiting a 2 pole-2 zero filter [10] For the lip termination the
Lame digital approxumation to the piston-in-a-sphencal-baffle
model was selected [11] The parameters of the model were
determined by table look-up and nterpolatton from the lp
openung area {10]

The glottal flow waveform was modelled using the LF tume-
domain model [12] This models the differentated glottal
waveform as a sinusoid with an exponential trailling edge The
glottal flow itseif 1s then calculated by integration

The combined model was tested using realistic LF-model and
area function parameters The vowel sounds and speech spectra
generated by the model were found to be consistent with real
speech

3 2 Adding Reverberation
Since the free field radiation impedance at the lips and the
speaker are very different, the acoustic impedance measurements
must be scaled for apphcation to the speech production model
Two functions must be calculated - the vanation 1n the radiation
unpedance which will effect the resonances n the vocal tract and
thus the flow at the lips and the vanation in the transmission
unpedance which will effect the pressure signal actually received
by a mucrophone some distance from the hps Both functions can
be represented by the rato between the measured free field
unpedance and the reverberant impedance

= Dverbrad Tras = ZLeoveb irans

fo rad = fo trans

where de and Tu-am are the radiation and transmission ratios
er g 2nd Zﬂ tans AT€ the free field radiation and transmission

impedances and Z_ ., ¢ a0d Z_ o . - are the reverberant

radiation and transmussion unpedances respectively

For applicaion to the speech production model the
impedance ranos must be converted into z-domain models This
was done by calculating the inverse Fourter Transforms of the
impedance ratos and truncating the resulting impulse responses
to obtain FIR filters It was found that for the measurements
under investigation an FIR filter of 8192 taps (05s) was
adequate for modelling the measured impedance variations
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Ts



For a given source location, the radiation ratio filter was
aBFl'Ied to "Laine’s free field lip radiation impedance model to
obtain the reverberant lip radiation impedance. The reflection
coefficient at the I|]ps Wwas recalculated using the new lip
Impedance function. The flow from the lips was then calculated

from the glottal flow signal and area function.

Zlip reverbrad ~ “reverb rad "lips ffrad

where\  rtvab red 31 2ip ffna M the reverberant and free field
Up radiation |mﬁedances respectively. . _ _

Similarly, the transmission ratio filter was applied to Lainess
free field Up radiation impedance model to obtain the reverberant
transmission impedance. The reverberant pressure snt;nal at the
microphone was then obtained by applying this filter o the flow
signal at the lips.

~lip reverb trans = “reverb trans "lips ff rad

A

)
where  reveb s the reverberant transmission impedance.,
It must be noted that the calculation of the transmission
impedance ratio assumes that the frequency dependent nature of
the radiation pattern in front of the speaker assembly is the same
at that in front of the lips. Obviously, this is not the case.
However, for the wavelengths in question, which are large
compared with source size, both sources can be considered s
approximating spherical sources.

3.3 Inverse Filtering _ N
In order to determine the effects of the impedance variation on
ﬂ]lottal waveform extraction, inverse filtering was performed on
e reverberant pressure signal. An inverse filter was constructed
for the free fiela speech production model and was applied to_the
reverberant pressure signal to estimate the glottal flow. The
differentiated glottal flow was then calculated “as the difference
signal of the recovered glottal flow. This estimated differentiated
flow was then band limited usm? a thirty point FIR filter and
decimated to 4kHz, so as to exclude frequencies at which the
impedance measurements were_unreliable. This signal was then
scaled and compared to the similarly band limited and decimated
LF signal, see Figure 4. The accuraCy of the inverse filtering was
quantified by calulating the ratio of the energy of the LF Signal
fo the enerugy of the” error between it and the estimated
differentiated glottal flow (Signal to error ratio, SER).

Figure 4  True,.and , extracted differentiated gl
W BN

4. Results o . _
The measured room acoustic impedance variations were applied
to synthetic speech and inverse filtered as described above.
Fiqure 5 shows the variation of the extracted qlottal waveform
SER with source-receiver distance for different vowels in two
room locations. Clearly, extraction of the glottal waveform
becomes less accurate with increasing source-receiver distance.

Comparison of Figure 5 (a), (b) with (c), (d) indicates that
the accuracy is similar for difrerent vowels generated in the same
location. The randomisation effect appears largely independent of
the vocal tract contu{;ur_anon. This "is confirmed by the |%
accuracy of inverse filtering applied fo the Tpressure signal at the
Ups, seé Table 1 Reverberation has little effect on the fesonances
in the vocal tract itself.

Time of estimation ()
0.23

Vowel
i ﬁf&% I
Table 1. Eree .ng (E1,R EdErSPS for, vowels /a/ and i
measired a?ter (i eren? raiors of pho paton,

. Contrasting Fiqure 5 (a%, () with (h), (d) shows a large
discrepancy. in"the SER for the same vowe| recorded at the sare
source-receiver distance but at different points in the same room.
It is instryctive to note that position 1is close to the centre of the
room, while position 2 is close to a wall. It would seem that the
larger number of modes excited in Posnmn 2 produces a greater
reverberant sound field which interferes more strongly with
(11|Irtec_t sound transmission and so reduces the accuracy Of Inverse
iltering.

Exgmin_ing the results obtained for the same vowel in the
same position but extracted after different durations of speech
?_roduct[on Indicates the build up of the interfering. reverberant
field with time. As the reverberant sound field™ increases in
intensity, so the accuracy of glottal waveform extraction reduces,
resulting in lower SERs for the waveforms extracted after longer
durations of phonation.

5. Conclusions _ _
These results suggest that retrieval of the glottal waveform is
aIw_ays_Fossmle, provided that the microphone can be placed
arbitrarily close to the speaker. However, in a hands-free or
distant microphone situations _ it wauld apﬂear that glottal
waveform  recovery is impossiple without the use of “some
reverberation compensation algorithm. o _

It should be noted that” the inverse f||ter|ng accuracies
obtained In this investigation are probably  unobtainable for
normally recorded speech: Under normal conditions the accuracy
of the technique is severely reduced by inaccurate inverse filter
dentification and by the acdition of noise. .

The procedures outhned above provide a test-bed for the
analysis of in-room glottal waveform extraction methods. Work is
continuing to Investigate reverberant effects and to assess the
effectiveniess of dereverberation algorithms in determining the
glottal waveform.
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New formulas for predicting the accuracy of acoustical
measurcments made in noisy environments using the averaged
m-sequence correlation technique

Chnis Bleakley and Ronan Scaife

School of Electronic Engineering Dublin Cuy Unsersin Glasnesin Dublin 9 Ireland

{Received 4 July 1994 accepted for publication 23 Sepiember 1994)

The averaged m sequence correldtion technique has been established as a means of measuring hinear
system responses under high noise conditions This Letter examines the theoretical basis for the
techmque and denves an analytical formula for the expected error in the esimated system response
under noisy conditions at the system input and/or output The formula shows close agreement with
previously published experimental results (W Zuommn and W T Chu, J Acoust Soc Am 94,
1409-1414 {1993)] and with newly denved simulation results

PACS numbers 43 55 Mc, 43 60 Qv

INTRCDUCTION

Ongmnally proposed for architectura) acoustic measure-
ments by Schroeder,’ the m-sequence technique has proved
useful 1n determintng system responses in noisy environ-
ments The method involves exciting the system with an
m-sequence and measunng the output The system’s impulse
response can then be calculated as the circular cross correla-
tion of the nput and output sequences The accuracy of the
technique can be improved by averaging the measurement
over several cycles of the m-sequence

In order to determtne the improvement 1n accuracy pro-
vided by the averaging process, Zuomin and Chu? tested the
techmque under varying degrees of measurement notse and
with vanous numbers of cycles After analyzing their expen-
mental results, Zuomn and Chu fitted an empinical formula
to the data This formula predicted the accuracy of the 1m-
pulse response estimate based on the signal-to noise (S/N)
rat1o of an individual measurement and the number of cycles
over which the results were averaged This formula provides
a means of choosing the number of cycles required to obtain
a given accuracy In estumating the impulse response

In this letter the theoretical aspects of the m-sequence
method are analyzed and an analytic formula, giving the ac-
curacy of the tmpulse response estimate based on the S/N
ratio and the number of cycles, 1s denved The new formula
very closelv matches the experimental results of Zuomin and
Chu but differs from their empincal formula In addition, the
theory covers the general case of input noise and/or measure
ment noise occurnng dunng the measurements Simulation
results, ~hich confirm the improved accuracy of the new
formula, are provided

I NOISELESS CASE

Consider the discrete ime system depicted in Fig 1 The
sampled impulse response #(k) of a linear time invanant
system is to be determined by the m-sequence method The
m sequence x(n) 15 used to excite the system and the output
y (n) 1s recorded The system 15 assumed to be causal and the
impulse response k(&) 1s required to be shorter than the ex-
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ctation sequence x(n), where the length N of the
m-sequence cquals 27—1 Under nowiseless conditions
{a,(n)=0 and a,(n)=0] an estimate A'(k) of the impulse
response of the system can be obtained by calculating the
aircular cross correlation of the mput and output sequences
{based on Ref 1)

N-1 k

1
h' (k) =m—1 2 y(n)x(7=%),

where g=g¢ mod N

(1)
It can be shown that the circular autocorrelation of aa
m-sequence 1S given by3

V-1
N, f (k mod N)=0,
2;0 x(n)(A=%k)= —1, otherwise @

Since the output of the system 1s equal to the convolution of
the 1mpulse response and the input sequence, we can rear
range and substitute to obtamn

V-1

1
N 1 2 h(r)~h(k) (3)

. N+1
B (k)= g hek) =

That 1s, under noiseless conditions the estimated impulse re-
sponse is approsimatelv equal to the true impulse response

I NOISY CASE

Now consider the general case with additive input and
measurement noise We assume that the noise sequences are
stationary, zero-mean, and Gaussian

The addition of the tnput noise a,(n) and the measure-
ment noise a-(n) leads to a new output sequence y'(n) If
we attempt to estimate the impuise response of the system
using the circular cross-correlation method

;v
(k)= gt > v (ATX) (4

+1
n=0

The new output scquence can then be expressed as measure-
ment noise added to the convolution of the true smpulse re
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Number of cycles

FIG. 2. Comparison of the new formula Eq. (22) (solid line) with Zuomin
and Chu’s experimental results (pomts) The figure shows the difference
between the recovered and the “true” 1/3-octave-band SPL versus the num-
ber of cycles. The system has zero mput noise and a measurement SIN ratio
of (0) -0.5 dB; (1) -5.4 dB; (+) -10.4 dB; (+) -15.4 dB.
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FIG. 3. Percentage difference betweenEpred|ct|ons of Zuomin and Chu’s
formula Eg. (23) and the new formula q 22). The figure shows the dif-
ference between the recovered and the “true™ SPL versus the number of
cycles and the measurement S/N ratio, assuming zero input noise.
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FIG 4 Companson of supulation results (pownts) Zuomins and Chus
formula Eq (23) (dofted line) and the new formula Eq (22) (sohd line) The
figure shows the difference between the recovered and the true SPL ver
sus the number of cycles The system simulated had zero waput noise and a
measurement S/N ratio of (O) +20 dB (X) —20 dB The results were
averaged over 200 and 20 tnals, respectively

estimate was then determuned as the difference i SPL be-
tween the estimated and “trme” unpulse response The re-
sults were averaged over a number of tnals for several com-
binations of the S/N ratio and number of cycles The
simulation results are plotted in Fig 4 along with the predic-
tions of Eqs (22) and (23) Clearly, the new formula Eq (22)
1s more accurate for these more extreme parameter values In
addition, the new formula has the desiwred property of pre-
dicting a zero error for impulse response extraction under
noiseless conditions

VI INPUT AND MEASUREMENT NOISE

In order to test the predictions of Eq (16) for both input
and measurement noise, the simulations descnbed in Sec V
were extended to include nput noise as well as measurement
noise The results obtained were then plotted 1n Fag 5, to-
gether with the theoretical predictions of Eq (16) This evi-
dence further supports the accuracy of the new formula

VIl CONCLUSIONS

An improved formula for predicting the accuracy of the
averaged m-sequence method has been denved The accu-
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FIG 5 Companison of sumulation results (pounts) and the new formula Eq
(16) (sohid Line} The figute shows the difference between the recovered and
the ‘true * SPL versus the number of cycles The system simulated had snput
noise of (bottom) —05 dB, (mmddle) —104 dB, (top) —154 dB and a
measurement S5/N ratio of (O) wnfimty (+) =54 dB, (¢+) —154 dB The
results were averaged over 20 tnals

racy of the formula has been confirmed by the experimental
results of Zuomin and Chu and by simulations carned out by
the authors The formula 1s both more general and more ac-
curate than that proposed by Zuomin and Chu This work
will provide for more accurate error prediction when using
the averaged m-sequence method
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APPENDIX C

TEST DATA

C 1 INTRODUCTION

Determining the performance of the glottal extraction techniques described 1n this thesis requires
the use of test speech data This appendix descnibes the generation of that data.

The test data 1s split into four categones - noiseless, noisy, reverberant and office recordings The
noiseless data was recorded 1n a hem-anechoic studio Care was taken to ensure that these recordings
were of the highest possible fidelity To obtain the noisy data, white noise signals, of varying intensity,
were added to the noiseless recordings The reverberant data was generated by filterning the noiseless
recordings with sumulated room reverberant impulse responses The noisy and reverberant data were
generated 1n this way so that the performance of the glottal extraction algonthms could be tested under
controlled levels of distorion The office test data was captured by recording natural speech 1n a typical
office environment The office speech data contained both noise and reverberation at levels typically
encountered n speech coding applicauons In each category, the speech data consisted of a single all-
voiced sentence read aloud by a male and a female subject. All of the recordings were made with phase
linear recording equipment

The appendix 1s divided 1nto five secions Section two describes the recording techmques used to
capture the noiseless test data Section three details generation of the noisy test data Section four
descnibes the generation of the reverberant data Finally, section five details how the office test data was

obtaned and secton 6 concludes the appendix

C.2 NOISELESS SPEECH DATA

This section descnbes how noiseless speech data was recorded The sentence "We were away a
year ago” was read aloud by a male and a female subject. Both subjects are speakers of Briish English
with Irish dialects The sound was captured using a Bruel and Kj@r microphone (model 4006) with an
Alice Soundtek pre-amplifier The signal was anti-aliased and sampled at 48 kHz to a 16 bit resolution
usmg a Loughborough Sound Images TMS320C30 development card in an IBM PC The recording
equipment was found to have neghgible phase and amplitude distortion over the range 20 Hz to 20 kHz
The recordings were digitally decimated to a sampling frequency of 8 kHz, using a 8th order FIR low
pass filter with cut-off at 3 2 kHz [IEEE, 1979] Additionally, a FIR high pass filter with cut-off at 20 Hz
was applied to remove low frequency noise Both filters were passed forwards and backwards across the
signal to ensure that they introduced no phase distortion

Two further recordings were made wn the same manner using a different male subject. These
recordings were designed to capture three types of voicing not included 1n the onginal sentence The
utterances chosen were "Eva” for the voiced fricative [v] and "who's been” for the high back vowel [u]

and the voiced plosive [b]

C-1



The recordings were conducted mn a studio which was well sound-proofed and acoustically
deadened The studio walls were covered n acoustic wadding and heavy curtains, the floor was carpeted
and acoustc tiles were fixed to the ceiling The room measured 3 m by 3 m by 27 m A lip-microphone
distance of approxiumately 10 cm was chosen, providing comfort for the speakers and low noise in the
recordings The signal to noise ratio (SNR) of the recordings was found to be approximately 60 dB and
58 dB for the male and female data, respecuvely The speech waveform for the first word of the test

sentence 1s shown 1n the top panels of Ftg C 1

C.3 NOISY SPEECH DATA

In order to generate samples of noisy speech, whate noise was added to the noiseless recordings
Test data with SNRs of 35, 30, 25, 20 and 15 dB were generated Note that the SNRs were determined
by calculating the rauo of the energy of the speech signal in the non-silent portions of the recordings to
the energy of the added noise Thus, at voicing onsets and offsets the SNR 1s significantly less than the
nominal values given above Fig C 1 panels 2 and 3 show the first part of the test data with added noise
giving SNRs of 25 and 15 dB, respectvely

C 4 REVERBERANT SPEECH DATA

The reverberant speech data was generated by convolving the noiseless recordings with simulated
room mmpulse responses The artficial responses were generated using the Image Method [Allen and
Berkley, 1979] The accuracy of this procedure was established beforehand, see Chapter 4

Five artificial room mmpulse responses were generated and applied to the speech data The
impulse responses were designed to represent typical transfer functions occurring between the lips and a
microphone placed 1n a normal room The dimensions of the room were selected as 25 m by 3 0 m by
27 m Reflectuon coeffictents of 09, 07 and 07 were chosen for the walls, floor and cetling,
respectively These parameters led to a reverberation tume of 0 25 s for the enclosure This 1s typical for
an office environment with some soft fabnc wall and floor covenngs The source was placed near the
centre of the room, at coordinates (09 19, 0 7) m and source-receiver distances of 10, 20, 30, 40 and
50 cm along the y-axis were used In this way, the test data spans the range of lip-microphone distances
normally encountered 1n conventtonal speech processing applications The first part of the test data

generated for source-recerver distances of 30 and 50 ¢m is shown in Fig C2

C.5 OFFICE SPEECH DATA

To obtain samples of speech under normal ambient conditions, the recording process was carmed
out 1n a typical office environment 1n the presence of background noise and reverberation Two subjects
were used one male and one female Both subjects were different from those used in the noseless
experunents but, again, they were Irish dialect speakers of Bnush English The subjects were requested

to read the sentence "Early one morming, a man and a woman ambled along a one mile lane” The
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recording room was L-shaped with rough brick wails, a smooth concrete floor and acoustic ceiling tiles
The dimensions of the room were as follows room annex 3 m by 3 m, main room 7 m by 6 m, height
2 5 m The recordings were made with the subjects standing about 1 m from the nearest wall in the room
annex A lip-microphone distance of roughly 20 cm was used 1 both cases Furthermore, the recording
equipment and procedure were the same as that employed for the noiseless recordings The SNRs of the
male and female recordings were approxiunately 38 dB and 41 dB, respecuvely Fig C 3 shows part of

the speech waveform from the first word recorded by the two subjects

C 6 CONCLUSION

This appendix describes the producuon of test speech data for use 1n the experuments detailed 1n
thas thesis Four types of test data were generated - noiscless, noisy, reverberant and office The noiseless
data was recorded under near anechoic conditions in a sound-proofed studio The noisy data was
produced by adding white noise to the nowseless recordings The reverberant data was obtained by
convolving simulated room impulses with the noiseless speech recordings The office data was captured
by recording natural speech 1n a typical office environment under condittons of noise and reverberation
The speech data consisted of all-voiced sentences read aloud by male and female subjects Different
subjects were used for the noiseless and office recordings Care was taken to ensure that the recordings

underwent no phase distortion
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