1,128 research outputs found

    Partially shared buffers with full or mixed priority

    Get PDF
    This paper studies a finite-sized discrete-time two-class priority queue. Packets of both classes arrive according to a two-class discrete batch Markovian arrival process (2-DBMAP), taking into account the correlated nature of arrivals in heterogeneous telecommunication networks. The model incorporates time and space priority to provide different types of service to each class. One of both classes receives absolute time priority in order to minimize its delay. Space priority is implemented by the partial buffer sharing acceptance policy and can be provided to the class receiving time priority or to the other class. This choice gives rise to two different queueing models and this paper analyses both these models in a unified manner. Furthermore, the buffer finiteness and the use of space priority raise some issues on the order of arrivals in a slot. This paper does not assume that all arrivals from one class enter the queue before those of the other class. Instead, a string representation for sequences of arriving packets and a probability measure on the set of such strings are introduced. This naturally gives rise to the notion of intra-slot space priority. Performance of these queueing systems is then determined using matrix-analytic techniques. The numerical examples explore the range of service differentiation covered by both models

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    Priority Control in ATM Network for Multimedia Services

    Get PDF
    The communication network of the near future is going to be based on Asynchronous Transfer Mode (ATM) which has widely been accepted by equipment vendors and service providers. Statistical multiplexing technique, high transmission speed and multimedia services render traditional approaches to network protocol and control ineffective. The ATM technology is tailored to support data, voice and video traffic using a common 53 byte fixed length cell based format with connection oriented routing. Traffic sources in A TM network such as coded video and bulk data transfer are bursty. These sources generate cells at a near-peak rate during their active period and generate few cells during relatively long inactive period. Severe network congestion might occur as a consequence of this dynamic nature of bursty traffic. Even though Call Admission Control (CAC) is appropriately carried out for deciding acceptance of a new call, Quality of Service (QOS) may be beyond the requirement limits as bursty traffic are piled up. So, priority control, in which traffic stream are classified into several classes according to their QOS requirements and transferred according to their priorities, becomes an important research issue in ATM network. There are basically two kinds of priority management schemes: time priority scheme that gives higher priority to services requiring short delay time and the space priority scheme that gives high priority cells requiring small cell loss ratio. The possible drawbacks of these time and space priority schemes are the processing overhead required for monitoring cells for priority change, especially in the case of time priority schemes. Also, each arriving cell needs to be time stamped. The drawback of the space priority scheme lies in the fact that buffer management complexity increases when the buffer size becomes large because cell sequence preservation requires a more complicated buffer management logic. In this thesis, a Mixed Priority Queueing or MPQ scheme is proposed which includes three distinct strategies for priority control method -- buffer partitioning, allocation of cells into the buffer and service discipline. The MPQ scheme is, by nature, a non-fixed priority method in which delay times and loss probabilities of each service class are taken into account and both delay times and loss probabilities can be controlled with less dependency compared with the fixed priority method, where priority grant rule is fixed according to the service class, and the priority is always given to the highest class cell among cells existing in the buffer. The proposed priority control is executed independently at each switching node as a local buffer management. Buffer partitioning is applied to overcome the weakness of the single buffer
    corecore