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Abstract

In this paper, we consider several discrete-time priority queues with priority jumps. In a
priority scheduling scheme with priority jumps, real-time and non-real-time packets arrive in
separate queues, i.e., the high- and low-priority queue respectively. In order to deal with possibly
excessive delays however, non-real-time packets in the low-priority queue can in the course of
time jump to the high-priority queue. These packets are then treated in the high-priority queue
as if they were real-time packets. Many criteria can be used to decide when packets of the
low-priority queue jump to the high-priority queue. Some criteria have already been introduced
in the literature, and we first overview this literature. Secondly, we propose and analyse a new
priority scheme with priority jumps. Finally, we extensively compare all cited schemes. The
schemes all differ in their jumping mechanism, based on a certain jumping criterion, and thus
all have a different performance. We show the pros and cons of each jumping scheme.

1 Introduction

An efficient priority scheme is of great importance in the design and construction of telecommu-

nication networks. Modern telecommunication networks, i.e., originally data-oriented networks in

which real-time applications are integrated, have to cope with the strict delay-related performance

requirements of real-time traffic (e.g., voice and video). For this type of traffic, mean delay and

delay jitter have to be small. For non-real-time traffic on the other hand, loss ratio and throughput

are important performance metrics. Different types of traffic are thus characterised by different

QoS (Quality of Service) standards. The ability to differentiate real-time, delay-sensitive traffic,

and non-real-time, delay-tolerant traffic, is one of the main keys to a succesful telecommunication
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Figure 1: The static HOL priority scheme

network. Adopting priority scheduling schemes in routers, where multiple priority levels provide

the transmission of different types of traffic, helps to achieve differentiation in the QoS constraints.

In the static, Head-Of-Line (HOL) priority scheduling scheme, transmission priority is always

given to the delay-sensitive packets. This means that as long as there is delay-sensitive, type-1 traffic

present in the system, this traffic has transmission priority over delay-tolerant, type-2 traffic. In the

assumption that both types of traffic arrive in separate queues, packets of the low-priority queue

are thus only transmitted when the high-priority queue is empty (see Figure 1). The HOL priority

scheme does indeed provide low delays for the type-1 traffic (see e.g., [1, 3, 8]). The performance for

type-2 traffic can however be severely degraded: the HOL priority scheme can cause excessive delays

for the type-2 traffic when the network is highly loaded. Although type-2 traffic is delay-tolerant

to a certain extent, excessive delays have to be avoided. Furthermore, some other negative effects

can follow from excessive delays: the Transmission Control Protocol (TCP) e.g., could consider a

type-2 packet with a too big delay as being lost, and would consequently decrease its transmission

rate. This decreases the throughput, which is detrimental to data-applications. The decrease of

the transmission rate is however unnecessary since the type-2 packet is not lost. The impact of

the HOL priority scheme on the performance of a telecommunication network may thus be too

disadvantageous in some cases. To deal with this so-called starvation problem of type-2 packets,

several priority schemes with priority jumps have been proposed in the (recent) past.

In a priority scheme with priority jumps (in the remainder, called a jumping scheme), first

introduced in [4], the priority level of packets can be adapted in the course of time. Concretely,

packets of the low-priority queue can in time jump to the (tail of the) high-priority queue (see Figure
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Figure 2: Priority schemes with priority jumps

2). Introducing jumping mechanisms in priority schemes tries to enhance priority scheduling by

avoiding excessive delays for type-2 packets, while keeping the delay for type-1 traffic small. Many

criteria can be used to decide when type-2 packets jump to the high-priority queue: a maximum

queueing delay in the low-priority queue [4], a queue-length-threshold of the high- or low-priority

queue [2, 6], a random jumping probability per time unit [5], the arrival characteristics of type-1

or type-2 traffic [7],. . .

In this paper, we consider several jumping schemes: the Head-Of-Line with Priority Jumps

(HOL-PJ) scheme, the Head-Of-Line Merge-By-Probability (HOL-MBP) scheme, the Head-Of-Line

Jump-Or-Serve (HOL-JOS) scheme, and the original Head-Of-Line Jump-If-Arrival (HOL-JIA1)

scheme. Most of these schemes are already analysed in the literature [2, 4, 5, 6, 7]. An overview

of them is given in section 2. Note that we here consider discrete-time queueing models, i.e., time

is assumed to be slotted. We furthermore propose and analyse a new scheme, namely the HOL-

JIA2 scheme. This is an improved version of the HOL-JIA1 scheme studied in [7]. Via an analysis

based on probability generating functions (pgfs), we derive the pgfs of the contents of the high-

and low-priority queue, and the pgf of the delay of a type-1 packet. Moments are easily determined

from the calculated pgfs. We also obtain the mean type-2 packet delay, although it seems difficult

to determine an expression for the corresponding pgf. An extensive performance comparison of all

considered jumping schemes is further presented in section 4.

The contribution of this paper first concerns the newly proposed JIA mechanism. Letting pos-

sible jumps depend on arriving type-2 packets makes HOL-JIA scheduling self-adaptive, i.e., the
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arrival characteristics of type-2 traffic determine the effect of HOL-JIA scheduling on the per-

formance of the telecommunication system. This self-adaptiveness seems to be promising, since

no parameters have to be set by an operator. Secondly, for the HOL-JIA schemes, it appears to

be complex to analyse the delay of a type-2 packet by deriving its corresponding pgf. However,

a non-standard use of Little’s theorem provides us a cunning trick to calculate the mean type-2

packet delay. Finally, the numerical examples clearly illustrate that subtle differences in the jump-

ing mechanisms can yield considerable differences between their impact on the behaviour of a

system. Finding the ideal jumping scheme is thus not straightforward.

The paper is organised as follows. In the following section, we briefly overview previous work

on priority schemes with priority jumps. Section 3 contains the idea and the study of the newly

proposed HOL-JIA2 scheme. In section 4, we compare the performance of different priority jumping

schemes. Conclusions and future work are formulated in section 5.

2 Overview of jumping schemes in the literature

2.1 The original HOL-PJ scheme

The original HOL-PJ jumping scheme was introduced in [4]. In this jumping scheme, a maximum

queueing delay L is imposed on packets in the low-priority queue. Immediately after a packet’s

delay at the low-priority queue equals L, the packet jumps to the tail of the high-priority queue. An

exact analysis of the queue contents and the delay distributions in this queueing system is very

cumbersome, since it is necessary to keep track of the waiting times of the packets in the low-priority

queue. In [4], the authors therefore develop a queueing model for calculating the average queueing

delays of both types of traffic and for heuristically approximating the delay distributions. Possible

disadvantages of this jumping scheme are the processing overhead required for monitoring packets

for time-out, and the additional hardware necessary to keep timestamps of all the packets in the

low-priority queue.

2.2 The HOL-MBP scheme

The Head-Of-Line Merge-By-Probability (HOL-MBP) jumping scheme (see [5]) was mainly pro-

posed to evade the disadvantages of the HOL-PJ scheme. In the HOL-MBP scheme, a parameter

4



β is introduced, and defined as the probability that at the end of each slot the total content of

the low-priority queue jumps to the tail of the high-priority queue. Or, in other words, β gives

the probability that at the end of each slot the contents of the high- and low-priority queue are

merged. Maertens et al [5] have derived the pgfs of the contents of the high- and low-priority queue,

and the pgfs of the delays of both types of traffic. This pgf approach then easily led to expres-

sions for performance measures (such as mean values and variances). A comparison study (see [5])

moreover shows that the (simulated) performance of the HOL-PJ scheme hardly differs from the

performance of the HOL-MBP scheme. The latter can however be implemented more easily, and is

analytically tractable.

2.3 The HOL-JOS scheme

In the HOL-MBP scheme, the total content of the low-priority queue can jump at the end of each

slot. Since this could mean that lots of packets have to be moved simultaneously (especially when β

is extremely low), we have proposed some other jumping schemes. In the Head-Of-Line Jump-Or-

Serve (HOL-JOS) jumping scheme (see [6]), only the packet at the HOL-position of the low-priority

queue can jump to the high-priority queue. This possible jump at the beginning of each slot depends

on the content of the high-priority queue at the beginning of the slot, i.e., when this queue is non-

empty, the packet jumps. When the high-priority queue is empty on the other hand, the HOL-packet

of the low-priority queue is immediately transmitted (or, served). Maertens et al [6] have obtained

the pgfs of the contents of the high- and low-priority queue, and the pgfs of the delays of both types

of traffic. From these pgfs, again expressions for some interesting performance measures (such as

mean values, variances, and approximate tail probabilities of the studied stochastic variables) are

efficiently derived.

2.4 The HOL-JIA1 scheme

The flow of delay-tolerant, type-2 traffic into the high-priority queue may be too drastic in the HOL-

JOS scheme. To somehow restrict this flow, an extra jumping condition can be introduced. As in

the HOL-JOS scheme, only the packet at the HOL-position of the low-priority queue can jump

to the high-priority queue in the first Head-Of-Line Jump-If-Arrival (HOL-JIA1) jumping scheme

(see [7]). However, the possible jump at the end of a slot does not only depend on the contents
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of the high-priority queue at the beginning of the slot, but also on the number of type-2 packets

that arrive in that slot. Specifically, during a slot in which a packet of the high-priority queue is

transmitted, the HOL-packet of the low-priority queue jumps to the high-priority queue if, and

only if, type-2 packets arrive during that slot. Note that in this scheme, arriving type-2 packets are

not allowed to jump immediately upon arrival (i.e., at the end of their arrival slot). In [7], we have

derived the pgfs of the contents of the high-and low-priority queue, and the pgf of the delay of a

type-1 packet. Related moments are then easily derived from the obtained pgfs.

3 The HOL-JIA2 scheme

3.1 Idea

In the HOL-JIA1 scheme, it is assumed that arriving type-2 packets are not allowed to jump at the

end of their arrival slot. However, when few type-2 packets arrive at the system, the type-2 packet

at the HOL-position of the low-priority queue may experience an excessive delay since it has to

wait for another, rare type-2 arrival. To avoid this situation, we can allow type-2 packets to jump

immediately upon arrival. The type-2 packet that jumps at the end of a slot to the high-priority

queue is thus either a packet that was already in the low-priority queue at the beginning of that

slot, or, when the low-priority queue was empty at the beginning of the slot, a packet that arrived

during the slot. This jumping scheme is defined as the HOL-JIA2 scheme. This is a newly proposed

jumping scheme, and we will therefore first briefly describe its analysis. Since this analysis is rather

similar to the analyses of the HOL scheme (see [8]) and the HOL-JOS scheme (see [6]), we only

give a sketch of the analysis and further refer to [6] and [8] for more details. We derive the pgfs of

the contents of the high- and low-priority queue, and the pgf of the delay of a type-1 packet. This

allows us to calculate moments, such as mean values and variances. A procedure to calculate the

mean delay of a type-2 packet is furthermore proposed.

3.2 Mathematical model

We consider a discrete-time queueing system with two queues of infinite capacity, and with one

transmission channel. Two types of traffic arrive at the system: packets of type 1, which are stored

in the first queue, and packets of type 2, which are stored in the second. The numbers of per-slot
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type-1 and type-2 arrivals are characterised by their joint pgf A(z1, z2), and the marginal pgf’s

AT (z) = A(z, z), A1(z) = A(z, 1) and A2(z) = A(1, z) (with λj = A′

j(1) the arrival rate of type-j

packets, and λT = λ1 + λ2 the total arrival rate). The transmission times equal one slot, and

packets of the first queue have a higher priority than those of the second queue. So, whenever

there are packets present in the high-priority queue, they have transmission priority; only when the

high-priority queue is empty, packets of the low-priority queue can be transmitted (see Figure 2).

The system is finally influenced by the following jumping mechanism: at the end of each slot

in which a packet of the high-priority queue is transmitted and in which type-2 packets arrive at

the system, the packet at the HOL-position of the low-priority queue jumps to the high-priority

queue. When the low-priority queue is empty at the beginning of such a slot, one of the newly

arriving type-2 packets jumps to the high-priority queue. Since the jump occurs at the end of the

slot, the jumping packet is queued behind the type-1 arrivals during the same slot.

3.3 Analysis of the system contents

Let us define u1,k and u2,k as the contents of the high- and low-priority queue at the beginning

of slot k respectively, and uT,k as the total system content at the beginning of slot k. We hereby

assume that the packet in transmission (if any) is part of the queue that is “served” in that slot. The

joint pgf of u1,k and u2,k is denoted by Uk(z1, z2) , E
[

z
u1,k

1 z
u2,k

2

]

. The following system equations

can be derived:

• if u1,k = 0:











u1,k+1 = a1,k

u2,k+1 = [u2,k − 1]+ + a2,k

, (1)

• if u1,k > 0:

– if a2,k = 0:











u1,k+1 = u1,k − 1 + a1,k

u2,k+1 = u2,k

, (2)
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– if a2,k > 0:











u1,k+1 = u1,k + a1,k

u2,k+1 = u2,k + a2,k − 1
, (3)

where [· · · ]+ denotes the maximum of the argument and zero. When the high-priority queue is

empty at the beginning of slot k, a packet of the low-priority queue (if any) is transmitted during

slot k (Eq. (1)). When the high-priority is non-empty at the beginning of slot k, a packet of the

high-priority queue is transmitted. In this case, a low-priority packet jumps at the end of slot k

to the high-priority queue iff a2,k > 0 (Eqs. (2) and (3)). Introducing pgfs in the system equations

and letting k → ∞ establishes a steady-state relationship between U(z1, z2), U(0, z2) and U(0, 0):

U(z1, z2) =
z1(z2 − 1)A(z1, z2)U(0, 0) + (z1 − z2)A(z1, 0)U(0, z2)

z1z2 − z1A(z1, z2) − (z2 − z1)A(z1, 0)
. (4)

Using the normalization condition and Rouché’s theorem to obtain U(0, 0) and U(0, z2) respectively

(see e.g., [6] and [8] for a similar procedure), finally yields the joint pgf of the contents of both

queues at the beginning of a random slot in the steady state:

U(z1, z2) =
(1 − λT )(z2 − 1)

(

z1A(z1, z2)(z2 − A(Y (z2), z2)) + (z1 − z2)A(z1, 0)A(Y (z2), z2)
)

(

z2 − A(Y (z2), z2)
)(

z1z2 − z1A(z1, z2) − (z2 − z1)A(z1, 0)
) , (5)

with

Y (z) ,
Y (z)

z
A(Y (z), z) +

(z − Y (z))

z
A(Y (z), 0). (6)

Substituting z1 and z2 in (5) by the appropriate values, yields the marginal pgfs UT (z), U1(z)

and U2(z) of the total system content, and of the contents of the high- and low-priority queue

respectively:

UT (z) , lim
k→∞

E [zuT,k ] = U(z, z)

=
(1 − λT )AT (z)(z − 1)

z − AT (z)
, (7)

U1(z) , lim
k→∞

E [zu1,k ] = U(z, 1)
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=
(A2(0) − λ1)(z − 1)A(z, 0)

A2(0)
(

z − A(z, 0) − z(A1(z) − A(z, 0))
) , (8)

U2(z) , lim
k→∞

E [zu2,k ] = U(1, z)

=
(1 − λT )(z − 1)

(

A2(z)(z − A(Y (z), z)) − A2(0)(z − 1)A(Y (z), z)
)

(

z − A(Y (z), z)
)(

z − A2(z) − (z − 1)A2(0)
) , (9)

with Y (z) implicitly defined by (6). By taking the first derivatives of (6)-(9), for z = 1, and by

making extensive use of de l’Hopital’s rule, we get expressions for Y ′(1) (necessary for further

derivations) and for E [uT ], E [u1] and E [u2], i.e., the mean values of the total system content, and

of the contents of the high- and low-priority queue respectively. For future reference, we here give

the expression for E[uT ]:

E [uT ] = λT +
λTT

2(1 − λT )
, (10)

with λTT , A′′

T (1). Note further that expressions for higher moments can be obtained by taking

higher order derivatives of the respective pgfs, for z = 1.

3.4 Analysis of the packet delay

Since the possible jump of the HOL-packet of the low-priority queue takes place at the end of a

slot, all type-1 packets that arrive during a particular slot k, including a “tagged” type-1 packet,

are queued in front of the possibly jumping packet. The delay of the tagged type-1 packet, i.e.,

the number of slots between the end of the packet’s arrival slot and the end of its departure slot,

thus only depends on the content of the high-priority queue at the beginning of slot k (u1,k). So,

D1(z) (the pgf of the type-1 packet delay) can be easily expressed in terms of U1(z) (see e.g., [5, 8]

for more details), for which an expression was found in the previous subsection (see Eq. (8)). This

leads to

D1(z) =
(A2(0) − λ1)z(A1(z) − 1)(1 − A1(z) + A(z, 0))

λ1A2(0)
(

z − A(z, 0) − z(A1(z) − A(z, 0))
) . (11)
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By taking the first derivative of (11) for z = 1, we find an expression for E [d1], i.e., the mean delay

of a type-1 packet:

E[d1] = 1 +
λ1(λ1 − A(1)(1, 0))

A2(0)(A2(0) − λ1)
+

λ11A2(0)

2λ1(A2(0) − λ1)
, (12)

with A2(0) the probability of having no type-2 arrivals in a slot, A(1)(1, 0) ,
∂A(z1, z2)

∂z1

∣

∣

∣

∣

z1=1,z2=0

,

and λ11 , A′′

1(1). By taking higher order derivatives for z = 1, expressions for higher moments can

also be obtained.

The total number of slots that a tagged type-2 packet spends in the system can be expressed

as d2 = [uT,k − 1]+ +a1,k + f2,k + p+1, with k the arrival slot of the tagged type-2 packet, uT,k the

total system content at the beginning of slot k, and a1,k and f2,k the number of type-1 and type-2

packets that arrive during slot k, but which have to be transmitted before the tagged packet. The

quantity p represents the number of type-1 packets that arrive during slots following the tagged

packet’s arrival slot, but which have to be transmitted before the tagged one (because of the priority

scheduling). In priority models, p is typically described as a sum of sub-busy periods, with a sub-

busy period being defined as the number of type-1 arrivals during the time that the tagged packet

is in a certain position in the low-priority queue. In this particular model however, these sub-busy

periods depend on the evolution of the high-priority queue, which leads to correlation between

subsequent sub-busy periods. This is usually not the case in previously studied priority models (see

e.g., [5, 8]). As a consequence, an exact analysis of the delay of a tagged type-2 packet is rather

complex, and still an open issue at the moment.

Although it seems complicated to derive an explicit expression for the pgf of the delay of a

type-2 packet, it is however possible to calculate the mean delay of a type-2 packet. It should

first be mentioned that E [uj ] = λjE [dj] (j = 1, 2) does not hold, as one would at first expect

according to Little’s theorem. The reason for this is that in the calculations of the system contents

jumped type-2 packets are treated as part of the content of the high-priority queue. This is not

the case in the calculations of the packet delay. Or, in other words, Little’s theorem does not hold

with respect to each queue separately, because the system contents is defined on a “queue”-basis,

while the packet delay is defined on a “packet”-basis. For the total system on the contrary, Little’s

theorem does hold: E [uT ] = λT E [d] (with E [d] the mean delay of an arbitrary - type-1 or type-2
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- packet). Substituting this relationship in E [d] =
λ1

λT

E [d1] +
λ2

λT

E [d2] (with
λj

λT

the probability

that a random arriving packet is of type j, and with j = 1, 2), we find

E [d2] =
E [uT ] − λ1E [d1]

λ2
. (13)

Since E [uT ] as well as E [d1] are calculated (see Eqs. (10) and (12) respectively), we are thus able

to derive an expression for the mean delay of a type-2 packet.

4 Performance comparison

In this section, we compare the performance of the various jumping schemes for a specific ar-

rival process. We thereby especially focus on the comparison of the newly proposed HOL-JIA2

scheme with the other jumping schemes. Since the jumping schemes were mainly introduced to

lower the delay of delay-tolerant, type-2 traffic without having a too negative effect on the delay

of delay-sensitive, type-1 traffic, we focus on the mean packet delays of both types of traffic to

compare them. The performance comparison is done in three steps. We first briefly compare the

jumping schemes that have a jumping parameter, i.e., the HOL-MBP scheme and the HOL-PJ

scheme (see also [5]). Afterwards, we make an extensive comparison of the jumping schemes that

do not have an extra jumping parameter: the HOL-JOS scheme, the HOL-JIA1 scheme, and the

HOL-JIA2 scheme. We balance the pros and cons of each jumping scheme. Finally, we illustrate

the (dis)advantages of having a jumping parameter. Note that we have also included the static

HOL priority scheme (see e.g., [8]) and sometimes the plain First-In-First-Out (FIFO) scheme, for

reference purposes.

Except for the jumping mechanism, the model of all schemes is chosen identical, in order to

provide a fair and valid comparison. More precisely, the mathematical model of subsection 3.2

is adopted. Unless otherwise stated, we furthermore consider a two-dimensional binomial arrival

process, fully characterised by the joint pgf

A(z1, z2) =
(

1 −
λ1

N
(1 − z1) −

λ2

N
(1 − z2)

)N

, (14)

with N = 16 in the figures. The arrival rate of type-j traffic is then given by λj (j = 1, 2), and the
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Figure 3: Mean value of packet delays versus α when L = 4 (β = 0.25)

total arrival rate by λT = λ1 + λ2. We define α as the fraction of type-1 traffic in the overall traffic

mix (i.e., α = λ1/λT ). It should be noticed that (14) specifies the arrival process to a particular

queue in an output-queueing packet switch with Bernoulli arrivals at its inlets, and with uniform

routing. In the case of FIFO scheduling, the packet delay is the same for type-1 and type-2 packets

(independent of α), and can thus be calculated as if only one type of traffic arrives according to an

arrival process with pgf A(z, z).

4.1 Initial remark

Since all considered schemes (i.e., the FIFO scheme, the static HOL scheme, and all jumping

schemes) are work-conserving, and since all packets have the same transmission time (one slot), the

mean total system content E[uT ] is the same for all schemes. According to Little’s theorem, this

means that also the mean delay of an arbitrary packet E[d] is the same for all considered schemes. As

a consequence, the scheduling scheme has no influence on E[d]. We furthermore know that for

each scheme E[d] = αE[d1] + (1 − α)E[d2] (with E[dj ] the mean type-j packet delay, j = 1, 2),

because the probabilities that a random arriving packet is of type-1 and type-2 equal α and 1 − α

respectively. Assuming α fixed then, a lowered E[d2] for a scheme with priority jumps thus implies

an increased E[d1]. Note also that when α → 0, E[d2] converges for all priority schemes and for the

FIFO scheme, since basically only type-2 packets arrive at the system. When α ≈ 1 (i.e., when the

overall traffic mix only exists of type-1 traffic) on the other hand, E[d1] is the same for all schemes.
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4.2 Schemes with a jumping parameter

We first briefly compare the (simulated) performance of the HOL-PJ scheme with the (calculated)

performance of the HOL-MBP scheme. To make a valid comparison between both schemes, it is

necessary to define a proper relation between the jumping parameters of both schemes, i.e., the

jumping probability β of the HOL-MBP scheme and the delay limit L of the HOL-PJ scheme. It is

easily verified that the number of slots until a type-2 packet jumps is deterministically equal to L in

the latter scheme, while it is geometrically distributed with parameter (1−β) in the first. Choosing

L equal to (1 − β)/β seems a natural choice since this equalises their respective means. Note that

the variances of the two distributions then equal 0 and (L + 1)L respectively.

In [5], we have already illustrated the influence of the total arrival rate on the mean packet

delays of both types of traffic. Here, we examine the influence of the traffic mix on E[d1] and

E[d2] for the two jumping schemes. Figures 3a. and 3b. show the mean packet delays of both

types of traffic when L = 3 (and thus β = 0.25), as functions of α, for λT = 0.7 and λT = 0.9

respectively. We notice that the HOL-PJ scheme leads to a lower E[d1], while the HOL-MBP scheme

performs better for E[d2]. The difference, altough small, is firstly caused by the different variances

of the number of slots until a type-2 packet jumps for both schemes. This variance is namely

larger in the HOL-MBP scheme than in the HOL-PJ scheme. A larger variance means that type-2

packets are subject to more varying waiting times in the low-priority queue. It is then possible

that the low-priority queue builds up, and that a lot of packets are transferred to the high-priority

queue. This effect is further increased by the fact that the total content of the low-priority queue

jumps in the HOL-MBP scheme. Arriving type-1 packets thus suffer from larger delays due to

the ’burstiness’ of the number of jumping packets, resulting in a higher E[d1] for the HOL-MBP

scheme. This phenomenen especially appears when α is low (i.e., when a lot of type-2 packets enter

the system). E.g., when α ≈ 0 in the HOL-MBP scheme, a rare type-1 arrival can be preceded by

a merge of the high-priority queue and a “big” low-priority queue. In the HOL-PJ scheme, jumps

are more spread over time. The exceptionally arriving type-1 packet is thus expected to be delayed

longer in the HOL-MBP scheme than in the HOL-PJ scheme. When α is high, the low-priority

queue cannot build up as much since there are fewer type-2 arrivals.

In general, we can state that the HOL-PJ scheme and the HOL-MBP scheme have a similar

performance (provided the right choices of the jumping parameters β and L) with regard to the
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Figure 4: Mean value of packet delays versus α

mean packet delays of both types of traffic; HOL-MBP scheduling results in a slightly lower mean

type-2 packet delay. The figures also illustrate that the mean type-2 packet delay can be decreased

significantly by introducing a jumping mechanism, especially when α is high.

4.3 Schemes without a jumping parameter

We furthermore compare the three jumping schemes that do not have a jumping parameter. First

note that the curves of E[d1] (i.e., the mean type-1 packet delay) and E[d2] (i.e., the mean type-2

packet delay) for the HOL-JIA schemes will always lie between those for the HOL scheme and the

HOL-JOS scheme. This is due to the different jumping mechanisms in the stated schemes. Indeed,

in the HOL scheme, there are no jumps at all, while in the HOL-JOS scheme, the HOL-packet of the

low-priority queue jumps in every slot in which a packet of the high-priority queue is transmitted. In

the HOL-JIA schemes, jumps occur but are restricted to those slots where type-2 packets arrive,

and the number of jumps is thus more controlled than in the HOL-JOS scheme. In the remainder

of this subsection, we perform a thorough comparison of the schemes and examine their impact

on the mean packet delays of both types of traffic, as functions of the traffic mix, the total arrival

rate, the arrival rate of type-2 traffic, and the variance of the number of type-2 arrivals in a slot

respectively. We thereby pay special attention to the newly introduced HOL-JIA2 scheme.

4.3.1 Impact of the traffic mix

In Figures 4a. and 4b., we show the mean packet delays of both types of traffic for λT = 0.7 and

λT = 0.9 respectively, as functions of α. We first notice that when α → 0 (i.e., when the overall
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traffic mix basically only exists of type-2 traffic), E[d1] → 1 for all considered priority schemes. When

α ≈ 0 in these schemes, type-2 packets are immediately transmitted out of the low-priority queue,

and the probability that an exceptionally arriving type-1 packet enters an empty high-priority

queue thus approximately equals 1. The delay of the type-1 packet is then not influenced by type-2

packets. As a consequence, E[d1] for these priority schemes equals the transmission time of one

packet, i.e., one slot.

Secondly, it is seen from Figures 4a. and 4b. that when α is low (i.e., when few type-1 packets

arrive at the system), the curves for the HOL-JIA schemes, of both E[d1] and E[d2], lie near the

curves for the HOL scheme. When α is low in the HOL-JIA schemes, the high-priority queue is

often empty and few type-2 packets jump to the high-priority queue. Hence, both type-1 and type-2

packets behave similarly as in the HOL scheme. In the HOL-JOS scheme, a type-2 packet jumps

to the high-priority queue every slot where both queues are non-empty. As a result, a considerably

higher E[d1] and lower E[d2] than for the HOL(-JIA) schemes is observed.

Furthermore, when α increases, more type-1 packets arrive at the system, and more type-2

packets thus suffer from larger delays. As a consequence, both E[d1] and E[d2] increase. In these

jumping schemes, increasing α also means that the probability of having an empty high-priority

queue decreases and that more occasions arise for type-2 packets to jump. A higher increase of

E[d1] and a repressed increase of E[d2] compared to the HOL scheme is the logic consequence. For

the HOL-JOS scheme, this further implies that the curves of E[d1] and E[d2] lie close to the curve

for the FIFO scheme, especially when the total arrival rate is high (see Figure 4b.).

When α is high, one can see that the HOL-JIA schemes perform quite similar with respect

to E[d1]. The corresponding curves lie somewhere in the middle between the curve for the HOL-

JOS scheme and the curve for the HOL scheme. The HOL-JIA schemes however show a large

performance difference in the mean type-2 packet delays. When α is high in the HOL-JIA2 scheme,

a large portion of the limited number of arriving type-2 packets can immediately jump to the

high-priority queue upon arrival. This results in a lower E[d2] than for the HOL-JIA1 scheme. The

price to pay, i.e., a higher E[d1] is limited. E.g., when λT = 0.9 and α = 0.9 (see Figure 4b.), E[d2]

decreases from about 12.3 for HOL-JIA1 to 8 for HOL-JIA2, with only a small increase for E[d1]

(from about 4.4 to about 4.9).

Finally, when α → 1, we observe a totally different behaviour for E[d2] for both HOL-JIA
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Figure 5: Mean value of packet delays versus λT for α = 0.75

schemes. When α ≈ 1 in the HOL-JIA schemes, an exceptionally arriving type-2 packet has a

large probability of entering an empty low-priority queue. In the HOL-JIA1 scheme, this type-2

packet is only allowed to jump if another type-2 packet would arrive, which is not possible. To be

transmitted, the packet thus basically has to wait in the low-priority queue until the high-priority

queue becomes empty. So, when α ≈ 1, no jumps occur and the HOL-JIA1 scheme performs

as the HOL scheme. Hence, E[d2] converges for the HOL-JIA1 scheme and the HOL scheme for

α → 1. In the HOL-JIA2 scheme on the other hand, an exceptionally arriving type-2 packet jumps

immediately upon arrival and can thus be transmitted within a relatively short time. Here, a similar

behaviour is noticed as in the HOL-JOS scheme. Dropping the restriction that type-2 packets are

not allowed to jump at the end of their arrival slot thus prevents a type-2 packet from wasting time

in the low-priority queue.

Note that the mean type-2 packet delay for the HOL-JIA2 scheme reaches a maximum as a

function of α. This is due to two counteracting mechanisms. First, increasing α means more type-1

packets and longer waiting times for type-2 packets (because of the priority scheduling). Increasing

α also means that less type-2 packets actually have to wait in the low-priority queue with a decrease

of the delay as a consequence. The last effect is however only dominant when α is large.

4.3.2 Impact of the total arrival rate

Figure 5a. shows the mean type-1 packet delay for α = 0.75, as function of λT . Obviously, E[d1]

increases when λT increases. Furthermore, when λT → 1, E[d1] → ∞ for the HOL-JOS scheme. This

is not the case for the other schemes. Thus for high λT , E[d1] can still be limited for the HOL-JIA

schemes, though it is increased compared to HOL. We also see that the two HOL-JIA schemes
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perform quite similar with regard to the mean type-1 packet delay. In fact, E[d1] is equal for both

HOL-JIA schemes for λT → 1. Indeed, the content of the low-priority queue then approaches

infinity due to the system becoming unstable, and the jumping type-2 packets are thus always

packets that were already in the queue at that time.

In Figure 5b., we have depicted the mean type-2 packet delay for α = 0.75, as function of

λT . When λT is high, one can clearly see the effect of the different jumping mechanisms. As

expected, the HOL scheme performs the worst and the HOL-JOS scheme the best with regard to

E[d2]. The performance of the HOL-JIA schemes lies somewhere in the middle, with HOL-JIA2

better performing than HOL-JIA1. For intuitive explanations of these observations, we refer to

subsection 4.3.1.

4.3.3 Impact the arrival rate of type-2 traffic

Up to now, we have considered a two-dimensional binomial arrival process, fully determined by

expression (14). It is clear that for this specific arrival process the number of arrivals of both types

of traffic during a time slot are correlated. This arrival process is thus not entirely suitable for

studying the influence of the arrival characteristics of one single type of traffic on the performance

of the various priority schemes. For this purpose, we use an arrival process in which the numbers

of arrivals of both types of traffic are uncorrelated in a slot, i.e., A(z1, z2) = A1(z1)A2(z2). We

consider











A1(z) =
(

1 −
λ1

N
(1 − z)

)N

A2(z) =
1

1 + λ2 − λ2z

, (15)

with N = 16. The number of type-1 arrivals during a slot is thus binomially distributed, while we

assume a geometric distribution for the number of type-2 arrivals. The arrival rate of type-j traffic

is again given by λj (j = 1, 2), and the fraction α of type-1 traffic in the overall traffic mix is still

defined as λ1/λT (with λT = λ1 + λ2).

In Figure 6a., we show the mean packet delay of type-1 traffic for λ1 = 0.7, as function of

λ2. Obviously, the number of arriving type-2 packets has no impact on E[d1] for the HOL scheme

(since there are no jumps in this scheme). In the jumping schemes, the number of jumps increases

with the number of type-2 arrivals. As a consequence, E[d1] increases when λ2 increases. Note that
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Figure 6: Mean value of packet delays versus λ2 for λ1 = 0.7

one would not immediately expect an influence of λ2 on E[d1] for the HOL-JIA2 scheme: λ2 does

not appear in expression (12). However, λ2 has an influence on E[d1] via A2(0). The probability

of no type-2 arrivals in a slot namely decreases when λ2 increases. In Figure 6b., we have also

included the mean type-2 packet delay. We see that E[d2] depends more on the type-2 arrival rate

than E[d1], which is quite logic. Note also the small difference between E[d1] and E[d2] for the

HOL-JOS scheme, while the HOL-JIA schemes achieve more differentiation in the delay of both

types of traffic.

When we compare both HOL-JIA schemes, we can conclude the following: for low λ2, the HOL-

JIA2 scheme smartly performs better than the HOL-JIA1 scheme with respect to E[d2], while both

HOL-JIA schemes behave rather similarly for E[d1]. This is again because a reasonable portion of

the arriving type-2 packets directly jump to the high-priority queue. When λ2 is high, both schemes

perform identically due to the low-priority queue being non-empty with high probability.

4.3.4 Impact of the variance of the number of type-2 arrivals

The arrival process of (15) is sufficient for studying the effect of the mean number of type-2 arrivals

on the behaviour of the various jumping schemes. To study the impact of the variance of the number

of type-2 arrivals in a slot however, we assume the following arrival process:











A1(z) =
(

1 −
λ1

N
(1 − z1)

)N

A2(z) = p
1

1 + λ2,1 − λ2,1z
+ (1 − p)

1

1 + λ2,2 − λ2,2z

. (16)
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Figure 7: Mean value of packet delays versus Var[a2] for λ1 = 0.7, λ2 = 0.2, and λ2,1 = 0.1

N equals 16 in the figures. The number of type-2 arrivals are now assumed to be distributed

according to a weighted sum of two geometrics. We choose the weight such that the arrival rate of

type-2 traffic remains constant, i.e., λ2 = pλ2,1 + (1− p)λ2,2 = 0.2. We set λ2,1 = 0.1, and vary λ2,2

between 0.2 and ∞. The variance of the number of type-2 arrivals then varies from 0.24 to ∞.

Figure 7a. illustrates the mean type-1 packet delay for λ1 = 0.7 and λ2 = 0.2, as function of

Var[a2]. We see that the effect of Var[a2] on E[d1] for the HOL-JIA schemes is only visible when

Var[a2] is low; this effect is a decrease of E[d1] when Var[a2] increases and is again due to a varying

A2(0). For a low Var[a2], the type-2 arrivals are nicely spread over time. This however means that

type-2 packets arrive in a lot of slots, causing numerous jumps, and thus leading to a slightly higher

mean type-1 packet delay when Var[a2] is low. In the HOL-JOS scheme, E[d1] is linearly increasing

with Var[a2] (see [6]). Hence, the variability of the mean number of type-2 arrivals has a much

larger impact on E[d1] for this scheme.

In Figure 7b., we have also depicted the mean type-2 packet delay. In most queueing systems,

the mean packet delay is linearly dependent on the variance of the number of corresponding ar-

rivals. Here, E[d2] increases when Var[d2] increases, for all schemes. For the HOL-JIA schemes, we

furthermore see the added effect of A2(0) for low Var[a2]. We also observe a big influence of Var[a2]

on E[d2] for the HOL scheme and the HOL-JIA schemes, while the impact for the HOL-JOS scheme

is smaller. It is however noticed that the curves of E[d1] and E[d2] for the latter scheme diverge for

increasing Var[a2]. HOL-JOS scheduling thus provides more differentiation in the delays when the

traffic becomes burstier. This is a fortiori the case in the other schemes.
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Figure 8: Mean value of packet delays versus β when α = 0.75

4.3.5 Summary

In summary, the HOL-JIA schemes perform similarly with regard to the mean type-1 packet de-

lay. As to the mean type-2 packet delay, both schemes also achieve a similar performance when

α is low (i.e., when the overall traffic mix mainly consists of type-2 traffic). When α is high on

the other hand, the HOL-JIA2 scheme outperforms the HOL-JIA1 scheme. The JIA2 mechanism

thus shows promising results with regard to the mean type-2 packet delay. Furthermore, the mean

type-1 packet delays only depend on the arrival characteristics of type-2 traffic through a single

parameter, namely the probability of no type-2 arrivals during a slot. Therefore, the influence of

type-2 packets on the performance of type-1 traffic is kept small for the HOL-JIA schemes. The

HOL-JOS scheme further achieves a limited delay differentiation, and is thus only practicable if

there is little difference in the delay requirements of both types of traffic. This subsection finally

shows that subtle differences between jumping schemes can yield large differences between their

performance.

4.4 The (dis)advantages of a jumping parameter

In this final subsection, we briefly illustrate the (dis)advantages of introducing a jumping param-

eter. Figures 8a. and 8b. show the mean packet delays of both types of traffic when α = 0.75,

as functions of the jumping parameter β of the HOL-MBP scheme, for λT = 0.7 and λT = 0.9

respectively. We only depict the HOL-MBP scheme and the HOL-JIA2 scheme, since the HOL-PJ

scheme performs similarly as the first (see subsection 4.2), and since the HOL-JIA2 scheme is the

best performing one of the jumping schemes without a jumping parameter (see subsection 4.3). The
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advantage of a jumping parameter is obvious from these figures: β can be chosen by an operator

depending on the delay requirements of both types of traffic. A low β e.g., will highly favour the

type-1 traffic, while chosing a higher β will give the type-1 traffic only a small reduction (compared

to the FIFO scheme). The HOL-JIA2 scheme does not have such a parameter, and the performance

of this scheme is thus completely determined by the arrival process. A possible disadavantage of a

jumping parameter however is that it is necessary to anticipate on varying arrival characteristics

to still achieve the required performance. Indeed, when for example the total arrival rate increases,

β has to be lowered to still meet the same delay requirements. The HOL-MBP scheme thus seems

practically difficult to implement for a system with fast-varying incoming traffic.

5 Conclusions and future work

In this paper, we have first given an overview of jumping schemes in the literature. We have fur-

ther introduced a new self-adaptive jumping scheme: the HOL-JIA2 scheme. We have derived the

probability generating functions of the system contents and the delay of type-1 packet. Moments

can be easily calculated from these pgfs. We have furthermore provided a method to determine the

mean delay of a type-2 packet, although its pgf seems hard to calculate. Then, we have extensively

compared the performance of the various priority schemes with priority jumps. Special attention

is given to the new HOL-JIA2 scheme. Specifically, the self-adaptiveness of this scheme produces

promising results. We also show that subtle differences between jumping schemes can yield consid-

erable differences between their performance. Finally, we note that there does not exist something

like “the ultimate jumping scheme”. Indeed, depending on the applications, the required differenti-

ation, the arrival characteristics (e.g., the arrival rates), and the variability of these characteristics,

one can opt for either the HOL-JOS scheme (when there is little difference in the delay requirements

of both types of traffic), the HOL-MBP scheme (when the characteristics do not change a lot in

time), or the HOL-JIA2 scheme (when the characteristics constantly vary).

Letting jumps depend on the arrival characteristics of the type-2 traffic introduces the notion

of self-adaptiveness. In the future, we plan to further investigate this self-adaptiveness of jumping

schemes. Instead of the jumping condition in this paper, we could incorporate other conditions. The

HOL-packet of the low-priority queue could for example jump to the high-priority queue only when
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a certain number of type-2 packets have arrived in a predetermined time period (of more than one

slot). Jumps can also be conditioned on the arrival characteristics of type-1 traffic. The ultimate

goal is to find a self-adaptive jumping scheme that performs well for every traffic scenario. The fact

that the analysis in this paper is quite straightforward gives us the hope that this ideal jumping

scheme is still analytically tractable. We have further shown in the paper that it is complicated to

derive an explicit expression for the pgf of the delay of a type-2 packet for the HOL-JIA schemes,

due to correlations between the involved quantities. Finding an exact solution seems extremely

difficult, so we are looking for good approximate solutions. One possible approximation may for

example be obtained by ignoring the correlations.

Further possible future work includes the study of the effect of the various jumping schemes

on systems with more general mathematical models. We for example think of time correlation in

the arrival process, of geometrically distributed transmission times, and of a general number of

priorities. Note also that in the schemes studied so far only the HOL-packet of the low-priority

queue can jump to the high-priority queue. It may be interesting to analyse a jumping scheme

in which a random packet of the low-priority queue can jump to the high-priority queue (to in-

corporate ’impatient’ packets). We note that most of the extensions will complicate the analysis

considerably. However, this makes them in turn interesting research topics.
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