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Abstract

We consider a discrete-time infinite-capacity queueing system with a general

uncorrelated arrival process, constant-length service times of multiple slots, multi-

ple servers and a first-come-first-served queueing discipline. Under the assumption

that the queueing system can reach a steady state, we first establish a relationship

between the steady-state probability distributions of the system content and the

customer delay. Next, by means of this relationship, an explicit expression for the

probability generating function of the customer delay is obtained from the known

generating function of the system content, derived in previous work. In addition,

several characteristics of the customer delay, namely the mean value, the variance

and the tail distribution of the delay, are derived through some mathematical ma-

nipulations. The analysis is illustrated by means of some numerical examples.
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1 Introduction

Discrete-time queueing models have received considerable attention during the past years,

see e.g. the books [1], [5], [12], [14], [16], [18] and the references therein. A main reason

is the applicability of these models in the performance evaluation of packet-based high-

speed telecommunication networks, where buffers are used for the temporary storage

of information packets which cannot be transmitted to their destination immediately.

The information packets then constitute the customers of the queueing system and the

transmission of packets corresponds to the service of customers. In discrete-time queueing

models, the time axis is divided into fixed-length intervals, referred to as slots, and the

service of customers can start or end at slot boundaries only. The latter implies that the

service times of the customers consist of an integer number of slots.

Usually, the performance of a queueing system is expressed in terms of such quantities

as the system content (i.e., the total number of customers present in the queueing system)

and the delay of a customer (i.e., the time (in slots) spent by a customer in the system).

Especially when multimedia applications in packet-based networks are concerned, it is

important to be able to accurately predict the characteristics of the packet delay, such as

the mean delay and the delay jitter, in order to guarantee acceptable delay boundaries

for the admitted network traffic. The analysis of delay characteristics in the current

internet thus is an important research topic. There are a number of performance analysis

techniques for discrete-time systems, ranging from computer simulation to the numerical

solution of the associated set of balance equations and various types of analytical methods.

Computer simulation often suffers from long run times and requires a new run for each

parameter setting. Hence, for performance engineering purposes, analytical methods are

preferred [11], since these lead to closed-form expressions for the performance measures

of interest and therefore allow a fast performance prediction.

If we focus our attention on analytical performance studies, many results have been

obtained for both the system content and the customer delay in a single-server environ-

ment. In case systems with multiple servers are considered, fewer analytical results are

however available, although such systems occur in many practical applications, for in-

stance, in output-buffering switches in the nodes of packet-based networks (see Sect. 6

for more details). Most studies of multiserver systems assume constant service times
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equal to one slot, see e.g. [2] and [17]. Multiserver systems with geometrically distributed

service times have been considered in [7], [8], [9] and [15]. In [3] and [4], discrete-time

queueing models with multiple servers and constant service times of multiple slots have

been studied, but only results in connection with the system content have been derived.

This deterministic service-time distribution has several applications, for instance, in the

performance analysis of packet switches with a different internal and external transfer

mode, as explained in [3].

In this paper, we will extend the analysis of [3] in order to investigate the character-

istics of the delay, which is one of the most important performance metrics from a user

perspective [11]. First, a relationship between the steady-state probability distributions of

the customer delay and the system content is established. Then, from the results for the

system content derived in [3], an explicit expression for the probability generating function

(PGF) of the customer delay is obtained. Finally, from this PGF several delay-related

characteristics, namely the mean delay, the variance of the delay and the probability that

the delay exceeds a given threshold, are calculated. A preliminary version of this work

can be found in [10].

The remainder of the paper is organized as follows. In Sect. 2, we describe the class of

discrete-time queueing systems under study and introduce some notations. Some results

of [3], which will be used in the paper, are summarized in Sect. 3. For the considered class

of queueing systems, we establish a relationship between the steady-state PGFs of the

system content and the customer delay in Sect. 4. In Sect. 5, the performance measures

for the customer delay are presented. In Sect. 6, some numerical examples are given to

illustrate the analysis and the usefulness of the results. Finally, the paper is concluded in

Sect. 7.

2 Mathematical Model

In this paper, we consider a discrete-time multiserver queueing system with c (c ≥ 1)

servers. The time axis is divided into fixed-length intervals, referred to as slots. Customers

arrive at the input of the system according to a general independent arrival process,

i.e., the numbers of customer arrivals during the consecutive slots are assumed to be
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independent and identically distributed (i.i.d.) random variables; we denote their common

PGF by A(z). Customers are then queued until they can be served by one of the c servers

based on a first-come-first-served (FCFS) discipline. The queue has an infinite storage

capacity for customers. The service of a customer can start or end at slot boundaries

only. In this paper, the service times of the customers are assumed to be constant equal

to s (s ≥ 1) slots. Moreover, the service and arrival processes are assumed to be mutually

independent. Finally, in the analysis that follows it is assumed that the queueing system

can reach a steady state. Such a steady state exists if the mean number of customer

arrivals during an arbitrary slot (A′(1)) is strictly less than the mean number of customers

that can be served per slot (c/s), i.e., if the load

ρ ,
sA′(1)

c
< 1 . (1)

3 Preliminary Results

Let us denote by vk the system content (i.e., the total number of customers in the queueing

system, including the customers in service, if any) at the beginning of slot k and by ak the

number of arriving customers during slot k. Furthermore, let uj,k (0 ≤ j ≤ s−1) indicate

the total number of customers in the system at the beginning of slot k whose service has

progressed for at most j slots. Note that no customers in the system have received more

than s− 1 slots of service due to the constant nature of the service times (customers who

have received s slots of service are no longer in the system). In [3], it was shown that the

following set of system equations can then be established:

vk = us−1,k , (2)

uj,k+1 = uj−1,k + ak , for 1 ≤ j ≤ s − 1 , (3)

and

u0,k+1 = (us−1,k − c)+ + ak , (4)
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where (.)+ = max(0, .). We moreover introduce the notation u−1,k = (us−1,k − c)+ to

indicate the number of customers in the system at the beginning of slot k and not being

served during slot k. In the steady state the distributions of the random variables vk

and uj,k become independent of the time index k. We denote by V (z) and Uj(z) the

equilibrium PGFs of vk and uj,k, respectively. Equations (2)-(4) were used in [3] to derive

the following expressions for the PGFs V (z) and Uj(z):

V (z) = c(1 − ρ)
(z − 1)A(z)s

zc − A(z)s

c−1∏

i=1

z − zi

1 − zi

, (5)

where zi (1 ≤ i ≤ c− 1) are the c− 1 zeros inside the unit disk {z : |z| < 1} of zc −A(z)s,

and

Uj(z) =
V (z)

A(z)s−j−1
, for − 1 ≤ j ≤ s − 1 . (6)

In the Appendix, we give an alternative, more intuitive derivation of V (z). In the main

part of this paper, we will study the delay characteristics for the considered queueing

model.

4 Relationship between System Content and Cus-

tomer Delay

We define the delay of a customer as the total number of slots between the end of the slot

during which the customer arrived in the system and the end of the slot where the service

of the customer finishes and the customer leaves the system. In this section, we prove

the following relationship between the steady-state PGF V (z) of the system content at

the start of an arbitrary slot and the steady-state PGF D(z) of the delay of an arbitrary

customer:

D(zc) =
zcs(1 − zc)

czcsA′(1)

c−1∑

j=0

βjzs

(1 − βjzs)2

[zcs − A(βjzs)s][A(βjzs) − 1]

A(βjzs)s[A(βjzs) − zc]
V (βjzs) , (7)

with β , exp(2πI/c), and where I is the imaginary unit (I2 = −1).
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Proof: Let us consider an arbitrary customer P (referred to as the tagged customer),

that arrives in the queueing system during some slot J in the steady state. Let d with

PGF D(z) denote the delay of P. Also define the waiting time of a customer as the number

of slots between the end of the customer’s arrival slot and the beginning of the slot where

the service of the customer starts. The delay of a customer is equal to the sum of the

waiting time and the service time of the customer and thus we can express the PGF D(z)

as

D(z) = zsW (z) , (8)

where W (z) denotes the PGF of the waiting time w of P.

We now concentrate on the derivation of the PGF W (z). First, we make the following

observations.

• The waiting time of the tagged customer P depends on the customers in the system

right after slot J with service priority over P.

• As long as there are at least c customers in the system with service priority over P,

P is still waiting for service and the c servers are all busy serving customers.

• Since each customer requires exactly s slots of service, there will be exactly c de-

partures during each frame of s consecutive slots as long as P is still waiting for

service.

• In view of the FCFS discipline, the number of customers in front of P right after

slot J that still need to receive at least i (1 ≤ i ≤ s) slots of service at the beginning

of slot J + 1 consists of the us−i−1,J customers that arrived before slot J on the one

hand, and the customers that arrived in slot J but before P on the other hand.

Based on these observations, it is then easily seen that if and only if us−i−1,J + f ≥ c,

where f is the number of arrivals in slot J before P, the waiting time of P will be at least

i slots. For each extra group of c customers in us−i−1,J + f , P will have to wait another s

slots extra. We may therefore conclude that

w ≥ ℓs + i ⇔ us−i−1,J + f ≥ ℓc + c ,
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or equivalently

w ≥ ℓs + i ⇔ q̃i ≥ ℓc , for ℓ ≥ 0 , 1 ≤ i ≤ s , (9)

with

q̃i , f + us−i−1,J − c . (10)

Secondly, we transform the relationship (9) between the random variables w and q̃i

(1 ≤ i ≤ s) into a relationship between their PGFs. To this end, we use the identity

∞∑

n=1

Prob[w ≥ n]zn =
z[W (z) − 1]

z − 1
. (11)

From this identity and equation (9), it follows that

zc[W (zc) − 1]

zc − 1
=

s∑

i=1

∞∑

ℓ=0

Prob[w ≥ ℓs + i]zc(ℓs+i)

=
s∑

i=1

∞∑

ℓ=0

Prob[q̃i ≥ ℓc]zsℓc+ci

=
s∑

i=1

zci
∞∑

m=0

Prob[q̃i ≥ m]zsm
∞∑

ℓ=0

δ(m − ℓc) , (12)

where δ(.) is the Kronecker delta function, which is zero unless its argument is zero, in

which case it is equal to 1. Since m ≥ 0 in the above expression, the lower limit of the

sum over ℓ in (12) can be replaced by −∞ without any influence on the result. We can

then eliminate the Kronecker delta functions from (12) by using the following identity:

1

c

c−1∑

j=0

βKj =

∞∑

ℓ=−∞

δ(K − ℓc) , with β , exp(2πI/c) . (13)

This identity expresses that the left-hand side of (13) equals zero unless the integer K is
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a multiple of c, in which case it is equal to 1. By using (13) in (12), we obtain

zc[W (zc) − 1]

zc − 1
=

1

c

s∑

i=1

zci
c−1∑

j=0

∞∑

m=0

Prob[q̃i ≥ m](zsβj)m

=
1

c

c−1∑

j=0

s∑

i=1

1 − βjzsQ̃i(β
jzs)

1 − βjzs
zci , (14)

where Q̃i(z) is the PGF of q̃i, and where we have also used the identity

∞∑

m=0

Prob[q̃i ≥ m]zm =
1 − zQ̃i(z)

1 − z
. (15)

Thirdly, we relate the PGFs Q̃i(z), 1 ≤ i ≤ s, to the PGF V (z) of the system content

v at the start of an arbitrary slot. This can be done based on the definition (10) of q̃i. In

view of the uncorrelated nature of the customer arrival process, the random variables f

and us−i−1,J on the right-hand side of (10) are statistically independent and the PGF of

us−i−1,J at the beginning of slot J is given by the PGF Us−i−1(z) at the beginning of an

arbitrary slot in the steady state. Hence, we have

Q̃i(z) =
Us−i−1(z)F (z)

zc
, (16)

where F (z) is the PGF of f , which can be shown to be (see e.g. [1])

F (z) =
A(z) − 1

A′(1)(z − 1)
. (17)

Combination of (16) and (6) yields

Q̃i(z) =
F (z)V (z)

zcA(z)i
, for 1 ≤ i ≤ s . (18)

Finally, substituting (18) into (14), working out the sum over i, using the property

that βjc = 1 regardless of the value of j and the identity

1

c

c−1∑

j=0

1

1 − βjzs
=

1

1 − zcs
, (19)
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which is easily shown based on equation (13), we obtain

W (zc) =
1 − zc

czcs

c−1∑

j=0

βjzs

1 − βjzs

[A(βjzs)s − zcs]F (βjzs)V (βjzs)

A(βjzs)s[A(βjzs) − zc]
. (20)

Combination of (20) with (8) then leads to the desired relationship between the steady-

state PGFs of the system content v at the beginning of an arbitrary slot and the delay d

of an arbitrary customer. �

5 Characteristics of the Customer Delay

From relationship (7) between the PGFs of system content and delay and from the known

expression (5) for the PGF V (z) of the system content, we find the following explicit

formula for the PGF of the delay experienced by an arbitrary customer in the steady

state:

D(zc) =
1 − ρ

A′(1)

c−1∑

j=0

1 − zc

1 − (βjzs)−1

A(βjzs) − 1

A(βjzs) − zc

c−1∏

i=1

βjzs − zi

1 − zi

. (21)

In the rest of this section, we will use the expression for D(zc) to derive some important

characteristics of the customer delay.

5.1 Moments of the Delay

The mean value of the customer delay can be found by evaluation of the first-order

derivative of the PGF D(zc) with respect to z at z = 1. Specifically,

E[d] = D′(1) =
1

c

dD(zc)

dz

∣∣∣∣
z=1

, (22)

where D(zc) is given in (21). After some mathematical manipulations, we find

E[d] =
E[v]

A′(1)
, (23)

which proves that our result fully agrees with Little’s theorem ([6]). In a similar way, we

can also obtain higher-order moments of the customer delay from (21), by calculating the
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appropriate higher-order derivatives of D(zc) at z = 1. For instance, the variance of the

customer delay (delay jitter) can be expressed as

var[d] = D′′(1) + D′(1) − D′(1)2 , (24)

where D′′(1), the second derivative of D(z) in z = 1, can be obtained from (21) as

D′′(1) =
1

c2

d2D(zc)

dz2

∣∣∣∣
z=1

−
c − 1

c
D′(1) . (25)

5.2 Tail Probabilities of the Delay

The aim of this subsection is to determine the tail distribution of the customer delay, i.e.,

the probability that the delay equals a given value n, for a sufficiently large value of n. In

principle, we can determine the tail distribution of a discrete random variable by apply-

ing the inversion formula for z-transforms and Cauchy’s residue theorem from complex

analysis (see e.g. [13]) on its generating function and keeping only the contribution of the

pole (or poles) of the PGF with smallest modulus outside the unit disk, as explained in

[1]. From the expression (21) for D(zc), we find that D(zc) has c poles with the same

smallest modulus. These poles are given by

zd(m) = β−mz1/s
v , for m = 0, . . . , c − 1 , (26)

where zv is the dominant pole of the PGF V (z) of the system content, i.e., the zero of

zc − A(z)s outside the unit disk with the smallest modulus. Indeed, it is easy to show

that zd(0) = z
1/s
v is the zero with minimal modulus outside the unit disk of the factor

[A(zs)−zc] in the denominator of D(zc). Moreover, since zc remains unchanged when z is

multiplied by β−m, it is clear that zd(m) = β−mz
1/s
v is also a pole of D(zc) with the same

modulus zv
1/s. In particular, it can be shown that the pole zd(m) is a zero of the factor

[A(βjzs) − zc] in the denominator of D(zc) for which j = (ms) mod c, i.e., for which j

equals the remainder of the division of ms by c. Taking into account all the poles zd(m) of

D(zc) with minimal modulus and keeping in mind that Prob[d = n] is the coefficient of zcn

in the series expansion of D(zc), we finally obtain the following expression for Prob[d = n]
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for sufficiently large n:

Prob[d = n] ≈ −

c−1∑

m=0

bm

zd(m)
[zd(m)]−cn

= −

c−1∑

m=0

bm

zd(m)
z−cn/s

v

= −Cd zv
−cn/s , (27)

where bm is the residue of D(zc) in the point z = zd(m) and where we have used the

property that βmc = 1. The residue bm is given by

bm =
Nm(zd(m))

Rm
′(zd(m))

,

where Nm(z) and Rm(z) are the numerator and the denominator, respectively, of the term

of (21) corresponding to the index value j = (ms) mod c. Using the expression (21), we

find

Cd =

c−1∑

m=0

bm

zd(m)
=

c(1 − ρ)

A′(1)

1 − z
c/s
v

1 − zv
−1

A(zv) − 1

szvA′(zv) − czv
c/s

c−1∏

i=1

zv − zi

1 − zi
. (28)

The probability that the customer delay exceeds a given threshold T can be easily derived

from (27) as

Prob[d > T ] ≈ −Cd
z
−cT/s
v

zv
c/s − 1

. (29)

6 Numerical Examples and Discussion

In order to illustrate the results obtained above, we discuss a number of numerical exam-

ples in this section. In a first set of examples, we assume the number of customers that

arrive during a slot has a geometric distribution, i.e.,

A(z) =
1

1 + λ − λz
,
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where λ denotes the mean number of customer arrivals per slot. The basic influence of

the number of servers c and the length of the service times s on the delay characteristics

is illustrated in the Figs. 1-3.

In Fig. 1, the mean customer delay is plotted versus the load ρ for various values of

c and s. For given values of c and s, we observe that the mean customer delay increases

with increasing values of ρ. We also note that all the curves have a vertical asymptote

at ρ = 1. For a given ρ, the mean delay increases as the service times become longer,

although a higher number of servers can compensate this effect to some extent.

In Fig. 2, the variance of the customer delay is shown versus ρ, for c = 4, 8 and for

s = 1, 4, 8. We see that for given values of c and ρ, the variance of the customer delay

also increases as the length of the service times increases. For given values of s and ρ, the

variance of the delay is higher when less servers are used. Also note that the variance of

the delay for c = 4, s = 4 is almost the same as for c = 8, s = 8, especially for high load.

As can be observed from Fig. 1, this is not the case for the mean customer delay, which

always consists of at least s slots. Remark that for c = s, the delay is still slightly less

variable for higher c and s, as expected intuitively.

In Fig. 3, the probability that the delay exceeds some given threshold T is plotted

versus T for ρ = 0.8, s = 5 and for three different numbers of servers, namely c = 1, 4

and 8. Clearly, the probability of having long delays decreases as the number of servers

increases, in accordance with our intuitive feeling.

As a second, more practical example we consider an N ×N(c) packet switch as shown

in Fig. 4. The switch has N inlets and N outlets. The outlets are organized in N
c

different

destination groups, each group containing exactly c outlets, and one separate output buffer

is provided for each destination group. We assume here that packets enter the switch via

the inlets according to independent Bernoulli arrival streams and incoming packets are

routed independently and uniformly to one of the N
c

destination groups. The PGF of the

number of packet arrivals per slot in an output buffer of the switch is then given by

A(z) =
(
1 −

pc

N
+

pc

N
z
)N

,

where p denotes the probability of a packet arrival on a switch inlet. Our analysis can

then be used to study the packet delay in an output buffer.
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In Fig. 5, we have plotted the probability that the packet delay exceeds some given

threshold T versus T , for N = 8, c = 2, s = 5 and several values of the load ρ = ps.

These curves can be used to determine the 10−n quantile of the packet delay, for some

integer value of n, i.e., the value T such that

Prob[d > T ] = 10−n .

For instance, for a load ρ = 0.7, the 10−6 quantile of the delay is given by about 52 slots.

Alternatively, the results of our analysis can be used to estimate the admissible traffic

load in order to satisfy a specified delay constraint. In Fig. 6, the maximum load ρ such

that Prob[d > T ] ≤ 10−6 is plotted versus the value of the threshold T , for N = 8, s = 5

and various values of c. As expected, the maximum admissible load is higher for higher T

and higher c. We see that the maximum load can be much lower than 0.5 when the delay

constraint is stringent (low T ) and when the number of servers is low. The increase of

the maximum load with increasing T is largest for small T and small c, while the curves

for high c are almost horizontal lines for high T . This type of results are easily obtainable

from our analysis and are highly interesting for a network operator.

7 Concluding Remarks

In this paper, we have studied the delay characteristics of a discrete-time infinite-capacity

queueing system with multiple servers, constant service times of arbitrary length and a

general independent arrival process. The study is an extension of previous work ([3]),

which was concerned with the analysis of the system content for this type of multiserver

queueing system. In the present paper, we have established a relationship between the

PGFs of the customer delay and the system content, using an analytical technique based

on generating functions. Then from the result for the PGF of the system content, known

from [3], we have obtained an explicit expression for the PGF of the customer delay, as

well as closed-form expressions for the mean value, the variance and the tail distribution

of the customer delay. The obtained analytical results are easy to evaluate numerically.

Some numerical results have been presented to illustrate the analysis and the usefulness

of the results.
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The analyzed queueing model has practical applications in the domain of digital com-

munication networks, such as circuit-switched TDMA systems, switching elements and

traffic concentrators. We note that besides the characteristics of the system content

studied in [3] for the considered model, the derived results for the customer delay (i.e.,

performance measures like the mean delay, the delay jitter and the probability that the

customer delay exceeds a given threshold) are also very important for a network designer

to guarantee the quality of service of the network.
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Appendix: Alternative Derivation of V (z)

In this Appendix, we give an alternative, more intuitive derivation (as compared to [3])

of the steady-state PGF V (z) of the system content at the start of an arbitrary slot.

We observe the evolution of the system content over a frame of s consecutive slots. If

the system content at the beginning of the frame is at least c, exactly c customers will

leave the system during the frame. On the other hand, if there are less than c, say n,

customers in the system at the beginning of the frame, there will be n customer departures

during the frame. We thus have the following system equation:

vk+s = (vk − c)+ +
k+s−1∑

j=k

aj .

By transforming this equation into the z-domain, we then immediately get an equation

for the steady-state PGF V (z):

V (z) = A(z)s

{
c−1∑

n=0

Prob[v = n](1 − zn−c) + z−cV (z)

}
.

Solving this equation for V (z) and determining the boundary probabilities as explained in

[3], we obtain expression (5). So, the PGF V (z) can be derived without the introduction
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of the random variables uj,k (see Sect. 3). Note however that these variables are needed

for the delay analysis.

References

[1] H. Bruneel and B.G. Kim, Discrete-time models for communication systems includ-

ing ATM, Kluwer Academic Publishers, Boston, 1993.

[2] H. Bruneel, B. Steyaert, E. Desmet and G.H. Petit, An analytical technique for

the derivation of the delay performance of ATM switches with multiserver output

queues, International Journal of Digital and Analog Communication Systems, vol.

5 (1992), pp. 193-201.

[3] H. Bruneel and I. Wuyts, Analysis of discrete-time multiserver queueing models

with constant service times, Operations Research Letters, vol. 15, no. 5 (1994), pp.

231-236.

[4] M.L. Chaudhry and N.K. Kim, A complete and simple solution for a discrete-time

multi-server queue with bulk arrivals and deterministic service times, Operations

Research Letters, vol. 31, no. 2 (2003), pp. 101-107.

[5] H. Daduna, Queueing networks with discrete time scale: explicit expressions for

the steady state behavior of discrete time stochastic networks, Springer, New York,

2001.

[6] D. Fiems and H. Bruneel, A note on the discretization of Little’s result, Operations

Research Letters, vol. 30, no. 1 (2002), pp. 17-18.

[7] P. Gao, S. Wittevrongel and H. Bruneel, Delay against system contents in discrete-

time G/Geom/c queue, Electronics Letters, vol. 39, no. 17 (2003), pp. 1290-1292.

[8] P. Gao, S. Wittevrongel and H. Bruneel, Discrete-time multiserver queues with

geometric service times, Computers & Operations Research, vol. 31, no. 1 (2004),

pp. 81-99.

15



[9] P. Gao, S. Wittevrongel and H. Bruneel, On the behavior of multiserver buffers

with geometric service times and bursty input traffic, IEICE Transactions on Com-

munications, vol. E87-B, no. 12 (2004), pp. 3576-3583.

[10] P. Gao, S. Wittevrongel and H. Bruneel, Delay analysis for a discrete-time GI-D-c

queue with arbitrary-length service times, Proceedings of the First European Per-

formance Engineering Workshop, EPEW 2004 (Toledo), Lecture Notes in Computer

Science, vol. 3236 (2004), pp. 184-195.

[11] P. Harrison, Performance engineering and stochastic modelling, Proceedings of the

Second European Performance Engineering Workshop, EPEW 2005 (Versailles),

Lecture Notes in Computer Science, vol. 3670 (2005), pp. 1-14.

[12] J.J. Hunter, Mathematical techniques of applied probability, Volume 2, Discrete

time models: techniques and applications, Academic Press, New York, 1983.

[13] L. Kleinrock, Queueing systems, Volume I: Theory, Wiley, New York, 1975.

[14] T.G. Robertazzi, Computer networks and systems: queueing theory and perfor-

mance evaluation, Springer, New York, 2000.

[15] I. Rubin and Z. Zhang, Message delay and queue-size analysis for circuit-switched

TDMA systems, IEEE Transactions on Communications, vol. 39, no. 6 (1991), pp.

905-914.

[16] H. Takagi, Queueing analysis, A foundation of performance evaluation, Volume 3:

discrete-time systems, North-Holland, Amsterdam, 1993.

[17] B. Vinck and H. Bruneel, Delay analysis of multiserver ATM buffers, Electronics

Letters, vol. 32, no. 15 (1996), pp. 1352-1353.

[18] M.E. Woodward, Communication and computer networks: modelling with discrete-

time queues, Pentech Press, London, 1993.

16



Figure captions

Figure 1 Mean customer delay versus load ρ.

Figure 2 Variance of the customer delay versus load ρ. For each value of s, the upper

curve corresponds to c = 4 and the lower curve to c = 8.

Figure 3 Tail distribution of customer delay, Prob[d > T ], versus T , for ρ = 0.8 and

s = 5.

Figure 4 N × N(c) switch with output buffers.

Figure 5 Tail distribution of packet delay, Prob[d > T ], versus T , for N = 8, c = 2,

s = 5 and ρ = 0.1, 0.2, . . ., 0.9.

Figure 6 Maximum load ρ such that Prob[d > T ] ≤ 10−6 versus T , for N = 8 and s = 5.
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Figure 1: Mean customer delay versus load ρ.
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Figure 2: Variance of the customer delay versus load ρ. For each value of s, the upper
curve corresponds to c = 4 and the lower curve to c = 8.
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Figure 3: Tail distribution of customer delay, Prob[d > T ], versus T , for ρ = 0.8 and
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Figure 4: N × N(c) switch with output buffers.

19



 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100

T

Prob[d>T]

ρ=.1

ρ=.9

Figure 5: Tail distribution of packet delay, Prob[d > T ], versus T , for N = 8, c = 2, s = 5
and ρ = 0.1, 0.2, . . ., 0.9.
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Figure 6: Maximum load ρ such that Prob[d > T ] ≤ 10−6 versus T , for N = 8 and s = 5.
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