2,242 research outputs found

    High Resolution Crystal Structures of the Wild Type and Cys-55 right-arrow Ser and Cys-59 right-arrow Ser Variants of the Thioredoxin-like [2Fe-2S] Ferredoxin from Aquifex aeolicus

    Get PDF
    The [2Fe-2S] ferredoxin (Fd4) from Aquifex aeolicus adopts a thioredoxin-like polypeptide fold that is distinct from other [2Fe-2S] ferredoxins. Crystal structures of the Cys-55 right-arrow Ser (C55S) and Cys-59 right-arrow Ser (C59S) variants of this protein have been determined to 1.25 Å and 1.05 Å resolution, respectively, whereas the resolution of the wild type (WT) has been extended to 1.5 Å. The improved WT structure provides a detailed description of the [2Fe-2S] cluster, including two features that have not been noted previously in any [2Fe-2S] cluster-containing protein, namely, pronounced distortions in the cysteine coordination to the cluster and a Calpha -H-Sgamma hydrogen bond between cluster ligands Cys-55 and Cys-9. These features may contribute to the unusual electronic and magnetic properties of the [2Fe-2S] clusters in WT and variants of this ferredoxin. The structures of the two variants of Fd4, in which single cysteine ligands to the [2Fe-2S] cluster are replaced by serine, establish the metric details of serine-ligated Fe-S active sites with unprecedented accuracy. Both the cluster and its surrounding protein matrix change in subtle ways to accommodate this ligand substitution, particularly in terms of distortions of the Fe2S2 inorganic core from planarity and displacements of the polypeptide chain. These high resolution structures illustrate how the interactions between polypeptide chains and Fe-S active sites reflect combinations of flexibility and rigidity on the part of both partners; these themes are also evident in more complex systems, as exemplified by changes associated with serine ligation of the nitrogenase P cluster

    Binding site of ABC transporter homology models confirmed by ABCB1 crystal structure

    Get PDF
    The human ATP-binding cassette (ABC) transporters ABCB1, ABCC4 and ABCC5 are involved in resistance to chemotherapeutic agents. Here we present molecular models of ABCB1, ABCC4 and ABCC5 by homology based on a wide open inward-facing conformation of Escherichia coli MsbA, which were constructed in order to elucidate differences in the electrostatic and molecular features of their drug recognition conformations. As a quality assurance of the methodology, the ABCB1 model was compared to an ABCB1 X-ray crystal structure, and with published crosslinking and site directed mutagenesis data of ABCB1. Amino acids Ile306 (TMH5), Ile340 (TMH6), Phe343 (TMH6), Phe728 (TMH7), and Val982 (TMH12), form a putative substrate recognition site in the ABCB1 model, which is confirmed by both the ABCB1 X-ray crystal structure and the sitedirected mutagenesis studies. The ABCB1, ABCC4 and ABCC5 models display distinct differences in the electrostatic properties of their drug recognition sites

    Fragment Based Protein Active Site Analysis Using Markov Random Field Combinations of Stereochemical Feature-Based Classifications

    Get PDF
    Recent improvements in structural genomics efforts have greatly increased the number of hypothetical proteins in the Protein Data Bank. Several computational methodologies have been developed to determine the function of these proteins but none of these methods have been able to account successfully for the diversity in the sequence and structural conformations observed in proteins that have the same function. An additional complication is the flexibility in both the protein active site and the ligand. In this dissertation, novel approaches to deal with both the ligand flexibility and the diversity in stereochemistry have been proposed. The active site analysis problem is formalized as a classification problem in which, for a given test protein, the goal is to predict the class of ligand most likely to bind the active site based on its stereochemical nature and thereby define its function. Traditional methods that have adapted a similar methodology have struggled to account for the flexibility observed in large ligands. Therefore, I propose a novel fragment-based approach to dealing with larger ligands. The advantage of the fragment-based methodology is that considering the protein-ligand interactions in a piecewise manner does not affect the active site patterns, and it also provides for a way to account for the problems associated with flexible ligands. I also propose two feature-based methodologies to account for the diversity observed in sequences and structural conformations among proteins with the same function. The feature-based methodologies provide detailed descriptions of the active site stereochemistry and are capable of identifying stereochemical patterns within the active site despite the diversity. Finally, I propose a Markov Random Field approach to combine the individual ligand fragment classifications (based on the stereochemical descriptors) into a single multi-fragment ligand class. This probabilistic framework combines the information provided by stereochemical features with the information regarding geometric constraints between ligand fragments to make a final ligand class prediction. The feature-based fragment identification methodology had an accuracy of 84% across a diverse set of ligand fragments and the mrf analysis was able to succesfully combine the various ligand fragments (identified by feature-based analysis) into one final ligand based on statistical models of ligand fragment distances. This novel approach to protein active site analysis was additionally tested on 3 proteins with very low sequence and structural similarity to other proteins in the PDB (a challenge for traditional methods) and in each of these cases, this approach successfully identified the cognate ligand. This approach addresses the two main issues that affect the accuracy of current automated methodologies in protein function assignment

    Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni.

    Get PDF
    Truncated hemoglobins (trHbs) constitute a distinct lineage in the globin superfamily, distantly related in size and fold to myoglobin and monomeric hemoglobins. Their phylogenetic analyses revealed that three groups (I, II, and III) compose the trHb family. Group I and II trHbs adopt a simplified globin fold, essentially composed of a 2-on-2 alpha-helical sandwich, wrapped around the heme group. So far no structural data have been reported for group III trHbs. Here we report the three-dimensional structure of the group III trHbP from the eubacterium Campylobacter jejuni. The 2.15-angstrom resolution crystal structure of C. jejuni trHbP (cyano-met form) shows that the 2-on-2 trHb fold is substantially conserved in the trHb group III, despite the absence of the Gly-based sequence motifs that were considered necessary for the attainment of the trHb specific fold. The heme crevice presents important structural modifications in the C-E region and in the FG helical hinge, with novel surface clefts at the proximal heme site. Contrary to what has been observed for group I and II trHbs, no protein matrix tunnel/cavity system is evident in C. jejuni trHbP. A gating movement of His(E7) side chain (found in two alternate conformations in the crystal structure) may be instrumental for ligand entry to the heme distal site. Sequence conservation allows extrapolating part of the structural results here reported to the whole trHb group III

    lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests

    Get PDF
    Motivation: The assessment of protein structure prediction techniques requires objective criteria to measure the similarity between a computational model and the experimentally determined reference structure. Conventional similarity measures based on a global superposition of carbon α atoms are strongly influenced by domain motions and do not assess the accuracy of local atomic details in the model. Results: The Local Distance Difference Test (lDDT) is a superposition-free score that evaluates local distance differences of all atoms in a model, including validation of stereochemical plausibility. The reference can be a single structure, or an ensemble of equivalent structures. We demonstrate that lDDT is well suited to assess local model quality, even in the presence of domain movements, while maintaining good correlation with global measures. These properties make lDDT a robust tool for the automated assessment of structure prediction servers without manual intervention. Availability and implementation: Source code, binaries for Linux and MacOSX, and an interactive web server are available at http://swissmodel.expasy.org/lddt Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Computational approaches to shed light on molecular mechanisms in biological processes

    Get PDF
    Computational approaches based on Molecular Dynamics simulations, Quantum Mechanical methods and 3D Quantitative Structure-Activity Relationships were employed by computational chemistry groups at the University of Milano-Bicocca to study biological processes at the molecular level. The paper reports the methodologies adopted and the results obtained on Aryl hydrocarbon Receptor and homologous PAS proteins mechanisms, the properties of prion protein peptides, the reaction pathway of hydrogenase and peroxidase enzymes and the defibrillogenic activity of tetracyclines. © Springer-Verlag 2007

    HisE11 and HisF8 Provide Bis-histidyl Heme Hexa-coordination in the Globin Domain of Geobacter sulfurreducens Globin-coupled Sensor

    Get PDF
    Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS162) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS162 as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed. © 2008 Elsevier Ltd. All rights reserved

    Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Get PDF
    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand

    Homology modeling and in silico characterization of synaptotagmin 1 (SYT1) protein from Arabidopsis thaliana (L.) Heynh.

    Get PDF
    Synaptotagmins are a group of C2 domain containing proteins which playimportant roles in vesicle trafficking in synaptic vesicles of animals. With the advent ofplant genome sequencing, many synaptotagmins are also discovered from plants and theyhave been found to perform many crucial physiological roles in plants. The model plant Arabidopsis thaliana (L.) Heynh. contains five synaptotagmins of which SYT1 isresponsible for many important functions including maintenance of plasma membraneintegrity and cell viability. In this study, the three dimensional structure of this proteinhas been developed in silico by homology modeling method to collect knowledge aboutits structure-function relationship. Additionally, the interaction of calcium ion with thisprotein was studied. The structures of C2 domains are somewhat different from the known animal synaptotagmins. The protein contains many phosphorylation sites whichindicate that SYT1 is part of one or more signaling cascades
    corecore