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Abstract
The human ATP-binding cassette (ABC) transporters ABCB1, ABCC4 and ABCC5 are involved in
resistance to chemotherapeutic agents. Here we present molecular models of ABCB1, ABCC4 and
ABCC5 by homology based on a wide open inward-facing conformation of Escherichia coli MsbA,
which were constructed in order to elucidate differences in the electrostatic and molecular
features of their drug recognition conformations. As a quality assurance of the methodology, the
ABCB1 model was compared to an ABCB1 X-ray crystal structure, and with published cross-
linking and site directed mutagenesis data of ABCB1. Amino acids Ile306 (TMH5), Ile340 (TMH6),
Phe343 (TMH6), Phe728 (TMH7), and Val982 (TMH12), form a putative substrate recognition site
in the ABCB1 model, which is confirmed by both the ABCB1 X-ray crystal structure and the site-
directed mutagenesis studies. The ABCB1, ABCC4 and ABCC5 models display distinct differences
in the electrostatic properties of their drug recognition sites.

Introduction
The human ATP-binding cassette (ABC) transporters
ABCB1, ABCC4 and ABCC5 belong to the ABC super-
family, a subgroup of Primary active transporters [1]. The
transporters in the ABC superfamily are structurally
related membrane proteins that have a common intracel-
lular motif that exhibits ATPase activity. This motif cleaves
ATP's terminal phosphate to energize the transport of
molecules from regions of low concentration to regions of
high concentration [1-3]. Since ABC genes are highly con-
served between species, it is likely that most of these genes
have been present since the beginning of eukaryotic evo-
lution [4].

The overall topology of ABCB1, ABCC4 and ABCC5 is
divided into transmembrane domain 1 (TMD1) - nucle-
otide-binding domain 1 (NBD1) - TMD2 - NBD2 (Figure

1). The Walker A, or phosphate binding loop (P-loop),
and Walker B motifs, are localized in the NBDs, while the
TMDs contribute to the substrate translocation events
(recognition, translocation and release). ABCB1, ABCC4
and ABCC5 are exporters, pumping substrates out of the
cell.

Transporters have drug recognition sites that make them
specific for particular substrates, and drugs may interact
with these recognition sites and either inhibit the trans-
porter or act as substrates. Experimental studies have
shown that ABCB1 transports cationic amphiphilic and
lipophilic substrates [5-8], while ABCC4 and ABCC5
transport organic anions [9]. Both ABCC4 and ABCC5
transport cAMP and cGMP, however, with differences in
their kinetic parameters; ABCC4 with a preference for
cAMP and ABCC5 with a preference for cGMP [9,10].
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When chemotherapeutic agents are expelled from cancer
cells as substrates of ABCB1, ABCC4 or ABCC5, the result
is multidrug resistance. In order to overcome multidrug
resistance, development of inhibitors of drug efflux trans-
porters has been sought for use as supplement to drug
therapy [11]. However, clinical trials of potential anti-
MDR agents have been disappointing due to adverse
effects in vivo of agents being very effective in vitro. Even if
there is a long time since Victor Ling described MDR, (i.e.
ABCB1) [12], very little is known about subtype selective
recognition and binding of ABC proteins. Structural
insight into their mode of ligand interaction and func-
tional mechanisms will be an important contribution to
pinpoint potential drug targets and to design putative
inhibitors. Recent papers report a considerable difference
in substrate specificity of ABCC4 and ABCC5 [9], includ-
ing various chemotherapeutic agents [13], and with
potential impact on reversal of MDR [14]. Elucidating the
molecular aspects of ligand interactions with ABCB1,
ABCC4 or ABCC5 may therefore aid in the design of ther-
apeutic agents that can help to overcome multidrug resist-
ance.

We have previously constructed molecular models of
ABCB1 [15], ABCC4 [16] and ABCC5 [17] based on the
Staphylococcus aureus ABC transporter Sav1866, which has
been crystallized in an outward-facing ATP-bound state
[18]. In this study, we present molecular models of
ABCB1, ABCC4 and ABCC5 based on a wide open
inward-facing conformation of Escherichia coli MsbA [19].
Since the molecular modelling was carried out before the
X-ray crystal structure of the Mus musculus ABCB1 in a
drug-bound conformation was published [20], we got a
unique opportunity to test our methodology, molecular

modelling by homology, and the quality of the ABCB1
model, when the crystal structure was published. Since we
wanted to elucidate differences in the electrostatic and
molecular features of the drug recognition conformation
of these transporters, the wide open conformation of the
MsbA template [19] was of particular interest. The electro-
static potential surfaces (EPS) of the models were calcu-
lated, and the models were compared to the X-ray crystal
structure of the Mus musculus ABCB1 [20], and with pub-
lished cross-linking and site directed mutagenesis data on
ABCB1 [21-35].

Computational methods
Software
Version 3.4-9b of the Internal Coordinate Mechanics
(ICM) program [36] was used for homology modelling,
model refinements and electrostatic calculations. The
AMBER program package version 8.0 [37] was used for
molecular mechanics energy minimization.

Alignment
A multiple sequence alignment of (SWISS-PROT acces-
sion numbers are given in brackets) human ABCB1
(P08183), human ABCC4 (O15439), human ABCC5
(O15440), human ABCC11 (Q9BX80), Escherichia coli
MsbA (P60752) and Vibrio cholerae MsbA (Q9KQW9),
obtained using T-COFFEE [38], Version 4.71 available at
the Le Centre national de la recherche scientifique website
http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi,
was used as a basis for the homology modelling module
of ICM program [36]. ABCC11 was included in the align-
ment because it is closely related to ABCC5 phylogeneti-
cally [15], and its inclusion may strengthen the alignment.
The alignment was adjusted for sporadic gaps in the TMH
segments, and for secondary structure predictions defin-
ing the boundaries of the TMHs using the PredictProtein
server for sequence analysis and structure prediction [39],
and SWISS-PROT [40].

The alignment of human ABCB1 and Escherichia coli MsbA
was compared to previously published alignments of
human ABCB1 and Escherichia coli MsbA [19,41], and it
was observed that in our alignment, the ABCB1 sequence
was shifted 2 positions to the left relative to the E. coli
MsbA sequence in the alignment of TMH2, and 1 position
the left relative to the E. coli MsbA sequence in the align-
ment of TMH6, as compared to the previously published
alignments of human ABCB1 and Escherichia coli MsbA
[19,41]. Thus, 3 alignments were used to construct 3
ABCB1 models, 1 model with our original alignment, 1
model with TMH2 adjusted to correspond to the previ-
ously published alignments of human ABCB1 and
Escherichia coli MsbA [19,41], and 1 model with both
TMH2 and TMH6 adjusted, thus using the same align-

Overall domain topology of ABCB1, ABCC4 and ABCC5Figure 1
Overall domain topology of ABCB1, ABCC4 and 
ABCC5.
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ment as the previously published alignments of human
ABCB1 and Escherichia coli MsbA [19,41]. The alignment
of Escherichia coli MsbA, human ABCB1, human ABCC4
and human ABCC5 used for the homology modelling
procedure, with TMH2 adjusted to correspond to the pre-
viously published alignments of human ABCB1 and
Escherichia coli MsbA [19,41], is shown in Figure 2. For
illustrative purposes, only the sequences of the template
and the 3 target proteins ABCB1, ABCC4 and ABCC5 are
shown.

Homology modelling
A full atom version of the open inward facing Escherichia
coli MsbA X-ray crystal structure (PDB code: 3B5W[19])
was kindly provided by Geoffery Chang and used as a
template in the construction of the homology models of
ABCB1, ABCC4 and ABCC5. The ICM program constructs
the molecular model by homology from core sections
defined by the average of Cα atom positions in conserved
regions. Loops were searched for within several thousand
structures in the PDB databank [42] and matched in
regard to sequence similarity and sterical interactions with
the surroundings of the model, and the best-fitting loop
was selected based on calculating the maps around the
loops and scoring of their relative energies. The segment
connecting NBD1 and TMD2 was also included in the
loop search procedure.

Calculations
The ABCB1, ABCC4 and ABCC5 models were refined by
globally optimizing side-chain positions and annealing of
the backbone using the RefineModel macro of ICM. The
macro was comprised of (1) a side-chain conformational
sampling using 'Montecarlo fast' [43], (2) 5 iterative
annealings of the backbone with tethers (harmonic
restraints pulling an atom in the model to a static point in
space represented by a corresponding atom in the tem-
plate), and (3) a second side-chain conformational sam-
pling using 'Montecarlo fast'. 'Montecarlo fast' samples
conformational space of a molecule with the ICM global
optimization procedure, and its iterations consist of a ran-
dom move followed by a local energy minimization, and
calculation of the complete energy. The iteration is
accepted or rejected based on energy and temperature.

The refined ABCB1, ABCC4 and ABCC5 models were
energy minimized using the AMBER 8.0 program package
[37]. Two energy minimizations were performed for each
model, (1) with restrained backbone by 500 cycles of the
steepest descent minimization followed by 500 steps of
conjugate gradient minimization, and (2) with no
restraints by 1000 cycles of the steepest descent minimiza-
tion followed by 1500 steps of conjugate gradient mini-
mization. The leaprc.ff03 force field [37], and a 10 Å cut-
off radius for non-bonded interactions and a dielectric

multiplicative constant of 1.0 for the electrostatic interac-
tions, were used in the molecular mechanics calculations.

The EPS of the ABCB1, ABCC4 and ABCC5 models were
calculated with the ICM program, with a potential scale
from -10 to +10 kcal/mol.

Model validation
To check the stereochemical qualities of the ABCB1,
ABCC4 and ABCC5 models, the SAVES Metaserver for
analyzing and validating protein structures http://nih
server.mbi.ucla.edu/SAVES/ was used. Programs run were
Procheck [44], What_check [45], and Errat [46], and the
pdb file of the open inward facing Escherichia coli MsbA
template [19] was also checked for comparison with the
models.

For further validation, the ABCB1, ABCC4 and ABCC5
models were compared with the X-ray crystal structure of
the Mus musculus ABCB1 [20] and cross-linking and site
directed mutagenesis data published on ABCB1 [21-35].

Results
The 3 ABCB1 models, constructed based on 3 different
alignments, where compared with cross-linking data and
subsequently also the X-ray crystal structure of the Mus
musculus ABCB1 [20], and it was revealed that when
TMH2 was aligned as the previously published align-
ments of human ABCB1 and Escherichia coli MsbA
[19,41], amino acids in TMH2/TMH11 (Val133/Gly939
and Cys127/Ala935) where oriented towards each other
in accordance with both cross-linking data and the X-ray
crystal structure of the Mus musculus ABCB1 [20]. How-
ever, when TMH6 was aligned as the previously published
alignments of human ABCB1 and Escherichia coli MsbA
[19,41], ligand binding amino acids (Ile340 and Phe343)
pointed away from the drug binding site, while when
aligned as proposed from our T-COFFEE [38] alignment,
it was in accordance both with cross-linking data and the
X-ray crystal structure of the Mus musculus ABCB1 [20].
Thus, the ABCB1 model which was most in accordance
with cross-linking data and the X-ray crystal structure of
the Mus musculus ABCB1 [20] was based on the alignment
where TMH2 was adjusted according to the previously
published alignments of human ABCB1 and Escherichia
coli MsbA [19,41], while TMH6 was kept exactly as in our
T-COFFEE [38] alignment. The alignment of Escherichia
coli MsbA, human ABCB1 (TMH2 adjusted), human
ABCC4 and human ABCC5 used for the homology mod-
elling procedure is shown in Figure 2. For illustrative pur-
poses, only the sequences of the template and the 3 target
proteins ABCB1, ABCC4 and ABCC5 are shown.

The energy minimized ABCB1, ABCC4 and ABCC5 mod-
els are shown in Figures 3A-C. Each transporter was in an
Page 3 of 12
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3B5W
http://nihserver.mbi.ucla.edu/SAVES/
http://nihserver.mbi.ucla.edu/SAVES/


Theoretical Biology and Medical Modelling 2009, 6:20 http://www.tbiomed.com/content/6/1/20

Page 4 of 12
(page number not for citation purposes)

Alignment of Escherichia coli MsbA, human ABCB1, human ABCC4 and human ABCC5 used as input alignment for the ICM homology modelling moduleFigure 2
Alignment of Escherichia coli MsbA, human ABCB1, human ABCC4 and human ABCC5 used as input align-
ment for the ICM homology modelling module. TMHs, Walker A motifs and Walker B motifs are indicated as boxes.
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open V-shaped inward conformation with their NBD1
and NBD2 ~50 Å apart. Both Walker A motifs of each
model consisted of a coiled loop and a short α-helix (P-
loop), and the ATP-binding half sites faced each other.
The Walker B motifs were in β-sheet conformation and
localized in the NBD's hydrophobic cores, which were
constituted of 5 parallel β-sheets. The amino acids local-
ized on the surface of each NBD were mainly charged. In
the "arms" of the V-shaped structure, NBD1 was associ-
ated with TMHs 1, 2, 3 and 6 (TMD1), and TMHs 10 and

11 (TMD2), while NBD2 was associated with TMHs 4 and
5 (TMD1), and TMHs 7, 8, 9 and 12 (TMD2). Thus, the
TMDs were twisted relative to the NBDs, such that TMH4
and TMH5 were crossed over ("cross-over motif" [19])
and associated with TMD2, and TMH10 and TMH11 were
crossed over and associated with TMD1. All TMHs con-
tributed to substrate translocation pore, which was closed
towards the extracellular side.

The loop connecting NBD1 and TMD2 of each transporter
was abundant with charged amino acids. The loop con-
necting NBD1 and TMD2 of ABCB1 was in extended con-
formation forming a β-sheet between amino acids
sections Lys645-Glu652 and Lys665-Ser671, while the
loops connecting the subunits of ABCC4 and ABCC5 were
α-helical. ABCB5 featured an insertion loop (as compared
with the amino acid sequences of Escherichia coli MsbA)
from Ile479 to His548 in NBD1, and as displayed in Fig-
ures 3C and 4C, this loop was pointing away from NBD1
parallel to the membrane. However, modelling loops of
lengths as that of the connection between NBD1 and
TMD2 is relatively inaccurate and consequently the mod-
elled loop structures must be regarded as uncertain.

Figures 4A-I show the EPS of the substrate recognition
area of each of the ABC models. The EPS of the substrate
recognition area in the TMDs of ABCB1 was neutral with
negative and weakly positive areas, while the EPS of the
ABCC5 substrate recognition area was generally positive.
The substrate recognition area of ABCC4 was generally
positive with negative area "spots".

The results from the stereochemical validations retrieved
from the SAVES Metaserver http://nih
server.mbi.ucla.edu/SAVES/ are shown in Table 1. Overall
factors from the Errat option at ~90 indicate that the mod-
els were of high quality.

Site directed mutagenesis studies on ABCB1 have indi-
cated that Ile306 (TMH5) [27,35], Ile340 (TMH6) [33],
Phe343 (TMH6) [21,27], Phe728 (TMH7) [27], and
Val982 (TMH12) [33,35] may participate in ligand bind-
ing. As shown in Figure 5A, these residues may form a sub-
strate recognition site in the ABCB1 model. The
involvement of these residues in ligand binding is con-
firmed in the X-ray crystal structure of the Mus musculus
ABCB1 [20] (Figure 5B). Table 2 shows the corresponding
residues in ABCC4 and ABCC5. Measured Cα-Cα dis-
tances in the human ABCB1 model, in the X-ray crystal
structure of the Mus musculus ABCB1 [20] and experimen-
tal distance ranges from cross-linking studies and are
listed in Table 3.

Discussion
Visualization of the molecular structures of human ABC
transporters in 3D models contributes to the comprehen-

Backbone Cα-traces of ABCB1 model (A), ABCC4 model (B) and ABCC5 model (C) viewed in the membrane plane, cytoplasm downwardsFigure 3
Backbone Cα-traces of ABCB1 model (A), ABCC4 
model (B) and ABCC5 model (C) viewed in the 
membrane plane, cytoplasm downwards. Colour cod-
ing: blue via white to red from N-terminal to C-terminal.
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sion of the physical and chemical properties of these mol-
ecules, and of their intermolecular interactions with
endogenous and exogenous molecules. Thus, interactions
involved in determining the potencies and the specificities
of different drugs with these drug targets can be identified.
To construct a realistic molecular model ("target", e.g.
human ABC transporters) by homology, based on an
experimental structure ("template", e.g. the open inward
facing Escherichia coli MsbA [19]), the sequence identity
between the target and the template should be relatively
high, and the target-template alignment should identify
corresponding positions in the target and the template.

Homology between two proteins indicates the presence of
a common ancestor, and phylogenetic analyses of ABC
transporters have indicated that eukaryotic ABCB trans-
porters and ABCC transporters may have originated from
bacterial multidrug transporters [47]. It has been shown
that the homology modelling approach is at least as appli-
cable to membrane proteins as it is to water-soluble pro-
teins, and that sequence similarities of 30% between
template and target will give a Cα-RMSD of 2 Å or less in
TMHs [48]. The sequence identities between the template
molecule MsbA and the target molecules ABCB1, ABCC4
and ABCC5 are 34%, 21% and 25%, respectively, and the

A-C: Backbone Cα-traces of ABCB1 model (A), ABCC4 model (B) and ABCC5 model (C) viewed from intracellular sideFigure 4
A-C: Backbone Cα-traces of ABCB1 model (A), ABCC4 model (B) and ABCC5 model (C) viewed from intrac-
ellular side. Colour coding: blue via white to red from N-terminal to C-terminal. D-F: The water-accessible surfaces of 
ABCB1 model (D), ABCC4 model (E) and ABCC5 model (F) viewed from intracellular side collared coded according to the 
electrostatic potentials 1.4 Å outside the surface; negative (-10  kcal/mol), red to positive (+10 kcal/mol), blue. G-I: Cross sec-
tions along the inner  membrane layer of water-accessible surfaces of ABCB1 model (G), ABCC4 model (H)  and ABCC5 
model (I) viewed from intracellular side, colour coding as D-F. All  illustrations are in similar view.

Table 1: Results from the stereochemical validations retrieved from the SAVES Metaserver

Errat Procheck (%) Whatcheck
Core Allow Gener Disall

ABCB1 89.7 80.2 15.1 3.4 1.3 Satisfactory
ABCC4 86.7 81.1 14.4 3.0 1.5 Satisfactory
ABCC5 90.6 80.5 15.1 2.7 1.7 Satisfactory
Escherichia coli MsbA [19] 58.2 54.9 37.4 5.6 2.1 Satisfactory
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secondary structure elements (NBDs and TMDs) are con-
served. Sequence identities between the Escherichia coli
MsbA TMD and the ABCB1, ABCC4 and ABCC5 TMD1s
and TMD2s are 23% (ABCB1-TMD1), 21% (ABCB1-
TMD2), 14% (ABCC4-TMD1), 18% (ABCC4-TMD2),
20% (ABCC5-TMD1) and 20% (ABCC5-TMD2), respec-
tively.

A multiple sequence T-COFFEE [38] alignment, which
highlights evolutionary relationships and increases prob-
ability that corresponding sequence positions are cor-
rectly aligned, was used to create the target-template
alignments in this study. The T-COFFEE [38] alignment
differed from the previously published alignments of
human ABCB1 and Escherichia coli MsbA [19,41] in TMH2
and TMH6. The ABCB1 model based on the combined
alignment, with TMH2 adjusted corresponding to the pre-

viously published alignments of human ABCB1 and
Escherichia coli MsbA [19,41], was in the best agreement
with cross-linking data and the X-ray crystal structure of
the Mus musculus ABCB1 [20]. This illustrates that com-
bining different alignment methods may strengthen the
alignment used for homology modelling. The alignment
correctly aligning TMH2 was created using ClustalW and
HMMTOP [41], while T-COFFEE, which aligned TMH6
correctly, is broadly based on progressive approach to
multiple alignment using a combination of local (Lalign)
and global (ClustalW) pair-wise alignments to generate a
library of alignment information which is used to guide
the progressive alignment.

The X-ray crystal structure of the Mus musculus ABCB1 [20]
and site directed mutagenesis studies on ABCB1 may serve
as validity tests both for helix orientation in the template

Comparison of proposed drug binding site in ABCB1 model (A) and the drug binding site in the X-ray crystal structure of P-glycoprotein (ABCB1) [20] (B) viewed from the intracellular side with amino acids suggested from site directed mutagenesis studies to take part in ligand binding displayed as sticks coloured according to atom type (C = grey; H = dark grey; O = red; N = blue); Ile306 (TMH5) [27,35], Ile340 (TMH6) [33], Phe343 (TMH6) [21,27], Phe728 (TMH7) [27], and Val982 (TMH12) [33,35]Figure 5
Comparison of proposed drug binding site in ABCB1 model (A) and the drug binding site in the X-ray crystal 
structure of P-glycoprotein (ABCB1) [20] (B) viewed from the intracellular side with amino acids suggested 
from site directed mutagenesis studies to take part in ligand binding displayed as sticks coloured according to 
atom type (C = grey; H = dark grey; O = red; N = blue); Ile306 (TMH5) [27,35], Ile340 (TMH6) [33], Phe343 
(TMH6) [21,27], Phe728 (TMH7) [27], and Val982 (TMH12) [33,35]. Amino acids in panel B are numbered according to 
human ABCB1. Mus musculus numbering: Ile302, Ile336, Phe339 Phe724 and Val978. Differences in helix tilting in the panels 
refer to the different conformations of ABCB1, outward facing conformation in the left panel and closed conformation in the 
right panel.

Table 2: Human ABCB1 amino acid residues shown to interact with ligands in site directed mutagenesis studies, corresponding Mus 
musculus ABCB1 amino acids shown to interact with ligand in X-ray crystal structure [20], and corresponding amino acid residues in 
ABCC4 and ABCC5.

TMH Human ABCB1 Mus musculus ABCB1 [20] ABCC4 ABCC5

1 Leu65 [26] Leu64 Glu103 Gln190
5 Ile306 [27,35] Ile302* Ser328 Val410
6 Ile340 [33] Ile336 Gly359 Asn441
6 Phe343 [21,27] Phe339 Arg362 Thr444
7 Phe728 [27] Phe724 Ala727 Ser872
12 Val982 [33,35] Val978 Leu987 Val1137

*) Not direct contact with ligand in Mus musculus ABCB1 X-ray crystal structure [20].
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Table 3: Comparison of Cα-Cα distances in the human ABCB1 model, Cα-Cα distances in the Mus musculus ABCB1 X-ray crystal 
structure [20] and distances between residues from experimental cross-linking studies on ABCB1. 

Region Residues Human ABCB1 
(Mus musculus ABCB1)

Cα-Cα distances (Å) Exp. Cross-linking (Å) Ref

Human ABCB1 model Mus musculus ABCB1 
(Pdb code: 3G60)

TMH1/TMH11 M68/Y950 (M67/Y946) 12.9 9 [25]
M68/Y953 (M67/Y949) 15.6 10
M68/A954 (M67/A950) 17.3 11.2
M69/A954 (M68/A950) 19 11.2
M69/F957 (M68/F953) 19.5 13

TMH2/TMH11 V133/G939 (V129/G935) 6.2 5 [24]
C137/A935 (C133/A931) 7.4 5.1

TMH4/TMH10 S222/I868 (S218/I864) 34.7 30.3 9-25 [34]
S222/G872 (S218/G868) 35 30.8

TMH4/TMH12 L227/S993 (L223/S989) 32.3 22.8 5.5-15 [30]
V231/S993 (I227/S989) 31.2 20.8
W232/S993 (W228/S989) 28.9 20.1
A233/S993 (A229/S989) 26 16.3
I235/S993 (I231/S989) 30 19.9
L236/S993 (L232/S989) 26.6 18

TMH5/TMH8 N296/G774 (N292/G770) 6.9 8.1 [23]
I299/F770 (M295/F766) 8.9 9.3
I299/G774 (M295/G770) 11.9 10.7
G300/F770 (G296/F766) 7.2 7.7

TMH5/TMH10 I306/I868 (I302/I864) 33 29.9 13-25 [34]
I306/G872 (I302/G868) 34.3 29.6

TMH5/TMH11 I306/T945 (I302/T941) 33.4 31.3 13-25 [34]
TMH5/TMH12 I306/V982 (I302/V978) 19 19.8 13-25 [34]

I306/A985 (I302/A981) 22.4 20.5
TMH5/TMH12 A295/S993 (A291/S989) 22.7 16.3 5.5-15 [30]

I299/S993 (M295/S989) 21.4 13.7
TMH6/TMH7 L339/F728 (L335/F724) 18.8 16.3 20-25 [28]
TMH6/TMH10 P350/V874 (P346/V870) 34.1 23.2 5.5-15 [30]

P350/E875 (P346/E871) 31.6 20.1
P350/M876 (P346/M872) 28.9 18.3

TMH6/TMH10 L339/I868 (L335/I864) 27 23.4 13-25 [34]
L339/G872 (L335/G868) 27.9 24
L332/Q856 (L328/Q852) 31.9 24.9

TMH6/TMH11 P350/G939 (P346/G935) 23.5 20.9 5.5-15 [30]
TMH6/TMH11 L339/T945 (L335/T941) 25 22.7 20-25 [32]
TMH6/TMH11 L339/F942 (L335/F938) 24.9 23.9 25 [34]
TMH6/TMH12 L332/L975 (L328/L971) 10.7 12.5 5.5-15 [28]
TMH6/TMH12 F343/M986 (F339/M982) 20.4 15.2 [29]

G346/G989 (G342/G985) 26.4 15
P350/S993 (P346/S989) 31.9 15.2

TMH6/TMH12 F343/V982 (F339/V978) 18.1 16 10 [28]
L339/V982 (L335/V978) 17.1 15.9 16-25

TMH6/TMH12 L339/A985 (L335/A981) 21.2 16.8 20-25 [34]
L332/L976 (L328/L972) 14 15.6 9-13

NBD/TMD L443/S909 (L439/S905) 8.6 12 6-16 [54]
S474/R905 (S470/R905) 10.1 9.6

NBD/TMD A266/F1086 (A262/F1082) 10 9.4 5.5-15 [55]
WalkerA/Signature S1072/L531 (S1068/L527) 62.4 20.2 5.5-15 [56]

S1072/S532 (S1068/L528) 59.9 18.5
G1073/L531 (G1069/L527) 65 20.6
G1073/L532 (G1069/L528) 62.6 19.3
G1073/L533 (G1069/L529) 62 20.5
C1074/L531 (C1070/L527) 63.4 21.8
G1075/L531 (G1071/L527) 64.8 24.9
S429/L1176 (S425/L1172) 62.4 25.1
G430/L1176 (G426/L1172) 65 25.9
C431/L1176 (C427/L1172) 63.3 28.3
G432/L1176 (G428/L1172) 64.9 31.9

Values from experimental cross-linking studies are derived from [41].

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3G60
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[19], and for the alignment used for ABC transporter
modelling (Figure 2). The helix orientation of the 12
TMHs of the ABCB1 model was in accordance with the X-
ray crystal structure of the Mus musculus ABCB1 [20]. Both
the ABCB1 model and the ABCB1 X-ray structure exhib-
ited a V-shaped structure with the same relative domain
orientations; TMDs twisted relative to the NBDs with
TMH4 and TMH5 crossed over ("cross-over motif" [19])
and associated with TMD2, and TMH10 and TMH11
crossed over and associated with TMD1. The major differ-
ence between the ABCB1 model and the X-ray crystal
structure of the Mus musculus ABCB1 [20] was that the V-
shape of the ABCB1 model was wider than the X-ray crys-
tal structure of the Mus musculus ABCB1 [20].

Cα-Cα distances in the human ABCB1 model, Cα-Cα dis-
tances in the Mus musculus ABCB1 X-ray crystal structure
[20], and distances between residues in the TMD area
from experimental cross-linking studies on ABCB1, are
listed in Table 3. As shown in the table, the Cα-Cα dis-
tances in the human ABCB1 model compared to the Cα-
Cα distances in the Mus musculus ABCB1 X-ray crystal
structure [20] revealed that the helix packing of TMH pairs
2 and 11, 5 and 11, 6 and 7, and 6 and 11, were only 1-2
Å further apart in the human ABCB1 model. TMHs 5 and
8 were packed approximately 1 Å tighter in the human
ABCB1 model than in the Mus musculus ABCB1 X-ray crys-
tal structure [20]. TMH pairs 1 and 11, 4 and 10, and 5
and 10 were approximately 3-7 Å further apart in the
human ABCB1 model than in the Mus musculus ABCB1 X-
ray crystal structure [20]. The most striking differences
between helix packing of the human ABCB1 model and
the Mus musculus ABCB1 X-ray crystal structure [20] were
observed in TMHs 6 and 12. Whereas the differences of
their packing towards other TMHs where in the range of 1-
5 Å towards the extracellular side, the differences between
the distances between these TMHs long in the human
ABCB1 model and the Mus musculus ABCB1 X-ray crystal
structure [20] were up to 15 Å towards the cytoplasm. This
indicates that in order for ABCB1 to attain a wide open
inward facing conformation, large conformational
changes involving a scissors like movement of TMH6 and
TMH12 may take place.

As shown in Figure 5A, Ile306 (TMH5) [27,35], Ile340
(TMH6) [33], Phe343 (TMH6) [21,27], Phe728 (TMH7)
[27], and Val982 (TMH12) [33,35] may form a substrate
recognition site in the ABCB1 model. The involvement of
these amino acid residues is also confirmed by the X-ray
crystal structure of the Mus musculus ABCB1 [20]. Interest-
ingly, Ile306 (Ile302 in Mus musculus ABCB1) actually
points slightly towards the membrane in the X-ray crystal
structure, while it points directly towards the transloca-
tion pore in the ABCB1 model (Figure 5). This could be
due to twisting of TMH5 upon changing conformation

from at drug recognition conformation to a drug bound
conformation. Cross-linking studies on ABCB1 has pro-
posed that residue pairs Asn296-Gly774, Ile299-Phe770,
Ile299-Gly774, and Gly300-Phe770 (TMH5 and TMH8,
respectively), are adjacent [23]. These residues are in
direct contact with each other in the ABCB1 model pre-
sented in this study. Furthermore, cross-linking studies
has also shown that Val133 and Cys137 (TMH2) are close
to Ala935 and Gly939 (TMH11) [24]. In the present
ABCB1 model, these residues are adjacent. This also
implies that the orientations of these residues in the mod-
els are correctly localized, and that the alignment used for
the ICM homology modelling procedure is correct.

As shown in Table 3, the Cα-Cα distances in the human
ABCB1 model of residues that connect residues on both
sides of the wings are substantially longer than distances
measured by chemical cross-linking. This may be due to
drug-induced fit in the cross-linking experiments, which is
not reflected in the present open inward ABCB1 model.
Interestingly, the corresponding Cα-Cα distances in the
Mus musculus ABCB1 X-ray crystal structure [20] are also
longer than distances measured by chemical cross-linking.
The shorter distances measured by chemical cross-linking
may represent conformations of ABCB1 that are closed to
the cytoplasmic side, with the wings tighter than in the
conformations of the human ABCB1 model and the Mus
musculus ABCB1 X-ray crystal structure [20].

The open inward facing Escherichia coli MsbA template
may represent a functional inward-facing conformation of
the transporter, even though conformational disruption
of the protein due to the presence of detergent molecules
during crystallization cannot be excluded. According to
the Errat option of the SAVES Metaserver for analyzing
and validating protein structures, which indicated that the
stereochemical qualities of the models were realistic, the
stereochemical quality of the template was poorer than
the stereochemical qualities of the ABC transporter mod-
els (Table 1). This difference in quality may be due to the
modelling procedures; the ABC transporter models were
energy minimized using the AMBER 8.0 program package
[37], whereas the template was not.

Several ABCB1 models have previously been published
[49-52] based on an MsbA X-ray crystal structure that was
subsequently retracted [53]. In 2009, 4 molecular models
of human P-glycoprotein in two different catalytic states
were published [41] based on X-ray crystal structures of
the bacterial MsbA in different conformations [19]. These
models are based on the previous alignments of human
ABCB1 and Escherichia coli MsbA [19,41], and conse-
quently, the orientation of their TMH6 differ from the ori-
entation of TMH6 in the ABCB1 model presented in this
study. The measured Cα-Cα distances in our present
Page 9 of 12
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ABCB1 model are in accordance with the corresponding
distances in their open inward ABCB1 model [41].

From a pharmacological point of view, the EPS of the lig-
and recognition area in the wide open conformation of
each of the ABC transporters is of particular interest, since
it may elucidate substrate differences between these trans-
porters. The template structure was constructed by fitting
the X-ray structure of outward facing MsbA to the electron
density map of inward facing MsbA. The template confor-
mation may therefore have limitations that can affect the
calculated EPS in some regions of the models. ABCB1
transports cationic amphiphilic and lipophilic substrates
[5-8], and, as illustrated in Figure 4, the EPS of its ligand
recognition area was neutral with negative and weakly
positive areas. In contrast, ABCC4 and ABCC5 transport
organic anions [9], and the EPS of the ABCC5 substrate
recognition area was generally positive. Interestingly, the
substrate recognition area of ABCC4 was generally posi-
tive with negative area "spots". This may raise reflections
over differences in substrate selectivity between the ani-
onic transporters ABCC4 and ABCC5, and support the
reports of ABCC4 with preference for cAMP and ABCC5
with preference for cGMP [9,10]. The EPS of cAMP and
cGMP (Figure 6) indicates that the surface of cGMP (Fig-
ure 6, panel B and D) has a larger region of negative EPS
than that of cAMP (Figure 6, panel A and C). This may
indicate that cGMP binds stronger to the surface of
ABCC5 than cAMP, while negative area "spots" on the sur-
face of ABCC4 may contribute to stronger binding to
cAMP than to cGMP.

The residues of the binding site of the ligand bound Mus
musculus ABCB1 X-ray crystal structure [20] and the
respective binding site of all three models are shown in
Table 2. While the binding sites of human and Mus mus-
culus ABCB1 features lipophilic residues (Leucine, iso-
leucines, phenyl alanines, valine), ABCC4 has charged
and polar residues and ABCC5 has polar residues. A posi-
tively charged residue in the binding site area of ABCC5,
Lys448, also may take part in interaction with organic ani-
ons. The binding sites of the ABCB1, ABCC4 and ABCC5
models are wider and more accessible to the cytoplasm
than the binding site of the Mus musculus ABCB1 X-ray
crystal structure [20], reflecting their wide open-inward
conformation.

Crystal structures of ABC transporters captured in differ-
ent conformations have revealed that ABC transporter
mechanism involves alternating access of substrate from
the inward to the outward facing conformation, with sub-
unit twisting and domain swapping [18-20]. The putative
substrate recognition pocket in the ABCB1, ABCC4 and
ABCC5 models in the wide open inward conformation
presented in this study contains the same amino acid res-

idues as the putative substrate releasing pocket in our pre-
vious outward-facing molecular models of ABCB1 [15],
ABCC4 [16] and ABCC5 [17] based on the Staphylococcus
aureus ABC transporter Sav1866 [18]; Ile306 (TMH5)
[27,35], Ile340 (TMH6) [33], Phe343 (TMH6) [21,27],
Phe728 (TMH7) [27], and Val982 (TMH12) [33,35]. This
indicates that these residues contribute to a substrate
translocation pore that changes conformation from a high
affinity inward facing substrate recognition binding site to
a low affinity outward facing substrate releasing pocket.
Mutating the corresponding residues of ABCC4 and
ABCC5 (Table 2) into the ABCB1 residues would be a val-
uable test of our models. The models indicate that these
mutants may have substrate specificity more similar to
that of wild type ABCB1. Leu65 (TMH1) [26], which is
also suggested to take part in ligand binding, and is local-
ized in the substrate releasing pocket in the outward fac-
ing ABCB1 model [15], is slightly distant from the core
area of the ligand recognition site in the inward facing
ABCB1 model. This amino acid may come into contact
with the ligand upon conformational changes associated
with ligand binding.

The models presented in this study may represent a sub-
strate recognition conformation, and from a structure

The surface of cAMP (panel A and C) and cGMP (panel B and D) colour coded according to electrostatic potentials outside the surfaceFigure 6
The surface of cAMP (panel A and C) and cGMP 
(panel B and D) colour coded according to electro-
static potentials outside the surface. The surface of 
cAMP in panel C are flipped 180° along the y-axis relative to 
panel A, while the surface of cGMP in panel D are flipped 
180° along the y-axis compared with panel B.
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aided drug design point of view, the specificity and affin-
ity of ABC transporter substrate binding in this conforma-
tion is of particular interest. When performing docking
studies, the structural flexibility of transporters, and the
structural changes of the drug and the drug target adopt-
ing an energetically favourable complex (induced-fit), as
has been demonstrated in a cysteine-scanning mutagene-
sis and oxidative cross-linking study of substrate-induced
changes in ABCB1 [22], should be considered in order to
predict how a designed drug will fit into the drug target.

The ABCB1, ABCC4 and ABCC5 models presented in this
study should be considered as working tools for generat-
ing hypotheses and designing further experimental stud-
ies related to ABC transporter structure and function, and
their drug interactions. The binding site of the ABCB1
transporter model is in accordance with X-ray crystal
structure of the Mus musculus ABCB1 [20] and site directed
mutagenesis data and cross-linking studies on ABCB1 [21-
35], indicating that the open inward-facing conformation
structure of Escherichia coli MsbA [19] is a suitable tem-
plate for homology modelling of ABCB1, ABCC4 and
ABCC5. The corresponding residues in ABCC4 and
ABCC5 (Table 2) are candidates for point mutations in
site directed mutagenesis studies.

Co-ordinates of the ABCB1, ABCC4 and ABCC5 models
are available from the authors upon request.
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