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ABSTRACT

Fragment-Based Protein Active Site Analysis Using Markov Random Field

Combinations of Stereochemical Feature-Based Classifications. (May 2009)

Reetal Pai Karkala, B.E., National Institute of Engineering, Mysore, India;

M.S., Clemson University

Chair of Advisory Committee: Dr. Thomas Ioerger

Recent improvements in structural genomics efforts have greatly increased the

number of hypothetical proteins in the Protein Data Bank. Several computational

methodologies have been developed to determine the function of these proteins but

none of these methods have been able to account succesfully for the diversity in

the sequence and structural conformations observed in proteins that have the same

function. An additional complication is the flexibility in both the protein active site

and the ligand.

In this dissertation, novel approaches to deal with both the ligand flexibility

and the diversity in stereochemistry have been proposed. The active site analysis

problem is formalized as a classification problem in which, for a given test protein,

the goal is to predict the class of ligand most likely to bind the active site based

on its stereochemical nature and thereby define its function. Traditional methods

that have adapted a similar methodology have struggled to account for the flexibility

observed in large ligands. Therefore, I propose a novel fragment-based approach to

dealing with larger ligands. The advantage of the fragment-based methodology is

that considering the protein-ligand interactions in a piecewise manner does not affect

the active site patterns, and it also provides for a way to account for the problems

associated with flexible ligands.
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I also propose two feature-based methodologies to account for the diversity ob-

served in sequences and structural conformations among proteins with the same func-

tion. The feature-based methodologies provide detailed descriptions of the active site

stereochemistry and are capable of identifying stereochemical patterns within the

active site despite the diversity.

Finally, I propose a Markov Random Field approach to combine the individual

ligand fragment classifications (based on the stereochemical descriptors) into a single

multi-fragment ligand class. This probabilistic framework combines the information

provided by stereochemical features with the information regarding geometric con-

straints between ligand fragments to make a final ligand class prediction.

The feature-based fragment identification methodology had an accuracy of 84%

across a diverse set of ligand fragments and the mrf analysis was able to succesfully

combine the various ligand fragments (identified by feature-based analysis) into one

final ligand based on statistical models of ligand fragment distances. This novel

approach to protein active site analysis was additionally tested on 3 proteins with very

low sequence and structural similarity to other proteins in the PDB (a challenge for

traditional methods) and in each of these cases, this approach successfully identified

the cognate ligand. This approach addresses the two main issues that affect the

accuracy of current automated methodologies in protein function assignment.
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CHAPTER I

INTRODUCTION

The advent of high-throughput structural genomics has essentially changed the pro-

cess by which biochemists select a protein for study. Previously, a protein was selected

based on its functional category for further study and analysis. But high-throughput

efforts concentrate on first solving the structures of a large number of diverse pro-

teins and protein function assignment is often based on later studies of the protein

structure. Therefore in recent times, functional analysis of 3D structure has become

an important problem in structural biology. Figure 1 shows the large increase in the

number of proteins with unknown function in the Protein Data Bank in recent years

[99].

Many computational approaches ranging from sequence-based methods, fold

analysis methods to structure-based methods (reviewed in Section A of this chap-

ter) have been proposed for protein functional assignment. However, none of them

has been able to capture the diversity in active site geometry and chemistry. In this

dissertation, a structure-based approach to functional analysis of proteins based on

principles of pattern recognition and machine learning is presented. The function of a

protein is based on its interactions with other molecules. Therefore, the identification

of a protein’s cognate ligand (a ligand that specifically binds to the protein) greatly

furthers the knowledge about its function. Here, the functional analysis problem is

formulated as a classification problem where the different cognate ligands form the

various classes. Given any new protein structure, the aim is to classify it as binding

a ligand from one of these classes. Previous approaches to functional analysis have

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. The large increase in the number of new structures in the Protein Data Bank

has greatly increased the number of hypothetical proteins (proteins with un-

known function)
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largely been unsuccessful due to their inability to address the diversity in active site

geometry within a given ligand class. This diversity stems from the conformational

flexibility seen in larger ligands (with more than 10 C atoms). In this dissertation,

a novel fragment-based approach to dealing with larger ligands is proposed in order

to address the problem of flexibility in active site similarity analysis. Larger ligands

are broken into smaller fragments consisting of 6-7 C atoms and each of these frag-

ments forms a separate class and multiple ligands can share ligand fragments. This

approach necessitates a two-part analysis of any new active site: first, the various

possible fragment classes are identified using feature-based approaches and second,

these fragment classifications are combined to yield a final large ligand class. Two

related but different methodologies for fragment ligand classification and a Markov

Random Field method for the fragment classification combinations are introduced. In

both the methodologies used for fragment classification, active sites are characterized

using stereochemical features and relevant features are identified using dimensional-

ity reduction techniques like Singular Value Decomposition and Linear Discriminant

Analysis.

A. Previous Approaches

1. Sequence-Based Approaches

The earliest approaches to functional annotations were based on sequence homology

analysis. Sequence-based functional annotation methods are based on the premise

that catalytically important residues are conserved in order to preserve function.

Proteins that have very high sequence homology (> 30%) or belong to the same struc-

tural/fold family tend to have similar physiological ligands (ligand with the maximal

binding affinity). Therefore, a straight-forward sequence alignment technique can
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be used to identify conserved residues between very closely related proteins. As the

sequence similarity decreases, other local patterns need to be identified. PROSITE

[116] is one such method where motifs of 10-20 amino acids were used to identify

catalytically important residues. For all protein sequences that have the same func-

tion, a consensus motif is derived based on the active site constituents. Substitutions

between residues is allowed at each of the residue positions in the motif based on

the BLOSUM [48] or PAM [26] amino-acid substitution matrices. Figure 2 shows the

multiple sequence alignment used to define the PROSITE pattern for the Zinc-Finger

protein family. PRINTS [5] identified that the sequence diversity within a single

functional class make it very difficult to explain the active site pattern with a single

consensus motif and chose instead to use motif fingerprints or groups of motifs to

describe one single functional class. Pfam and PRODOM databases both use mul-

tiple sequence alignments and Hidden Markov Models to extract sequence profiles of

conserved residues. All of these databases are presently combined as one database

resource InterPro [3] and this database provides researchers with a resource to iden-

tify protein family traits and inherited functional characterization based on sequence

motifs.

2. Structural Information Combined with Sequence Information

The problem with purely sequence-based approaches to functional analyses is that

very often proteins with highly dissimilar sequences (< 10% sequence homology) share

structural and functional similarities (suggesting a probable common evolutionary

origin) necessitating the use of protein 3D structure in functional analyses. Similarly,

high sequence homology does not necessarily translate into functional similarity. For

example, NfsA and FRP have over 51% sequence identity but have very different

substrate specificities [132]. Therefore, there is a clear need for approaches that
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Fig. 2. Multiple sequence alignment of all the sequences used to define the profile for

proteins in the Zinc-Finger family
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combine the sequence information with other structural clues for improved functional

prediction/identification.

Initial approaches that defined active site patterns based on a combination of

structure and sequence information, used the fold family of the protein as a way

to define its structural class [82]. For example, Rychlewski et.al [111] studied the

M.genitalium genome using a combination of a sequence profile alignment algorithm

and fold-prediction algorithms to tentatively assign function to 80% of that genome.

Fold similarity was also used successfully to identify the functional similarity between

actin, the ATPase domain of the heat-shock protein, and hexokinase; while these

proteins had only a 9% sequence similarity, their structural similarity Z-score was

found to be greater than 15 (anything greater than 2 is considered relevant) [16],

[39]. There exist many folds like the TIM Barrell that exist in diverse geometries

and also combine with different domains to create functionally diverse proteins [90].

Therefore, functional analyses based purely on structural/fold similarity cannot be

used to assign biochemical function in an error-free manner. The structural property

of solvent-accessibility was used in ConSeq [11] in combination with the evolution-

ary conservation of each residue in order to compute the functional importance of

every residue. Structural similarity was also used to identify the functional similar-

ity between CALB and XADL (1tca and 1ede respectively), two structurally similar

hydrolases with dissimilar sequences [40]. The evolutionary trace methodology [76]

identified sequence conservation patterns, mapped them onto protein surfaces and

compared these mappings to identify functional similarity. This approach was suc-

cessfully used to identify the functionally important residues in the SH2 and SH3

domains.
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3. Combining Sequence Information with 3D Coordinates of Amino Acids

Often, there exists no sequence homology or fold similarity between two functionally

similar proteins but the active site residues are conserved as in the case of PduO-type

corrinoid adenosyltransferase from Lactobacillus reuteri. A conserved sequence motif

was not found in any other existing protein classes and there was no similarity in the

overall fold with other known ATP binding proteins [80]. Type I 3-dehydroquinase

(DHQase) from S.typhi and the type II DHQase from M. tuberculosis have totally

distinct structures/folds but catalyze the same enzymatic reaction by utilizing com-

pletely different mechanisms [45]. Similarly, while the relative positions of active-site

components comprising the metal ion Zn2+ and NAD binding sites were found to be

similar in dehydroquinate synthase (DHQS) and alcohol dehydrogenase, no similarity

between the folds of the catalytic domains was found [20]. In order to deal with such

cases where proteins from diverse fold families catalyze the same reaction, 3D tem-

plate methods [61], [8], [9], [70] and [127] were developed. These methods capture the

residue patterns between proteins belonging to the same functional class by focusing

on the patterns within the active site instead of global structural/fold and sequence

similarities. In this methodology, the constellation of residues within the active sites,

of all proteins belonging to the same functional class, is described based on the 3D

placement of residues as well as the residue identity. Figure 3 shows an example 3D

template for histidine kinase.

Graph-theoretic approaches, that represent each amino acid in the active site as

nodes labeled by the residue identity and relative distances between them as edges

in the graph, have been developed [4]. Each such representation of an active site is

stored as a graph template. Search patterns, based on the residues in the active sites

of new proteins, were also similarly developed and a subgraph isomorphism algorithm
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Fig. 3. An example 3D template for histidine kinase consisting of relative placements

as seen in figure of the four residues threonine, histidine, histidine and glycine

ASSAM was used to compare between search pattern and the stored templates. The

catalytic triads (SER-ASP-HIS) found in protease enzyme active sites and the zinc-

binding sites in thermolysin were both identified using these 3D template recognition

algorithms. The Catalytic Site Atlas is the single largest repository (presently con-

taining 18,314 templates) of these 3D templates constructed based on the coordinate

data from high resolution structures. The initial 3D template definition of coordinates

was very rigid and did not allow for errors that might be present in search patterns

due to low-medium resolution data. To account for the variation in interatomic dis-

tances due to variations in resolution, fuzzy functional forms (FFF s) of 3D templates

were developed [37]. The FFF s seek to relax the structural constraints as much as

possible and still maintain the specificity of the active site patterns [83].

The problem with the creation of 3D templates and FFF s is the attempt to derive
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Fig. 4. The algorithm flow for CPASS

a generalized template from a diverse set of active sites into a single coherent pattern.

This generalization results in a loss of details regarding protein-ligand interactions,

since few or no individual contacts might be found common to all members of these

protein families. This observation was confirmed by the study on adenine binding

motifs [28], [29]. An algorithm CPASS [102] was developed to avoid this problem

by not creating a consensus template but storing each template representative of a

functional class. A new protein is then searched for each of these stored templates.

Figure 4 shows the flow of the algorithm for CPASS.

There is a large diversity in active sites that extends beyond sequence homology

or structural architectures due to the fact that proteins often make do with various

residue combinations and structural motifs to effect the same chemical specificity. For
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example, the diversity in adenine active sites has been extensively studied and com-

mon motifs (a supersecondary β-loop-β that grasps the adenine ring along its faces,

base-stacking of the adenine ring with the protein hydrophobic atoms and backbone

polar interactions and nonspecific hydrophobic interactions) were found ([69]) and

none of these motifs are based on specific amino acid identities and placements. Sim-

ilarly, the active sites of the DJ-1 superfamily (which consists of kinases involved

in the biosynthesis of thiamine [130]) and the active sites of β-carbonic anhydrase

from M.thermoautotrophicum, M.tb. and B.subtilis [63] all maintain overall shape

and chemical complementarity between active site and ligand despite substantial dif-

ferences in specific residue identities and placements. Similarly, the overall active site

structure of oxygen-insensitive nitroreductase (NfsA) from E. coli is similar to the

NADPH-dependent flavin reductase of V. harveyi, despite definite difference in the

spatial arrangement of residues in the active site [65]. However, this preservation of

complimentary interactions between receptor and ligand is not captured by 3D motifs

since they rely on rigid motif definitions based on the identities and placements of

residues involved in protein-ligand interactions. Generalizing these patterns by allow-

ing fuzzy descriptions of geometry does not increase the accuracy of this approach

either. Instead, generalizing only reduces the discriminatory power of a pattern by

causing unrelated active sites to look similar, thereby increasing the discrepancies

within functional assignments.

4. Docking

Based on previous discussions, it is essential to develop an analysis of active sites

that captures the diversity within active sites binding the same ligand and does not

rely on specific residue placements and fold analyses. Such an analysis will help to

better understand and capture the underlying geometric and chemical interaction
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patterns within the active site. According to the Gibbs free energy of binding (∆G =

∆H−T∆S), favorable interactions between ligands and their proteins are determined

by the balance of enthalpic and entropic forces acting on the ligand and the protein

active site. The free energy of binding equation suggests that high binding affinity

only requires sufficient chemical interactions to be accumulated throughout the active

site. These favorable interactions do not require specific side-chain position or identity

information. A high-affinity protein-ligand complex maximizes favorable chemical

interactions and minimizes steric conflicts.

Alternative approaches to functional analysis based on the free energy of binding

have been developed, notable amongst them are the docking algorithms like DOCK

[81] (scoring function evaluates the electrostatic and van der Waals interactions be-

tween the protein receptor and ligands), FlexX [51] (accounts for flexibility in re-

ceptors thereby allowing for the use of apo-structures in functional analysis), GOLD

[57] (a genetic algorithm to evaluate the interactions between a receptor and ligand),

AUTODOCK [85] (a lamarckian genetic algorithm) etc. The free energy of binding

allows for the active site interaction to be represented in a far more general manner

than the residue template approach [114] and [118]. Docking algorithms were de-

veloped to attempt to approximate the free energy of binding. Docking algorithms

have successfully been used to predict substrates for newly solved structures with low

sequence and fold similarity [120], [50]. Unfortunately, this computationally rigorous

and time-intensive analysis is not always capable of identifying the correct substrate

since accuracy of force fields and scoring functions is still under debate.

5. Previous Feature-Based Approaches

Biochemists have long analyzed active sites by looking at geometric and chemical char-

acteristics/features of the protein-ligand interaction and not restricting this analysis
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to exact residue identities or residue placements. For example, DsbA is a protein-

folding catalyst from the periplasm of E.coli that interacts with newly translocated

polypeptide substrate and catalyzes the formation of disulfide bonds in secreted pro-

teins. The biochemical analysis of this protein identified three unique features in the

protein active site: a groove, a hydrophobic pocket, and a hydrophobic patch, all of

whom formed an extensive uncharged surface surrounding the active-site disulfide.

Computational approaches mimic this structural analysis with the use of various fea-

tures. Such an analysis is not only computationally efficient but also abstracts well

over diverse active sites that do not preserve sequence identities and placements.

Features allow for broader similarities between active sites to be identified and

compared for functional analysis. Authors in [46], [41] and [9] developed high-level

features like residue type (charged, polar, hydrophobic etc), solvent accessibility, sec-

ondary structure type, conservation etc., to characterize chemical and geometric prop-

erties of active sites. These features were then used to train a neural network to

identify active sites on a protein surface. None of these features depended on the

precise location of residues within the active site. Therefore, they were capable of

generalizing over diverse families of proteins. Surface patch analysis also used similar

features to successfully characterize protein-protein interactions [58] as well as to dis-

tinguish between carbohydrate binding patches and the rest of the surface patches,

all obtained from protein-carbohydrate complexes [126]. In all these applications, the

features were developed to capture the global characteristics of the active site and

therefore could not capture the spatial variations of chemical and geometric proper-

ties within an active site. This limits the use of these feature-based methodologies to

differentiate between active sites belonging to two different ligands.

FEATURE [6], [7] attempted to characterize local variations in the active site by

defining distributions of residue properties in radial shells to capture the differences in
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protein microenvironments between protein active sites and non-sites. They success-

fully used this system to identify common biochemical properties within the serine

protease active sites and calcium binding sites. However, their features still relied on

specific amino acid identities and therefore did not extend well to cases where high

ligand promiscuity allowed little or no sequence conservation between active sites of

the same functional class.

Feature vectors composed of 3D moment invariants have been used to capture the

geometric shape of protein-protein interaction sites [119]. Similar geometric shapes

lead to similar feature vectors, thus enabling the identification of similar binding

sites. While, this approach works for protein-protein interaction, its inability to com-

bine chemical information with the shape analysis limits its suitability in recognizing

protein-ligand interactions and further, in distinguishing between active sites belong-

ing to two different ligands and therefore two different functional classes.

Computationally intensive procedures like superposition of the active sites [67] or

computation of alpha shapes [75] have been used to capture shape similarity between

protein-ligand interaction sites. In order to reduce the computational intensity, a

recent paper, [60] used spherical harmonic expansion coefficients as descriptors of the

active site shape, allowing for shape comparisons without the need for computation-

ally intensive superposition calculations. While successfully differentiating between

active sites belonging to ligands with large differences in shape, the authors identified

that significant variations exist in the shape of active sites binding the same ligand

due to the flexibility observed in larger ligands. This is an important and as yet

unaddressed issue with active site shape comparison techniques.
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B. Overview of Dissertation

Protein interactions with other molecules change over evolutionary time. In order

to preserve essential function, despite mutations, proteins develop multiple interac-

tion patterns with ligands in order to perform the same function. This causes great

diversity in active site electrostatics which cannot be captured by simple sequence

patterns/templates. Additionally, both the protein as well as the ligand have con-

formational flexibility, i.e. change in shape so as to better interact with each other.

This flexibility in ligands as well as the receptor (protein) have not been successfully

modeled by previous computational functional analysis tools. These complications

cause the automatic determination of protein function from structure to remain an

open problem despite the development of many computational algorithms to analyze

protein function. In this dissertation, a machine learning framework to analyze di-

verse active sites while taking ligand flexibility into account will be proposed (this

study does not address receptor flexibility).

The active site analysis problem is formalized as a classification problem where

for a given test protein the goal is to predict the class of ligand most likely to bind the

active site based on its stereochemical nature and thereby define its function. One

formulation of this problem would be to categorize each ligand into its own class,

but this model is too simplistic and therefore, the second model would be to group

ligands with chemical similarity into a single class collect examples of protein-ligand

complexes for each ligand class. Assuming that no cutoffs for sequence homology

or structural similarity are enforced while building the database, this approach will

capture the diversity within active sites binding the same ligand accurately. But, this

model does not take into account the flexibility observed in ligands.

Ligand flexibility causes great variation in active site geometry. As the number
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Fig. 5. One of the conformations adopted by the larger ligand ATP

of rotatable bonds in a ligand increases so do its number of possible conformations

in a complex. These significant variations in the geometry of active sites binding

the same ligand due to the ligand flexibility were studied in a recent paper [60]

that used spherical harmonic expansion coefficients as descriptors of the active site

shape (allowed for shape comparisons without the need for computationally intensive

superposition calculations). Authors in [123] studied the different conformations of

adenine ribose triphosphate (ATP) bound to various proteins and found an average

RMSD deviation of 2.2Å between conformations. Figures 5 and 6 show an example

of the conformational flexibility seen in ATP. In Figure 5 the phosphate moiety is

closer to the adenine moiety as compared to Figure 6. This example showcases the

need to address the issue of ligand flexibility in any study of protein active sites.

Therefore, a third model to describe protein-ligand interactions is proposed here.

Each ligand is divided into fragments (building blocks/subcomponents of ligands, of-

ten found in multiple ligands) containing no more than 6-7 C atoms. This limits

the number of rotatable bonds and therefore the effects of flexibility on the protein-

fragment interaction. Dividing a ligand into fragments does not affect the active site

patterns since a strong interaction between a protein and a ligand requires shape
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Fig. 6. Another conformation adopted by the larger ligand ATP. In comparison to the

conformation in Figure 5, this conformation has the phosphate moiety of the

ligand farther away from the adenine moiety

and electrostatic complementarity throughout the active site [104]. Each fragment of

the ligand occupies a region of the active site based on local complementary interac-

tions with the underlying protein and interaction patterns for each fragment can be

analyzed separately.

Once each ligand has been decomposed into fragments, similar fragments are

clustered together based on chemical similarity and each cluster is a class in the

classification scheme proposed here. A database of complexes bound to each of the

ligand fragments is collected and analyzed for interaction patterns using feature-

based methods. Since, the classification algorithm returns a fragment class instead

of a ligand class, there are two challenges when analyzing a test protein. The first,

is to find the fragments that have high likelihood of binding to the site based on the

similarity of stereochemical patterns in the test active site to those in the database

and the second is to combine these fragment classifications into the most likely ligand

class. The rest of this dissertation will explore these ideas in detail and examine the



17

efficacy of this approach to automated functional analysis.

In Chapter II, the generation of protein molecular surfaces and active site pocket

definitions required by the active site analysis described in this dissertation will be

described. The chapter will also describe the methods associated with the description

and classification of ligand fragments. Specifically, this chapter will detail two systems

of stereochemical features to capture interaction patterns. The first, localized stereo-

chemical features, are an extension of previous feature-based active site descriptions.

These features capture local variations in active site geometry and electrostatics in-

stead of just using global descriptors of the active site. These rotation-invariant

features allow for a finer-grained analysis of active sites, but, since they are rotation

invariant, there is still some information about active site stereochemistry that is lost.

The second, position-dependent features are an extension of the localized features de-

signed to capture the variation in stereochemistry specific to active site position. To

this end, they are based on canonical representations of the active site. This chapter

also details dimensionality reduction techniques used to find the features that contain

the most information pertinent to active site description and classification. Finally,

this chapter describes the classification algorithm used to identify the fragments most

likely to bind an active site.

In Chapter III, a methodology to combine individual fragment classifications into

a final ligand classification based on Markov random field (MRF) theory is described.

This probabilistic framework combines the information provided by stereochemical

features with the information regarding geometric constraints between ligand frag-

ments to make a final ligand class prediction.

In Chapter IV, the various ligands as well as ligand fragments used in this study

are detailed and the creation of a protein-ligand database is discussed. This database

will be used to test the accuracy of the feature-based methodologies for active site
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description, test the accuracy of the classification algorithms as well as test the ac-

curacy of the MRF model. Chapter V will include the results of all of these analyses

and also include the analysis of two test proteins to validate the approach presented

in this dissertation.

Finally, in Chapter VI, another novel algorithm, Rscore, to improve the effi-

ciency of docking, a previously well-established procedure for functional analysis is

described. This chapter will also present results that experimentally validate the

Rscore algorithm.
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CHAPTER II

FEATURE-BASED DESCRIPTIONS OF DIVERSE ACTIVE SITES

In this chapter, the various methodologies involved in the analysis of protein active

sites in this study will be introduced. The analysis begins with the definition of a

protein molecular surface in Section A and this definition will be then used to de-

fine the active site surface as detailed in Section B. This active site surface is used

in all future analyses using stereochemical features. As discussed in Chapter I pro-

teins evolve multiple interaction patterns with their cognate ligands. The diversity

in these interactions makes it harder to characterize and recognize these interactions.

Machine learning techniques especially feature-based methods (described in Section

5 of Chapter I) have been used previously with some success in categorizing vari-

ous active sites. These previous feature-based methodologies have focused on global

features describing the geometric and electrostatic nature of active site surfaces. Un-

fortunately, these features are unable to capture the diversity in active sites binding

the same ligand. Authors in [6] and [7] first considered the use of micro-environments

in the description of phosphate binding sites. In this chapter, their methodology

is extended to define localized stereochemical features that capture the diversity in

the protein-ligand interaction patterns. Section C details the various stereochemical

features used in this study. These stereochemical features are rotation-invariant and

seek to capture local variations in interaction patterns. Unfortunately, since these

features are rotation-invariant they still do not give a detailed description of the ac-

tive site patterns. Therefore, the localized stereochemical features are extended by

using position-dependent features. These position-dependent features are obtained

by first using the eigenvectors of the active site pocket moment of inertia matrix to

superpose all the active sites into a canonical position. Then these canonical rep-
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resentations are analyzed to yield a position-dependent (based on 3D coordinates)

description of the active site patterns. Section D details the methodology used to

generate the position-dependent features.

These feature-based descriptions of the active site are used to classify active sites

into the class of their cognate ligand. Since, not all of the developed features contain

information relevant to classification, dimensionality reduction techniques need to be

employed to identify features that contain information and are relevant to classifi-

cation. Section 1 describes the classification scheme as well as the dimensionality

reduction techniques used in this study.

A. Molecular Surface and Active Site Surface Generation

The first step in the automated analysis of protein active sites is to define the active

site surface for each of the proteins in the database. This process begins with the

definition of the protein molecular surface. The protein coordinates were used to

compute a molecular dot surface similar to the solvent-accessible surface, defined by

Richards [105] and later implemented by Connolly [24], using Calcsurf, an in-house

program. Calcsurf simulates the contacts a water molecule (probe sphere of radius

1.4Å) would make with the protein molecule. Considering the radius of the water

molecule and the van der Waals radii of protein atoms, a grid representing the dot

molecular surface is drawn at a distance equal to the sum of these two radii from

the protein molecule. The grid points are spaced 1Å apart allowing a fine-grained

representation of the solvent-accessible surface. In the case of proteins where the

active site is at the interface of multiple chains, the molecular surface was drawn over

all the chains that participate in the active site creation thus allowing for the analysis

of such active sites.
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B. Active Site Definitions

The final aim of this dissertation is to analyze the function of unliganded proteins.

Therefore it is necessary to have a definition of the active site surface that does

not depend on the exact coordinates of the native ligand, since this information is

unavailable in the case of apo-proteins. Further, the active site could have additional

buffer zones, i.e., regions of empty space where no ligands bind (as noted by [60]).

For a successful application of the methodologies introduced in this dissertation to

functional annotation, it is essential that the analyses be robust to the slight noise in

the active site patterns introduced due to the inaccuracies in the initial description

of the active site. Therefore, the active sites are defined as uniform-radius pockets

in order to increase the generality of the active site definition. These uniform active

site pockets are created by first choosing a surface vertex closest to the ligand center

as the center of the active site. All surface vertices within a chosen radius are then

considered to be part of the active site. The choice of the radius depends on the

statistical analysis of the fragment pockets in our database (analysis of the average

distance of an active site vertex from the center of the ligand). For example, the

average distance of an active site vertex from the center of ligands like adenine,

citrate, pyridoxal, etc., was found to be 5Å. This definition of the active site as a

pocket of a uniform chosen radius, introduces variations in active site shape. Figure 7

shows the active site surface based on the coordinates of the ligand Adenine bound to

protein 1A4I and Figure 8 shows the active site surface based on a uniform radius for

the same protein-ligand complex. A comparison of these two figures shows that there

is a loss in specific active site shape information with the use of the uniform radius

description. While this introduction of noise into the active site definition makes the

problem of active site recognition harder, it increases the utility of this approach to
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Fig. 7. The active site pocket for the ligand Adenine bound to the protein 1A4I using

the actual ligand coordinates

Fig. 8. The active site pocket for the ligand Adenine bound to the protein 1A4I using

a uniform radius of 5Å
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the analysis of active sites in unliganded (apo) proteins where the exact active site

shape is rarely known.

C. Feature Descriptions

The global shape features used to describe the uniform-radius active site surface, S,

as defined in Section B are as follows:

• The eigenvalues of the coordinate variance-covariance matrix are used to define

the spread of the pocket in three dimensions. The eigenvalues λ1, λ2 and λ3 of

the variance-covariance matrix C are calculated using the following equation:

|C− λI| = 0 (2.1)

The eigenvector corresponding to the largest eigenvalue is defined as the direc-

tion defining the profile axis, v and is used in localized feature computations.

• The concavity metric is defined in order to distinguish between an active site

that is relatively uniformly smooth and one that has many local undulations

on its surface. The concavity is measured as the average distance between an

active site surface atom and its closest n protein atoms. Since, the concavity

metric is a measure of local undulations in the surface, n is chosen to be a

relatively small number, in this case, 3. These local concavity values are then

averaged to yield the surface concavity metric.

Γ(ai) =
1

n

n
∑

j=1

‖ai − bj‖ (2.2)

Γ(S) =

∑A
i=1 Γ(ai)

A
(2.3)

In these equations bj is the jth closest protein atom to active site surface atom
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ai and A = |S|.

• The curvature of a pocket defined as the spread of the pocket around its center

of mass (Cm(S)) is calculated as:

K(S) =
µp

σp

(2.4)

where

µp =

∑A

i=1 ‖ai − Cm(S)‖
A

(2.5)

and

σp =

√

∑A
i=1(‖ai − Cm(S)‖ − µ)2

A− 1
(2.6)

are the mean and standard deviation, respectively, of the spread of the active

site surface atoms around the center of mass of the site, Cm(S).

• 3D invariant moments which are descriptors of geometric shape that are in-

variant to rotation and translation [112]. These invariants are calculated as

follows:

J1 = µ200 + µ020 + µ002

J2 = µ200µ020 + µ200µ002 + µ020µ002 − µ2
110 − µ2

101 − µ2
011

J3 = µ200µ020µ002 + 2µ110µ101µ011 − µ002µ
2
110 − µ020µ

2
101 − µ200µ

2
011

(2.7)

where

µpqr =
∑

x

∑

y

∑

z

(x− x)p(y − y)q(z − z)r (2.8)

and where x, y and z are the coordinates of the center of mass of the active site

surface.

In addition to these features that capture global variations in active site shape, novel

cross-sectional features are also defined. These features are used for a finer-grained
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characterization of the active site shape profile along the profile axis. The axis acts

as a local frame of reference to place all the examples of the active sites in canonical

positions and the features then capture the spatial variations in shape.

• Cross sections of the pocket at equal spacings (1Å) from the center of mass,

Cm(S), and along the profile axis are considered. The distance between any

two active site surface atoms in the cross-section is computed and averaged.

The cross-section of active site surface S at distance r from the center of mass

is defined as the set of vertices:

Ω(S, r) = {ai ∈ S|aipr ⊥ v} (2.9)

where v defines the profile axis and pr is a point on the profile axis that is r Å

away from the center of mass Cm(S); ‖pr − Cm(S)‖ = r.

Now the cross-sectional descriptor of the active site surface at a distance r can be

described as the average pairwise distance among vertices in the cross-section:

Ω̂(S, r) =

∑Mr

i=1,j=1 ‖ci − cj‖
Mr(Mr − 1)/2

(2.10)

for ci, cj ∈ Ω(S, r) where Mr is the total number of active site surface atoms in

the cross-section Ω(S, r).

Additionally, electrostatic features are defined to capture the spread of charge

and hydropathy across the active site surface based on the electrostatic potential

across the active site surface. The electrostatic potential at each active site surface

atom is based on the partial charges of all the protein atoms. The partial charges

used were the same as the ones used by AMBER [25] in their computation of the

molecular mechanical force field to compute interaction energies.
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The potential on an active site surface atom ai due to a charge qj placed at a

distance dj from it is given by:

V (ai) =

N
∑

j=1

qj

4πε0dj

(2.11)

where N is the total number of protein atoms and ε0 is the absolute permittivity.

While, in this study we use the Coulomb equation for potential calculations and

do not consider the effects of solvent, this method can be extended using Poisson-

Boltzmann solvers such as Delphi [55].

Based on the atom types used in [73], each protein atom was categorized as

hydrophobic, hydrophillic or charged. This definition was then extended to define

the hydropathy of the active site surface atoms based on the majority classification

of its n closest protein atoms. Once again, in order to capture local information, a

small number of closest neighbors (n = 3), is used.

The equation used to categorize the hydropathy (Y) of an active site surface

atom ai is as follows:

Y (ai) = majority(Y (pj)), j = 1 : n (2.12)

where pj is the jth closest protein atom to ai where Y (pj) ∈ {H, P, C}.

The features used to capture the global chemical nature of the active site based

on the previous definitions of charge and hydrogen bond propensity are:

• The global hydropathy features of the surface S measuring hydrophobicity, YH ,

hydrophillicity, YP and charge, YC are computed as follows:

YX(S) =

∑A

j=1 yx(aj)

A
(2.13)
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where

yx(aj) = 1 if Y (aj) = X

0 otherwise
(2.14)

The diverse patterns in active site chemistry are further captured using localized

electrostatic features.

• Distribution of potentials across the active site surface: These features calculate

the percentage of the active site surface occupied by positive, negative and

neutral potential points respectively. The electrostatic nature of each active

site surface atom is defined as follows:

E(ai) = P if V (ai) ≥ φ1

N if V (ai) ≤ φ2

O otherwise

(2.15)

where φ1 is set to 0.5 and φ2 is set to -0.5 based on empirical observations of

the variation of potentials in the example active site pockets.

The electrostatic spread features of the active site surface S measuring spread

of positive potentials, ∆P , spread of negative potentials, ∆N and the spread of

neutral potentials, ∆O (by a given distance r) are calculated as follows:

∆X(S; r) =

∫

S

∫

S
ur(ai, aj)δX(ai, aj)

(Area(S))2
(2.16)

where

ur(ai, aj) =
1√
2π

e−
1
2
(r−‖ai−aj‖)2 (2.17)

and

δX(ai, aj) = 1 if E(ai) = E(aj) = X

0 otherwise
(2.18)

where X ∈ {P, N, O} and ∆(S; r) gives the average electrostatic property match
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between all pairs of points on S (double integral) separated by a given distance,

r (weighted by the Gaussian kernel u).

There are a total of 37 features: 16 geometric features and 21 electrostatic fea-

tures:

Φ(x) = 〈λ1...3, Γ,K, J1...3, Ω̂(r1), YH, YP , YC , ∆P (r2), ∆N(r2), ∆O(r2)〉 (2.19)

where r1 = 2...9Å and r2 = 4...9Å.

Figures 9 and 10 show the variation of 2 of the above features for a subset of

active site classes. These figures show that the feature-values between classes show

significant overlaps. Figure 9 shows that pyridoxal active site pockets tend to be

larger than those of the other 5 fragments. While, both pyridoxal and nicotinamide

active site pockets seem to have very similar distributions of the largest eigenvalue,

there are no nicotinamide pockets that are as large as some of the pyridoxal pockets.

In this study, the protonation states of the residues is not taken into consider-

ation while analysing the active site electrostatics but this anlaysis can be included

to better understand the active site chemistry. pKa servers like H++ [44] can be

used to approximate the protonation states of all of the protein residues before the

electrostatic potential is computed at the active site. Additionally, the user can also

specify the protonation states of the relevant residues as and when the information

is available and this information can then be used in the electrostatic analysis.

D. Position-Dependent Features Based on Eigenvectors of the Moment of Inertia

Matrix

Since the localized stereochemical features are rotation-invariant they cannot capture

the positional variance in active site shape and chemistry. For e.g. there is no way to
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Fig. 9. The variation of the largest eigenvalue of the coordinate covariance matrix for

the uniform-radius active sites belonging to six fragment classes
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Fig. 10. The variation of the cross-sectional feature at 4Å for the uniform-radius active

sites belonging to six fragment classes
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capture the presence of a positively charged residue contacting the active site pocket

right of the centroid at a distance of 3Å. The localized features will only be able

to capture the distance of the positive charge but unable to pinpoint its direction

from the centroid. This detailed and position-dependent description of the active site

greatly enhances the possibility of accurately describing and recognizing the active

site interaction patterns. To this end position-dependent features are developed.

For each active site pocket in the database, the eigenvectors of the moment

of inertia matrix, I, give the principal directions of the pocket in 3D space. These

eigenvectors can therefore be used to compute feature vectors that capture the spatial

distribution of geometric as well as the electrostatic patterns observed in the pocket

w.r.t these principle directions. These feature vectors can then be used to compare

different pockets and measure the similarities between various pocket shapes and

electrostatics.

In order to compute these position-dependent features, the moment of inertia

matrix, I, defined as

I =













Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz













is first computed where

Ixx =
∑N

k=1(yk
2 + zk

2) Iyy =
∑N

k=1(xk
2 + zk

2) Izz =
∑N

k=1(xk
2 + yk

2)

Ixy = -
∑N

k=1 xkyk Ixz = -
∑N

k=1 xkzk Iyz = -
∑N

k=1 ykzk

(2.20)

and 〈xk, yk, zk〉 represents the coordinates of the kth active site atom. However,

this definition of I assumes that the active site pocket is centered at the origin and

therefore the actual atom coordinates 〈Xk, Yk, Zk〉 of each active site atom need to
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be translated so that the centroid of the pocket is at the origin. This translation is

defined as

AT = {〈Xk − xc, Yk − yc, Zk − zc〉} ∀k = 1 : K (2.21)

where K is the number of active site pocket atoms, AT represents the translation of

the active site pocket to the origin, 〈0, 0, 0〉, obtained by subtracting the coordinate

of the active site pocket centroid (〈xc, yc, zc〉) from each active site atom coordinate.

This translated pocket is then rotated onto the reference framework as defined by the

eigenvectors of I by multiplying the translated pocket coordinates by the eigenvector

matrix as

AR = AT · E (2.22)

where E is the eigenvector matrix. Since the eigenvectors do not have directionality

information, there are 4 possible representations of the eigenvectors given by













exx exy exz

eyx eyy eyz

ezx ezy ezz













,













exx exy exz

−eyx −eyy −eyz

−ezx −ezy −ezz













,













−exx −exy −exz

−eyx −eyy −eyz

ezx ezy ezz













&













−exx −exy −exz

eyx eyy eyz

−ezx −ezy −ezz













These matrices correspond to 4 canonical rotations of the pocket along each of

these eigenvector matrices. These 4 canonical pocket rotations are used to define the

position-dependent features. For each canonical representation, the corresponding

three eigenvectors are each divided into bins ranging from -3 to 3. These values were

chosen since all the active site pockets are defined as uniform 5Å radius patches.

Additionally, since the pockets are translated to the origin, the maximal distance

between the origin (pocket centroid) and any active site pocket atom has to be ≤ 5Å.
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Therefore, the values of i, j and k are guaranteed to lie in the interval [-3, 3). Each

transformed active site atom is assigned a sector based on its coordinate value as

< i, j, k >=< bxk

2
c, byk

2
c, bzk

2
c > (2.23)

E. Geometric Similarity Analysis

The definition of sectors used in the previous section are used to capture the varia-

tion of spread of the pocket in coordinate space (measure of the geometric variation

of shape). The final position-dependent feature vector for the active site pocket is

computed as

Fs = 〈f1f2...fK〉 (2.24)

where fm refers to the mth feature vector and is computed as

fm = count of active site atoms in the mth bin defined by indices 〈 i, j, k 〉 (2.25)

In this study, the feature vector has 63 = 216 features and each feature computes

the spatial distribution of the pocket in a particular direction as defined by the mo-

ment of inertia vectors. When comparing the position-dependent feature vectors of

two different active site pockets, it is necessary to compare the feature vectors for all

the 4 canonical pocket rotations in order to make a fair comparison (since both the

pockets may not be in the same orientation).

F. Dimensionality Reduction and Classification

All of the features described in Section C or those described in Section D need not

have information equally relevant to classification. In this study, Singular Value De-
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composition (SVD) is used to project the feature vectors onto the directions with

maximum variability within the data. The SVD analysis can be used to reduce the

dimensionality of the feature vectors and to increase the accuracy of classification of

active sites. The SVD projections of the data are then analyzed using linear Discrim-

inant Analysis (LDA). This technique is traditionally used to perform dimensionality

reduction while retaining information pertinent to discrimination between classes by

finding projections of feature data that yield the maximum class separability.

The combination of SVD and LDA projections has been used successfully to

improve classification accuracy in many pattern recognition algorithms [13], [79]. The

SVD dimensionality reduction selects for those feature-axes projections that best

capture the variations in the data and thereby reduce the effects of noise and the

LDA projections maximize the class-separability of the reduced-dimension features

(output of SVD analysis). Both these techniques have complementary strengths and

capture different information from the data and a combined technique enjoys an

improved accuracy by combining the strengths of both the individual approaches.

1. Singular Value Decomposition

Given a m×n matrix M that contains the feature vectors for the training data (such

that m is the number of features and n is the number of training examples), the

singular value decomposition of M is given by:

M = UΣVT (2.26)

where U and V are unitary matrices that contain basis vectors describing the principal

directions of variation in M. The matrix Σ contains the singular values of M which

are weights for each of the directions of variation (right singular vectors in V.) The
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directions of variation are linear combinations of features from the feature space.

The projection of training data onto SVD space helps to improve separation among

clusters belonging to different fragment classes by emphasizing directions of high

variation between classes. Additionally, in this space feature vectors that do not

contain any information content have very low singular values (close to 0) and can

therefore be ignored.

The transformed axes corresponding to the top 15 singular values were chosen

for further computations when analyzing the localized stereochemical features and

the transformed axes corresponding to the top 34 singular values were chosen when

analyzing the position dependent features. In both cases, the number of dimensions

used in further analyses was chosen such that enough dimensions were chosen so

as to account for 90% of the variance in the data. Figure 11 shows how the top 15

singular values contribute to the majority of the information available in the localized

stereochemical features.

In order to use this reduced dimension for classification, test example q is also

projected onto the lower dimensional SVD space as follows:

qsvd = qTUΣ−1 (2.27)

G. Linear Discriminant Analysis

The projections of feature data that yield the maximum class separability are given

by the eigenvectors corresponding to the maximal eigenvalues of the matrix SW
−1SB

where SW is the within-class scatter matrix defined for a C-class problem as

SW =

C
∑

c=1

∑

x∈ωc

(x− µc)(x− µc)
T (2.28)
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Fig. 11. The variation of the singular values obtained from an SVD analysis of the

training active sites. It shows the significant variation in singular values and

the relative importance of information in each of the transformed axes
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where

µc =

∑

x∈ωc
x

Nc

(2.29)

where x is the feature vector, ωc is the cth class, Nc is the number of examples in

class c and µc is the mean vector over all the examples in class c (in this study, SW

matrix is not weighed by the size of each class) and SB is the between-class scatter

matrix given by

SB =

C
∑

c=1

Nc(µc − µ)(µc − µ)T (2.30)

where

µ =

∑

x∈ωc
Ncµc

N
(2.31)

and N is the total number of examples and µ is the mean vector over all the examples

in the dataset.

Given a set of examples from C classes, LDA yields C − 1 projections of the

feature data given by the eigenvectors of SW
−1SB.

In the case of the localized stereochemical features, there are 441 fragment classes,

but the feature data after SVD has only 15 dimensions and therefore all of the projec-

tions returned from LDA can be used in classification. The LDA projections in this

case are not being used for dimensionality reduction but only to project the SVD-

reduced feature space onto dimensions where class separation is maximum; allowing

for maximum classification accuracy.

1. Classifier Based on Kernel Density Estimation

The classification of a test active site is based on the similarity between its reduced

dimension feature vector to those in the database. In this study, the posterior proba-

bility of each fragment class given the observed test vector is computed using Kernel
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Density Estimation. A Product kernel of D single-dimensional Gaussian kernels [32] is

used to describe the spread of feature vectors in each fragment class in our database.

This probability distribution is given by

PKDE(x|ci) =

∑N
j=1

1
h1·h2·h3...·hd

∏D
d=1 K(x−xj

hd
)

N
(2.32)

K

(

x− xj

hd

)

=
1√

2πhd

e
− 1

2

(

x−xj

hd

)2

(2.33)

where hd gives the optimal bandwidth of each of the Gaussian kernels and is deter-

mined using hopt = 0.9AN− 1
5 where N is the number of examples in the class being

considered. A is defined as A = min(σ, IQR

1.34
) where IQR is the Interquartile Range

for that particular dimension and σ is the sample deviation.

Assuming equal prior probabilities for all fragment classes, this probability den-

sity function can be used to estimate the likelihood of a class Ci given a test feature

vector (Φ(x)) as (P (Ci| Φ(x)). This probability is used as an indicator of confidence

in the class prediction based on the feature analysis.

The single-dimension Gaussian kernels used in the product kernel assume that

the individual features are all independent of each other. It should be noted here that

while the projections returned by SVD are independent dimensions, those returned by

LDA analysis are not necessarily independent. In this study, we make the assumption

that the use of independent kernels is sufficient to accurately represent the feature

space of active site descriptions.

H. Conclusions

In this chapter, two different systems of features, both of which are designed to

capture the diversity in interaction patterns observed within active sites that bind

the same ligand have been presented. These feature systems go beyond the traditional
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global descriptions of active site stereochemistry and capture local variations in the

stereochemistry of the active site thereby enabling greater accuracy in the description

and comparison of active site pockets.

The traditionally well-accepted dimensionality reduction techniques of SVD and

LDA are used to find features that have the most variability in information as well as

those that contain information relevant to discrimination between various fragment

classes. Chapter V analyzes the results of these methodologies and examines the

classification power of these features.
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CHAPTER III

COMBINATION OF INDIVIDUAL FRAGMENTS

The main motivation for the fragment-based analysis presented in this dissertation

was to address the flexibility observed in ligands with multiple rotatable bonds. Since

the classification scheme proposed in Chapter II identifies individual fragments, the

final analysis of the enzymatic function of a protein requires that these individual

fragment classifications be combined to yield one multi-fragment ligand class (for ex-

ample, combining fragment classification of adenine, ribose and phosphate to yield an

overall final classification of AMP). In this chapter, an algorithm based on Markov

Random Field theory [74] to combine these individual fragment classifications into

one single multi-fragment ligand classification will be presented. The overall proce-

dure for analyzing an apo protein based on this algorithm is presented in Section

A. Section B details the theory behind the Markov field designed to combine indi-

vidual classifications. Section C characterizes the flexibility observed in each of the

multi-fragment ligands in the database.

A. Analyzing Active Site Pockets for the Multi-Fragment Ligands

For each of the protein complexes in our database bound to any of the multi-fragment

ligands in this study, a 10 Å uniform pocket centered at the centroid of the ligand was

defined. This pocket defines the active site for the multi-fragment ligand throughout

the rest of this study. For each of the mesh points in these active site pockets,

a uniform 5Å patch centered at that point is generated. A large active site with

N mesh points is therefore represented by N uniform 5Å patches. These patches

overlap and multiple patches describe the various regions in the larger active site.

These patches are input to the fragment classification algorithm in order to identify
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various fragments that might fit into the larger active site.

The possible labels for each mesh point is the set of all fragment class labels. Each

class label is associated with a probability value based on the posterior probability

obtained from the feature-based classification for the uniform patch centered at that

mesh point. It is possible that some class labels have higher probabilities while others

have zero probabilities but they all sum to 1.

Label(m) ∈ F ∪ ⊥ (3.1)

where Label(m) is the label for the mth mesh point and F is the set of all fragment

class labels and ⊥ represents the NULL class s.t.

C
∑

i=1

Pm(fi) = 1 (3.2)

where Pm(fi) is the posterior probability obtained from classification of the mth mesh

point for the ith fragment class label and C is the number of fragment classes in the

database plus the NULL class.

All the fragment classes associated with non-zero posterior probabilities represent

possible fragments centered at that mesh point. Therefore, each mesh point in the

large active site pocket has at most C fragment labels that represent the fragments

that could be bound centered at that mesh point. For a large active site with N mesh

points, at most CN possible label combinations exist based on equation 3.1. For a

ligand like AMP, the correct labeling of the mesh points in the active site would be

NULL for all but 3 mesh points, closest to the centers of each fragment, which are

labeled as adenine, ribose and phosphate. Finding this combination of labels from

the list of all possible labels so as to identify the large ligand that binds the site

is extremely difficult since enumerating each of the possible label combinations is
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time-consuming and unrealistic. Therefore a recombination scheme based on Markov

random field was developed. The goal of the recombination scheme is to find the joint

probability of binding a ligand given the probability of binding individual fragments as

well as the additional contextual constraints (provided by the geometric relationship

between ligand fragments) to find a labeling for all mesh points in the active site that

is most consistent with binding at individual sites.

B. Markov Random Field Theory

Markov Random Field (MRF ) theory has been used in image-processing algorithms

as a way to model context-dependent information [42], [133]. MRF s seek to character-

ize mutual influences amongst variables by using conditional probability distributions.

It is computationally expensive to model and compute the contextual dependencies

between all the variables in a system. This is especially true in this application as

computing the joint probability of various active site mesh points being assigned a

set of labels and analyzing all possible combinations is computationally intractable.

MRF s provide one avenue for analyzing the relationships between all possible labels

by limiting the number of dependencies to be considered based on the Markov as-

sumption (only neighbors of a site have an effect on its labels) and the development

of various sampling techniques have enabled to make this analysis more tractable.

1. Formulating as a Labeling Problem

MRF s have often been used to study labeling problems, and in this study the combi-

nation of fragments problem will be formulated as a labeling problem. In this labeling

problem, a set of sites, S (active site mesh points), can take on a set of labels, C (frag-

ment class labels). The goal of labeling problems is to find a labeling of sites that is
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most consistent with the observations at these sites. In this study, this translates to

finding a labeling of sites with fragment class labels that is most consistent with the

stereochemical feature patterns observed at each of these mesh points.

Configuration Space: In MRF theory the set of all possible labeling of sites is

referred to as configuration space. In our problem, since each of the mesh points can

take on any of the C labels, the configuration space is the set of all possible labels

(C |S|). A typical active site can contain anywhere between 300-500 mesh points and

in this application, there are 441 fragment classes plus the NULL class and therefore

the size of our configuration space is approximately 442400.

Discrete Labels: In any labeling problem, the labels could either be continuous

or discrete. In this study, the we have discrete labels and the labeling of any site in

S is given by f = {f1, · · · , fk} where fis are the fragment class labels. The labels

are categorized this way to enable comparisons of similarity between labels during

analysis. In this study, since all ligand fragments with Tanimoto score > 0.7 have

already been clustered, this issue of similarity between classes will not play a major

role. But this notion of similarity could have been used in place of the clustering

approach used in this study.

2. Local Neighborhoods to Evaluate Contextual Information

The full joint probability of the labeling of all the mesh points in the active site is

written as

P (f) = P (f1|f2, f3, · · · , fn)P (f2|f1, f3, · · · , fn) · · ·P (fn|f1, f2, · · · , fn−1) (3.3)

The above equation assumes that the labeling at each site depends on all other sites in

the active site. In practice, defining these conditional probabilities is impossible and

unnecessary. The other option would be to assume that labeling of the mesh points
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were independent of each other. Then the probability of observing any particular

labeling of the sites is given can be written as

P (f) =
∏

i∈S

P (fi) (3.4)

where P (fi) are the individual class probabilities at each site, i.e. a probability distri-

bution function over the various class labels (estimated posterior probabilities pi(f |Γ)

where Γ is the feature vector for the patch centered at mesh point i). The above

equation seeks to find the optimal labeling for the entire active site by finding the

best label at each site. Unfortunately, this strategy fails to account for interactions

between some of the labels within the site and these contextual dependencies are not

capture in Equation 3.4. Therefore, neither Equation 3.3 nor Equation 3.4 completely

capture the interactions between the mesh point labels.

In this application, each multi-fragment ligand is formed by the placement of

various fragment classes in a specific configuration. There are constraints on the

placement of these fragments which lead to correlations between the stereochemical

features observed at neighboring sites and hence their labeling. For example, in order

to label an active site as binding the ligand AMP, it is not only necessary to find 3

mesh points labeled adenine, ribose and phosphate, but, it is also necessary that these

mesh points be placed in 3D space such that they satisfy the geometric constraints

based on bond distances and bond angles observed in typical AMP conformations.

The simplified relationship between the various mesh points described in equation

3.4 is unable to capture these spatial constraints and it is necessary to calculate the

conditional probabilities between the observations of the labels at various mesh points

in order to fully describe the system. Due to the large size of the configuration space,

enumerating all of these conditional probabilities is not feasible. Therefore, a MRF

is used to incorporate the contextual dependencies as conditional probabilities.
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Neighborhood: The neighborhood of any site is the set of all other sites that

have an influence over its labeling. It is often defined as all sites within a radius r,

i.e.,

Ni = {i′ ∈ S | dist(i, i′) ≤ r, i 6= i′} (3.5)

This definition of neighborhoods reduces the number of contextual dependencies that

need to be modeled in order to clearly describe/analyze the system since the assump-

tion is that the neighborhood of a site has greater effect on its label than other sites

that are not within the neighborhood. This definition of neighborhoods is also re-

ferred to as Markov mesh models or Markov Blankets. This conditional independence

is formulated as

P (fi|fS−{i}) = P (fi|fNi
) (3.6)

In this study, two neighborhood definitions are used. The first definition of neigh-

borhood for a mesh point i, Ni, is geared towards the combination of fragments into

ligands and therefore is based on the geometric constraints between fragments of a

ligand. Typically, the distance between fragments of a ligand is at most 7Å and

therefore a r value of 7Å was used to define neighborhoods. For e.g., when analyzing

an AMP site, the neighborhood for a mesh point labeled adenine is a set of all other

mesh points that are within 7Å of it. This is because in all observed conformations

of AMP, the adenine fragment is placed next to the ribose fragment and the maxi-

mum distance between the centroids of these two fragments is approximately 7Å. The

assumption of non-interaction between non-neighboring mesh points is met since 3

mesh points labeled adenine, ribose and phosphate can constitute the ligand AMP as

long as the spatial relationship between these points is satisfied and neither the la-

beling of other sites nor the geometric placement of other sites affects the probability

of the fragments of ligand AMP being placed at these three mesh points. Therefore,
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it is possible to model the neighborhood distance constraints based on their mutual

geometric constraints.

The second definition of neighborhood for a mesh point i, N ′
i , is based on the

nature of each ligand fragment. If a fragment is placed centered on mesh point i,

it occupies the active site such that it covers neighboring mesh points and no mesh

point within a radius r (defined by the radius of the fragment) can be labeled as the

center of any other ligand fragment since otherwise fragments would overlap. This

constraint on fragment center positions adds an additional layer of neighborhood

constraints on the labellings such that if mesh point i is labeled as fi it reduces our

belief that another mesh point i′ immediately adjacent to i would be labeled anything

other than fi. Therefore the second neighborhood is defined by a radius of 2Å the

minimum distance between any two fragment centers.

Both these neighborhood definitions are symmetric i.e., if mesh point i′ is in the

neighborhood of mesh point i, it follows that mesh point i is in the neighborhood of

mesh point i′ since the above definitions of neighborhoods are based on the Euclidean

distance metric. Using the neighborhood definition, the probability of observing any

particular labeling of the sites can be written as

P (f) =
∏

i∈S

P (fi|fNi
) (3.7)

Cliques: To further reduce the complexity of equation 3.7, conditional depen-

dencies on all neighbors can be approximated by decomposing the neighborhood into

cliques of various sizes. A clique, θ, for a given (S, N) is a subset of sites in S such

that each is a neighbor of the other. A clique could contain just a single site (θ = {i})

or could contain a pair of neighboring sites (θ = {i, i′}). The set of all single site

cliques is denoted as Θ1, and the set of all pairwise site cliques is denoted as Θ2

etc. Therefore Θ = Θ1 ∪ Θ2 ∪ Θ3 · · · represents the set of all possible cliques. The
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cliques allow for the specification of the interactions that will be modeled within a

system. Choosing to examine all cliques of size two or less implies that only single site

interactions and pairwise interactions are considered to be important to completely

defining the contextual dependencies within a give system.

Applying contextual constraints on labels two at a time is the lowest-cost con-

straint (computationally) and in practice, this also captures most of the dependencies

between various labels in most applications [73]. This directly translates to consider-

ing all cliques of size 2 or less within a system. Therefore, in this study, only cliques

of size 2 or less will be considered (considering the interaction between a fragment as

well as the interactions between ligand fragments taken two at a time).

The formal definition for Θ1 and Θ2 is as follows:

Θ1 = {i|i ∈ S}

Θ2 = {(i, i′)|i ∈ Ni′, i
′ ∈ Ni}

(3.8)

The definition of cliques helps further simplify the joint probability defined in Equa-

tion 3.7 by considering the interactions within a neighborhood one or two at a time

and the joint probability can now be written as

P (f) =
∏

i∈S

P (fi)
∏

j∈Ni

P (fi|fj) (3.9)

where N is the number of mesh points. Despite this simplification, maximizing this

joint probability is still intractable in practice since these conditional probabilities are

not often explicitly known but they can only be scored as quality/energy of interac-

tion. For example, the contextual dependence between two labels can be determined

by examining how well the distance between the corresponding mesh points fits the

target profile of actual distances between those fragments. Therefore MRF problems

are formulated as Gibbs Random fields since this provides a simple way to specify the
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joint probability of any given labeling in terms of energy of different interactions. The

equivalence between an MRF and a GRF was proved by Besag et.al [12]. A Gibbs

distribution is written as

P (f) = Z−1e−
U(f)

T (3.10)

where

Z =
∑

f∈F

e−
U(f)

T (3.11)

is called the partition function and serves as a normalizing constant, U(f) is the energy

function which is defined as the sum of clique potentials over all possible cliques, Θ

and T is the temperature (usually assumed to be 1; can be varied in order to control

the sharpness of the energy function).

U(f) =
∑

θ∈Θ

Vθ(f) (3.12)

where Vθ is the clique potential for the θth clique. According to this definition, the

lower the energies, higher the probability of the occurrence of labeling f . As men-

tioned earlier, a simple way to convey contextual constraints as well as reduce com-

plexity and analysis time is it do so with two labels at a time. This is done by

considering only cliques of size two or less. Therefore, U(f) can be written as

U(f) =
∑

i∈S

V1(fi) +
∑

i∈S

∑

i′∈Ni

V2(fi, fi′) (3.13)

where V1 is the clique potential for all cliques of size 1 and V2 is the clique potential

for all cliques of size 2. In this study the single site interactions are captured by

the classification algorithm based on the stereochemical features at each site. The

strength of these interactions is available as the posterior probability of any given

label at each mesh point and therefore this interaction need not be modeled as an
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energy function. Therefore, Equation 3.10 can be rewritten as

P (f) =
∏

i∈S

P (fi)Z
−1e−

P

i∈S
P

i′∈Ni
V2(fi,f

i′
)

T (3.14)

Therefore, the total joint probability of a labeling f given the feature matrix ΓS (rows

of the matrix contain Γis, feature vectors at sites in S) is given by

P (f |ΓS) =
∏

i∈S

P (fi|ΓS)Z−1e−
P

i∈S
P

i′∈Ni
V2(fi,f

i′ |ΓS)

T (3.15)

For our application, the goal is to find a ligand L which has the maximal probabil-

ity over all possible sites in the active site given the stereochemical features computed

for the site, i.e. find

Ψ(S) = arg max
L

arg max
f

P (f |L, ΓS) (3.16)

where Ψ(S) is the final ligand class for site S and P (f |L, ΓS) can be defined by

rewriting Equation 3.15 as:

P (f |L, ΓS) =
∏

i∈S

P (fi|L, ΓS)Z−1e−
P

i∈S
P

i′∈Ni
V2(fi,f

i′
|L,ΓS)

T (3.17)

P (fi|L, ΓS) is the posterior probability of a single site i being labeled as fi given the

stereochemical features and ligand L and V2(fi, fi′|L, ΓS) is the pairwise interaction

potential between sites i and i′ labeled as fi and fi′ respectively given the stereochem-

ical features and ligand L. There are two pairwise interaction potentials based on

the two neighborhood definitions described above. In this application, the posterior

probability depends only on the stereochemical features computed at each site and

the type of ligand has no effect on this probability. Therefore L can be factored out

and the single site clique potential can be rewritten as:

P (fi|L, ΓS) = P (fi|ΓS) (3.18)
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Similarly, in the case of the pairwise-interaction potentials, these values are not af-

fected by the stereochemical features at the sites but are only based on the interaction

between those sites as defined by geometric constraints between those sites. There-

fore ΓS can be factored out and the pairwise clique potential using both neighborhood

definitions can be rewritten as:

V2(fi, fi′ |L, ΓS) = V2(fi, fi′|L) (3.19)

The potential V2 captures the interaction between pair-wise sites in all the cliques.

In this study, this potential is defined as:

V2(fi, fi′ |L) = Λ(fi, fi′|L)Υ(fi, fi′|L) (3.20)

where Λ is the pair-wise potential due to geometric constraints between ligand frag-

ments, i.e. based on the neighborhood definition Ni and Υ is the pair-wise potential

due to geometric constraints based on the occupancy of a single fragment, ı.e. based

on the neighborhood N ′
i .

Using the neighborhood definition Ni this pairwise relationship is modeled by

analyzing the geometric distance relationships between ligand fragments taken two

at a time. Each ligand occurs in nature in various conformations (due to ligand flexi-

bility) with multi-fragment ligands having greater number of conformations. One way

to capture the geometric constraints between fragments in a multi-fragment ligand

is by capturing the distance between them. In each conformation, there is variation

in the distance between the centers of the fragments in the ligand. Modeling these

variations will allow for the definition of constraints on the contextual relationship

between the fragment centers and therefore the labellings of the mesh points in the

active site. In this study, the mean (µ) and the standard deviation (σ) of the distances

are computed and the variation in distance between fragment centers of a given ligand
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is modeled using a harmonic approximation as the square of the normalized devia-

tion from the mean (assuming energy or cost of deviation scales up quadratically).

Therefore the potential Λ given a ligand L, for 2 sites i and i′ at a distance of dii′

from each other, can be computed as follows:

Λ(fi, fi′|L) = −e

„

d
ii′

−µ(L,fi,f
i′

)

σ(L,fi,f
i′

)

«2

if 2 < dii′ < 7

1 if dii′ ≤ 2

(3.21)

Using the neighborhood definition N ′
i , this pairwise interaction potential is measured

by analyzing the spreads of each of the ligand fragments i.e., for a given ligand

fragment centered at mesh point i. Since each fragment occupies space within the

active site, it is not possible for 2 fragment centers to be immediately adjacent to

each other. Therefore there has to be a penalty if two sites immediately adjacent to

each other, i, i′, are labeled differently and this penalty is a function of the confidence

in the different label at i′, i.e. if the confidence in the different labeling at i′ is low

it has little or no effect on the confidence of the labeling at i whereas if the different

labeling has high confidence, that decreases the confidence in the labeling at i. This

penalty can be modeled as a function of the variation in distance between sites i, i′,

dii′ from the actual minimum distance between the fragments at i and i′ as follows:

Υ(fi, fi′ |L) = e(r−dii′ )P (f ′
i) if dii′ ≤ 2

1 if 2 < dii′ < 7
(3.22)

where r is the minimum distance between fragments fi and fi′ in ligand L. Figure 12

shows the graphical representation of the functions Λ, Υ and V2 respectively.

Additionally, Figure 13 better illustrates the concept of these neighborhoods.

Let us assume that the active site pocket depicted by the mesh in the figure is being

analyzed for the probability that it binds the ligand pyridoxal phosphate (PLP) with
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two fragments pyridoxal and phosphate. If the center of the fragment pyridoxal is

placed at mesh point labeled i, then it is impossible for the second fragment of PLP

to be placed at mesh point j since there would be steric conflict between the two

fragments. The interaction potential Υ takes into account these possible overlaps

between ligand fragments and penalizes fragment combinations that show these steric

conflicts. But, there would be no steric conflict if the center of the fragment phosphate

would be placed at mesh point k and additionally the distance between mesh points

i and k is within the range of observed distance between the fragments pyridoxal

and phosphate in all conformations of PLP. This interaction between i and k is

taken into account by the interaction potential Λ. Similarly, mesh point l is placed

further away from mesh point i and the distance between these two fragments is not

within the range of observed distances between the two fragments, thereby decreasing

the probability that the ligand PLP is bound to the mesh such that the fragment

pyridoxal is centered at i and the fragment phosphate is centered at mesh point l.

The upper distance cutoff of 7Å for Λ takes this interaction into account. This upper

distance cutoff was obtained based on empirical observation of the distances between

fragments of ligands in this study (experiment detailed in Section C).

The fragment class labeling of the mesh points is based on the stereochemical

features calculated at each mesh point. Nearby mesh points are more likely to have

similar interaction patterns and therefore similar feature vectors. Therefore, it is more

likely that nearby mesh points will have similar labellings. In an analysis of active sites

binding multi-fragment ligands, we found that while the feature difference between

the feature vectors of the actual fragment pocket and those of the subpocket centered

at the closest mesh point was the least, nearby mesh points (those within 1.5-2Å from

the fragment centroid), also had very small feature differences. Figure 14 shows this

distribution and the lower distance cutoff of 2Å for Υ was based on this experiment.
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Fig. 13. Graphical representation of active site mesh to depict intuitively that it is

impossible to place the centers of the two fragments of ligand PLP at mesh

points i and j without causing steric conflict between these fragments. At the

same time, it is quite possible that the fragments are placed at mesh points

i and k. Additionally, given the geometric constraints that exist between the

placement of PLP fragments, it is impossible for one of the fragments to be

placed at mesh point i and the other to be at mesh point l.
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C. Parameter Estimation

In practice, the values of µ and σ between various fragments of various ligands are

computed by first generating various conformers for each of the multi-fragment lig-

ands were generated using Omega [17] a module of the OpenEye software. Omega

evaluates the geometrical restraints (bond angles and distances) experienced by any

given chemical compound and generates possible conformations of the compounds

based on these geometrical restraints. Each of the generated conformations is eval-

uated for steric as well as energetic favorability and conformations without steric

conflicts and those conformations with energies within 50 kCals/mol of the lowest en-

ergy conformation and 1 Å r.m.s.d from previously sampled conformations are chosen

for future analyzes. The number of conformations generated for a subset of the multi-

fragment ligands is listed in Column 3 of Table I. This table shows the large variation

in flexibility of each of these ligands (Pyridoxamine-5’-Phosphate (PMP) has only

6 possible conformers as opposed to Nicotinamide-Adenine-Dinucleotide Phosphate

(NAP) which has 7000 conformers). This table also lists the number of rotatable

bonds (obtained from Pubchem [135] in Column 2) for each of these ligands. The

table shows that while there is a linear correlation between the number of rotatable

bonds and the number of possible conformers in most cases, there are a few outliers.

In cases where there are a large number of rotatable bonds but not equivalently large

number of conformers, it is due to the fact that some of the single bonds are within

a large ring system thereby reducing its flexibility. Similarly, in some cases, a large

number of conformers is observed for a compound with fewer rotatable bonds due to

the isomerism observed in the structure.
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Table I.: The number of rotatable bonds and number of
conformers generated by Omega for a subset of the multi-
fragment ligands

Ligand Number of Number of
Rotatable bonds Conformers Generated by Omega

2DT 4 39
AMP 4 52
ADP 6 554
ANP 8 1418
ATP 8 803
FMN 7 51
PMP 4 6
PLP 3 4
SAH 7 580
SAM 7 222
TDP 8 1417
TMP 4 36
UD1 11 1200
UDP 6 426
UPG 9 1590

Once the conformations are generated, each conformer was split into its con-

stituent fragments and the center of mass was computed for each fragment and the

distances between the centroids of each pair of fragments was computed. The means

and the standard deviations of these distances over all the ligand conformers were

then computed as:

µ(L, fi, fi′) =
1

K

K
∑

i=1

dci,ci′
(3.23)

σ(L, fi, fi′) =

√

∑K

i=1(dci,ci′
− µ(L, fi, fi′))2

K − 1
(3.24)

where K is the number of conformers for ligand L, µ(L, fi, fi′) is the mean of the

distances dci,ci′
between the centers of fragments fi and fi′ of ligand L over all the
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conformers of ligand L and σ(L, fi, fi′) is the standard deviation of these distances.

D. Simulated Annealing Algorithm to Sample Conformational Space of Labels

Equation 3.17 provides a way to quantify the ’goodness’ of a given labeling but the

problem of searching the label conformational space for a labeling with the maximum

probability still remains. In this section, a methodology to sample this space based on

Simulated Annealing (SA) techniques is presented. Simulated annealing is a technique

used in optimization problems to find a final solution that minimizes a given energy

function [64]. While this technique does not guarantee a globally optimal solution,

it is guaranteed to find a good solution even in the presence of noisy data. The

SA procedure has its basis in the process of annealing solids practiced in metallurgy

where the materials are initially heated to a temperature so as to allow for atomic

rearrangements. When the atoms are heated, they are disordered leave their current

energy states and randomly explore higher states of energy and the cooling allows

the atoms to settle down in a lower energy state. Simulated annealing avoids getting

stuck in local minima by sometimes allowing movement from a lower energy state

to a higher energy state. This results in the sampling of larger regions of the state

space and gives the algorithm the power of backtracking. SA techniques have often

been used to solve NP-complete optimization problems like the traveling salesman

problem [21]. Additionally, authors in [42] also used this sampling technique to find

the best labeling in their application of Markov random fields to the identification of

battlefield entities. In this study, SA will be used to find the labeling with the lowest

energy. The pseudocode for the SA procedure used here is as follows:
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Algorithm 1: Pseudocode for sampling the label conformational space using

Simulated Annealing
Input: Fragment class labels at each mesh point in active site and the

euclidean distances between mesh points

Output: A labeling with the largest value of P (f |L, ΓS) over all sam-

pled labellings

Sampling using SA(1)

(1) num cycle ← 0 Current labeling C ← f ′

(2) Compute E’ = P (f ′|L, ΓS) for f ′

(3) Generate new labeling f ′′ by randomly changing one or more of

the labels in f ′ and/or by changing one or more of the mesh

points being considered in f ′

(4) Compute E” = P (f ′′|L, ΓS) for f ′′

(5) if E ′′ > E ′ then C ← f”

(6) else Accept new labeling with probability P (E′′−E′

kT
)

(7) num cycle = num cycle + 1

(8) if num cycle > N then stop

(9) else continue

where N is the total number of cycles for simulated annealing and in this study

was chosen to be 100000. While most movements in the label conformational space are

made to follow the energy gradient i.e. only accept a move if energy at new position

is lower than the energy at current position, this algorithm allows for some moves

where the energy is not as good as the current energy (based on the probability of

observing the energy difference between the 2 states). This allows for the technique

to escape local minima and allow for some backtracking. Additionally, when the

algorithm observes a local minima, the next labelings considered are obtained by
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exploring mesh points in the immediate neighborhood of the current mesh points.

This allows us to explore small optimizations to the position of the ligand fragments

in the active site that might better account for the distance relationships between the

fragments forming the multi-fragment ligand.

E. Combining Probabilities from Multiple Models into a Unified Prediction of Most

Likely Ligand

The final aim of this study is to combine the predictions across the entire active

site to pick the best ligand, but the probabilities are not comparable in a fair way.

This is due to the different number of constraints for different ligands based on the

number of fragments that they contain. For example, a ligand with n fragments

can be identified if and only if n active site mesh points are labeled correctly with

the ligand fragments and the distances between these n mesh points also meet the

geometric constraints between the fragments of the ligand. This is not the case of a

single fragment ligand where the only requirement is the accurate classification of the

fragment based on the stereochemical features. This makes it more likely that even

when an active site binds a multi-fragment ligand, there is a greater probability that

single-fragment ligands have a higher MRF joint probability, making a ranking based

on the MRF probabilities unfair to multi-fragment ligands.

One possible solution is to base the ligand identification on the active site size. In

the case of small ligands that contain only a single fragment, the steric analysis used

by the MRF formulation is not applicable since inter-fragment spatial constraints

do not exist. In a recent study of active site shapes by Kahraman et. al. [60]

found that active sites that bind smaller ligands can be clearly differentiated from

those that bind larger ligands by just comparing active site sizes. Based on this
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study, assuming that the protein active sites that bind single-fragment ligands are

smaller in size in order to increase protein-ligand interaction specificity, this size

difference in active sites can be taken into account in the analysis. Active sites can be

categorized based on size and the larger active sites can be analyzed using fragment

identification using feature-based analyses and the fragments can be combined using

the MRF formulation whereas the smaller active sites can be analyzed using only the

feature-based analysis to find the single-fragment ligand that best fits the active site

stereochemistry.

The other, more general solution is to normalize the joint probabilities from

MRF. Ligands with larger number of fragments tend to have lower joint probabilities

as opposed to those with only 2 fragments. Purely by chance, it is easier to find

a single mesh point with a particular classification label than it is to find multiple

mesh points with the correct classification labels as well as satisfying the specified

geometric constraints. To avoid this unfair advantage to ligands with fewer fragments,

it is necessary to normalize out these differences.

The final probability of identifying a single-fragment ligand is equal to the prob-

ability obtained from the feature-based classification methodology since there are no

additional distance criteria to be applied in the MRF analysis. There are additional

distance constraints applied to the analysis for multi-fragment ligands. This can be

done by normalizing the MRF probability by the probability of observing any n-points

(where n is the number of fragments in the ligand) that match the specified distance

constraints. The normalization for a ligand with two fragments can be written as:

P ′(f |L, ΓS) =
P (f |L, ΓS)

∑

i∈AS

∑

j∈AS
P (ai, aj) s.t. d(ai, aj) = g(La, Lb)

(3.25)

where La and Lb are the two fragments in ligand L, g(La, Lb) defines the geometric
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constraint between the two fragments and d(ai, aj) is the distance between two active

site points ai and aj. Therefore, the denominator gives the probability of finding

any two points across the entire active site that satisfy the geometric constraints

(irrespective of the classifications associated with them).

This normalization will account for the ease to find two points that match a given

set of distance constraints than it is to find three such points. The normalization pro-

cedure can be easily extended to the analysis of ligands with 3 or more fragments and

therefore allow for a direct comparison between single-fragment ligands and multiple

fragment ligands in a fir manner. This normalization procedure works as follows:

1. Compute the posterior probability of all single fragment ligands based on the

feature-based kernel density estimation procedure

2. Compute the joint probability from the MRF formulation for all the multi-

fragment ligands

3. Apply normalization specified in Equation 3.25 to all the joint probabilities from

multi-fragment ligands

4. Pick the ligand with the highest value of P ′(f |L, ΓS) across all ligands.

F. Conclusions

In this chapter, a MRF approach to the combination of fragments into a multi-

fragment ligand has been developed. This probabilistic analysis enables the deter-

mination of the correct ligand binding an active site based on the determination of

the lowest energy labeling of active site mesh points without enumerating all possible

labellings. The MRF analysis takes into account the fragment classification based

on stereochemical features at each mesh point as well as the geometric constraints
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between ligand fragments while finding the ligand most likely to bind any given active

site. This analysis provides a formal probabilistic framework to capture the feature

information as well as the contextual constraints between ligand fragments.
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CHAPTER IV

DATABASE CREATION

In this chapter, Section A describes the creation of a database of ligands which will be

used to test the functional analysis algorithms developed throughout this dissertation.

This section will introduce a fragment-based analysis of ligands that will limit the

effect of ligand flexibility on automated functional analyses. This section will also

describe the various ligands in the database, the homology between proteins in each of

the fragment classes and finally the fold diversity within each fragment class. Diversity

in the database relating to homology and fold families is essential to ensure that the

algorithms developed in this dissertation are capable of analyzing the function of apo-

proteins even when they have very low sequence homology with the examples in the

database and are from diverse fold families. The additional diversity in this database

comes from the large number of ligands analyzed. A large-scale automated analysis

of protein active sites ensures that the features developed are not specific to certain

protein-ligand interactions but capture some basic information about interactions in

the active sites.

A. Database Creation and Ligand Classes

The Protein Data Bank makes available the structures of many protein-ligand com-

plexes, but, many of these ligands do not necessarily interact with the protein in

its active site. In this dissertation, the focus is on catalytically interesting interac-

tions between proteins and ligands. This necessitates that additional information

regarding the amino acids that form the active site as well as those that interact

with the protein be available for the complexes considered in our databases. Ez-

CatDB [91] and Catalytic Site Atlas [101] are two such databases that have a list
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of protein-ligand complexes as well as a list of residues that interact with the lig-

and. In this study, only complexes where the ligand interacts with the protein in

its active site were chosen. A combined list of complexes was created from these

two databases and the various ligands in these complexes were identified. Table II

lists a sample of the 1217 ligands used to populate the final database. This table

also lists the number of examples of each of these ligands. 815 of the 1217 ligands

in the database have only one example and 22 of these ligands have 10 or more ex-

amples. The ligand with the largest number of examples is nicotinamide adenine

dinucleotide (NAD) with 117 examples. The complete list of ligands is available at

http : //saclab.tamu.edu/active anal/database ligs.html.

Table II.: A sample of the multi-fragment ligands in the cur-
rent database

Ligand ID No. of Examples No. of Fragments

061 1 5
074 1 3
108 2 2
114 1 3
117 1 5
120 1 2
130 2 3
132 1 3
133 1 3
134 1 3
135 1 2
138 1 6
13P 6 2
146 2 7
155 1 2
157 1 2
166 1 3
16G 2 2
191 1 6
1BO 1 1
1IN 2 6
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As mentioned in the introduction (Chapter I), multi-fragment ligands (with

greater than 5 rotatable bonds) tend to have greater flexibility in protein-ligand com-

plexes. This flexibility makes it difficult to capture the resultant diversity of the

patterns of protein-ligand interactions. The fragment-based approach introduced in

this dissertation will limit the internal degrees of freedom within each ligand frag-

ment thereby making it easier to use pattern-recognition techniques to capture the

interaction patterns. Therefore, each of the 1217 multi-fragment ligands is split into

fragments containing no more than 6-7 carbon atoms using Electronic Ligand Builder

and Optimization Workbench (elBOW) [84]. Some of these ligand fragments are

shared by multiple multi-fragment ligands (for example, adenine is found in ADP,

AMP, ATP, NAD etc.). Additionally, some ligand fragments can be combined into

a single class due to their chemical similarity. In this study, the chemical similarity

between ligand fragments is based on the similarity between the fingerprints of the lig-

and fragments that were computed using OpenEye’s implementation of the Tanimoto

score [122] defined as follows:

Tanimoto(A, B) =
Nc

Na + Nb −Nc

(4.1)

where Na and Nb are the number of bits set to 1 in the fingerprint of ligand frag-

ments A and B respectively, and Nc is the number of bits set to 1 in both ligand

fragments A and B. The fingerprints themselves are computed using the makefp

[93] utility. Any two ligands that have a Tanimoto score ≥ 0.7 are considered to be

similar and placed in the same ligand fragment class. The database has 441 ligand

fragment classes, out of which 250 fragment classes have only one example and the

class with the maximum number of examples (1434 examples) is dimethylbutanamide.
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A sample of these fragment classes is listed in Table III. This table also shows the

average homology between all the examples within each ligand fragment. In this

study, no attempt was made to set any homology cutoff while creating the database

and therefore, while most of the examples in each fragment class have an average

homology of less than 35% (354/441 classes), there exist some classes with higher

average homology values. The proteins in the database additionally also span diverse

fold-families (based on the SCOP fold classification by [89]). The table also lists the

number of fold families represented in each fragment class in the database. The num-

ber of SCOP folds in each fragment class ranges from 1 (classes with one example)

to 127 (class dimethylbutanamide with 1434 examples). Once again, the complete

list of fragment classes and the above data for each of the classes is available at

http : //saclab.tamu.edu/active anal/database ligs.html.

Table III.: A sample of the ligand fragment classes in the
database and a list of the multi-fragment ligands that contain
each of these fragments

Ligand Ligands Num Avg Num
Fragment Containing In % SCOP

Fragment Class Homol Folds

dethiobiotin DTB 2 5.0 2
acetamido aminodihydro
pyrancarboxylic acid 49A, 4AM, 936, 9AM, ARH 43 17.7 12

CXN, DAN, DPC, E09, FID
G20, G23, G26, G28, G37
GNA, GNT, L34, MCN, NTZ
PCD, PN1, R56, TTG, ZMR

triphosphate 3AT, 3PO, 4TA, ANP, AP5 118 8.4 28
ATP, CTP, D3T, DAD, DCP
DCT, DG3, DGT, DTP, GP3
GTP, MGT, T5A, TTP, UP5
Z5A

methylpiperazine
carbaldehyde 1IN, 3IN, BZP, CDX, GEQ 22 19.6 9

MK1, PIN, STI, SU2, UKP
pyridoxal 5PA, CBA, DCS, ELP, EPC 158 11.9 9
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Table III – Continued

Ligand Ligands Num Avg Num
Fragment Containing In % SCOP

Fragment Class Homol Folds

HCP, HEN, IK2, ILP, IN5
KAM, KET, LCS, MPM, NMA
NOP, PDD, PFM, PGU, PLA
PLG, PLP, PLS, PLT, PLV
PMH, PMP, PP3, PPD, PPE
PPG, PY4, PY5, PY6

Feature-based methodologies are used to analyze the active sites in this study

and therefore the diversity in active site patterns are captured with greater accuracy

for classes with more examples. While our database contains many classes with only

one example, these classes help increase the completeness of the database and also

increase the possibility of identifying the function of an unknown test protein.

The final database has 1217 different ligands that can be grouped into 441 frag-

ment classes. The 1217 ligand interaction patterns are analyzed based on 2383

protein-ligand complexes leading to a total of 7070 fragments. This final is very

diverse and contains examples belonging to various fold families with mostly low se-

quence homology to each other. No additional resolution thresholds were applied

during database creation (database consists of medium-low resolution structures).

B. Conclusions

This chapter details the 1217 diverse ligand families used as the database during

the rest of the dissertation, the homology between examples in each fragment class

and also the diverse fold families represented within each class. The proteins in

the database were restricted to those for whom information regarding the active site

interactions was available in other pre-existing databases. Ongoing efforts to better



69

annotate structural data in the PDB ([52], [53]) will allow for the growth of this

database to cover even more ligands.

Almost all existing methodologies are unable to deal with ligand flexibility in

a satisfactory manner, thereby reducing the effectiveness of these algorithms. The

fragment-based analysis is a novel and an essential improvement to existing functional

annotation methods. The creation of the fragment database presented in this chapter

is essential to testing the accuracy of the fragment-based methodology presented in

this dissertation.
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CHAPTER V

RESULTS

In this chapter, the results of the classification and combination methodologies de-

scribed in Chapter II and III respectively, on the database of ligand fragments de-

scribed in Chapter IV will be examined. First, in Section B, the need for both

geometric and electrostatic features for active site classification will be examined and

the analysis will show that including both these sets of features greatly increases the

accuracy of fragment classification as opposed to the accuracies seen when using ei-

ther just geometric or just electrostatic features. In Chapter II, the dimensionality

techniques used in this study were presented and in Section D, the effect of these

techniques on feature similarity will be analyzed and it will be shown that there is

greater similarity between feature vectors belonging to the same fragment class as

opposed to those between two different fragment classes after dimensionality reduc-

tion. Section E will present the results of the classification methodology on fragment

classes with only one example and the results of the classification algorithm for all the

other fragment classes using localized as well as position-dependent stereochemical

features are presented in Section F. As mentioned in Chapter I, traditional methods

of active site analysis depend on similarities in fold families and sequence. The re-

sults presented in Section F will also show that both sets of stereochemical features

developed in this study capture the interaction patterns that go beyond similarities

in sequence and fold families and therefore exclusion of all other examples with high

homology or those that belong to the same fold family have minimal effect on the

classification accuracy. In Section H, two new metrics for active site analysis that

are different from the classification accuracies are presented and the results of these

analyses on a subset of the multi-fragment ligands in this study are shown. In Section



71

I, the results of the fragment combination methodology developed in Chapter III are

presented. Finally, in Section J, the results of using this methodology to analyze

three hypothetical proteins are presented. For all these test cases, complex structures

were unavailable but functional studies based on sequence analysis existed. In all the

accuracy tests presented in this chapter, the analysis is based on the mesh represen-

tation of the active site and the stereochemical features calculated for the active site.

The actual ligands are considered to be absent and only used to define the true class

of each of the active sites.

A. Statistical Comparisons of Classification Accuracies

In this study, many parameters have been introduced: geometric versus electrostatic

features, localized versus position-dependent features etc. In each case, it is necessary

to know the effect of each of these parameters on the accuracy of classification. In

machine learning literature, the paired-t-test is often used to determine if the accu-

racies of two different classifiers differ significantly from each other. The paired-t-test

assumes that the paired differences are independent and identically normally dis-

tributed. While, the differences in accuracy in this study are certainly independent,

they need not be normally distributed. Therefore, a related test, the Wilcoxon signed

rank test will be used to compare all pairs of classification schemes. The Wilcoxon

test computes the signed difference between the two sets of observations (X and Y )

and computes the Wilcoxon signed rank statistic, W+, as follows:

W+ =
n

∑

i=1

φiRi (5.1)

where Ri is the rank of the ordered Zi values computed as

Zi = Yi −Xi ∀i = 1 : n (5.2)
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and φi is the sign of the difference given by

φi = I(Zi > 0) (5.3)

where I(Zi > 0) is called an indicator function and is 1 when the condition Zi > 0 is

met and 0 otherwise. The z-score of the W+ statistic is computed as

zw =
W+ − µw

σw

(5.4)

where µw is the mean of the rank statistic and is assumed to be zero. The null hy-

pothesis or the case when there is no difference between the two sets of observations

would yield a W+ value of 0 and therefore this is chosen as the mean. The σw value

for a given value of n has been found to be n(n+1)
4

. Based on this z-score, a p-value

associated with the statistic is computed and this p-value is used to determine the

significance of the difference between the two sets of observations X and Y. This test

will be used in all the other sections in this chapter to compare the results of all

the different classification methodologies. For example, while comparing the accu-

racy of classification while using localized stereochemical features and the accuracy

while using position-dependent features, Xi refers to the classification accuracy of

the localized features on class i and Yi refers to the classification accuracy of the

position-dependent features on class i.

B. Both Geometric and Electrostatic Features Are Necessary for Classification

Both sets of features developed in this study (localized and position-dependent fea-

tures) are used to capture both the geometric and electrostatic variation in the active

sites binding the same ligand. The assumption in this design was that active sites that

bind the same ligand have similarities between both the geometric and the electro-
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static interaction patterns. A preliminary study based on a subset of protein-ligand

complexes tested and confirmed this hypothesis using localized stereochemical fea-

tures [96]. In this study, the database consisted of complexes of 6 different fragment

classes, adenine, citrate, nicotinamide, pyridoxal, phosphate and ribose. This database

had 55 examples of all classes other than citrate and only 16 examples of citrate. In

this study, all active sites were not created using a uniform radius but the radius of

the active site pockets varied based on the size of the fragment being analyzed. In

this study, pockets for all fragments other than phosphate were drawn at 5Å and the

pockets around phosphate were created at 4Å

The study explored whether using just geometric features or just the electrostatic

features by themselves would yield comparable/better classification accuracies than

when using both sets of features. In this study, a total of 37 features: 16 geometric

features and 21 electrostatic features were used. After dimensionality reduction using

SVD, the transformed axes corresponding to the top 6 singular values were chosen

for further computations. The probabilistic kernel density estimation classifier was

used to classify the reduced-dimension feature vectors. Equal prior probabilities were

assumed for all ligand classes and the probability density function (described by

equation 2.32) can be used to estimate the likelihood of a class Ci given a test feature

vector Φ(x), as P (Ci| Φ(x). Each feature vector is classified as belonging to the class

with the highest log likelihood.

The results of this analysis are shown in Table IV. The classification accuracy

using all the localized stereochemical features greatly increased by over 15% in most

cases as compared to either sets of features by themselves. In only one case, using

only one set of features had a higher accuracy than using the combined set and that

was with the fragment class phosphate. In this experiment, as mentioned before,

the active site size varied based on the size of the fragment. Since the size of the
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phosphate fragment was smaller than all the other fragments, when using geometric

features alone, these fragments were classified accurately 100% of the time.

The p-values listed in the table were obtained by comparing the classification ac-

curacy of just geometric and just electrostatic features with all the localized features

respectively. The p-values of 0.0042 and 0.0027 show that the differences in the accu-

racies between these different sets of features are statistically significant. Therefore,

this study concluded that there was a significant advantage to using both geometric

and electrostatic features when capturing interaction patterns in the active site.

Table IV.: Comparisons of classification accuracy using sub-
sets of localized stereochemical features show that classifica-
tion accuracy is greatly improved when both geometric and
electrostatic features are used to describe the nature of the
various active site pockets

Ligand Accuracy Accuracy Accuracy
Name Using Both Only Only

Sets of Geometric Electrostatic
Features Features Features

adenine 38/55 (69%) 25/55 (45%) 29/55 (52%)
citrate 9/16 (56%) 7/16 (44%) 6/16 (38%)
nicotinamide 35/55 (64%) 31/55 (56%) 22/55 (40%)
phosphate 53/55 (96%) 55/55 (100%) 25/55 (45%)
pyridoxal 37/55 (67%) 20/55 (36%) 26/55 (47%)
ribose 35/55 (64%) 24/55 (44%) 23/55 (42%)

p-value 0.0042 0.0027

C. Note Regarding Current Database

Before outlining the accuracies of the algorithms presented in this study, a note

regarding the database is essential. There are a total of 441 fragment classes in the

database. 403 of these classes have fewer than 10 examples and 240 of these have a

single example (a total of 782 examples). These fragment classes have been included
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in the database to ensure that the database is general and representative of the

complexes currently in the PDB. Figure 15 shows the distribution of fragment class

sizes in the database for all classes with fewer than 10 examples. Examples from the

38 classes with 10 or more examples are used to determine the most relevant features

using the combined SVD + LDA techniques since the LDA projections are determined

based on the mean values of feature vectors. This ensures that the computation of

mean and standard deviation values were statistically valid. But, the resulting SVD

and LDA projections were used to analyze all classes, a fact that should be taken into

account while analyzing the accuracy of the classification algorithms. Additionally,

there are no additional fold or sequence homology constraints on members within a

fragment class. Therefore, multiple examples within a fragment class could have the

same fold family and also have sequence homology greater than 35%.

D. Effect of Dimensionality Reduction Techniques Using a Combination of SVD and

LDA Projections

A combination of SVD and LDA techniques is used to identify features with the most

information and those that help discriminate between various fragment classes. The

SVD technique is designed to identify and project the data onto the principal direc-

tions of variation of the feature vectors and the LDA technique projects the data onto

directions that best discriminate between the classes. Together, both these techniques

help eliminate the noise in feature vectors (information unrelated to classification as

well as information unrelated to interaction patterns). The assumption behind using

these techniques is that the feature similarity between feature vectors belonging to the

same fragment class will be increased after these techniques are applied as opposed

to when using the raw feature vectors.
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Fig. 15. Distribution of number of examples in various fragment classes with fewer

than 10 examples
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For 10 randomly selected fragment classes the following statistic was computed:

R =
avg. feature difference between classes

avg. feature difference within class
(5.5)

Figure 16 shows the variation of R for 10 randomly selected fragment classes.

These ratios were computed using all the raw feature vectors, using only the SVD

projections and finally using both the SVD and LDA projections. It is clear that

using the combination technique of SVD and LDA techniques greatly improves the

discrimination between feature vectors that belong to the same class and those that

do not belong to the same class. The use of the combined technique of SVD and

LDA improves the discrimination between classes very clearly in some classes like

class 4 and class 6 in Figure 16 while for other classes like class 7 and class 9, there

is no significant improvement. This shows that while the prinicipal directions of data

variance (as determined by SVD) are sufficient to separate out information between

some classes, in some cases better separation between classes is obtained by using the

LDA projections.

E. Fragment Classification Analysis for Classes with One Example

For the 240 fragment classes with one single example, it is not possible to find another

closest example of the same class and therefore not possible to classify it correctly. The

next best thing would be to examine if the classification scheme consistently picked

examples from the database most similar to these test cases thus ensuring that the

classification scheme was recognizing similarities in interaction patterns even with

only one example. The similarity between the test example and those picked by the

classification schemes was determined based on the Tanimoto similarity. Therefore,

for each of the 240 single examples, the Tanimoto score to their closest example in the
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Fig. 16. A combination of SVD and LDA techniques have enabled the selection of

features with the most relevant information regarding active site interaction

patterns
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entire database was found and this score was compared to the highest Tanimoto score

based on the classification scheme using position-dependent stereochemical features.

Figure 17 shows the overall closest example to the test fragment (shown in Figure

17(a)) as well as the closest match found during classification and Figure 18 shows an

example where the overall closest in the database was also the closest match found

during classification for the test fragment in Figure 18(a).

(a) Test fragment (b) Most similar fragment in
database based on Tanimoto
similarity

(c) Most similar fragment
based on feature-based classifi-
cation of fragment

Fig. 17. Feature-based classification yields a match very similar to the fragment with

the highest Tanimoto similarity for a test fragment from a single fragment

class
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Figure 19 shows this comparison for all the 240 single fragment classes. This

figure shows the correlation between the Tanimoto similarity of each single fragment

example with the closest fragment in the database based on chemical similarity, X,

and the Tanimoto similarity of each single fragment example with its closest match

based on the stereochemical feature vectors, Y . The correlation coefficient between

these values was computed as

rxy =

∑

xiyi − nxy

(n− 1)sxsy

(5.6)

where x is the mean of all the values in X, y is the mean of all the values in Y , sx

is the standard deviation of all the values in X and finally, sy is the standard devi-

ation of all the values in Y and n is the number of measurements in X and Y . The

correlation coefficient was found to be 0.22. The significance of the correlation coeffi-

cient was computed by looking up the value of t in a table for a given df value, where

df = n−2. This significance value was found to be 0.0003 which shows that a correla-

tion coeficient of 0.22 for the 240 Tanimoto similarity values is significant. While the

correlation coefficient is not very high, its significance is encouraging since the Tan-

imoto similarity is purely based on chemical similarity and therefore in cases where

the Tanimoto similarity is not as high for matches from the classification scheme, the

geometric features could very well have driven the feature matching process.

F. Analysis of Classification

In this section, the accuracy of classification using both the localized stereochemical

features as well as the position-dependent stereochemical features will be examined.

These features are calculated at mesh points closest to the center of each of the

fragments in the database. The position-dependent features capture the interaction
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(a) Test fragment (b) Most similar fragment
in database based on Tan-
imoto similarity as well as
the most similar using feature-
based classification

Fig. 18. Match based on feature-based classification is the same as the one with the

highest Tanimoto similarity for a test fragment from a single fragment class

Fig. 19. Comparison of Tanimoto scores for classes with one example
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patterns more accurately since the basis for these features is a canonical representation

of the active sites. The canonical representations enables a more detailed specification

of interaction patterns, for e.g., it is possible to look at specific regions of the active site

based on 3D coordinates and compare patterns between active sites. In this section,

the accuracy of the classification scheme presented in Chapter II using both these sets

of features will be tabulated. In the analysis of both sets of features, the classes with

K highest probability values for each example in the database are computed and an

example is said to be correctly classified if the actual fragment class for the example

exists within these K classes. In this study, the value of K was determined to be 10

based on an analysis of the accuracy of the classification scheme on the database for

various K values. Figure 20 shows the results of this analysis.

Based on this definition of accuracy, Table V details the accuracy of using local-

ized stereochemical features to classify each patch in the database with a fragment

class. This table again confirms that using both geometric and electrostatic features

yields higher classification accuracy than using either only geometric or only elec-

trostatic features (77.6%, 73.6% and 73.0% respectively). The table also lists the

p-values (at the bottom of the table) computed as described in Section A and the

p-values show that the differences in accuracy between using all stereochemical fea-

tures and just the geometric as well as just the electrostatic are both statistically

very significant. This underlines the importance of capturing stereochemical patterns

within active sites. This table lists 58 fragment classes (30 with 10 or more examples)

with one more example correctly classified using either geometric, electrostatic or the

combined set of features.
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Table V.: Comparison of using localized stereochemical fea-
tures for fragment classification

Ligand Number Accuracy Accuracy Accuracy
Fragment Examples Geometric Electrostatic Combined

Features Features Features

phosphate 671 581 (86.6%) 544 (81.1%) 614 (91.5%)
dimethylbutanamide 1436 1384 (96.4%) 1397 (97.3%) 1423 (99.1%)
diphosphate 545 440 (80.7%) 429 (78.7%) 489 (89.7%)
acetamido aminodihydro
pyrancarboxylic acid 43 9 (20.9%) 17 (39.5%) 15 (34.9%)
triphosphate 120 36 (30.0%) 63 (52.5%) 58 (48.3%)
adenine 699 617 (88.3%) 599 (85.7%) 666 (95.3%)
methylpiperazine
carbaldehyde 22 3 (13.6%) 1 (4.6%) 3 (13.6%)
pyridoxal 158 104 (65.8%) 115 (72.8%) 125 (79.1%)
dihydroxy tetramethyl
diazepanone 18 14 (77.8%) 11 (61.1%) 15 (83.3%)
dichlorophenol 12 3 (25.0%) 4 (33.3%) 3 (25.0%)
methylchromanone 13 0 (0.0%) 1 (7.7%) 0 (0.0%)
ribose 1329 1297 (97.6%) 1299 (97.7%) 1327 (99.9%)
sulfuric acid 37 1 (2.7%) 2 (5.4%) 0 (0.0%)
p-tolylcarbinol 16 3 (18.8%) 5 (31.3%) 3 (18.8%)
thymine 163 91 (55.8%) 71 (43.6%) 93 (57.1%)
ascorbic acid 4 2 (50.0%) 0 (0.0%) 0 (0.0%)
nicotinamide 223 116 (52.0%) 110 (49.3%) 123 (55.2%)
methylhypoxanthine 5 1 (20.0%) 4 (80.0%) 3 (60.0%)
normotiroide 10 0 (0.0%) 1 (10.0%) 0 (0.0%)
diisopropyl hydrogen
phosphite 9 0 (0.0%) 0 (0.0%) 1 (11.1%)
nitrobenzene 5 0 (0.0%) 1 (20.0%) 0 (0.0%)
butyl dimethylindole 50 6 (12.0%) 19 (38.0%) 12 (24.0%)
pantothenamide 12 2 (16.7%) 4 (33.3%) 2 (16.7%)
azidoribose 7 1 (14.3%) 3 (42.9%) 0 (0.0%)
androstanedione 25 1 (4.0%) 0 (0.0%) 0 (0.0%)
aminomethyl cyclopentanol 4 0 (0.0%) 4 (100.0%) 3 (75.0%)
diaminomethylidene
aminoethylpentanyl
carboxylic acid 3 0 (0.0%) 1 (33.3%) 0 (0.0%)
caprylene 19 1 (5.3%) 4 (21.1%) 2 (10.5%)
ethylsulfanyl
isocyanatoethane 4 0 (0.0%) 1 (25.0%) 0 (0.0%)
picoline 6 0 (0.0%) 2 (33.3%) 2 (33.3%)
hemineurine 7 1 (14.3%) 5 (71.4%) 4 (57.1%)
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Table V – Continued

Ligand Number Accuracy Accuracy Accuracy
Fragment Examples Geometric Electrostatic Combined

Features Features Features

beta arabino
furanosylamine 79 13 (16.5%) 12 (15.2%) 10 (12.7%)
iodopyrazole 6 2 (33.3%) 3 (50.0%) 1 (16.7%)
benzothiophene
carboximidamide 3 2 (66.7%) 0 (0.0%) 1 (33.3%)
isoequilenin 16 10 (62.5%) 2 (12.5%) 6 (37.5%)
aminomethyl methylpyrrolo
pyrimidinone 6 0 (0.0%) 2 (33.3%) 0 (0.0%)
amino hydroxyindane 15 6 (40.0%) 13 (86.7%) 13 (86.7%)
fluoromethylbenzene 11 2 (18.2%) 2 (18.2%) 3 (27.3%)
butyl alcohol 212 125 (59.0%) 88 (41.5%) 116 (54.7%)
dimethylimidazole 11 1 (9.1%) 0 (0.0%) 0 (0.0%)
cyclopentanamine 14 0 (0.0%) 1 (7.1%) 0 (0.0%)
hydroxyethylmethyl
imidazole carboxamide 9 3 (33.3%) 7 (77.8%) 5 (55.6%)
dihydroxypyrrolidin
ethanone 5 1 (20.0%) 0 (0.0%) 0 (0.0%)
dichloropiperazine 3 2 (66.7%) 3 (100.0%) 2 (66.7%)
methyltrifluoromethyl
pyrimidinone 14 1 (7.1%) 5 (35.7%) 2 (14.3%)
nitrophenol 7 1 (14.3%) 0 (0.0%) 0 (0.0%)
ethyl methylthiazole 9 3 (33.3%) 1 (11.1%) 1 (11.1%)
aminoethyl benzene
sulfonic acid 19 1 (5.3%) 1 (5.3%) 0 (0.0%)
diamino quinazolinone 13 4 (30.8%) 8 (61.5%) 5 (38.5%)
diiodo methylphenol 6 0 (0.0%) 1 (16.7%) 0 (0.0%)
chloromethylbenzene 10 0 (0.0%) 1 (10.0%) 0 (0.0%)
acetamido methyl
boronic acid 6 0 (0.0%) 1 (16.7%) 1 (16.7%)
diaminopenetenoic acid 4 0 (0.0%) 1 (25.0%) 0 (0.0%)
flavin 131 99 (75.6%) 52 (39.7%) 92 (70.2%)
aminomethyl benzimidazolyl
methylidene azanium 63 21 (33.3%) 44 (69.8%) 38 (60.3%)
methionine 26 6 (23.1%) 10 (38.5%) 8 (30.8%)
thiamin 9 8 (88.9%) 7 (77.8%) 8 (88.9%)
cobinamide dihydrate 7 3 (42.9%) 3 (42.9%) 3 (42.9%)

Total 6830 5028 (73.6%) 4985 (73.0%) 5301 (77.6%)

p-value 0.0071 0.0016
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The top fragment class matches for a nicotinamide fragment and the correspond-

ing probabilities are listed in Table VI. This table shows that the nicotinamide

fragment is accurately identified with a relatively high posterior probability of 0.3.

Additionally, the next closest fragment class is adenine which is a very similar frag-

ment to nicotinamide showing that the top matches returned by the classification

scheme do indeed capture the stereochemical interaction patterns within the active

site.

Table VII shows a similar analysis using positional-dependent stereochemical fea-

tures. This table again confirms that using both geometric and electrostatic features

yields higher classification accuracy than using either only geometric or only electro-

static features (84.2%, 77.8% and 81.5% respectively). Once again, the p-values are

computed and listed in the table and the results show that the difference in accuracy

between using all the stereochemical features and using only geometric features is

extremely statistically significant and the difference in accuracy between using all the

stereochemical features and using only electrostatic features is significant. This table

lists 76 fragment classes (35 out of 76 with greater than 10 examples) with one more

example correctly classified using either geometric, electrostatic or the combined set

of features.

Table VI.: Top 10 matches and corresponding probabilities
for a nicotinamide fragment

Fragment Probability
Name from KDE

nicotinamide 0.3
adenine 0.2
dimethylbutanamide 0.1
pyridoxal 0.09
butyl alcohol 0.05
phosphate 0.03
diphosphate 0.01
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Table VI – Continued

Fragment Probability
Name from KDE

triphosphate 0.01
cyclopentanamine 0.01
iminoglycine 0.01

There is a 7% increase in accuracy using position-dependent features as opposed

to the localized stereochemical features which corresponds to a statistically signif-

icant p-value of < 0.0001. Additionally, the number of fragment classes with one

or more example correctly classified has increased from 58 to 76 (out of a possible

200 fragment classes with greater than one example in the database). Both these

factors indicate that the position-dependent features are more capable of capturing

interaction patterns more accurately and also for a larger number of fragment classes.

Previous feature-based methodologies were only able to distinguish between bind-

ing sites and non-binding sites with accuracy around 60% [46]. One of the claims in

this study was that global features would not be sufficient to characterize interac-

tion patterns and additionally distinguish between patterns across different fragment

class. This claim has now been affirmed since there is a 24% increase in classifi-

cation accuracy between the use of global features described in [46] and the use of

position-dependent stereochemical features for active site analysis. Additionally, this

increased accuracy is obtained in the analysis of 441 different fragment classes (as

opposed to the two-class problem solved earlier). Since the position-dependent fea-

tures provide the most-detailed view of the active site stereochemistry, the increased

accuracies using these features is further evidence that active site interaction patterns

are captured with greater accuracy by increasing the granularity of the stereochemical

features used to capture these patterns.
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Table VII.: Results of using geometric and electrostatic
position-dependent features for classification

Ligand Number Accuracy Accuracy Accuracy
Fragment Examples Geometric Electrostatic Combined

Features Features Features

phosphate 671 637 (94.9%) 642 (95.7%) 665 (99.1%)
dimethylbutanamide 1436 1433 (99.8%) 1414 (98.5%) 1435 (99.9%)
diphosphate 545 440 (80.7%) 489 (89.7%) 522 (95.8%)
acetamido aminodihydro
pyrancarboxylic acid 43 14 (32.6%) 14 (32.6%) 17 (39.5%)
triphosphate 120 29 (24.2%) 63 (52.5%) 63 (52.5%)
adenine 699 682 (97.6%) 655 (93.7%) 697 (99.7%)
methylpiperazine
carbaldehyde 22 4 (18.2%) 5 (22.7%) 6 (27.3%)
pyridoxal 158 118 (74.7%) 134 (84.8%) 142 (89.9%)
dihydroxy tetramethyl
diazepanone 18 9 (50.0%) 11 (61.1%) 12 (66.7%)
ribose 1329 1315 (98.9%) 1306 (98.3%) 1326 (99.8%)
sulfuric acid 37 3 (8.1%) 4 (10.8%) 8 (21.6%)
p-tolylcarbinol 16 8 (50.0%) 8 (50.0%) 10 (62.5%)
thymine 163 104 (63.8%) 118 (72.4%) 129 (79.1%)
ascorbic acid 4 2 (50.0%) 1 (25.0%) 2 (50.0%)
nicotinamide 223 100 (44.8%) 179 (80.3%) 187 (83.9%)
hydroxy methylamino
pyridazin ethanone 3 0 (0.0%) 1 (33.3%) 2 (66.7%)
thieno pyridine
carboximidamide 2 1 (50.0%) 0 (0.0%) 2 (100.0%)
aminoethyl carboxypropyl
phosphoryl 3 0 (0.0%) 0 (0.0%) 1 (33.3%)
propylimidazole 5 0 (0.0%) 1 (20.0%) 1 (20.0%)
normotiroide 10 7 (70.0%) 7 (70.0%) 7 (70.0%)
nitrobenzene 5 1 (20.0%) 0 (0.0%) 1 (20.0%)
butyl dimethylindole 50 13 (26.0%) 16 (32.0%) 21 (42.0%)
pantothenamide 12 1 (8.3%) 0 (0.0%) 0 (0.0%)
trihydroxycyclohexene
carboxylic acid 5 0 (0.0%) 1 (20.0%) 1 (20.0%)
androstanedione 25 0 (0.0%) 0 (0.0%) 1 (4.0%)
aminomethyl
cyclopentanol 4 1 (25.0%) 0 (0.0%) 2 (50.0%)
benzene 11 2 (18.2%) 5 (45.5%) 5 (45.5%)
caprylene 19 1 (5.3%) 3 (15.8%) 5 (26.3%)
aminopyrazine
carbaldehyde 2 1 (50.0%) 0 (0.0%) 2 (100.0%)



89

Table VII – Continued

Ligand Number Accuracy Accuracy Accuracy
Fragment Examples Geometric Electrostatic Combined

Features Features Features

valienamine 7 1 (14.3%) 1 (14.3%) 1 (14.3%)
ethylsulfanyl
isocyanatoethane 4 1 (25.0%) 0 (0.0%) 1 (25.0%)
difluorobenzyl
alcohol 5 0 (0.0%) 2 (40.0%) 2 (40.0%)
picoline 6 1 (16.7%) 1 (16.7%) 2 (33.3%)
trihydroxy methyl
aminohexanal 4 0 (0.0%) 0 (0.0%) 1 (25.0%)
hemineurine 7 0 (0.0%) 1 (14.3%) 0 (0.0%)
beta arabino
furanosylamine 79 20 (25.3%) 33 (41.8%) 36 (45.6%)
iodopyrazole 6 0 (0.0%) 2 (33.3%) 2 (33.3%)
isoequilenin 16 4 (25.0%) 4 (25.0%) 10 (62.5%)
aminomethyl methylpyrrolo
pyrimidinone 6 2 (33.3%) 0 (0.0%) 1 (16.7%)
amino difluorohydroxy
methylheptanal 7 0 (0.0%) 3 (42.8%) 2 (28.6%)
amino hydroxyindane 15 10 (66.7%) 8 (53.3%) 10 (66.7%)
fluoromethylbenzene 11 2 (18.2%) 3 (27.3%) 2 (18.2%)
aminomethyl pyrimidine 3 0 (0.0%) 3 (100.0%) 2 (66.7%)
methylpyridinone 3 1 (33.3%) 0 (0.0%) 1 (33.3%)
271 3 2 (66.7%) 2 (66.7%) 2 (66.7%)
sulfate 12 1 (8.3%) 0 (0.0%) 0 (0.0%)
pentanimidamide 4 0 (0.0%) 1 (25.0%) 0 (0.0%)
dioxothiadiazepane 2 0 (0.0%) 2 (100.0%) 0 (0.0%)
ethanimidoyl
piperidinol 5 2 (40.0%) 3 (60.0%) 3 (60.0%)
tertbutyl ethyl
carbamate 8 0 (0.0%) 2 (25.0%) 1 (12.5%)
butane 9 2 (22.2%) 1 (11.1%) 2 (22.2%)
butyl alcohol 212 135 (63.7%) 174 (82.1%) 166 (78.3%)
formanilide 3 2 (66.7%) 0 (0.0%) 0 (0.0%)
dimethylimidazole 11 0 (0.0%) 3 (27.3%) 0 (0.0%)
cyclopentanamine 14 1 (7.1%) 2 (14.3%) 1 (7.1%)
methylpyrrolidinol 3 3 (100.0%) 2 (66.7%) 3 (100.0%)
hydroxyethylmethyl
imidazole carboxamide 9 7 (77.8%) 7 (77.8%) 7 (77.8%)
dihydroxypyrrolidin
ethanone 5 0 (0.0%) 1 (20.0%) 0 (0.0%)
guanidinobutanal 8 0 (0.0%) 2 (25.0%) 0 (0.0%)
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Table VII – Continued

Ligand Number Accuracy Accuracy Accuracy
Fragment Examples Geometric Electrostatic Combined

Features Features Features

diethylbenzo thiophene 4 0 (0.0%) 1 (25.0%) 0 (0.0%)
ethyenylpropanamide 2 0 (0.0%) 2 (100.0%) 0 (0.0%)
methyltrifluoromethyl
pyrimidinone 14 8 (57.1%) 8 (57.1%) 8 (57.1%)
amino methyl
pyridinone 2 0 (0.0%) 2 (100.0%) 1 (50.0%)
ethanimidoylcyclo
hexanamine 7 0 (0.0%) 2 (28.6%) 1 (14.3%)
ethyl methylthiazole 9 3 (33.3%) 3 (33.3%) 3 (33.3%)
hydroxymethyl
phenylpentanamide 3 0 (0.0%) 2 (66.7%) 0 (0.0%)
benzyl methanoate 4 0 (0.0%) 1 (25.0%) 0 (0.0%)
aminoethyl benzene
sulfonic acid 19 7 (36.8%) 5 (26.3%) 5 (26.3%)
diamino quinazolinone 13 2 (15.4%) 3 (23.1%) 2 (15.4%)
chloromethylbenzene 10 0 (0.0%) 2 (20.0%) 0 (0.0%)
acetamido methyl
boronic acid 6 4 (66.7%) 4 (66.7%) 4 (66.7%)
flavin 131 109 (83.2%) 117 (89.3%) 122 (93.1%)
aminomethyl benzimidazolyl
methylidene azanium 63 41 (65.1%) 47 (74.6%) 46 (73.0%)
methionine 26 7 (26.9%) 16 (61.5%) 17 (65.4%)
thiamin 9 5 (55.6%) 5 (55.6%) 5 (55.6%)
cobinamide dihydrate 7 3 (42.9%) 6 (85.7%) 4 (57.1%)

Total 6830 5312 (77.8%) 5566 (81.5%) 5748 (84.2%)

p-value < 0.0001 0.0033

G. Fold Family and Homology Analysis

The aim of this methodology is to use position-dependent features that go beyond

specific residues in specific positions to capture the diversity between active sites that

bind the same ligand fragment while at the same time discriminating between active

sites that bind different ligands. Previous methodologies based active site similarity

analysis on the similarities between protein fold families and sequence homology. In
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order to ensure that the similarities captured by this methodology are not due to fold

similarity, the analysis of each test case was performed by eliminating all training

examples that belong to the same fold family. This rigorous test is designed to show

that this methodology will be able to capture similarities between examples that bind

similar ligands but have little/no fold family similarities.

Similarly, another rigorous test was to employ a sequence homology constraint.

While evaluating a test case, all training examples that had sequence homology of

35% or greater were ignored during feature-matching and the test case was compared

against all the other examples in the database.

Table VIII shows the results of eliminating members of the same fold family and

the results of eliminating homologous sequences during classification using localized

stereochemical features. This table shows that there is a greater drop in accuracy

when members of the same fold family are ignored during feature comparisons that

when ignoring homologous sequences (9% decrease and 2% decrease in accuracy re-

spectively). The table also lists the p-values of comparisons of accuracy after elim-

inating members of the same fold family and the results of eliminating homologous

sequences as < 0.0001 (extremely statistically significant) and 0.0019 (statistically

significant) respectively.

Table VIII.: Comparison of leaving fold family out and leav-
ing out homologous sequences during classification using lo-
calized stereochemical features

Ligand Number Accuracy Leave Remove
Fragment Examples Combined Fold Homologous

Features Family Out Sequences

phosphate 671 614 (91.5%) 545 (81.2%) 592 (88.2%)
dimethylbutanamide 1436 1423 (99.0%) 1351 (94.0%) 1378 (96.0%)
diphosphate 545 489 (89.7%) 374 (68.6%) 452 (82.9%)
acetamido aminodihydro
pyrancarboxylic acid 43 15 (34.9%) 1 (2.3%) 13 (30.2%)



92

Table VIII – Continued

Ligand Number Accuracy Leave Remove
Fragment Examples Combined Fold Homologous

Features Family Out Sequences

triphosphate 120 58 (48.3%) 63 (52.5%) 69 (57.5%)
adenine 699 666 (95.3%) 610 (87.3%) 628 (89.8%)
methylpiperazine
carbaldehyde 22 3 (13.6%) 0 (0.0%) 4 (18.2%)
pyridoxal 158 125 (79.1%) 64 (40.5%) 122 (77.2%)
dihydroxy tetramethyl
diazepanone 18 15 (83.3%) 0 (0.0%) 9 (50.0%)
dichlorophenol 12 3 (25.0%) 0 (0.0%) 2 (16.7%)
ribose 1329 1327 (99.9%) 1294 (97.4%) 1307 (98.3%)
sulfuric acid 37 0 (0.0%) 0 (0.0%) 1 (2.7%)
p-tolylcarbinol 16 3 (18.8%) 0 (0.0%) 4 (25.0%)
thymine 163 93 (57.1%) 54 (33.1%) 91 (55.8%)
nicotinamide 223 123 (55.2%) 88 (39.5%) 120 (53.8%)
methylhypoxanthine 5 3 (60.0%) 0 (0.0%) 0 (0.0%)
propylimidazole 5 0 (0.0%) 0 (0.0%) 2 (40.0%)
diisopropyl hydrogen
phosphite 9 1 (11.1%) 0 (0.0%) 1 (11.1%)
butyl dimethylindole 50 12 (24.0%) 0 (0.0%) 14 (28.0%)
pantothenamide 12 2 (16.7%) 0 (0.0%) 2 (16.7%)
trihydroxycyclohexene
carboxylic acid 5 0 (0.0%) 0 (0.0%) 1 (20.0%)
androstanedione 25 0 (0.0%) 0 (0.0%) 1 (4.0%)
aminomethyl cyclopentanol 4 3 (75.0%) 0 (0.0%) 0 (0.0%)
benzene 11 0 (0.0%) 0 (0.0%) 1 (9.1%)
caprylene 19 2 (10.5%) 0 (0.0%) 1 (5.3%)
ethylsulfanyl
isocyanatoethane 4 0 (0.0%) 1 (25.0%) 3 (75.0%)
picoline 6 2 (33.3%) 0 (0.0%) 0 (0.0%)
hemineurine 7 4 (57.1%) 0 (0.0%) 1 (14.3%)
beta arabino
furanosylamine 79 10 (12.7%) 4 (5.1%) 12 (15.2%)
iodopyrazole 6 1 (16.7%) 2 (33.3%) 2 (33.3%)
benzothiophene
carboximidamide 3 1 (33.3%) 0 (0.0%) 0 (0.0%)
isoequilenin 16 6 (37.5%) 5 (31.2%) 12 (75.0%)
amino hydroxyindane 15 13 (86.7%) 0 (0.0%) 5 (33.3%)
fluoromethylbenzene 11 3 (27.3%) 0 (0.0%) 1 (9.1%)
butyl alcohol 212 116 (54.7%) 106 (50.0%) 122 (57.6%)
cyclopentanamine 14 0 (0.0%) 0 (0.0%) 1 (7.1%)
hydroxyethylmethyl
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Table VIII – Continued

Ligand Number Accuracy Leave Remove
Fragment Examples Combined Fold Homologous

Features Family Out Sequences

imidazole carboxamide 9 5 (55.6%) 0 (0.0%) 2 (22.2%)
dichloropiperazine 3 2 (66.7%) 0 (0.0%) 0 (0.0%)
methyltrifluoromethyl
pyrimidinone 14 2 (14.3%) 0 (0.0%) 2 (14.3%)
nitrophenol 7 0 (0.0%) 2 (28.6%) 2 (28.6%)
ethanimidoylcyclo
hexanamine 7 0 (0.0%) 0 (0.0%) 1 (14.3%)
ethyl methylthiazole 9 1 (11.1%) 1 (11.1%) 6 (66.7%)
diamino quinazolinone 13 5 (38.5%) 0 (0.0%) 5 (38.5%)
acetamido methyl
boronic acid 6 1 (16.7%) 0 (0.0%) 0 (0.0%)
flavin 131 92 (70.2%) 95 (72.5%) 109 (83.2%)
aminomethyl benzimidazolyl
methylidene azanium 63 38 (60.3%) 0 (0.0%) 28 (44.4%)
methionine 26 8 (30.8%) 2 (7.7%) 11 (42.3%)
thiamin 9 8 (88.9%) 0 (0.0%) 7 (77.8%)
cobinamide dihydrate 7 3 (42.9%) 1 (14.3%) 1 (14.3%)

Total 6830 5301 (77.6%) 4663 (68.3%) 5148 (75.3%)

p-value < 0.0001 0.0019

Similarly, Table IX shows the results of the fold family analysis and the sequence

homology analysis based on position-dependent stereochemical features. The table

shows that there is a decrease of 6% while ignoring members of the same fold family

while there is less than 1% decrease in accuracy when ignoring homologous sequences.

The table also lists the p-values of comparisons of accuracy after eliminating mem-

bers of the same fold family and the results of eliminating homologous sequences

as < 0.0001 (extremely statistically significant) and 0.0002 (statistically significant)

respectively.
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Table IX.: Comparison of leaving fold family out and leav-
ing out homologous sequences during classification using
position-dependent stereochemical features

Ligand Number Accuracy Leave Remove
Fragment Examples Combined Fold Homologous

Features Family Out Sequences

phosphate 671 665 (99.1%) 663 (98.8%) 665 (99.1%)
dimethylbutanamide 1436 1435 (99.9%) 1434 (99.9%) 1435 (99.9%)
diphosphate 545 522 (95.8%) 510 (93.6%) 523 (96.0%)
acetamido aminodihydro
pyrancarboxylic acid 43 17 (39.5%) 2 (4.6%) 13 (30.2%)
triphosphate 120 63 (52.5%) 46 (38.3%) 61 (50.8%)
adenine 699 697 (99.7%) 693 (99.1%) 697 (99.7%)
methylpiperazine
carbaldehyde 22 6 (27.3%) 0 (0.0%) 3 (13.6%)
pyridoxal 158 142 (89.9%) 90 (57.0%) 141 (89.2%)
dihydroxy tetramethyl
diazepanone 18 12 (66.7%) 0 (0.0%) 9 (50.0%)
ribose 1329 1326 (99.8%) 1324 (99.6%) 1326 (99.8%)
sulfuric acid 37 8 (21.6%) 5 (13.5%) 7 (18.9%)
p-tolylcarbinol 16 10 (62.5%) 0 (0.0%) 8 (50.0%)
thymine 163 129 (79.1%) 88 (54.0%) 127 (77.9%)
ascorbic acid 4 2 (50.0%) 0 (0.0%) 3 (75.0%)
nicotinamide 223 187 (83.9%) 163 (73.1%) 185 (83.0%)
hydroxy methylamino
pyridazin ethanone 3 2 (66.7%) 0 (0.0%) 2 (66.7%)
aminomethyl imidazol 2 0 (0.0%) 0 (0.0%) 2 (100.0%)
thieno pyridine
carboximidamide 2 2 (100.0%) 0 (0.0%) 2 (100.0%)
aminoethyl carboxypropyl
phosphoryl 3 1 (33.3%) 0 (0.0%) 1 (33.3%)
propylimidazole 5 1 (20.0%) 0 (0.0%) 1 (20.0%)
normotiroide 10 7 (70.0%) 0 (0.0%) 6 (60.0%)
nitrobenzene 5 1 (20.0%) 0 (0.0%) 1 (20.0%)
butyl dimethylindole 50 21 (42.0%) 11 (22.0%) 20 (40.0%)
trihydroxycyclohexene
carboxylic acid 5 1 (20.0%) 0 (0.0%) 1 (20.0%)
androstanedione 25 1 (4.0%) 1 (4.0%) 1 (4.0%)
aminomethyl cyclopentanol 4 2 (50.0%) 0 (0.0%) 1 (25.0%)
benzene 11 5 (45.4%) 0 (0.0%) 1 (9.1%)
caprylene 19 5 (26.3%) 3 (15.8%) 5 (26.3%)
aminopyrazine carbaldehyde 2 2 (100.0%) 0 (0.0%) 2 (100.0%)
valienamine 7 1 (14.3%) 0 (0.0%) 1 (14.3%)
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Table IX – Continued

Ligand Number Accuracy Leave Remove
Fragment Examples Combined Fold Homologous

Features Family Out Sequences

ethylsulfanyl isocyanatoethane 4 1 (25.0%) 0 (0.0%) 1 (25.0%)
difluorobenzyl alcohol 5 2 (40.0%) 1 (20.0%) 1 (20.0%)
picoline 6 2 (33.3%) 0 (0.0%) 2 (33.3%)
trihydroxy methyl
aminohexanal 4 1 (25.0%) 0 (0.0%) 1 (25.0%)
beta arabino
furanosylamine 79 36 (45.6%) 27 (34.2%) 37 (46.8%)
iodopyrazole 6 2 (33.3%) 0 (0.0%) 2 (33.3%)
isoequilenin 16 10 (62.5%) 2 (12.5%) 10 (62.5%)
aminomethyl methylpyrrolo
pyrimidinone 6 1 (16.7%) 0 (0.0%) 0 (0.0%)
amino difluorohydroxy
methylheptanal 7 2 (28.6%) 0 (0.0%) 0 (0.0%)
amino hydroxyindane 15 10 (66.7%) 0 (0.0%) 6 (40.0%)
fluoromethylbenzene 11 2 (18.2%) 0 (0.0%) 2 (18.2%)
aminomethyl pyrimidine 3 2 (66.7%) 0 (0.0%) 2 (66.7%)
methylpyridinone 3 1 (33.3%) 0 (0.0%) 1 (33.3%)
271 3 2 (66.7%) 0 (0.0%) 2 (66.7%)
ethanimidoyl piperidinol 5 3 (60.0%) 0 (0.0%) 2 (40.0%)
tertbutyl ethyl
carbamate 8 1 (12.5%) 0 (0.0%) 1 (12.5%)
butane 9 2 (22.2%) 0 (0.0%) 2 (22.2%)
butyl alcohol 212 166 (78.3%) 158 (74.5%) 166 (78.3%)
cyclopentanamine 14 1 (7.1%) 1 (7.1%) 1 (7.1%)
methylpyrrolidinol 3 3 (100.0%) 3 (100.0%) 3 (100.0%)
hydroxyethylmethyl
imidazole carboxamide 9 7 (77.8%) 0 (0.0%) 7 (77.8%)
methyltrifluoromethyl
pyrimidinone 14 8 (57.1%) 3 (21.4%) 8 (57.1%)
amino methyl
pyridinone 2 1 (50.0%) 2 (100.0%) 1 (50.0%)
ethanimidoylcyclo
hexanamine 7 1 (14.3%) 1 (14.3%) 1 (14.3%)
ethyl methylthiazole 9 3 (33.3%) 0 (0.0%) 3 (33.3%)
aminoethyl benzene
sulfonic acid 19 5 (26.3%) 0 (0.0%) 2 (10.5%)
diamino quinazolinone 13 2 (15.4%) 0 (0.0%) 2 (15.4%)
acetamido methyl
boronic acid 6 4 (66.7%) 0 (0.0%) 4 (66.7%)
flavin 131 122 (93.1%) 114 (87.0%) 123 (93.9%)
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Table IX – Continued

Ligand Number Accuracy Leave Remove
Fragment Examples Combined Fold Homologous

Features Family Out Sequences

aminomethyl benzimidazolyl
methylidene azanium 63 46 (73.2%) 6 (9.5%) 38 (60.3%)
methionine 26 17 (65.4%) 0 (0.0%) 17 (65.4%)
thiamin 9 5 (55.6%) 0 (0.0%) 4 (44.4%)
cobinamide dihydrate 7 4 (57.1%) 3 (42.9%) 3 (42.9%)

Total 6830 5748 (84.2%) 5354 (78.4%) 5705 (83.5%)

p-value < 0.0001 0.0002

Both Tables VIII and IX indicate that the interaction patterns between proteins

and ligands is conserved more across fold family than across homologous sequences.

Initial automated analyses of protein function were based on sequence patterns alone

[116]. But, very soon these were complemented by secondary structure as well as

fold family information since the geometric patterns in active sites were found to be

essential to the understanding of protein function [111], [76]. In this study, we have

also argued that over evolution, proteins use diverse sets of amino acids in the active

sites to effect the same electrostatic patterns. The empirical results in Tables VIII and

IX show that the classification accuracy decreases significantly when members of the

same fold family are not considered during feature-matching and this decrease is not

as significant when sequences with high homology are removed and this result agrees

with the traditional knowledge within the field as well as our starting assumption.

These tests eliminating members of the same fold family and eliminating homolo-

gous sequences were performed to show that the classification methodology developed

in this study is robust and that it is independent of fold family similarity as well as

sequence homology. In a real-world application of this methodology to the functional

analysis of a newly-solved protein structure, the training examples belonging to its

fold family or those with high sequence homology will not be eliminated.
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H. Large Active Site Analysis

Another way to characterize the accuracy of the classification algorithm is to analyze

its performance on multi-fragment ligand active sites. In order to characterize the

accuracy, it is first necessary to define the active site and generate the feature-based

description of the active site. Active sites were defined around the entire ligand instead

of the individual fragments by cutting out a 10Å pocket from the protein molecular

surface centered at the centroid of the ligand. For each of the mesh points in this larger

active site, a 5Å subpocket was then drawn centered at each of these mesh points and

each of these subpockets was described using the position-dependent stereochemical

features. The assumption in dividing the larger active site into subpockets is that

the individual fragments of the ligand are centered on one of the mesh points in the

active site and finding the centers of the fragments will allow for the identification of

the identity of the multi-fragment ligand.

There are two metrics that will help better understand the accuracy of the

feature-based methodology. The first is the relationship between fragment classifi-

cation accuracy and the distance of the mesh point from the fragment centroid. The

expectation is that as the mesh points are closer to a particular fragment centroid,

the feature difference between the actual fragment pocket and the test subpocket will

be small but as we move away from the fragment centroid, this feature difference will

increase. The interaction patterns should be the clearest when the subpocket center is

closest to fragment center since the fragment pockets in the database are all centered

on the fragment centroid. As the distance from the centroid increases, the interaction

patterns will include more noise and also information from regions of the active site

not related to a particular fragment (possibly buffer regions or parts of active site

interacting with other fragments etc) The feature difference is the Euclidean distance
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between feature vectors (defined in Equation 5.7) and is directly correlated with the

posterior probability obtained from the KDE classifier and therefore follows a similar

pattern. Figure 21 shows the variation of feature difference with the distance from

fragment centroid and shows that the feature difference does increase with distance

from fragment centroid. At the same time, when a mesh point is within 1.5Å of the

actual fragment centroid, the features of the subpocket show great similarity to the

actual fragment pocket. This observation is encouraging since it ensures that a slight

difference in subpocket centroid and fragment centroid is handled within the system

and this proves that the feature-based descriptions are robust to small amounts of

noise (due to interaction patterns from other regions).

The Euclidean distance between feature vectors X and Y is given by dX,Y is

given as

dX,Y =

√

∑

i=1

K(Xi − Yi)2 (5.7)

where K is the length of the feature vectors.

Another metric to understand accuracy is a site-wide accuracy. If an active

site houses a multi-fragment ligand the expectation is that the strongest probability

peaks across the entire site will be related to one or more of the fragments of the

ligand. For example, if an active site binds PLP, if the highest probability peaks

(from KDE classification of mesh points) across all mesh points were sorted, the

fragment classes pyridoxal and phosphate should have the highest peaks since the

interaction patterns observed in the site should be most similar to those observed for

the individual fragments of PLP. The following formula was used to determine the

rank of each ligand fragment, fi, in a ligand, L:

R(fi) = R(Pj(fi)) ∀j = 1 : N (5.8)
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Fig. 21. The variation of feature difference with distance from actual fragment center

for all the fragment classes in this study

where R(fi) is the rank of the ith fragment of ligand L and Pj(fi) is the likelihood

of fragment fi at mesh point j obtained from the classification algorithm (Equation

2.32) and R(Pj(fi)) is the rank of this probability value over all the N mesh points

in the active site. Site-wide accuracy for each of the fragment classes in a subset

of the multi-fragment ligands was computed and the results of this experiment are

summarized in Table X.

Table X.: Site-wide accuracy

Ligand Number of Avg. Rank Average
Name Examples of Fragments number of

Across Examples mesh points

2DT 13 thymine:7.0, ribose:2.3, phosphate:1.1 212
ADP 84 adenine:2.6, ribose:2.3, diphosphate:4.8 202
AMP 29 adenine:2.3, ribose:2.6, phosphate:1.1 210
ANP 18 adenine:2.3, ribose:2.7, triphosphate:15.7 195
ATP 46 adenine:2.4, ribose:2.6, triphosphate:13.8 222
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Table X – Continued

Ligand Number of Avg. Rank Average
Name Examples of Fragments number of

Across Examples mesh points

FMN 60 flavin:13, butyl-alcohol:9.0, phosphate:0.7 199
PLP 171 pyridoxal:4.9, phosphate:1.1 168
PMP 12 pyridoxal:5.3, phosphate:0.9 173
SAH 27 adenine:2.9, ribose:2.2, methionine:42.1 201
SAM 15 adenine:2.7, ribose:2.2, methionine:26.4 208
TDP 14 thiamin:134.6, diphosphate:4.9 222
TMP 24 thymine:6.0, ribose:2.6, phosphate:1.0 205
UDP 16 thymine:5.9, ribose:2.4, diphosphate:5.7 225

Table X shows that in almost all cases the correct fragments (those belonging

to the multi-fragment ligand binding the active site) are within the top 10 fragments

with the highest probabilities. Considering that the database contains examples from

441 different fragment classes, these results are highly encouraging. Fragment thiamin

from TDP) is ranked the lowest (average rank of 134), but considering there are only

9 examples of thiamin in this database with 7068 fragments, the lower rank is not

surprising. It is encouraging to note that despite the very low number of examples, the

active sites binding TDP still showed any peaks at all for thiamin (average probability

of 0.015). For example, in 17/29 AMP binding sites, there was at least one thiamin

peak with an average probability of 0.008. In fact, on average, thiamin peaks were

found in greater than 50% of binding sites that do not bind thiamin and the average

probability of thiamin in these sites was found to be 0.01. The difference in the

average probability of thiamin in sites that actually do bind thiamin (0.015) and

those that do not (0.01) is obviously not significant enough to believe in either the

presence or absence of thiamin. It is in such cases that combining the geometric

information regarding the fragment placement in multi-fragment ligands will allow to

discriminate between spurious peaks for a ligand fragment and those that characterize
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fragment binding.

The data regarding the above two metrics combined with the fragment accuracy

calculations demonstrate that the position-dependent stereochemical features do in-

deed capture the interaction patterns of the ligand fragments with the protein and

that the dimensionality reduction techniques as well as the classification scheme are

all able to distinguish clearly between the 441 fragment classes analyzed in this study.
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I. Combination of Fragments Using Markov Random Field

The feature-based classifier provides the probability of individual fragments within a

given test active site. But, only a subset of these also satisfy the geometric constraints

on the placement of these individual fragments. The geometric constraints are ob-

tained as defined in Section C in Chapter III. The mean and standard deviations

between the fragments for a subset of the ligands in this study is listed in Table XI.

Table XI.: Statistical models for the distances between vari-
ous fragments in the larger ligands

Ligand Fragment Fragment µL,a,b σL,a,b

Name (L) Name, a Name, b

2DT Ribose Phosphate 4.085 0.444
2DT Thymine Phosphate 6.076 1.150
2DT Thymine Ribose 3.510 0.903
ADP Adenine Diphosphate 7.227 1.258
ADP Adenine Ribose 4.106 0.173
ADP Ribose Diphosphate 5.202 0.498
AMP Adenine Phosphate 6.572 1.166
AMP Adenine Ribose 4.097 0.177
AMP Ribose Phosphate 4.446 0.374
ANP Adenine Ribose 4.162 0.209
ANP Adenine Triphosphate 8.055 1.328
ANP Ribose Triphosphate 5.938 0.634
ATP Adenine Ribose 4.114 0.141
ATP Adenine Triphosphate 7.929 1.204
ATP Ribose Triphosphate 5.940 0.655
FMN Flavin FAD-Carb 5.051 0.170
FMN Flavin Phosphate 8.173 0.966
FMN Phosphate FAD-Carb 4.168 0.376
PLP Pyridoxal Phosphate 4.600 0.643
PMP Pyridoxal Phosphate 4.376 0.555
SAH Adenine Homocysteine 8.236 1.226
SAH Adenine Ribose 4.106 0.170
SAH Ribose Homocysteine 6.000 0.593
SAM Adenine Homocysteine 8.258 1.334
SAM Adenine Ribose 4.101 0.178
SAM Ribose Homocysteine 5.920 0.591
TDP Thiamin Diphosphate 7.263 1.059
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Table XI – Continued

Ligand Fragment Fragment µL,a,b σL,a,b

Name (L) Name, a Name, b

TMP Ribose Phosphate 4.290 0.325
TMP Thymine Phosphate 5.526 0.881
TMP Thymine Ribose 3.323 0.253
UDP Ribose Diphosphate 5.182 0.498
UDP Thymine Diphosphate 6.726 1.143
UDP Thymine Ribose 3.609 0.427

The simulated annealing procedure described in Section D in Chapter III is

used to find fragment combinations based on the geometric constraints as well as the

individual fragment class posterior probabilities from the KDE classifier. The joint

probability of each fragment combination is evaluated and the fragment combinations

are ranked by this probability. Multi-fragment ligands are clustered such that all

ligands that are completely contained in another multi-fragment ligand are grouped

together. For e.g., ligand G6P is composed of fragments ribose and phosphate and

since both these fragments are contained in ligand AMP, ligands G6P and AMP are

grouped together. The multi-fragment ligands with the top 100 probability values are

examined and a count of the number of times each multi-fragment ligand cluster is

represented within the top 100 is determined. The sorted list of these counts is then

analyzed to determine the final labeling for the active site. Table XII lists the ranking

within the top 100 for a subset of the multi-fragment ligands in this study. This table

shows that in 8 out of 13 cases the true ligand was within the top 10 ligands when

ranked by the count metric.
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Table XII.: Results of mrf analysis

Ligand Ligand Number of Number of Number Rank
Name Examples Fragments Correctly

Labeled
O

P
HO

OHO

O

N
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O

O

Ch3 2DT 13 3 13 9.15
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H
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H
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Table XII – Continued

Ligand Ligand Number of Number of Number Rank
Name Examples Fragments Correctly

Labeled

N

N

O

O
HO

O

P
O

HO

O

CH3

P

OH

HO OHO

UDP 16 3 16 21.63

An examination of the results for the multi-fragment ligand FMN in Table X and

Table XII showed that while the active sites for FMN showed significant peaks for

the individual fragments (flavin, butyl-alcohol and phosphate), the average rank for

FMN after the Markov combination is very low suggesting that these peaks did not

fit the geometric constraints for FMN. Similarly, the results for TDP indicate that

while the active site did not show significant peaks for thiamin, the existing peaks fit

the geometric patterns for TDP thereby improving the overall rank of TDP in the

final list of fragment combinations.

J. Test Cases

In the previous sections, the accuracy of the algorithm on the database containing

7070 patches from 2310 unique proteins complexed with 1160 unique ligands was

analyzed. In order to ensure that the accuracy of the proposed methodology on

this database is not due to any bias in training, three test complexes were selected

and the accuracy of the algorithms were tested on these complexes. All three test

cases have functional annotations in the PDB, but the complex structure was not

solved for one example (1qde) and there are very few structural/sequence homologs

for the other two test cases. In all three cases, there exist biochemical studies based

on sequence analysis of the proteins that suggest their cognate ligands and mode of
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activity. Figure 22 shows the steps involved in the analysis of a test protein based on

the methodology developed in this study.

1. DEAD Box Protein: 1qde

The first test case is 1qde, a structure of the ATPase domain of the translation

initiation factor 4A (eIF4A) [10]. eIF4A is a prototype of the DEAD box protein

family and proteins within this family are involved in cellular processes like cellular

splicing, ribosome biogenesis and RNA degradation. eIF4A melts the local secondary

structure of RNA and makes it more susceptible to nucleases in the presence of an

energy source, ATP. While many proteins have been characterized as DEAD box

proteins based on sequence motifs (Asp-Glu-Ala-Asp), enzymatic activity has been

confirmed in only a subset of these proteins [77]. Since the interaction with ATP

is essential for enzymatic activity, the active site will be analyzed for interaction

patterns related to ATP binding. This protein belongs to the SCOP fold family P-

loop containing nucleoside triphosphate hydrolases which is a common ATP binding

fold but SCOP also notes that the P-loop in 1qde has a non-canonical conformation,

thus making it challenging to characterize the function of this protein.

Active Site Definition: Benz et.al. [10] identified amino acids that interact

with ligands ADP or AMP based on structural comparison with other DEAD box

proteins. Based on this analysis, they identified that Phe41 would potentially make

hydrophobic van der Waals interactions with the adenine moiety and Glu43 and Gln48

would form hydrogen bonds with the adenine atoms. The phosphate moiety would

interact with residues Gly68-Thr72. The authors mentioned that they did not observe

any interaction between the ribose moiety and the protein. In a similar analysis, the

protein 2vso, a complex of a RNA helicase from yeast with AMP was identified as the

closest structural and sequence homolog using DALI [54] and BLAST respectively.
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Fig. 22. Flowchart showing the various steps involved in the analysis of a test protein
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The superposition of 1qde and 2vso is consistent with the above mentioned protein-

ligand interactions and Figure 23 shows these interactions with 1qde superposed onto

2vso. Based on this information, the active site was defined as a 10Å patch of the

Fig. 23. The active site residues identified by superposing the structure of 1qde (shown

in white) with the structure of 2vso complexed to the ligand AMP

protein molecular surface centered at the center of the above mentioned residues.

The molecular surface was generated based on the procedure outlined in Chapter II.

Interestingly, the dimer structure of 2vso shows an interaction between the second

protein domain and the ribose of AMP (shown in Figure 24) suggesting a reason why

there are no interactions between (a single chain of) 1qde and ribose. Figure 25 shows

the active site derived for this protein.

Analysis of a test active site: 5Å patches centered at each of the 356 mesh

points within the active site were generated. Position-dependent stereochemical fea-

tures were determined for each 5Å patch and the dimensionality of these features was
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reduced using the combined SVD+LDA technique described previously in Chapter II

and each mesh point was annotated with the 441 class labels from the database, each

associated with a probability score from the KDE described in Chapter II. Figures

26(a), 26(b) and 26(c) show the mesh points labeled as adenine, ribose and phosphate

respectively with high posterior probability (from KDE ). These figures showed that

while a few mesh points were incorrectly labeled, there exists a clear concentration of

these peaks near the correct fragment. For e.g., in Figure 26(a) there are a few mesh

points closer to the ribose and phosphate fragments but the majority of mesh points

labeled adenine are clustered near the placement of the adenine fragment.

These posterior probability values were combined with the geometric constraints

using the mrf formulation described in Chapter III and various possible combinations

of labellings across the active site were evaluated. The labeling combinations were

sampled based on simulated annealing techniques again described in Chapter III. The

labellings with the highest probability for each multi-fragment ligand in the database

were listed. Based on the multi-fragment ligand clusters determined above in Section

I, the multi-fragment ligand clusters most represented within the top 100 labellings

from the results of the simulated annealing procedure were determined. The 10

most represented clusters and the counts for these clusters as well as the probability

associated with each multi-fragment ligand for 1qde are tabulated in Table XIII.

Table XIII.: Results of mrf analysis for 1qde

Ligand Ligand Cluster Probability of

Name Count fragment combination from mrf
N

N N

N

O

OH

OH

OH ADN 35 0.0003
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Table XIII – Continued

Ligand Ligand Cluster Probability of

Name Count fragment combination from mrf

OHO

HO OH

OH

O
P

O

OH
HO

G6P 26 0.0005

O
P

O

OH
HO

OH

OH

O

2PG 26 0.0008
N CH3

OH
O

P
HO

OH

O

NH2 PMP 15 2.05e-05

O
P

O

OH

OH

N

H3C

OH

NH

OH

O

CH3

PP3 9 3.76e-08

O
P

O

OH

OH

N

H3C

OH

NH

O

CH3

OH

O KAM 9 7.21e-08
NH

N N

N

O

O

P
OH

HO

O

OH

OH

O

IMP 9 4.73e-07

N

NN

N

NH2

O

HO

O

P

O

HO

O

P

OH

O

O

P
OH

OH

O

DTP 9 3.33e-08

N

NH

O

O

P
O

HO

HO

O

O

H3C

F

FDM 8 1.19e-07
N

N N

N

O

O

NH2

P
O

PO

O

HO

OH

HO ADP 8 2.87e-07

5/10 of the ligands in this list are connected to AMP, ADP and ATP (ADN

(containing adenine and ribose) and G6P (containing ribose and phosphate) are both

completely contained within the ligand AMP, ligand IMP has exactly the same frag-

ments as ligand AMP, ligand DTP has exactly the same fragments as ligand ATP).

DEAD box proteins are known to bind all three of these ligands and therefore the

final labeling obtained from the methodology outlined in this study has been suc-

cessfully able to identify the function (determine that it binds ATP) of the protein
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1qde.
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Fig. 24. The dimer structure of 2vso shows the dimer plays a role in defining the

interaction of ribose with the protein
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Fig. 25. The active site for 1qde with the AMP structure from 2vso
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(a) The mesh points with high prob-
ability of being centers of the adenine
fragment highlighted in red

(b) The mesh points with high prob-
ability of being centers of the ribose
fragment highlighted in red

(c) The mesh points with high prob-
ability of being centers of the phos-
phate fragment highlighted in red

Fig. 26. Figures 26(a), 26(b) and 26(c) show the peaks for the various fragments of

ligand AMP based on the classification algorithm based on the stereochemical

features computed at each of the mesh points. While the majority of the peaks

are near the actual fragment centers, there are a few spurious matches spread

throughout the active site
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2. PriA Protein: 2d7h

The second test case is 2d7h, the structure of the PriA protein from E. coli. The

3D structure of this protein is complexed with ligand deoxycytidine monophosphate

(dCMP). It has been characterized as a primosomal protein based on biochemical

analyses. A BLAST search of this protein sequence yielded three matches, one of

which is the apo structure of this protein 2d7e with an E-value of 2e-56 and the other

two matches were not significant with E-values of 3.6 and neither of these proteins is

present in our database. The fold of this protein has not been characterized by SCOP

and a search for structural homologs using SSM of the entire SCOP database and

using DALI to search the entire PDB yielded no structurally similar proteins. If the

complex structure of this protein was unavailable, the above-mentioned characteristics

would make it difficult to analyze the function of this protein based on sequence or

fold similarity analyses.

Active Site Definition: To date no structural studies detailing the active site

of this protein have been published. In this case, since the complex structure of the

protein was available, the residues interacting with the ligand dCMP were used to

identify the active site. The residues lining the active site are Phe16 (chain A&B),

Thr15 (chain B), Glu41 (chain B) and Ile43 (chain B). The active site residues of

2d7h with dCMP bound to it is shown in Figure 27 and the molecular surface around

the protein outlining the active site surface is shown in Figure 28. Based on this

information, the active site was defined as a 10Å patch of the protein molecular surface

centered at the center of the above mentioned residues. The molecular surface was

generated based on the procedure outlined in Chapter II.

Analysis of a Test Active Site: 5Å patches centered at each of the 487 mesh

points within the active site were generated. Position-dependent stereochemical fea-
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Fig. 27. The active site residues interacting with the ligand dCMP

Fig. 28. Molecular surface of 2d7h showing dCMP in the active site
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tures were determined for each 5Å patch and the dimensionality of these features was

reduced using the combined SVD+LDA technique described previously in Chapter II

and each mesh point was annotated with the 441 class labels from the database, each

associated with a probability score from the KDE described in Chapter II. Figures

29(a), 29(b) and 29(c) show the mesh points labeled as thymine, ribose and phosphate

respectively with high posterior probability (from KDE ). These figures showed that

while a few mesh points were incorrectly labeled, there exists a clear concentration of

these peaks near the correct fragment. For e.g., in Figure 29(a) there are a few mesh

points closer to the ribose and phosphate fragments but the majority of mesh points

labeled thymine are clustered near the placement of the thymine fragment.

These posterior probability values were combined with the geometric constraints

using the mrf formulation described in Chapter III and various possible combinations

of labellings across the active site were evaluated. The labeling combinations were

sampled based on simulated annealing techniques again described in Chapter III. The

labellings with the highest probability for each multi-fragment ligand in the database

were listed. Based on the multi-fragment ligand clusters determined above in section

I, the multi-fragment ligand clusters most represented within the top 100 labellings

from the results of the simulated annealing procedure were determined. Table XIV

lists the ranks of all the ligands in the clusters related to dCMP and the corresponding

probabilities.
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(a) The mesh points with high proba-
bility of being centers of the thymine
fragment highlighted in red

(b) The mesh points with high prob-
ability of being centers of the ribose
fragment highlighted in red

(c) The mesh points with high prob-
ability of being centers of the phos-
phate fragment highlighted in red

Fig. 29. The distribution of the peaks for each of the fragment classes within ligand

dCMP through the entire active site. Despite some spurious peaks the ma-

jority of the peaks are clustered around the centers of dCMP fragments
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Table XIV.: Results of mrf analysis for 2d7h

Ligand Ligand Rank Cluster Probability of
Name Count fragment combination

from mrf

N

N N

N

NH2

O
HO

HO

CH3

5AD 1 48 0.0003

N

N N

N

NH2

O

OH

HO

3AD 2 48 0.022

O

HO
O
H

HO

O

P OHO

OH

OH

F6P 3 36 0.0005

O

O

P
OH

O

HO

N

N

NH
N

O

NH2

DGP 6 14 6.04e-07

O

O

P
OH

O

P

N

N

N

N

NH2

HO

HO

OH
HO

O

AP2 7 14 0.0003
N

N N

N

O

OH

OH

O

P
OH

H3C

O

ABM 8 14 0.04

O

O
P

OH

O

O

N

N
N

N NH2

OH

OH

P
O

P

HO

SHO
OH

O

ATG 9 11 0.0003
N

N N

N

O

OH

OH

O

P
OH

O

O

P

O

OH

P

OH

HO O ACP 10 11 0.0002
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Table XIV – Continued

Ligand Ligand Rank Cluster Probability of
Name Count fragment combination

from mrf

O

O

P
OH

O

H2N

OH

N

HN

O

O

CH3

NYM 11 10 1.71e-05

O

O

P
OH

O

H2N

OH

N

HN

O

O

CH3

C31 12 10 0.002

Ligands 5AD, 3AD, and F6P are all completely contained within the ligand

dCMP. Ligands DGP AP2 and ABM are all the same as the ligand AMP and since

thymine and adenine are related bases, finding these ligands within the top 10 clusters

is highly encouraging. Ligands ATG and ACP are the same as the ligand ATP, a

ligand very similar to AMP and once again observing these ligands in the top 10 is

encouraging. Finally, NYM and C31 are the same as dCMP and are ranked within

the top 13 multi-fragment ligand clusters (out of 764 possible ligands). These results

show that there is a very strong signal in this active site for the ligand dCMP even in

the absence of any fold similarity or sequence homology of this protein with all the

example proteins in the database.
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3. Hypothetical Protein PA1024: 2gjl

The third and final test case is 2gjl, the first ever crystal structure of 2-nitropropane

dioxygenase. This 3D structure is for the protein from Pseudomonas aeruginosa

complexed with the ligand flavin mononucleotide (FMN). It is a 328 residue protein

with 23% sequence identity with the nitropropane dioxygenase from N. crassa [47].

The authors of this structure did not find any significant structural similarity between

this protein and all other proteins in the PDB using DALI. The SCOP fold of this

protein is also uncharacterized.

Active Site Definition: Ha et.al. [47] identified that amino acids Gly22, Gln24,

Thr75, Lys124, Asp145, Ala150, Ser178, Gly180, Gly201, and Thr202 interact with

the ligand FMN in the active site (shown in Figure 30). The phosphate moiety of

FMN, buried completely inside the pocket, is not solvent-accessible, whereas the edge

of the isoalloxazine ring is partially accessible from the protein surface (shown in Fig-

ure 31). They also found that Gly180, Gly201, and Thr202 constituted the standard

phosphate binding motif also utilized by other members of the FMN-dependent oxi-

doreductases and phosphate-binding enzymes. Based on this information, the active

site was defined as a 10Å patch of the protein molecular surface centered at the center

of the above mentioned residues. The molecular surface was generated based on the

procedure outlined in Chapter II.

Analysis of a Test Active Site: 5Å patches centered at each of the 409 mesh

points within the active site were generated. Position-dependent stereochemical fea-

tures were determined for each 5Å patch and the dimensionality of these features was

reduced using the combined SVD+LDA technique described previously in Chapter II

and each mesh point was annotated with the 441 class labels from the database, each

associated with a probability score from the KDE described in Chapter II. Figures
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Fig. 30. The active site residues interacting with the ligand FMN as identified by [47]

Fig. 31. Molecular surface of 2gjl showing the deep cleft housing FMN
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32(a), 32(b) and 32(c) show the mesh points labeled as flavin, butyl-alcohol and phos-

phate respectively with high posterior probability (from KDE ). These figures showed

that while a few mesh points were incorrectly labeled, there exists a clear concentra-

tion of these peaks near the correct fragment. For e.g., in Figure 32(a) there are a

few mesh points closer to the butyl-alcohol and phosphate fragments but the majority

of mesh points labeled flavin are clustered near the placement of the flavin fragment.

These posterior probability values were combined with the geometric constraints

using the mrf formulation described in Chapter III and various possible combinations

of labellings across the active site were evaluated. The labeling combinations were

sampled based on simulated annealing techniques again described in Chapter III. The

labellings with the highest probability for each multi-fragment ligand in the database

were listed. Based on the multi-fragment ligand clusters determined above in section

I, the multi-fragment ligand clusters most represented within the top 100 labellings

from the results of the simulated annealing procedure were determined. No multi-

fragment ligands related to FMN were in the top 10 of these clusters. Table XV lists

the ranks of all the ligands in the clusters related to FMN and the corresponding

probabilities.

Table XV.: Results of mrf analysis for 2gjl

Ligand Ligand Rank Cluster Probability of

Name Count fragment combination from mrf

P

HO

O

OH

O
HO

OH

G3P 22 5 1.95e-05

P

OH

O

HO

O

OH

HO

O

E4P 23 5 1.94e-05
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Table XV – Continued

Ligand Ligand Rank Cluster Probability of

Name Count fragment combination from mrf

P

OH

O

HO

O
OH

O

13P 24 5 1.59e-05
HN

N N

N

H2N

O

O

OH AC2 25 5 1.45e-05

NH

N NH2

O

H
N
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OH
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OH
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OH

OH

OH

HO OH

O
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OH

CH3

CH3
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HO
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P
HO

OO

O

OH
HO

OH

OH
HO
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N

N N

H2N 6FA 47 4 1.17e-24

NH

N

N

N CH3

CH3

O

O

OH

OH
OH

O

PHO OH

O

FMN 67 1 1.74e-09

The results in the table show that there are multiple ligands (6) within the top

50 clusters which are completely contained within FMN. The first 6 ligands listed

in Table XV all contain butyl-alcohol and phosphate, 2 fragment classes in FMN.

Additionally, the ligand FMN is completely contained within ligand 6FA. While, the

correct ligand is not within the top 10 clusters, the correct ligand and similar multi-

fragment ligands are listed within the top 50 (out of 764 possible multi-fragment

ligands).

K. Effect of Protonation States

As mentioned in Chapter II, the protonation states were not considered in this study.

To study the effects of this choice, an experiment was conducted with one protein
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(a) The mesh points with high prob-
ability of being centers of the flavin
fragment highlighted in red

(b) The mesh points with high prob-
ability of being centers of the butyl-
alcohol fragment highlighted in red

(c) The mesh points with high prob-
ability of being centers of the phos-
phate fragment highlighted in red

Fig. 32. The distribution of the peaks for each of the fragment classes within ligand

FMN through the entire active site. Despite some spurious peaks the majority

of the peaks are clustered around the centers of FMN fragments
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(Dictyostelium discoideum myosin motor domain; 1VOM bound to ATP) that has

protonated histidines in the active site. One set of electrostatic features was calculated

without considering the protonation states and another set using the protonation

states identified by PROPKA. These two sets of features are then used in classification

as well as to find the multi-fragment ligand bound to the protein. The aim was to

ascertain if using the protonation states would have an effect on classification and if

so, identify the extent of the effect.

A biochemical study of 1VOM by Lawson et.al [71] identified histidines 12, 297,

408 and 550 as protonated residues. PROPKA also identified these residues as pro-

tonated and the pKa values of 7.09, 6.63, 7.21 and 6.43 respectively. Based on these

pKa values, these histidines were considered as positively charged and the charge

associated by AMBER with protonated histidines were used in the determination of

the electrostatic features.

Dimensionality reduction was performed on both sets of electrostatic feature vec-

tors using the previously described methodologies. The reduced dimension vectors

were then used to classify the three pockets associated with the fragments of the ligand

ADP (adenine, ribose and phosphate). Table XVI shows the differences in classifi-

cation accuracy using the protonated version of the feature versus the deprotonated

version for all three pockets.

Table XVI.: Differences in classification accuracy using pro-
tonated versus deprotonated versions of the electrostatic fea-
ture vector

True Probability using
Class Deprotonated Protonated

Electrostatic Features

Adenine 0.025 0.0003
Ribose 0.225 0.00005
Phosphate 0.125 0.001
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This comparison shows clearly that including the protonation states greatly

changes the active site chemsitry, a fact clearly borne out by the large difference

in the classification accuracies of the three ligand fragments. This decrease in classifi-

cation accuracy is directly due to the differences in the protonated and deprotonated

versions of the electrostatic features. In this particular case, the head-to-head com-

parison is unfair to the protonated version of the feature vector since all the other

examples of ADP binding sites in the database are deprotonated. This shows that

any future inclusions of protonation states need to be applied consistently to the

entire database.

L. Application to Drug Discovery

The study of structure-function relationship in proteins is primarily aimed at aiding

the development of successful drugs. Traditional drug development approaches are

based on high-throughput screens of large chemical compound libraries, but these

methodologies have not been as succesful as expected. Recent studies ([66], [131])

have shown that the leads returned by these screens were on average 4-5 heavy atoms

larger than the corresponding drugs showing that the compound libraries currently

being used for screens contain really large molecules. Starting with a large initial

scaffold also makes it harder to optimize the leads. Fragment-based drug screens

are an alternative paradigm in drug discovery aimed at the identification of small,

low molecular weight drug fragments that interact with the active site. Using the

fragment based-approach has the potential to keep the overall complexity of each

drug candidate low allowing for better lead-optimization techniques.

The fragment-based methodology developed in this dissertation for functional



128

analysis has many parallels to the fragment-screen approach. Both methodologies

use fragments to better capture the local interactions between the protein and lig-

and/chemical compound. Additionally, previous fragment screening approaches like

TETHERING [33] and GROMOL [14] have also used the steric fitness of fragments

to help grow the initial fragments to get the final drug in a manner very similar to

the steric constraint based MRF combination developed in this study. Therefore, it

is possible to extend our methodology to aid in the drug discovery process.

In order to extend our methodology we need to develop a database of interactions

between proteins and small molecule fragments similar to the current protein-ligand

fragment interaction database. The steric constraints between the small-molecule

fragments can be captured using a model very similar to the one we currently use

and the combination techniques using the MRF formulation will remain the same.

Unfortunately, given the vastness of chemical space, it is highly unlikely that the

structure of a protein bound to each one of the small molecules has been determined.

Considering that a typical small-compound library has thousands of compounds, it

would be very difficult to capture the diversity of these interactions using a small set

of protein-inhibitor complexes. On the other hand, it might be possible to cluster

the small molecule space into similar chemotypes and ensure that there is atleast one

example of each cluster in the database. The success of our methodology in modeling

the protein-ligand interactions increases the possibility of success for this approach

of drug design and development. This is certainly an approach that merits future

analysis and experimentation.
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M. Comparison to Previous Methods of Active Site Analysis

In this section, we will compare the feature-based classification methodologies de-

veloped in this study to the current available feature-based methods. This analysis

is difficult because not all the studies use the same datasets or evaluation methods.

Nonetheless, we will run our method against methods developed by Gutteridge et al

and Denessiouk et al, using the data described in their paper, and determine the ac-

curacy of classification by our definition, in order to assess their relative performance.

A previous study by Gutteridge et al [46] analyzed active sites using a feature-

based methodology. The authors used features based on residue identity and place-

ments to characterize active sites. The active site was characterized as a 12Å surface

patch around the coordinates of the ligand (the authors do not specify how the active

site would be characterized in the absence of the ligand). The specific features used

to characterize the active sites detailed in [113] were:

Residue hydrophobicity: A hydrophobicity scale [35] was used to determine the

hydrophobicity of each of the residues within the active site.

Residue solvent accessibility: NACCESS [56] was used to find the solvent acces-

sibility of each of the atoms within the protein. The solvent accessibility of the atoms

within a residue was summed to find the residue solvent accessibility.

Residue secondary structure: DSSP [59] is used to determine the secondary

structural elements present within the protein and the placement of residues within

each secondary structural element can be obtained.

Residue b-factor: The b-factor values associated with each of the atoms in the

residue are obtained from the pdb file and summed to find the b-factor value of the

entire residue. This value provides information regarding the flexibility observed for
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each of the residues and this information is especially useful for the residues within

the active site.

Residue identity: The similarity between residues is based on the BLOSUM ma-

trices.

A subset of our database consisting of 454 proteins bound to a diverse set of

ligands was chosen. The active site was defined as all the residues with any atom

within 12Å of any of the ligand atoms. Each of the features listed above was computed

for each of these active site residues and feature vectors were created for each of these

active site patches. Dimensionality reduction techniques were not applied to the

feature vectors since the feature vector size was already small. A nearest neighbor

algorithm was used to find the closest feature match for each of the active sites and

10-fold cross-validation was used in the analysis yielding a classification accuracy of

61.2%. As before, the proteins were additionally analyzed by removing all examples

from the same fold family (51% classification accuracy) as well as by removing all

examples with homologous sequences (45.8% classification accuracy). The significant

reduction in classification accuracy after removing homologous sequences confirms

that the features developed in this study rely predominantly on the residue identity

similarities between active sites that bind the same ligand.

On the same dataset, the position-dependent stereochemical features were able to

correctly identify the active sites binding similar ligands with a classification accuracy

of 82.3% and once again removing examples from the same fold family made more of a

difference to this analysis (79.3%) while removing homologous sequences did not make

as much of a difference (80.9%). This analysis shows that the position-dependent

stereochemical features are better at capturing active site patterns between diverse

proteins binding the same ligand as opposed to the residue identity features previously
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developed.

In a 2001 study of proteins of ancient origin bound to ATP, CoA, FAD, NAD

and NAP by Denessiouk et al ([28], [27]), the adenine binding site was characterized

by sequence motifs corresponding to polar interactions and hydrophobic interactions,

both of which were not specific to sequence or fold families. In their study, they

were unable to characterize all adenine binding sites using their motif. The motif

developed in this study was applied to a set of 500 adenine active sites and the motif

was only able to characterize 65% of them accurately. The localized stereochemical

features were also applied to the same set of adenine active sites and were able to

accurately classify the adenine active sites with greater success (> 90%) despite the

diversity in the protein fold and sequences between these example active sites.

Both the above examples show that the methodology of localized and position-

dependent stereochemical features developed in this study go beyond traditional se-

quence identity and feature description methodologies and are able to successfully

identify the similarities in active site stereochemistries despite the diversity observed

within active sites binding the same ligand.

Figure 33 shows the comparison of classification accuracies using the methodolo-

gies developed in this study, the feature-based methodology (Gutteridge et al).

N. Conclusions and Future Work

In this chapter, the results of the active site analysis methodologies developed in this

dissertation were presented. The approach presented in this study was based on a

feature-based description of active site interaction patterns between proteins and lig-

ands. The discussion in Section F showed that stepping away from the traditional

global features and utilizing more granular stereochemical features allows to capture
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the interaction patterns in greater detail and with greater fidelity, ultimately yield-

ing greater classification accuracy. The results of analyzing the localized versus the

position-dependent features showed that the position-dependent features performed

much better than the localized features (by correctly categorizing more fragment

classes and an increased accuracy of 8%).

The feature-based classifier was also robust when proteins belonging to the same

fold family as well as those with sequence homology (> 35%) were ignored. Ignoring

the members of the fold family had a greater effect on classification accuracy (5%)

as opposed to ignoring members with high sequence homology (1-2%). This result

confirms expert knowledge in this field regarding the importance of conserving 3D

structure over conserving sequence and further increases the belief in the accuracy of

the methodology used in this study.

When analyzing a test active site, it is necessary that the classification algorithm

be robust to slight errors in the definitions of the fragment pockets since very often the

test active site is defined approximately based on the position of known conserved

residues or possible interactions. The analysis in Section F showed that while the

feature difference increased as the distance between the actual fragment center and

the test pocket centroid increased, there was nevertheless a buffer of 1.5Å where the

feature difference was not as high to preclude the possibility of correctly classifying

the test pocket. This ensures that slight variations in active site definition will not

have an adverse effect on the results using the feature-based analysis presented in this

study.

Analyzing the test active site based on the fragment class probabilities obtained

from the KDE classifier confirmed that most often the individual fragments of the

multi-fragment ligand had the highest peaks through the active site proving that

the feature-based classifier was indeed capturing the interaction patterns through the
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active site between protein and ligand fragments.

Finally, the combination of the ligand fragments into a final ligand prediction

using mrf combination shows the power of using contextual information (in this

case in the form of geometric constraints on fragment placements within a ligand)

to combine the probability of observing individual fragments into probabilities of

different combinations of those individual fragments. In each of the test cases, the true

ligand was within the top 10 ligands as ranked by the final combination probability.
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Fig. 33. Comparison of classification accuracies using the methodologies developed in

this study, the feature-based methodology (Gutteridge et al)
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CHAPTER VI

SPECIFICITY NORMALIZATION FOR IDENTIFYING SELECTIVE

INHIBITORS IN VIRTUAL SCREENING

Virtual screens offer yet another avenue to functionally characterize an apo-protein

and they are being increasingly used to complement high throughput screening (HTS)

of large chemical libraries in the search for hits and leads for many newly-solved

protein 3D structures [19], [43], [38]. Unfortunately, the results of virtual screens are

often populated by many compounds that have no activity against the target receptor

but are ranked higher than known inhibitors. In this chapter, I will introduce a novel

ranking scheme, Rscore, intended to improve the enrichment and recall of known

inhibitors and thereby increase the probability of finding other novel inhibitors using

computational methods. Rscore minimizes the number of false positives by taking

into account the interaction patterns of known inhibitors across a variety of decoy

active sites. It then normalizes the DOCK score of a compound based on this pattern

using a linear programming formulation. Rscore was tested on two different target

receptors and showed an increase in recall of most of the known inhibitors by greater

than 20%. I will also present the results of experimental validation of Rscore on the

Malate Synthase (MS) receptor. Laboratory experiments based on Rscore ranking

led to the testing of 16 compounds (ranked within top 50 of 250,000 compounds); of

which 4 were identified as micromolar inhibitors for MS. I will also present an analysis

of the compounds that are consistently ranked at the top of multiple virtual screen

runs in order to identify and characterize virtually promiscuous compounds.
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A. Previous Approaches

Despite the successes of virtual screening approaches, many deficiencies still exist

with this methodology. The majority of docking algorithms are unable to handle

the flexibility in receptors due to induced fit (though some programs can account

for limited receptor flexibility [1], [103]). More importantly, the scoring functions

used in various docking algorithms can only approximate the protein-ligand/small-

molecule interaction energy due to the various approximations and trade-offs involved

in their formulations. Since these functions are key to ranking the docked ligand/small

molecule poses in large-scale virtual screening runs, very often, the final interaction

score for known inhibitors does not compare favorably to the scores of other drug-like

compounds that do not show any inhibition experimentally. The success of a virtual

screen is largely defined by how often the methodology yields novel heretofore unex-

plored chemical scaffolds for a given receptor [115]. Most docking algorithms do not

claim to rank these interesting chemotypes higher than uninteresting/non-specifically

interacting compounds. This definition of virtual screen success underscores the need

to better rank the results of a virtual screen. Accurate ranking is especially needed

when analyzing large screening libraries, since human analysis of each small-molecule

interaction with the receptor becomes less feasible.

Scoring functions estimate interaction energies in many different ways, ranging

from empirical force fields (with typical electrostatic and van der Waals terms) [78],

to statistical force fields (e.g. PMF [88]), and some try to account for the effects

of solvation and ligand conformation [15]. Stahl et. al [121] empirically compared

4 different scoring functions (FlexX, PLP, DrugScore and PMF ) across 7 different

receptor sites and found that each scoring function, because of its formulation as

well as the parameters used, performed better on certain classes of small-molecules
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(lipophilic, polar etc.). None of them was able to perform well on a large and diverse

database, thereby significantly reducing the usefulness of these scoring functions in

large-scale virtual screens. Consensus scoring schemes have often been suggested as a

way to combine individual soring functions [128]. Consensus score ranks compounds

by using multiple scoring functions and chooses the worst rank based on these multiple

scoring functions. Implementations of consensus scoring often drop one or two of the

worst scores in order to give compounds a fair chance (account for scoring function

biases). The consensus score seeks to select molecules that are consistently ranked

higher with each of the individual scoring functions. Unfortunately, this scoring

scheme is typically found to be only as successful as the best scoring function used

[22], [92], [121].

Stahl et. al [121] also defined ScreenScore as a linear combination of the 4 scoring

functions mentioned above and found that while it did not perform as well as the PLP

and FlexX scoring functions on 2 of their 7 receptor sites, they observed an improved

performance against the other sites. Since the new score was a linear combination of

the previous scores, it was able to evaluate a diverse range of compounds with higher

accuracy, thereby increasing the diversity within the virtual screen results.

Despite these incremental improvements in the scoring function formulations,

the ranking of known inhibitors in the results of a virtual screen often remains low

due to the presence of a large number of false positives (small molecules with large

negative interaction energies but no observable biochemical inhibition) in this list.

The different scoring functions defined till date have been focussed on evaluating the

interaction between a given receptor and a small-molecule. Typical scoring functions

do not take into account the specificity of interaction with the receptor, relative to

other receptors. It is quite possible that some compounds have high interaction

energies with multiple active sites due to the bias inherent in the scoring functions.
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For example, DOCK tends to consistently rank large and charged compounds much

higher than other compounds (data shown below). Since the aim of virtual screening

is to identify small molecules that have specific and significant interactions with the

receptor site, it is essential to include this specificity analysis when ranking the results

of a virtual screen. In large libraries with 106-107 compounds, if the known inhibitors

are not ranked within approximately the top 1%, there may be thousands of false

positives with apparently good docking scores that must be assayed before finding

those with true inhibitory activity.

In our recent work [97], we presented a novel approach that increased the recall

and enrichment rate of virtual screens by improving the ranking of known inhibitors

versus non-inhibitors. We defined a ranking function Rscore that takes into account

the specificity of the small-molecule’s interaction with the protein by calibrating the

Dock score to the target receptor against scores from docking to functionally different

active sites (decoy sites). We employed a linear programming formulation and deter-

mined a set of weights for the interaction of the molecule to the decoy sites in order

to optimize the Rscore value for known inhibitors versus those for non-inhibitors. In

our experiments, we used DOCK6.1 [86] as the docking algorithm and the DOCK

score (or Grid energy) as the initial scoring function. The small-molecules from the

ChemBridge drug-like library were used as the database in these experiments.

In this chapter, we extend this work and experimentally validate the Rscore rank-

ing on Mycobacterium tuberculosis malate synthase and show that Rscore is indeed

able to identify novel inhibitors as well as novel scaffolds of interaction between en-

zyme and small molecules. Our experiments on Rscore revealed some small molecules

that were consistently ranked at the top of multiple virtual screen runs. In this chap-

ter, we will identify and characterize these virtually promiscuous small molecules.
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B. Methods

In this section, we will present the mathematical basis of Rscore. Rscore seeks to

evaluate the specificity of interaction between a target receptor and small molecules

by comparing the DOCK score to the target receptor against the scores to the decoy

sites. The basic assumption behind the approach is that a good inhibitor should

have a large negative score against the target receptor and have lower magnitude

interaction energies against the decoy sites. Rscore re-ranks the results of a virtual

screen by incorporating more information about interactions with decoy sites so as to

increase the percentage of known inhibitors at the top of the ranked list.

Rscore takes into account three factors in its re-ranking scheme: (a) the relative

rank of a compound against the target receptor in comparison to its average rank

across the decoy sites; where rank is computed in ascending order of DOCK scores,

(b) the number of times DOCK fails (for example, when a compound does not fit

into the receptor site), and finally (c) the number of times a compound docks with a

positive score (due to insufficient conformational sampling). Each of the these three

conditions (ranks based on docking with a negative score, docking with a positive score

or not docking at all) reflects the “dockability” of the small-molecule in different ways,

and Rscore seeks to combine this information.

Let P1...Pn define the n decoy active sites and P0 define the target receptor

and r0..rn are the ranks based on docking scores to each of the receptors (as defined

above). Then Rscore can be written as

Rscore = w1δ + w2π + w3φ (6.1)

where δ is the difference between rank based on DOCK score to target receptor vs.

mean rank over decoys. δ is calculated based on µd the average rank over decoy sites
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δ = r0 − µd (6.2)

µd =
1

n

∑

rdi
(6.3)

π = number of receptors with positive scores (6.4)

and

φ = number of docking failures (6.5)

We seek weights w1, w2 and w3 so as to minimize the Rscore value for inhibitors as

compared to the Rscore value for non-inhibitors. The choice of the weights is crucial

to the correct ranking of known inhibitors and non-inhibitors. Non-inhibitors can be

sampled randomly from the small-molecule library, assuming most of the compounds

from the library do not have any inhibition activity. In this study, we use linear

programming to find a set of weights that maximizes the number of times the known

inhibitors are ranked higher than non-inhibitors.

1. Linear Programming Formulation

In the linear programming formulation, constraints are defined and the most stringent

constraints can be written as

Rscorei − Rscorej ≥ 0 ∀i ∈ non-inhibitors,

∀j ∈ inhibitors
(6.6)

where Rscorei and Rscorej are the values of Rscore (as defined by Equation 6.1) for a

non-inhibitor and an inhibitor respectively. Substituting Equation 6.1 into Equation

6.6 and rearranging the terms we get
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w1(δnon − δinh) + w2(πnon − πinh) + w3(φnon − φinh) ≥ 0 (6.7)

Multiple such constraints can be defined by repeatedly randomly choosing a

non-inhibitor and a known inhibitor, computing their values of δ, π and φ and finally,

formulating a constraint as in Equation 6.7. Since, there are likely to be some in-

hibitors and/or some non-inhibitors that do not meet the above defined constriants,

slack variables are introduced into each constraint and the weights w1, w2 and w3 are

chosen such that the sum of these slack variables is minimized (reducing the num-

ber of times a non-inhibitor is ranked higher than an inhibitor). This less stringent

constraint is written as

Rscorei − Rscorej + sk ≥ 0 (6.8)

where sk defines the slack variables introduced into each constraint and k runs over

the number of constraints created. The linear program formulation is written as

Minimize : ΣC
k=1sk (6.9)

s.t. w1 + w2 + w3 = 1 (6.10)

s.t. Rscorei −Rscorej + sk ≥ 0 k = 1 : C (6.11)

where C is the total number of constraints.

2. Enzyme Assay for Malate Synthase

A coupled assay that monitored the release of CoA from the MS-mediated reaction

was utilized for MS inhibition. The assay was carried out using 100 µL overall reaction

volumes with MS at 92.5 nM being reacted in 20 mM Tris pH 7.5 and 5 mM MgCl2. All

inhibitors (in 100% DMSO) were added such that the final reaction mixture contained
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1% DMSO; 1 µL of stock inhibitor added to the reaction mixture. Inhibitors were

incubated with MS in tris buffer with MgCl2 for 10 min at room temperature before

adding 0.625 mM acetyl CoA, the first reaction was initiated by the addition of 1.25

mM of glyoxylalate, the second substrate.

The coupled assay measures the increase in absorbance at 412 nm due to the

formation of 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB)-CoA adduct. DTNB is in-

jected with glyoxylate at the reaction starting point. A BMG LABTECH POLARstar

OPTIMA plate reader in absorbance mode was used to continuously monitor the re-

action for 2 min per well of a Corning 96-well plastic plate. Reaction with a 1%

DMSO solution instead of inhibitor was taken as the uninhibited control. The per-

cent inhibition was calculated by comparing the slope/min values (representing the

enzyme velocity) of an inhibitor trial to the uninhibited control.

C. Results

The performance of Rscore was tested on three different enzymes: COX-2, dihy-

drofolate reductase (DHFR) and Mycobacterium tuberculosis (Mtb) malate synthase.

Ideally, the decoy sites should be chosen such that they have low sequence homol-

ogy and structural similarity with the receptor as well as among themselves so as to

capture a diverse set of receptor environments. The 9 decoy active sites used in this

study are Mtb alanine racemase, 1XFC (Alr [72]), Mtb type II dehydroquinase, 1H0R

(AroD [109]), diaminopelargonic acid synthase, 3BV0 (BioA [30]), Mtb 1-Deoxy-D-

xylulose 5-phosphate reductoisomerase, 2JCZ (DXR [49]), Mtb long fatty acid chain

enoyl-ACP reductase, 1ZID (InhA [110]), Mtb malate synthase, 1N8W (MS [117]),

Mtb pantothenate synthetase, 2A7X (PanC [129]), Plasmodium falciparum enoyl-acyl-

carrier-protein reductase, 1NHG (PfENR [100]) and Mtb phosphoglycerate dehydro-
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genase, 1YGY (PGDH [31]). Each of these active sites was defined based on the

coordinates of the bound ligands as well as published active site definitions. The

receptors were all prepared by adding hydrogens and applying AMBER charges [25]

using Sybyl [124].

The 250,000 drug-like small molecules from the ChemBridge library (http://

www.chembridge.com) were docked into each of these active sites using Dock6.1.

These small molecules were prepared using Openeye software [94] by adding hydrogens

and applying Gasteiger charges. It is assumed that none of these small-molecules

show any inhibition against the target receptors and therefore these molecules are

used as examples of non-inhibitors (negative examples of inhibitors) in future linear

programming formulations.

In each of these experiments, 100 constraints were created by randomly picking

a non-inhibitor and an inhibitor and adding a constraint as defined in Equation 6.8.

The known inhibitors were used in training (to optimize the weights using the lin-

ear programming formulation) and also used in testing (to evaluate whether the use

of Rscore improves the ranking of known inhibitors). Therefore, care was taken to

ensure separation between training and test cases by using a leave-one out method.

N-1 known inhibitors are used for creating the constraints and determining the op-

timal weights and the remaining inhibitor is used as test case. For each set of 100

constraints, the values for w1, w2 and w3 were obtained using GLPSOL available as

part of the GNU Linear Programming Kit (http://www.gnu.org/software/glpk).

This was repeated 300 times and the final set of weights was defined as the average

of the weights obtained in each linear programming iteration.

The following subsections list a detailed analysis of the results of Rscore rankings

for each of the three enzymes.
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1. Rscore for COX-2

The COX-2 active site has been extensively studied and various NSAIDs (non-steroidal

anti-inflammatory drugs) have been designed to interact with this receptor site [23],

[62], [68], [87], [95], [98], [106], [107], [125]. We chose the specific 3D coordinates from

6COX (complexed with SC558) [68] to define the receptor site of interest. While

multiple crystal structures exist for COX-II, only small differences in the active site

conformations may be noted between them and therefore most of the inhibitors should

dock to the chosen crystal structure (the conformations of Arg120 and Leu384 are

the most varied, but these changes do not affect most inhibitors [34]).

Seventeen of the known inhibitors (arachidonic acid, Celebrex, Diclofenac, Etodolac,

Etoricoxib, Flurbiprofen, Ibuprofen, Indomethacin, Ketoprofen, Lumaricoxib, Meloxi-

cam, Naproxen, Piroxicam, Resveratrol, SC558, Valdecoxib and Vioxx) are listed in

Figure 34. These known inhibitors form the set of positive examples used in this

study.

Fourteen of the 17 known inhibitors docked succesfully with negative DOCK

score to the 6COX receptor site. Two of the known inhibitors (Valdecoxib and Vioxx)

docked with positive scores and Indomethacin did not dock at all. The inhibitor

(substrate) arachidonate had the highest (most negative) DOCK score (-60.69) and

the inhibitor Etoricoxib has the lowest DOCK score (-22.77). Table XVII lists the

DOCK score of the 17 known inhibitors against the 9 decoy active sites as well as the

COX-2 site. This table shows that SC558 and Celebrex dock with a positive score

in a majority of the decoy active sites (6/9 and 7/9 respectively) and do not dock

against the remaining decoy sites. All the other inhibitors dock with a negative score

(albeit lower DOCK score) with majority of the decoy sites. The weights obtained

using the linear programming formulation for COX-2 inhibitors were w1 = 0.98, w2
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= 0.0 and w3 = 0.02.

Table XVII.: DOCK scores of known COX-II inhibitors across various recep-
tors

Active Site
Inhibitor ALR AroD BioA DXR InhA MS PanC PfENR PGDH COX-2
Arachidonate 599 -51.49 -64.98 -68.69 -38.42 -63.43 -57.95 -46.65 -60.69
Celebrex 2868 128 3851 10249 91.66 18.75 11068 -44.08
Diclofenac 720 -41.3 126 -35.74 -37.28 -41.10 10.79 -34.55
Etodolac 606 -21.92 2.69 -25.36 -37.46 -43.46 -42.30 -34.80
Etoricoxib 232 -31.68 238 -23.28 -32.39 3.73 61.17 -22.77
Flurbiprofen 87 -40.92 -34.46 -41.84 -19.13 -30.40 -40.79 -42.15 -11.78 -34.80
Ibuprofen -43.9 -44.17 -41.66 6.67 -33.34 -41.07 -39.83 -15.35 -39.31
Indomethacin 1090 56.46 144 -40.68 -22.17 -35.26 -29.81 -53.53 2209
Ketoprofen 19 -34.96 -40.3 -34.92 -26.27 -38.01 -41.03 -43.71 -13.01 -34.31
Lumaricoxib 197 -30.15 130 -20.69 -31.33 -36.63 1150 -20.36
Meloxicam 41 -20.77 -41.38 16.75 -38.41 -43.05 -7.63 -35.47
Naproxen 41 -39.17 -38.8 -42.34 -21.29 -32.88 -43.90 -39.84 -17.50 -43.72
Piroxicam 662 -29.92 -41.26 4.11 -38.43 -40.60 -39.75 19.40 -32.21
Resveratrol -10.49 -32.15 -36.01 -46.40 -40.69 -34.52 -36.76 -20.61 -35.40
SC558 4468 100 3583 3662 61.34 249 -38.26
Valdecoxib 872 -22.31 -19.94 92.99 -30.49 34.95 8.05 -41.45 11.26 439
Vioxx 672 -16.03 -37.76 57.17 -43.54 -22.03 -33.60 -42.21 4637 71.92

The values of δ for each known inhibitor against the 9 decoy sites, the number of

sites that have positive DOCK scores and the number of sites that the inhibitor fails

to dock against are listed in Table XVIII. The value of Rscore is listed for each known

inhibitor. The table lists the ranking of the inhibitor according to the original DOCK

score and the ranking according to Rscore. It also lists the consensus score computed

by finding the second worst rank based on DOCK score and CScore (Sybyl implemen-

tation that computes DSCORE, PMFSCORE, GSCORE and CHEMSCORE ). This

table shows that the ranking of most of the known inhibitors using Rscore greatly

increases the enrichment rate; 7/14 rank within the top 10% and all 14 within the

top 15%. Several increase in ranks by greater that 20%; e.g. Lumaricoxib increases

in rank from 45% (DOCK ) to the top 13% (Rscore). Rscore performs much better

than the ranking using consensus score. Figure 35 compares the enrichment curves

based on DOCK score, consensus score and Rscore.
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Table XVIII.: Rscore calculation and its comparison to DOCK score. Ranks
(shown in parantheses) are given as a percentage relative to the ChemBridge
library containing 250,000 compounds. µ is the mean average rank over the
decoy sites, δ is the difference between the rank against the target receptor
and µ, π is the number of receptors with positive scores and φ is the number
of decoy receptors with docking failures

DOCK µ δ π φ Rscore DOCK Consensus Rscore

Inhibitor Score Rank Score Rank Rank
Arachidonate -60.69 0.18 -0.18 1 1 -0.15 95 (0%) 34197 (14%) 33605 (13%)
Celebrex -44.08 0.83 -0.76 7 2 -0.71 13553 (1%) 96617 (37%) 3 (0%)
Diclofenac -34.55 0.57 -0.30 3 2 -0.25 61191 (24%) 111463 (45%) 13808 (6%)
Etodolac -34.8 0.56 -0.29 2 2 -0.25 59900 (24%) 52461 (21%) 14792 (6%)
Etoricoxib -22.77 0.70 -0.21 4 2 -0.16 108064 (43%) 6907 (3%) 31761 (13%)
Flurbiprofen -34.8 0.45 -0.18 1 0 -0.17 59913 (24%) 117320 (47%) 30160 (12%)
Ibuprofen -39.31 0.40 -0.25 2 0 -0.24 34550 (14%) 146086 (58%) 14923 (6%)
Ketoprofen -34.31 0.42 -0.14 1 0 -0.14 62412 (25%) 119320 (48%) 36576 (15%)
Lumaricoxib -20.36 0.73 -0.20 3 2 -0.16 113706 (45%) 76150 (30%) 33080 (13%)
Meloxicam -35.47 0.52 -0.27 2 2 -0.22 56291 (23%) 96400 (39%) 19206 (8%)
Naproxen -43.72 0.42 -0.35 1 0 -0.34 14738 (6%) 138633 (55%) 4298 (2%)
Piroxicam -32.21 0.54 -0.19 3 1 -0.18 73815 (30%) 33269 (13%) 28731 (11%)
Resveratrol -35.4 0.42 -0.17 0 1 -0.14 56672 (23%) 138543 (55%) 36765 (15%)
SC558 -38.26 0.75 -0.57 6 2 -0.51 40394 (16%) 6558 (3%) 215 (0%)

2. Rscore for DHFR

The Rscore analysis was repeated with E. coli dihydrofolate reductase (DHFR) [134].

In our study, we used 9 known inhibitors with nanomolar IC50’s for DHFR. The re-

ceptor site was based on the crystal structure of 1RX3, complexed with methotrexate

and NADP (the latter was included in the receptor definition used for docking). Only

7 of the 9 chosen inhibitors docked to the 1RX3 active site. These 7 inhibitors are

shown in Figure 36.

The weights obtained for these 7 DHFR inhibitors using the linear programming

formulation were w1 = 0.8, w2 = -0.15 and w3 = 0.35. Table XIX shows the DOCK

scores of these 7 inhibitors against the 9 decoy sites and the target receptor. All the 7

inhibitors bind with a positive score to the ALR receptor and inhibitor 446245 binds

to the fewest number of decoy sites with a negative score (2/9). Inhibitor 22302034

binds to most of the receptor sites with larger than average DOCK scores, but the

largest of these is with the InhA receptor (-205.69).
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Fig. 34. Known COX-2 inhibitors used in this study
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Fig. 36. Known DHFR inhibitors used in this study
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Table XIX.: DOCK scores of known DHFR inhibitors across various receptors

Active Site
Inhibitor ALR AroD BioA DXR InhA MS PanC PfENR PGDH DHFR
10012485 13.93 -14.90 -29.30 -24.32 -27.02 -31.36 -27.30 -26.63 -11.58 -27.34
22302034 144.29 2.91 -70.30 -72.16 -205.69 -74.66 -52.04 -37.95 -62.19
2796981 463.88 -9.74 -28.89 -20.27 -27.41 -24.51 -28.92 -28.91 -9.78 -22.61
4047882 281.34 -28.43 -44.74 -41.92 -50.42 -46.34 -42.3 -20.50 -36.41
446245 37884 1048 897.4 -34.77 38.48 48.68 -32.03 109.6 -34.74
446998 51.55 18.71 -45.94 -49.67 -110.01 -55.86 -44.81 -43.1 -27.6 -42.98
462591 148347 -28.7 1137 -43.54 -16.06 140849 -30.54 135801 -36.33

Table XX shows the IC50 values for the 7 inhibitors and the values of δ, π, φ.

The rankings using the DOCK score, Rscore and consensus score are also tabulated

in Table XX. While DOCK ranks only one of the known inhibitors near the top, and

all the others around 100,000, Rscore ranks all the known inhibitors at approximately

10,000 or below (out of 250,000), and 3 within the top 100. The enrichment curve is

shown in Figure 37.

Table XX.: Comparison of Rscore to DOCK score and consensus score for
DHFR in virtual screen against ChemBridge library consisting of 250,000 com-
pounds

Inhibitor µ δ π φ Rscore DOCK Consensus Rscore

(Pubchem IC50 Rank Score Rank Rank
CID) (nM)
10012485 1.1 × 104 0.78 0.162 1 3 1.15 133319 (53%) 180669 (72%) 34464 (14%)
22302034 109 0.24 -0.243 2 4 1.11 5 (0%) 35994 (14%) 29012 (12%)
2796981 790 0.86 0.112 1 3 1.12 136967 (55%) 184852 (74%) 29473 (12%)
4047882 660 0.58 0.05 1 4 1.46 89770 (36%) 126946 (51%) 69511 (28%)
446245 310 0.93 -0.196 4 4 0.89 103648 (41%) 17843 (7%) 9607 (4%)
446998 18 0.41 -0.227 2 3 0.74 25583 (10%) 106949 (43%) 3381 (1%)
462591 400 0.98 -0.337 4 4 0.79 90493 (36%) 49973 (20%) 4734 (2%)

3. Rscore Results for Malate Synthase and Experimental Validation

Rscore ranking was applied to the results of virtual screen runs for malate synthase

(MS) from M. tuberculosis. An unpublished crystal structure of MS complexed with a

novel inhibitor (referred to as Compound A in this chapter) solved in our lab was used
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Fig. 37. The enrichment curves for DHFR based on the three different scores explored

in this study. This graph shows that Rscore significantly increases the enrich-

ment in comparison to both DOCK score as well as the consensus score from

Sybyl
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as the receptor for docking. This strucure showed conformational changes compared

to the known MS structure 2GQ3 complexed with CoA and malate[2].

The list of known inhibitors for MS included oxalate and parabanic acid (iden-

tified by Smith et.al. [117]) and three other inhibitors (henceforth referred to as

Compounds A, B and C) that were identified by our collaborators. The weights

obtained for these 5 MS inhibitors using the linear programming formulation were w1

= 0.978, w2 = 0.02 and w3 = 0.002. Table XXI shows the dock scores of these known

inhibitors against all the decoy sites and against the structure of MS complexed to

Compound A. In this study COX-2 was used to replace MS as one of our decoy ac-

tive sites. Oxalate binds to all the decoy sites with a negative score (small charged

compound) whereas Compound B binds with a negative score to fewer decoy sites

(3/9). Compound B is a larger molecule and this difference in size accounts for the

fewer number of interactions with the decoy sites. Compound A which is close analog

of Compound B also binds to fewer decoy sites.

Table XXI.: DOCK scores of known MS inhibitors across various receptors

Active Site
Inhibitor ALR AroD BioA COX-2 DXR InhA PanC PfENR PGDH MS
oxalate -36.39 -37.75 -26.61 -32.76 -31.13 9.38 -24.4 -27.79 -18.14 -50.01
parabanic acid -22.93 -21.37 -23.14 -20.44 -21.7 -23.38 -22.84 -20.32 -20.11 -27.31
Compound A -33.24 -50.35 -4.24 -74.53 -48.34 -45.17
Compound B 111 100 -34.05 -16.14 -46.47 186 -22.19
Compound C -31.01 -40.67 -39.32 -42.45 -43.98 -16.42 -33.86 -38.03 -19.27 -64.67

Table XXII shows the ranking of these known inhibitors using the three different

scoring schemes. Most of the inhibitors show an increase in ranking based on Rscore

as compared to the ranking based on DOCK score by greater than 20%. The most

dramatic increases are for parabanic acid and Compound B (37%).
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Table XXII.: Comparison of Rscore to DOCK Score and consensus score for
MS in virtual screen against ChemBridge library consisting of 250,000 com-
pounds

DOCK µ δ π φ Rscore DOCK Consensus Rscore

Inhibitor Score Rank Score Rank Rank
oxalate -50.01 0.53 -0.48 1 0 -0.45 37484 (15%) 135523 (54%) 32 (0%)
parabanic acid -27.31 0.6 -0.19 0 0 -0.193 102811 (41%) 135519 (54%) 9651 (4%)
Compound A -45.17 0.33 -0.22 0 4 -0.21 57547 (23%) 13045 (5%) 11114 (4%)
Compound B -22.19 0.67 -0.23 3 3 -0.16 108181 (43%) 13025 (5%) 15002 (6%)
Compound C -64.67 0.44 -0.44 0 0 -0.43 2460 (1%) 132720 (53%) 55 (0%)

The top 50 compounds as ranked by Rscore were manually analyzed and novel

scaffolds were found. 16 compounds from the top 50 docked to the active site making

interactions that have been observed crystallographically with known malate synthase

ligands. At the same time, new interactions in the docked conformations of these top

50 compounds were suggested, providing novel ideas for inhibitor design. Using the

assay described above, 4 out of these 16 compounds showed inhibition in the 100µM

range and the inhibition values are listed in Table XXIII. These 4 compounds are

shown in Figure 38. The Tanimoto similarity of these 4 compounds was computed

against the five known inhibitors used in this study and these values were no greater

than 0.3 between any of these compounds. This shows that in addition to finding new

inhibitors, we have also found novel scaffolds of interaction (a primary motivation for

virtual screening).

Table XXIII.: % Inhibition for novel inhibitors identified by
Rscore ranking

Inhibitor % Inhibition at 100µM

Compound 1 67%
Compound 2 41%
Compound 3 40%
Compound 4 24%

The hit rate of 4/16 is highly encoraging for a virtual screen run and efforts are
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Fig. 38. The four inhibitors identified by Rscore for malate synthase. These four

compounds have novel chemical scaffolds when compared to the previously

known inhibitors

ongoing to purchase and test other compounds ranked highly by Rscore. The virtual

screen results against the 2GQ3 (a relatively smaller and closed form) active site have

also been reranked using Rscore and compounds from this set are also being tested

in the laboratory for inhibition activity.

4. Promiscuous Virtual Screen Compounds from a Study of ChemBridge Library

Promiscuous small molecules in an HTS experiment are compounds that show high

inhibition activity with a large number of diverse receptor sites [108] (these are dis-

tinct from aggregrators [36]). A similar definition can be developed for promiscuous

virtual screen compounds based on their docking scores against various receptors. If a

compound is consistently ranked at the top of multiple virtual screen runs (large neg-

ative DOCK score against many receptors), then it can be assumed that it is making

non-specific interactions with the receptors and the high scores reflect the bias of the

scoring function. The DOCK score takes into account the electrostatic interactions
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and the van der Waals interations of the compound with the receptor. Therefore,

the expectation is for large and charged compounds to be consistently ranked higher

than other compounds in the library. In order to test this assumption, the docking

scores of the compounds in the ChemBridge library across 10 diverse receptors were

analyzed.

The compounds were sorted based on average rank, corrected for the number

of decoy sites. Since some compounds only docked successfully to a few (less than

5) receptors, it is not as difficult to achieve a better (low) average relative rank by

chance. In order to correct for this, we define a p-value that reflects the likelihood of

getting a given average rank or better, compared to picking randomly from the same

number of uniform distributions. The probability density that the average relative

rank is r for k distributions is given by

P (x1 + ... + xk = r) ∝ 1

2(n− 1)!

k
∑

i=0

(−1)i

(

k

i

)

(r − i)k−1sgn(r − i) (6.12)

The cumulative probability P (x1 + .. + xk > r) of a given average rank of r

or better was estimated by Monte Carlo sampling. The compounds were sorted by

p-value and 100 compounds that docked to a maximum number of decoy sites were

chosen for further analysis. Most (> 90%) of the compounds docked to 6 or more

sites with an average rank from 0 to 10%.

Figure 39 shows the superposition of the distributions of molecular weight for

the top 100 virtually promiscuous compounds identified in our study with p-value <

5 ×10−5 and those of all the compounds in the ChemBridge library. This figure shows

that approximately 85% of these compounds have a molecular weight between 245 to

350. 25% of the ChemBridge database has compounds with greater molecular weights

than the selected promiscuous compounds. Therefore, we analyzed the number of
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Fig. 39. The majority of the top 100 virtually promiscuous compounds have a molec-

ular weight greater than 275

rotatable bonds in these top 100 molecules and the ChemBridge database and these

are plotted in Figure 40. This figure shows that 90% of the top 100 molecules had 6

or greater rotatable bonds while approximately 50% of the ChemBridge database has

fewer than 6 rotatable bonds. The virtually promiscuous compounds seem to show

a tendency towards larger rotatable bonds. This high flexibility in these compounds

make it more likely that some conformation of the molecules would be able to make

non-specific interactions with multiple active sites.

Figure 41 shows the superimposition of the distributions of net charge across

top 100 virtually promiscuous compounds and those of all the compounds in the

ChemBridge library. This figure shows that 70% of the promiscuous molecules were

neutrally charged contrary to expectations. A deeper study of these compounds

shows that while the overall charge for these compounds is zero, they have positively

charged as well as negatively charged components (zwitterionic compounds). This

observation led us to analyze the polar desolvation energy (obtained from the ZINC

database) of these top 100 compounds and this is plotted in Figure 42. This figure

shows that the polar desolvation penalty for 40% of the promiscuous compounds
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Fig. 40. The majority of the top 100 virtually promiscuous compounds have greater

than 7 rotatable bonds

is lower than -30 and in this range there are fewer compounds from the rest of the

ChemBridge library. The compounds with higher desolvation penalties (lower than

-30) are those that have greater localized charge since localized charges lead to less

favorable desolvation energies as compared to ligands with delocalized charges. [18].

Figure 43 shows a subset of these top 100 compounds.

This analysis of virtually promiscuous compounds refines our earlier assumptions

of the bias of DOCK scores to large and charged compounds. Our results show that

the molecular weight of the compound is not as relevant as the flexibility of the

compound (as dictated by the number of non-rotatable bonds). Also, looking at the

overall charge of a molecule might be deceptive and some of the neutral molecules

in the library do in fact have charge cancellation. The presence of localized charges

might be more accurately captured by the polar desolvation energy term.



157

Fig. 41. 70% of the top 100 virtually promiscuous compounds are either positively or

negatively charged. The overall charge for the remaining compounds is zero

but they contain both positively and negatively charged components.

Fig. 42. The distribution of polar desolvation energy for the ChemBridge database

and the top 100 virtually promiscuous compounds
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Fig. 43. This figure shows some of the promiscuous virtual screen compounds identified

by our analysis of the ChemBridge library across 10 diverse receptor sites
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D. Discussion

Rscore helps remove biases in the scoring function (e.g. preference toward large

and charged compounds) and thereby promotes diversity within the top ranked com-

pounds. Additionally, despite its use of known inhibitors in its analysis, it does not

necessarily bias the results towards the scaffold of known inhibitors. It only seeks to

mimic the interaction profile of the known inhibitors across the decoy sites (i.e. those

that interact favorably to the target receptor and unfavorably to the decoy sites).

Therefore it retains the diversity of selections from the database.

In this study, we have assumed all of the compounds in the library are non-

inhibitors. Examining the chemical similarity between the known inhibitors and the

compounds in the small-molecule library could be used to identify compounds with

similar chemical profiles and these compounds can then be additionally considered as

positive examples in the linear programming formulation. Since the formulation of

Rscore depends on known inhibitors, any increase in the number of known inhibitors

used in training will improve the reliability of the weights obtained thereby increasing

the reliability of Rscore.

Essential to the definition of Rscore is the docking of small-molecules to the

decoy active sites. While the process of docking 250,000 compounds to decoy active

sites is time-consuming, these jobs have to be run only once and the results can be

used for normalizing subsequent virtual screen runs. The number of decoy sites is

variable and a larger number of sites can only increase the accuracy of the approach.

The computation of weights using linear programming is very simple and fast.
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E. Conclusions

In this chapter, we have experimentally validated a novel quantitative approach to

increase the recall and enrichment in a virtual screen. This methodology increases the

rank of some of the known inhibitors by almost 20%. This improvement in ranking

additionally translates to a high hit ratio (ability to identify inhibitors) for virtual

screens, making it a simple, yet powerful tool to re-rank the results of a virtual screen

without having to modify the scoring function.

The definition of virtually promiscuous small molecules provides a detailed anal-

ysis of the bias of DOCK (or other scoring functions using a similar analysis). It

also offers a way to reduce the computational burden on large virtual screens by

pre-identifying these compounds in databases and removing them.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this dissertation, a novel approach to active site analysis was developed. To our

knowledge, this study is the most comprehensive study of protein-ligand interactions

to date. No previous methodology has been tested on as many diverse proteins bound

to diverse ligands. The approach in this dissertation uses a fragment-based analysis

to account for the flexibility observed in protein-ligand interactions and a granular

feature-based representation of the active site. This two-stage process addresses two

significant issues with traditional methods of functional annotation.

The feature-based analysis presented in this study stepped away from the tra-

ditional sequence homology, fold family analyses and global features for active site

descriptions. It utilized more granular stereochemical features to capture the in-

teraction patterns within the active site in greater detail and with greater fidelity,

ultimately yielding greater classification accuracy. The position-dependent features

performed much better than the localized features by correctly categorizing more

fragment classes and an accuracy of 84%. Additionally, the feature-based analysis,

most often, successfully identified the individual fragments within each ligand thereby

increasing the probability of identifying the entire ligand. The mrf analysis provided

a strong mathematical foundation for the ligand fragment combination by considering

both the fragment classifications and the statistical model describing the distance re-

lationships between ligand fragments. This procedure was able to succesfully identify

the true ligand within the top 10 results in almost all test cases. The overall pro-

cedure was tested on 3 proteins with very low sequence and structural similarity to

other proteins in the PDB (a challenge for traditional methods) and in each of these

cases, the approach presented in this dissertation, successfully identified the cognate
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ligand.

1. Future Work

The high accuracy of this fragment-based analysis is encouraging and several avenues

exist to increase the relevance and efficiency of this approach. The database used in

this study was based on the current information available regarding protein-ligand

complexes. The sparsity of this information restricted the size of our database to

fewer variety of ligands and also fewer number of examples for some ligands. Efforts

to automate literature surveys in order to identify other protein-ligand interactions

within the active site and making this data publicly available will greatly benefit

future active site analysis efforts.

The current geometric and electrostatic sector features have proven to be pow-

erful in distinguishing between 441 different fragment classes, but as the size of the

database increases, these features might need to be refined. In the present electro-

static analysis, the effects of metal ions to active site chemistry is taken into account.

However, the effect of other cofactors within the active site is not considered. Very of-

ten, the binding of ligands in the active site is coordinated and very dependent on the

other cofactors and including a chemical analysis of these cofactors will increase the

accuracy of the electrostatic analysis. Similarly, information regarding the protona-

tion states of various protein residues could also be incorporated into the electrostatic

analysis. This information is often speculative/unavailable. The methodology devel-

oped in this dissertation makes it very easy to incorporate these new features. The

most computationally intensive task is to define the active site surfaces and additional

feature calculations are not as intensive.

Another highly debated issue in active site analysis is the consideration of water

atoms in/near the active site. Very often, ligands co-ordinate water molecules in order
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to make highly specific electrostatic interactions. In this study, these molecules were

excluded since the identification of essential waters is often difficult and once again

this information is not easily available.

Each of these avenues holds the potential to make this algorithm more powerful

and relevant for the analysis of diverse active sites and are currently being pursued.
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