10 research outputs found

    Pilot Decontamination Through Pilot Sequence Hopping in Massive MIMO Systems

    Get PDF
    This work concerns wireless cellular networks applying massive multiple-input multiple-output (MIMO) technology. In such a system, the base station in a given cell is equipped with a very large number (hundreds or even thousands) of antennas and serves multiple users. Estimation of the channel from the base station to each user is performed at the base station using an uplink pilot sequence. Such a channel estimation procedure suffers from pilot contamination. Orthogonal pilot sequences are used in a given cell but, due to the shortage of orthogonal sequences, the same pilot sequences must be reused in neighboring cells, causing pilot contamination. The solution presented in this paper suppresses pilot contamination, without the need for coordination among cells. Pilot sequence hopping is performed at each transmission slot, which provides a randomization of the pilot contamination. Using a modified Kalman filter, it is shown that such randomized contamination can be significantly suppressed. Comparisons with conventional estimation methods show that the mean squared error can be lowered as much as an order of magnitude at low mobility

    Robust Pilot Decontamination Based on Joint Angle and Power Domain Discrimination

    Full text link
    We address the problem of noise and interference corrupted channel estimation in massive MIMO systems. Interference, which originates from pilot reuse (or contamination), can in principle be discriminated on the basis of the distributions of path angles and amplitudes. In this paper we propose novel robust channel estimation algorithms exploiting path diversity in both angle and power domains, relying on a suitable combination of the spatial filtering and amplitude based projection. The proposed approaches are able to cope with a wide range of system and topology scenarios, including those where, unlike in previous works, interference channel may overlap with desired channels in terms of multipath angles of arrival or exceed them in terms of received power. In particular we establish analytically the conditions under which the proposed channel estimator is fully decontaminated. Simulation results confirm the overall system gains when using the new methods.Comment: 14 pages, 5 figures, accepted for publication in IEEE Transactions on Signal Processin

    Soft Pilot Reuse and Multi-Cell Block Diagonalization Precoding for Massive MIMO Systems

    Full text link
    The users at cell edge of a massive multiple-input multiple-output (MIMO) system suffer from severe pilot contamination, which leads to poor quality of service (QoS). In order to enhance the QoS for these edge users, soft pilot reuse (SPR) combined with multi-cell block diagonalization (MBD) precoding are proposed. Specifically, the users are divided into two groups according to their large-scale fading coefficients, referred to as the center users, who only suffer from modest pilot contamination and the edge users, who suffer from severe pilot contamination. Based on this distinction, the SPR scheme is proposed for improving the QoS for the edge users, whereby a cell-center pilot group is reused for all cell-center users in all cells, while a cell-edge pilot group is applied for the edge users in the adjacent cells. By extending the classical block diagonalization precoding to a multi-cell scenario, the MBD precoding scheme projects the downlink transmit signal onto the null space of the subspace spanned by the inter-cell channels of the edge users in adjacent cells. Thus, the inter-cell interference contaminating the edge users' signals in the adjacent cells can be efficiently mitigated and hence the QoS of these edge users can be further enhanced. Our theoretical analysis and simulation results demonstrate that both the uplink and downlink rates of the edge users are significantly improved, albeit at the cost of the slightly decreased rate of center users.Comment: 13 pages, 12 figures, accepted for publication in IEEE Transactions on Vehicular Technology, 201

    Uncoordinated pilot decontamination in massive MIMO systems

    Get PDF
    Abstract This work concerns wireless cellular networks applying time division duplexing (TDD) massive multiple-input multiple-output (MIMO) technology. Such systems suffer from pilot contamination during channel estimation, due to the shortage of orthogonal pilot sequences. This paper presents a solution based on pilot sequence hopping, which provides a randomization of the pilot contamination. It is shown that such randomized contamination can be significantly suppressed through appropriate filtering. The resulting channel estimation scheme requires no inter-cell coordination, which is a strong advantage for practical implementations. Comparisons with conventional estimation methods show that the MSE can be lowered as much as an order of magnitude at low mobility. Achievable uplink and downlink rates are increased by 42 and 46%, respectively, in a system with 128 antennas at the base station

    Channel Estimation and Symbol Detection In Massive MIMO Systems Using Expectation Propagation

    Get PDF
    The advantages envisioned from using large antenna arrays have made massive multiple- input multiple-output systems (also known as massive MIMO) a promising technology for future wireless standards. Despite the advantages that massive MIMO systems provide, increasing the number of antennas introduces new technical challenges that need to be resolved. In particular, symbol detection is one of the key challenges in massive MIMO. Obtaining accurate channel state information (CSI) for the extremely large number of chan- nels involved is a difficult task and consumes significant resources. Therefore for Massive MIMO systems coherent detectors must be able to cope with highly imperfect CSI. More importantly, non-coherent schemes which do not rely on CSI for symbol detection become very attractive. Expectation propagation (EP) has been recently proposed as a low complexity algo- rithm for symbol detection in massive MIMO systems , where its performance is evaluated on the premise that perfect channel state information (CSI) is available at the receiver. However, in practical systems, exact CSI is not available due to a variety of reasons in- cluding channel estimation errors, quantization errors and aging. In this work we study the performance of EP in the presence of imperfect CSI due to channel estimation er- rors and show that in this case the EP detector experiences significant performance loss. Moreover, the EP detector shows a higher sensitivity to channel estimation errors in the high signal-to-noise ratio (SNR) regions where the rate of its performance improvement decreases. We investigate this behavior of the EP detector and propose a Modified EP detector for colored noise which utilizes the correlation matrix of the channel estimation error. Simulation results verify that the modified algorithm is robust against imperfect CSI and its performance is significantly improved over the EP algorithm, particularly in the higher SNR regions, and that for the modified detector, the slope of the symbol error rate (SER) vs. SNR plots are similar to the case of perfect CSI. Next, an algorithm based on expectation propagation is proposed for noncoherent symbol detection in large-scale SIMO systems. It is verified through simulation that in terms of SER, the proposed detector outperforms the pilotbased coherent MMSE detector for blocks as small as two symbols. This makes the proposed detector suitable for fast fading channels with very short coherence times. In addition, the SER performance of this detec- tor converges to that of the optimum ML receiver when the size of the blocks increases. Finally it is shown that for Rician fading channels, knowledge of the fading parameters is not required for achieving the SER gains. A channel estimation method was recently proposed for multi-cell massive MIMO sys- tems based on the eigenvalue decomposition of the correlation matrix of the received vectors (EVD-based). This algorithm, however, is sensitive to the size of the antenna array as well as the number of samples used in the evaluation of the correlation matrix. As the final work in this dissertation, we present a noncoherent channel estimation and symbol de- tection scheme for multi-cell massive MIMO systems based on expectation propagation. The proposed algorithm is initialized with the channel estimation result from the EVD- based method. Simulation results show that after a few iterations, the EP-based algorithm significantly outperforms the EVD-based method in both channel estimation and symbol error rate. Moreover, the EP-based algorithm is not sensitive to antenna array size or the inaccuracies of sample correlation matrix

    Power allocation and user selection in multi-cell: multi-user massive MIMO systems

    Get PDF
    Submitted in fulfilment of the academic requirements for the degree of Master of Science (Msc) in Engineering, in the School of Electrical and Information Engineering (EIE), Faculty of Engineering and the Built Environment, at the University of the Witwatersrand, Johannesburg, South Africa, 2017The benefits of massive Multiple-Input Multiple-Output (MIMO) systems have made it a solution for future wireless networking demands. The increase in the number of base station antennas in massive MIMO systems results in an increase in capacity. The throughput increases linearly with an increase in number of antennas. To reap all the benefits of massive MIMO, resources should be allocated optimally amongst users. A lot of factors have to be taken into consideration in resource allocation in multi-cell massive MIMO systems (e.g. intra-cell, inter-cell interference, large scale fading etc.) This dissertation investigates user selection and power allocation algorithms in multi-cell massive MIMO systems. The focus is on designing algorithms that maximizes a particular cell of interest’s sum rate capacity taking into consideration the interference from other cells. To maximize the sum-rate capacity there is need to optimally allocate power and select the optimal number of users who should be scheduled. Global interference coordination has very high complexity and is infeasible in large networks. This dissertation extends previous work and proposes suboptimal per cell resource allocation models that are feasible in practice. The interference is introduced when non-orthogonal pilots are used for channel estimation, resulting in pilot contamination. Resource allocation values from interfering cells are unknown in per cell resource allocation models, hence the inter-cell interference has to be modelled. To tackle the problem sum-rate expressions are derived to enable power allocation and user selection algorithm analysis. The dissertation proposes three different approaches for solving resource allocation problems in multi-cell multi-user massive MIMO systems for a particular cell of interest. The first approach proposes a branch and bound algorithm (BnB algorithm) which models the inter-cell interference in terms of the intra-cell interference by assuming that the statistical properties of the intra-cell interference in the cell of interest are the same as in the other interfering cells. The inter-cell interference is therefore expressed in terms of the intra-cell interference multiplied by a correction factor. The correction factor takes into consideration pilot sequences used in the interfering cells in relation to pilot sequences used in the cell of interest and large scale fading between the users in the interfering cells and the users in the cell of interest. The resource allocation problem is modelled as a mixed integer programming problem. The problem is NP-hard and cannot be solved in polynomial time. To solve the problem it is converted into a convex optimization problem by relaxing the user selection constraint. Dual decomposition is used to solve the problem. In the second approach (two stage algorithm) a mathematical model is proposed for maximum user scheduling in each cell. The scheduled users are then optimally allocated power using the multilevel water filling approach. Finally a hybrid algorithm is proposed which combines the two approaches described above. Generally in the hybrid algorithm the cell of interest allocates resources in the interfering cells using the two stage algorithm to obtain near optimal resource allocation values. The cell of interest then uses these near optimal values to perform its own resource allocation using the BnB algorithm. The two stage algorithm is chosen for resource allocation in the interfering cells because it has a much lower complexity compared to the BnB algorithm. The BnB algorithm is chosen for resource allocation in the cell of interest because it gives higher sum rate in a sum rate maximization problem than the two stage algorithm. Performance analysis and evaluation of the developed algorithms have been presented mainly through extensive simulations. The designed algorithms have also been compared to existing solutions. In general the presented results demonstrate that the proposed algorithms perform better than the existing solutions.XL201

    Channel Estimation in Massive Multi-User MIMO Systems Based on Low-Rank Matrix Approximation

    Get PDF
    In recent years, massive Multi-User Multi-Input Multi-Output (MU-MIMO) system has attracted significant research interests in mobile communication systems. It has been considered as one of the promising technologies for 5G mobile wireless networks. In massive MU-MIMO system, the base station (BS) is equipped with a very large number of antenna elements and simultaneously serves a large number of single-antenna users. Compared to traditional MIMO system with fewer antennas, massive MU-MIMO system can offer many advantages such as significant improvements in both spectral and power efficiencies. However, the channel estimation in massive MU-MIMO system is particularly challenging due to large number of channel matrix entries to be estimated within a limited coherence time interval. This problem occurs in a single-cell case where both dimensions of the channel matrix grow large. Also, It happens in the multi-cell setting due to the pilot contamination effect. In this thesis, the problem of channel estimation in both single-cell and multi-cell time division duplex (TDD) massive MU-MIMO systems is studied. Thus, two-channel estimation namely “nuclear norm (NN)” and “iterative weighted nuclear norm (IWNN)” approximation techniques are proposed to solve the channel estimation problem in both systems. First, channel estimation in a single-cell TDD massive MU-MIMO system is formulated as a convex nuclear norm optimization problem with regularization parameter γ. In this study, the regularization parameter γ is selected based on the cross-validation (CV) curve method. The simulation results in terms of the normalized mean square error (NMSE) and uplink achievable sum-rate (ASR) are provided to show the effectiveness of the NN proposed scheme compared to the conventional least square (LS) estimator. Then, the IWNN approximation is proposed to improve the performance of the NN method. Thus, the channel estimation in a single-cell TDD massive MU-MIMO system is formulated as a weighted nuclear norm optimization problem. The simulation results show the effectiveness of the IWNN estimation approach compared to the standard NN and conventional LS estimation methods in terms of the NMSE and ASR. Second, both previous estimation techniques are extended to apply in a multi-cell TDD massive MU-MIMO system to mitigate pilot contamination effect. The simulation results in terms of the NMSE and uplink ASR show that the IWNN scheme outperforms the NN and LS estimations in the presence of high pilot contamination effect. Finally, a novel channel estimation scheme namely “Approximate minimum mean square error (AMMSE)” is proposed to reduce the computational complexity of the minimum mean square error (MMSE) estimator which was proposed for multi-cell TDD massive MU-MIMO system. Furthermore, a brief analysis of the computational complexity regarding the number of multiplications of the proposed AMMSE estimator is provided. It has been shown that the complexity of the proposed AMMSE estimator is reduced compared to the conventional MMSE estimator. The simulation results in terms of the NMSE and the uplink ASR performances show the proposed AMMSE estimation performance is almost the same as the conventional MMSE estimator under two different scenarios: noise-limited and pilot contamination

    Analysis of pilot decontamination based on power control

    No full text

    Analysis of Pilot Decontamination Based on Power Control

    No full text
    A subspace method for channel estimation is pro- posed for asymmetric antenna array systems. The so-called pilot contamination problem reported in [1] is found to be due to the linearity of channel estimation in [2]. We show that it does not occur in cellular systems with power control and power-controlled handoff when the nonlinear channel estimation method proposed in this paper is used. Power-control hand-off is needed to guarantee separability between signal and interference subspaces. We derive the transmission conditions for subspace separability based on free probability and perturbation theory.QC 20130709</p
    corecore