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Pilot Decontamination Through Pilot Sequence
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Aalborg University, Department of Electronic Systems, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark

E-mail: {jhs,edc}@es.aau.dk

Abstract—This work concerns wireless cellular networks ap-
plying massive multiple-input multiple-output (MIMO) technol-
ogy. In such a system, the base station in a given cell is equipped
with a very large number (hundreds or even thousands) of
antennas and serves multiple users. Estimation of the channel
from the base station to each user is performed at the base
station using an uplink pilot sequence. Such a channel estimation
procedure suffers from pilot contamination. Orthogonal pilot
sequences are used in a given cell but, due to the shortage
of orthogonal sequences, the same pilot sequences must be
reused in neighboring cells, causing pilot contamination. The
solution presented in this paper suppresses pilot contamination,
without the need for coordination among cells. Pilot sequence
hopping is performed at each transmission slot, which provides
a randomization of the pilot contamination. Using a modified
Kalman filter, it is shown that such randomized contamination
can be significantly suppressed. Comparisons with conventional
estimation methods show that the mean squared error can be
lowered as much as an order of magnitude at low mobility.

I. INTRODUCTION

Muliple-input multiple-output (MIMO) technology [1] is

finding its way into practical systems, like LTE and its

successor LTE-Advanced. It is a key component for these

systems’ ability to improve the spectral efficiency. The success

of MIMO technology has motivated research in extending the

idea of MIMO to cases with hundreds, or even thousands of

antennas, at transmitting and/or receiving side. This is often

termed massive MIMO. In mobile communication systems,

like LTE, the more realistic scenario is to have a massive

amount of antennas only at the base station (BS), due to

the physical limitations at the user equipment (UE). It has

been shown that such a system [2], in theory, can eliminate

entirely the effect of small-scale fading and thermal noise,

when the number of BS antennas goes to infinity. The only

remaining impairment is inter-cell interference, caused by

imperfect channel state information (CSI), which is a result

of non-orthogonality of training pilots used to gather the CSI.

This is often referred to as pilot contamination. It is considered

as one of the major challenges in massive MIMO systems [3].

Mitigation of pilot contamination has been the focus of

several works recently. These fall into two categories; one with

coordination among cells and one without. The first category

includes [4], where it is utilized that the desired and inter-

fering signals can be distinguished in the channel covariance

matrices, as long as the angle-of-arrival spreads of desired and
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interfering signals do not overlap. A pilot coordination scheme

is proposed to help satisfying this condition. The work in [5]

utilizes coordination among base stations to share downlink

messages. Each BS then performs linear combinations of

messages intended for users applying the same pilot sequence.

This is shown to eliminate interference when the number of

base station antennas goes to infinity.

The category without coordination also includes notable

contributions. A multi-cell precoding technique is used in

[6] with the objective of not only minimizing the mean

squared error of the signals of interest within the cell, but also

minimizing the interference imposed to other cells. In [7] it is

shown that channel estimates can be found as eigenvectors

of the covariance matrix of the received signal when the

number of base station antennas grows large and the system

has “favorable propagation”. The work in [8–11] is based on

examining the eigenvalue distribution of the received signal to

identify an interference free subspace on which the signal is

projected. It is shown that an interference free subspace can

be identified when certain conditions are fulfilled concerning

the number of base station antennas, user equipment antennas,

channel coherence time and the signal-to-interference ratio.

The major contribution of this paper is a pilot decontami-

nation, which does not require inter-cell coordination, and is

able to exploit past pilot signals. It is based on pilot sequence

hopping performed within each cell. Pilot sequence hopping

means that every user chooses a new pilot sequence in each

transmission slot. Consider a user of interest and the effect of

the inter-cell pilot contamination when pilot sequence hopping

is applied. At each transmission slot, the pilot signal of the user

is contaminated by a different set of interfering users. Hence

channel estimation at each transmission slot is affected by a

different set of interfering channels. If channel estimation is

carried out based solely on the pilot sequence of the current

slot, then pilot sequence hopping does not bring any gain. The

key in our solution is a channel estimation that incorporates

multiple time slots so that it can benefit from randomization

of the pilot contamination. Recent work utilizing temporal

correlation for channel estimation is found in [12], although

not in combination with pilot hopping and not with the purpose

of mitigating pilot contamination.

Consider the simple example, where the channel of the UE

of interest is time-invariant. Its estimation is performed across

multiple time slots. Specifically, the resulting channel estimate

is the average of the estimates across the time slots. In the



averaging process, the contamination signal is averaged out.

Note that, if the contamination signal remains constant across

the time slots, i.e there is no hopping, this averaging brings

no benefit (except an averaging of the receive noise).

When the channel is time-variant and correlated across

time slots, it remains possible to exploit the information

about the channel across time slots by an appropriate filtering

and benefit from contamination randomization. In this paper,

channel estimation across multiple time slots is performed

using a modified version of the Kalman filter, which is capable

of tracking the channel and the channel correlation. The

level of contamination suppression depends on the channel

correlation between slots of the UE of interest as well as the

contaminators. In LTE, channel correlation between time slots

is large even at medium-high speeds, making the proposed

solution very efficient.

The remainder of this paper is organized as follows. Section

II presents the applied system model and the problem of pilot

contamination. The proposed solution is described in section

III and evaluated and compared to existing solutions in section

IV. Finally, conclusions are drawn in section V.

II. SYSTEM MODEL

In this work we denote scalars in lower case, vectors in

bold lower case and matrices in bold upper case. A superscript

“T ” denotes the transpose and a superscript “H” denotes the

conjugate transpose.

This work treats a cellular system consisting of L cells

with K users in each cell. A massive MIMO scenario is

considered, where the BS has M antennas and the UE has

a single antenna. We restrict our attention to the channel

estimation performed in a single cell, which we term “the cell

of interest” and assign the index “0”. The channel between

the BS in the cell of interest and the k’th user in the ℓ’th
cell is denoted hhhkℓ =

[

hkℓ(1) hkℓ(2) . . . hkℓ(M)
]

, where

the individual channel coefficients are complex scalars. Note

that for ℓ > 0, hhhkℓ refers to a channel between the BS of

interest and a UE connected to a different base station. We

furthermore restrict our attention to the estimation of a single

channel coefficient, hence a channel is denoted as the complex

scalar hkℓ. The work easily extends to vector estimations, in

which case spatial correlation can be exploited for improved

performance. A rich scattering environment is assumed, such

that hkℓ can be modeled using Clarke’s model [13], hence

hkℓ =
1√
Ns

Ns
∑

m=1

ej2πfdt cosαm+φm , (1)

where Ns is the number of scatterers, fd is the maximum

Doppler shift, αm and φm is the angle of arrival and initial

phase, respectively, of the wave from the m’th scatterer. Both

αm and φm are i.i.d. in the interval [−π, π) and fd = v
c
fc,

where v is the speed of the UE, c is the speed of light and fc
is the carrier frequency.

In a massive MIMO system, collection of channel state

information (CSI) is performed using uplink pilot training.
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Fig. 1. A cellular system with three cells. Cell 0 is of interest and the
neighboring cells will potentially cause interference (red arrows).

The CSI achieved this way is utilized in both downlink

and uplink transmissions based on the channel reciprocity

assumption. We define a pilot training period followed by

an uplink and a downlink transmission period as a time slot.

See Fig. 2 for an example of a transmission schedule with

two time slots. During the n’th pilot training period, the

k’th user in the ℓ’th cell transmits a pilot sequence xxxkℓ
n =

[

xkℓ
n (1) xkℓ

n (2) . . . xkℓ
n (τ)

]T
, where τ is the pilot sequence

length. Ideally, all pilot sequences in the entire system are

orthogonal, in order to avoid interference. However, this would

require pilot sequences of at least length L · K , which in

most practical systems is not feasible. Instead, orthogonality

within each cell only is ensured, i.e. τ = K , thereby dealing

with the potentially strongest sources of interference. As a

result, all cells use the same set of pilots, potentially causing

interference from neighboring cells. This is referred to as pilot

contamination. We define the contaminating set, Ckℓ
n , as the set

of all pairs i, j, which identify all UEs applying the same pilot

sequence in the n’th time slot as the k’th user in the ℓ’th cell.

Hence, xxxij
n = xxxkℓ

n ∀ i, j ∈ Ckℓ
n .

Pilot Uplink Downlink Pilot Uplink Downlink

ts

Time slot 1 Time slot 2

Fig. 2. Scheduling example.

The pilot signal received by the BS of interest, concerning

the k’th user in the n’th time slot can be expressed as

yyyk0n = hk0
n xxxk0

n +
∑

i,j∈Ck0
n

hij
nxxx

ij
n + zzzk0n , (2)

where zzzk0n =
[

zk0n (1) zk0n (2) . . . zk0n (τ)
]T

and zk0n (j) are



circularly symmetric Gaussian random variables with zero

mean and unit variance for all j. Here, only signals leading to

contamination are included in the sum term, since any hij
nxxx

ij
n

∀ i, j /∈ Ckℓ
n are removed when correlating with the applied

pilot sequence. Hence, all contributions from the sum term

are undesirable and will contaminate the CSI. Without loss

of generality, we focus on the channel estimation for a single

user in a single cell. Hence, in the remainder of the paper, we

omit the superscript k for ease of notation.

III. PILOT DECONTAMINATION

The solution to pilot contamination proposed in this work

consists of two components:

1) Pilot sequence hopping: This component refers to

random shuffling of the pilots applied within a cell. This

shuffle occurs between every time slot. The purpose of

this component is to decorrelate the contaminating sig-

nals. When pilots are shuffled, the set of contaminating

users will be replaced by a new set, whose channel

coefficients are uncorrelated with those of the previous

set.

2) Kalman filtering: The autocorrelation of the channel

coefficient of the user of interest is high at low mobility.

This means that information about the value of the cur-

rent channel coefficient exists not only in the most recent

pilot signal, but also in past pilot signals. This can be

extracted using a filter. For this purpose a Kalman filter

is desirable due to its recursive structure, which provides

low complexity, yet optimal performance. Additionally,

since the contaminating signals have been decorrelated,

the Kalman filter will suppress the impact of these

signals, leading to pilot decontamination.

A. Pilot Sequence Hopping

Pilot sequence hopping is a technique where the UEs

randomly switch to a new pilot sequence in between time slots.

This must be coordinated with the BS, which in practice can

be realized by letting the BS send a seed for a pseudorandom

number generator to each UE. Random pilot sequence hopping

is illustrated in Fig. 3 in the case of τ = K = 5. Note

how the identity of the contaminator changes between time

slots, as opposed to a fixed pilot sequence schedule, where

the contaminator remains the same UE. Consequently, the

undesirable part of the pilot signal, i.e. the sum term in (2),

varies rapidly between time slots compared to the variation

caused by the mobility of a single contaminator in a fixed

schedule. In fact, the impact of pilot sequence hopping, from

a contamination perspective, can be viewed as a dramatic

increase of the mobility of the contaminator. This in turn leads

to a lowered autocorrelation, or decorrelation, in the contami-

nating signal, which is the motivation behind performing pilot

sequence hopping.

The level of decorrelation is related to the time between

two instances, where the same user acts as a contaminator.

We refer to this as the collision distance, and we denote

it tc, see Fig. 3. Note that in the case of a fixed pilot

schedule, tc = 1. The goal of pilot sequence hopping is to

maximize tc, either in an expected sense or maxmin sense,

i.e. maximization of the minimum value. The latter can be

pursued through a minimal level of coordination of pilot

sequence schedules among neighboring cells. However, this

work is strictly restricted to a framework with no inter-cell

coordination, hence, we focus on the expected value of tc. If

pilot sequence hopping is performed at random and τ = K ,

then tc follows a geometric distribution, such that

P (tc = d) = (1− p)d−1p, d = 1, 2, . . . ,

p =
1

K
, (3)

where P (tc = d) is the probability that the collision distance

is d and p is the probability of a given UE being the next

contaminator. The expected value of tc, E [tc], is then found

as

E [tc] =

∞
∑

d=1

d(1 − p)d−1p

=

∞
∑

d=1

d

(

K − 1

K

)d−1
1

K

= K. (4)

Hence, the expected collision distance increases with the

number of users/pilots per cell, which follows intuition.

UE of
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Fig. 3. An example of a random pilot schedule for the UE of interest and
potential contaminators in a neighboring cell. Green boxes represent pilots,
which are orthogonal to the pilot from the UE of interest. Red boxes represent
contamination and xxxi denotes a pilot sequence.

Example: To help the understanding of the benefit from

pilot sequence hopping, consider the ideal case of a con-

stant channel between BS and UE of interest and a single

contaminating neighboring cell. Noise is disregarded in this

example, since attention is on decontamination. Moreover, we

assume an infinite amount of orthogonal pilot sequences and



an infinite amount of users per cell, such that τ = K = ∞
and E [tc] = ∞, which means contaminating signals in all time

slots are independent. For simplicity, we assume xxxH
n xxxn = 1,

such that the estimate in time slot n is

ĥn = h+ h′
n, (5)

where h′
n is the channel of the contaminator in time slot n.

Now consider a new estimator,
¯̂
hn, which is the average of all

estimates until time slot n. Hence, we have

¯̂
hn = h+

1

n

n
∑

i=1

h′
i. (6)

In this case, the error in the estimate is solely composed

of the average of the contaminating signals, which are in-

dependent and have variance σ2
c . Hence, the variance of the

estimation error is
σ2

c

n
. If pilot sequence hopping had not

been performed, the variance of the estimation error had

remained σ2
c , since h′

n would be constant. Note that the

MSE goes towards zero for n → ∞, when pilot sequence

hopping is performed. This is a result of the fact that a

pilot signal in the infinite past carries as much information

about the current channel as the most recent pilot signal, in

the ideal example of a constant channel. Note also that for

finite τ (and K) and thereby finite E [tc], the variance of

the estimation error is lower bounded by
σ2

c

K
, since only a

maximum of K independent estimates can be achieved. In

a more practical example with a time-varying channel, the

amount of information carried in a pilot signal decays over

time. It is, however, still possible to extract such information

using appropriate filtering techniques. For this purpose we

have chosen a modified version of the Kalman filter, which

is described next.

B. Modified Kalman Filter

A conventional Kalman filter can be used to track the state,

bbbn, of a system based on observations, yyyn, where

yyyn = CCCnbbbn + dddn, (7)

and CCCn is the measurement matrix of the system and dddn is

measurement noise. Moreover, the evolution of the system

state must follow

bbbn = AAAnbbbn−1 + vvvn, (8)

where AAAn is the state transition matrix and vvvn is the process

noise. In a conventional application of the Kalman filter, AAAn

is assumed constant and known.

The problem of estimating a time-varying channel based

on pilot signals, also termed channel tracking, can be solved

using the Kalman filter. The observations as expressed in (2)

follow the linear model in (7), where the observation matrix

is the transmitted pilot sequence and the tracked state is the

channel coefficient. The evolution of the channel coefficient as

expressed by Clarke’s model does not follow the model in (8).

However, it can be transformed into an autoregressive (AR)

model with a finite number of coefficients, which follows the

form of (8). If the instantaneous velocity of the user of interest,

and thereby the autocorrelation function, are known, the AR

coefficients can be found using the Yule-Walker equations

[14]. However, this cannot be assumed in our case, hence the

AR coefficients must be tracked along with the channel state.

For this purpose, we must modify the conventional Kalman

filter to include an AR model tracker. A 1st order AR model

is applied, since experiments tell us this adequately captures

the autocorrelation of the system. Therefore, only a single AR

coefficient, an, must be tracked.

First we state the conventional Kalman filter [15] in our

context, where the AR coefficient is assumed known.

For all n:

eeen = yyyn − xxxnan−1ĥn−1, (9)

RRRn = xxxnpnxxx
H
n + σ2

nIIIτ + σ2
cxxxnxxx

H
n , (10)

kkkn = pnxxx
H
n RRR−1

n , (11)

ĥn = anĥn−1 + kkkneeen, (12)

pn+1 = a2n(1− kkknxxxn)pn + (1− an)
2, (13)

where σ2
n and σ2

c are noise power and total contamination

power (average over time), respectively, which are both as-

sumed known, IIIτ is the τ × τ identity matrix and ĥn is the

estimate of hn.

For the tracking of the AR coefficient, an approach similar

to the one in [16] is taken. In [16] the inclusion of an AR

coefficient tracker is presented for a Kalman predictor, i.e. a

filter with the purpose of predicting the channel, hn, based

on all observations until yyyn−1. In this work, we extend this

approach to take all observations until yyyn into account.

The approach is based on calculating the partial derivative

with respect to an of the cost function, the mean squared

error (MSE), and using this to adjust an in the direction of

decreasing MSE. The partial derivative of the MSE is

∇n =
∂

∂an
E
[

|eeen|2
]

= −(qHn−1an−1xxx
H
n + ĥH

n−1xxx
H
n )eeen, (14)

where qn = ∂ĥn

∂an
and is found by differentiating (12) with

respect to an, such that

qn = (1 − kkknxxxn)(anqn−1 + ĥn−1) +mmmneeen. (15)

Here, mmmn = ∂kkkn

∂an
, which is found by differentiating (11) with

respect to an, hence

mmmn = (1 − kkknxxxn)snxxx
H
n RRR

−1
n . (16)



Finally, we introduced sn = ∂pn

∂an
, which is a differentiation of

(13) with respect to an, giving us

sn+1 = a2n(1− kkknxxxn)sn(1 − xxxH
n kkk

H
n )− 2ankkknxxxnpn. (17)

Using ∇n, we can adjust an as follows

an = [an−1 − µ[∇n]
+ν
−ν ]

1
0, (18)

where µ is a parameter adjusting the convergence speed and

the brackets denote truncations. The inner truncation involving

ν is to avoid dramatic adjustments in situations with a high

slope and the outer truncation is to obey 0 ≤ an ≤ 1. The

need for ν will be explained in section IV.

We can now state the modified Kalman filtering algorithm

including an AR coefficient tracker:

For all n:

eeen = yyyn − xxxnan−1ĥn−1,

RRRn = xxxnpnxxx
H
n + σ2

nIIIτ + σ2
cxxxnxxx

H
n ,

∇n = −(qHn−1an−1xxx
H
n + ĥH

n−1xxx
H
n )eeen,

an = [an−1 − µ[∇n]
+ν
−ν ]

1
0,

kkkn = pnxxx
H
n RRR

−1
n ,

ĥn = anĥn−1 + kkkneeen,

mmmn = (1 − kkknxxxn)snxxx
H
n RRR

−1
n ,

qn = (1 − kkknxxxn)(anqn−1 + ĥn−1) +mmmneeen,

pn+1 = a2n(1 − kkknxxxn)pn + (1− an)
2,

sn+1 = a2n(1 − kkknxxxn)sn(1− xxxH
n kkkHn )− 2ankkknxxxnpn. (19)

IV. NUMERICAL RESULTS

The proposed scheme (Estimator) has been simulated and

compared to the scheme from [16] (Predictor) and the conven-

tional solutions of least squares (LS) estimation and minimum

mean squared error (MMSE) estimation based on a single

time slot. The expressions for the LS and MMSE estimators

are given in (20) and (21), respectively. An overview of the

parameters, which are common for all simulations, is given

in Table I. The choice of µ is based on experiments showing

that this is a good compromise between convergence speed

and robustness towards variance. Throughout all simulations,

we assume that all users have equal and constant mobility.

Moreover, we assume that contaminating signals have zero

autocorrelation between time slots, which is justified by the

choice of K = 96, such that E [tc] = 96, cf. (4).

ĥls
n =

(

xxxH
n xxxn

)−1
xxxH
n yyyn, (20)

ĥmmse
n = xxxH

n

(

xxxnxxx
H
n + σ2

nIIIτ + σ2
cxxxnxxx

H
n

)−1
yyyn. (21)

Initially, results are shown for the conventional Kalman filter

expressed in equations (9) through (13). MSE as a function of

the user mobility, v, and the AR coefficient, an, is shown in

Fig. 4. From this figure, it is evident how important it is to have

TABLE I
SIMULATION PARAMETERS

Parameter Value Description

σ2
n

0.2 Noise variance

L 7 Number of cells

K 96 Users per cell

τ 96 Pilot length

µ 10−5 Convergence speed

ν 100 Derivative cap

fc 1.8 GHz Carrier frequency

Ns 20 Number of scatterers

ts 0.5 ms Time between pilots

a0 0.5 Initial AR coefficient

ĥ0 0 Initial estimate

q0 0 Initial differentiated estimate

p1 0 Initial error covariance

s1 0 Initial differentiated error covariance

an accurate AR model, which suits the current mobility of the

UE of interest. This stresses the need for the modification of

the Kalman filter, as proposed in section III-B. Moreover, it is

seen that the derivative of the MSE with respect an may attain

very high values at low an. This can cause undesirably high

variance in the estimate of the optimal an, which motivates

the use of a derivative cap, ν.
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Fig. 4. MSE as a function of the autoregressive model coefficient and the
user mobility.

Fig. 5 shows a comparison of the simulated estimators with

respect to MSE as a function of user mobility when σ2
c = 0.6.

For both the predictor and the scheme proposed in this work,

results where the optimal value of an is assumed to be

known, have been included. This highlights the performance

of the tracker. It is evident that the tracker provides a very



good estimate of the optimal AR coefficient. Moreover, it is

seen that the proposed scheme outperforms LS and MMSE

and performs as well as the predictor at low mobility. At

high mobility, the proposed scheme outperforms LS and the

predictor, while matching the performance of MMSE.

A different perspective is given in Fig. 6. Here the MSE is

plotted as a function of the signal-to-interference ratio (SIR),

at typical mobility levels as defined by 3GPP [17]. This figure

shows how the proposed scheme is able to suppress even very

strong contamination at typical mobility.
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V. CONCLUSIONS

We have presented a solution to pilot contamination in

channel estimation, which is a major challenge in massive

MIMO systems. It is based on a combination of a pilot

sequence hopping scheme and a modified Kalman filter. The

pilot sequence hopping scheme involves random shuffling of

the assigned pilot sequences within a cell, which ensures

decorrelation in the time dimension of the contaminating

signals. This is essential, since it enables subsequent filtering

to suppress the contamination. For this filtering, the Kalman

filter has been chosen, due to its ability to track a time-varying

state. However, a conventional Kalman filter is not able to

adapt to changes in the underlying model, which is necessary

when users have unknown and varying levels of mobility.

For this problem we have presented a modified Kalman filter,

which can adapt the underlying model based on a minimization

of the mean squared error.
Numerical evaluations show that the proposed solution can

suppress a significant portion of the contamination at low and

moderate levels of mobility. Even at high mobility, i.e. car

speeds of 100 to 130 km/h, the proposed solution can provide

a noticeable gain over conventional estimation methods.
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