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Abstract

This work concerns wireless cellular networks applying time division duplexing (TDD) massive multiple-input
multiple-output (MIMO) technology. Such systems suffer from pilot contamination during channel estimation, due to
the shortage of orthogonal pilot sequences. This paper presents a solution based on pilot sequence hopping, which
provides a randomization of the pilot contamination. It is shown that such randomized contamination can be
significantly suppressed through appropriate filtering. The resulting channel estimation scheme requires no inter-cell
coordination, which is a strong advantage for practical implementations. Comparisons with conventional estimation
methods show that the MSE can be lowered as much as an order of magnitude at low mobility. Achievable uplink and
downlink rates are increased by 42 and 46%, respectively, in a system with 128 antennas at the base station.
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1 Introduction
Muliple-input multiple-output (MIMO) technology [1] is
finding its way into practical systems, like LTE and its
successor LTE-Advanced. It is a key component for these
systems’ ability to improve the spectral efficiency. The
success of MIMO technology has motivated research in
extending the idea of MIMO to cases with hundreds,
or even thousands of antennas, at transmitting and/or
receiving side. This is often termed massive MIMO. In
mobile communication systems, like LTE, the more realis-
tic scenario is to have a massive amount of antennas only
at the base station (BS), due to the physical limitations
at the user equipment (UE). It has been shown that such
a system [2], in theory, can eliminate entirely the effect
of small-scale fading and thermal noise, when the num-
ber of BS antennas goes to infinity. The only remaining
impairment is inter-cell interference, caused by imperfect
channel state information (CSI), which is a result of non-
orthogonality of training pilots used to gather the CSI.
This is often referred to as pilot contamination. It is con-
sidered as one of the major challenges in massive MIMO
systems [3].
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Mitigation of pilot contamination has been the focus of
several works recently. These fall into two categories: one
with coordination among cells and one without. The first
category includes [4], where it is utilized that the desired
and interfering signals can be distinguished in the chan-
nel covariance matrices, as long as the angle-of-arrival
spreads of desired and interfering signals do not overlap.
A pilot coordination scheme is proposed to help satisfy-
ing this condition. The work in [5] utilizes coordination
among BSs to share downlinkmessages. Each BS then per-
forms linear combinations of messages intended for users
applying the same pilot sequence. This is shown to elim-
inate interference when the number of BS antennas goes
to infinity.
The category without coordination also includes

notable contributions. A multi-cell precoding technique
is used in [6] with the objective of not only minimizing
the mean squared error of the signals of interest within
the cell but also minimizing the interference imposed
to other cells. In [7], it is shown that channel estimates
can be found as eigenvectors of the covariance matrix
of the received signal when the number of BS antennas
grows large and the system has “favorable propagation.”
The work in [8–11] is based on examining the eigenvalue
distribution of the received signal to identify an interfer-
ence free subspace on which the signal is projected. It is
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shown that an interference free subspace can be identi-
fied when certain conditions are fulfilled concerning the
number of BS antennas, user equipment antennas, chan-
nel coherence time, and the signal-to-interference ratio.
Recently, in [12], a combination of the solutions in [4] and
[8–11] was proposed. The resulting solution unites the
strengths of these solutions leading to a more robust pilot
decontamination.
In this paper, we propose pilot decontamination, which

does not require inter-cell coordination and is able to
exploit past pilot signals. It is based on pilot sequence hop-
ping performed within each cell. Pilot sequence hopping
means that every user chooses a new pilot sequence in
each time slot. Thus, in every time slot, the pilot signal
of a user is contaminated by a different set of interfer-
ing users, which means channel estimation is affected by
a different set of interfering channels. If channel estima-
tion is carried out based solely on the pilot sequence of the
current slot, then pilot sequence hopping does not bring
any gain. The key in our solution is a channel estimation
that incorporates multiple time slots so that it can bene-
fit from randomization of the pilot contamination. Recent
work utilizing temporal correlation for channel estimation
is found in [13], although not in combination with pilot
hopping and not with the purpose of mitigating pilot con-
tamination. Random selection of pilot sequences is also
explored in [14] and [15]. Both works consider the ran-
dom access problem in cellular networks. In [14], pilot
contamination is avoided through a distributed collision
detection algorithm, which enables users with weak chan-
nels to detect that they are contaminators of a user with
a strong channel and as a result postpone their transmis-
sion. The work in [15] considers codeword transmissions
that are spread across multiple time slots, each with a dif-
ferent contaminator. This decorrelates the contamination
within a single codeword, which improves performance.
When the channel is time-variant and correlated across

time slots, it is possible to exploit the information about
the channel across time slots by an appropriate filtering
and benefit from contamination randomization. In this
paper, channel estimation across multiple time slots is
performed using a modified version of the Kalman fil-
ter, which is capable of tracking the channel and the
channel correlation. The level of contamination suppres-
sion depends on the channel correlation between slots of
the UE of interest as well as the contaminators. In LTE,
channel correlation between time slots is large even at
medium-high speeds, making the proposed solution very
efficient.
This work is an extension of the work in [16], where the

concept of pilot sequence hopping in combination with a
Kalman channel tracker is introduced. In this paper, the
work is extended withmore sophisticatedmobility models
and a generalization of the estimation algorithm, which

allows higher order Kalman process models. Furthermore,
the Bayesian Cramer-Rao lower bound is derived for the
estimation problem at hand and applied as a benchmark
in the numerical evaluations.
The remainder of this paper is organized as follows.

Section 2 presents the applied channel and mobility mod-
els and the problem of pilot contamination. The pro-
posed solution is described in Section 3 and analyzed
in Section 4. Section 5 provides numerical results and a
comparison to existing solutions. Finally, conclusions are
drawn in Section 6.

2 Systemmodel
In this work, we denote scalars in lower case, vectors in
bold lower case, and matrices in bold upper case. A super-
script “T” denotes the transpose, and a superscript “H”
denotes the conjugate transpose.

2.1 Channel model
This work treats a cellular system consisting of L cells with
K users in each cell, see Fig. 1. A time division duplex-
ing (TDD) massive MIMO scenario is considered, where
the BS has M antennas and the UE has a single antenna.
We restrict our attention to the channel estimation per-
formed in a single cell, which we term “the cell of interest”
and assign the index “0.” The channel between the BS
in the cell of interest and the kth user in the �th cell is
denoted as hk� = [

hk�(1)hk�(2) . . . hk�(M)
]
, where the

individual channel coefficients are complex scalars. Note
that for � > 0, hk� refers to a channel between the BS of
interest and a UE connected to a different BS. We further-
more restrict our attention to the estimation of a single
channel coefficient; hence, a channel is denoted as the
complex scalar hk�. The work easily extends to vector esti-
mations, in which case spatial correlation can be exploited
for improved performance. A rich scattering environment
is assumed, such that hk� can be modeled using Clarke’s
model [17]. Hence, in a time-slotted system, where a time
slot has a length of ts seconds, the channel coefficient in
the nth time slot is

hk�n = 1√
Ns

Ns∑

m=1
exp

(
j2π fdnts cosαm + φm

)
, (1)

where Ns is the number of fixed scatterers associated with
all BS/UE pairs, fd is the maximum Doppler shift, αm
and φm are the angle of arrival and initial phase, respec-
tively, of the wave from themth scatterer. Both αm and φm
are independent and uniformly distributed in the interval
[−π ,π), which results from random scatterer locations.
Furthermore, fd = v

c fc, where v is the speed of the UE, c is
the speed of light and fc is the carrier frequency.
In a TDD massive MIMO system, collection of chan-

nel state information (CSI) is performed using uplink pilot
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Fig. 1 A cellular system with three cells. Cell 0 is of interest and the neighboring cells will potentially cause interference (red arrows)

training. The CSI achieved this way is utilized in both
downlink and uplink transmissions based on the chan-
nel reciprocity assumption. We define a pilot training
period followed by an uplink and a downlink transmis-
sion period as a time slot. See Fig. 2 for an example of
a transmission schedule with two time slots. We assume
all transmissions in the system are synchronized, which
represents a worst-case scenario from a pilot contamina-
tion perspective, as argued in [2]. During the nth pilot
training period, the kth user in the �th cell transmits a
pilot sequence xk�n = [

xk�n (1)xk�n (2) . . . xk�n (τ )
]T , where τ

is the pilot sequence length. Ideally, all pilot sequences in
the entire system are orthogonal, in order to avoid inter-
ference. However, this would require pilot sequences of
at least length L × K , which in most practical systems is
not feasible. Instead, orthogonality within each cell only
is ensured, i.e., τ = K , thereby dealing with the poten-
tially strongest sources of interference. As a result, all cells

use the same set of pilots, potentially causing interference
from neighboring cells. This is referred to as pilot contam-
ination. We define the contaminating set, Ck�n , as the set of
all pairs i, j, which identify all UEs applying the same pilot
sequence in the nth time slot as the kth user in the �th cell.
Hence, xijn = xk�n ∀i, j ∈ Ck�n .
The pilot signal received by the BS of interest, con-

cerning the kth user in the nth time slot can be
expressed as

yk0n = hk0n xk0n +
∑

i,j∈Ck0
n

hijnx
ij
n + zk0n , (2)

where zk0n = [
zk0n (1)zk0n (2) . . . zk0n (τ )

]T and zk0n (j) are cir-
cularly symmetric Gaussian random variables with zero
mean and unit variance for all j. Here, only signals lead-
ing to contamination are included in the sum term since
any hijnx

ij
n ∀ i, j /∈ Ck�n are removed when correlating with

Fig. 2 Scheduling example
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the applied pilot sequence. Hence, all contributions from
the sum term are undesirable and will contaminate the
CSI. Without loss of generality, we focus on the channel
estimation for a single user in a single cell. Hence, in the
remainder of the paper, we omit the superscript k for ease
of notation.

2.2 Mobility model
In the employed mobility model, we restrict our attention
to the consequences of mobility on the small-scale fad-
ing characteristics, i.e., fd. Therefore, consequences like
shadowing, varying path loss, and cell handover are dis-
regarded. Since we employ pilot sequence hopping in
this work, we can furthermore restrict our attention to
the mobility of the UE of interest. This is explained in
Section 3.1. We consider three different mobility models:

• M1: In this mobility model, the UE moves at a
constant speed, v1, for T1 seconds.

• M2: (Train) This model emulates the mobility
experienced in a train. Initially, the speed is zero for
T2,1 seconds. Then, the speed increases linearly, i.e.,
with constant acceleration, δ2,+, until a specified
maximum speed, v2. This speed is maintained for T2,2
seconds, after which the speed is decreased linearly,
with deceleration, δ2,−, until mobility has seized.
Finally, the speed is kept at zero for T2,3 seconds.

• M3: (Car) The third mobility model emulates the
behavior of a car for T3 seconds. The model operates
with a vector of possible speeds, v = [v0v1 . . . vmax],
where the individual speeds are uniformly spaced
between zero and vmax. The initial speed is v0 = 0. In
every time slot, the speed is increased with
probability p+ and decreased with probability p− and
remains constant with probability 1 − p+ − p−.
Acceleration and deceleration are constant at δ3,+
and δ3,−, respectively. Speed changes always occur to
the nearest speed in v, and both acceleration from
vmax and deceleration from v0 result in no change.

Examples of all three mobility models are plotted in
Fig. 3.

3 Pilot decontamination
The solution to pilot contamination proposed in this work
consists of two components:

1. Pilot sequence hopping: This component refers to
random shuffling of the pilots applied within a cell.
This shuffle occurs between every time slot. The
purpose of this component is to decorrelate the
contaminating signals. When pilots are shuffled, the
set of contaminating users will be replaced by a new

set, whose channel coefficients are uncorrelated with
those of the previous set.

2. Kalman filtering: The autocorrelation of the channel
coefficient of the user of interest is high at low
mobility. This means that information about the
value of the current channel coefficient exists not
only in the most recent pilot signal but also in past
pilot signals. This can be extracted using a filter.
Since the channel coefficients are time-varying, we
are dealing with a tracking problem. For this purpose,
a Kalman filter is attractive due to its excellent
tracking capability and recursive structure, which
provides good performance at low complexity. Since
the contaminating signals have been decorrelated,
the Kalman filter will suppress the impact of these
signals, leading to pilot decontamination.

3.1 Pilot sequence hopping
Pilot sequence hopping is a technique where the UEs ran-
domly switch to a new pilot sequence in between time
slots. This must be coordinated with the BS, which in
practice can be realized by letting the BS send a seed
for a pseudorandom number generator to each UE. This
ensures that the coordination overhead is limited to the
initial connection phase, whereby it can be neglected.
Random pilot sequence hopping is illustrated in Fig. 4
in the case of τ = K = 5. Note how the iden-
tity of the contaminator changes between time slots, as
opposed to a fixed pilot sequence schedule, where the
contaminator remains the same UE. Consequently, the
undesirable part of the pilot signal, i.e., the sum term
in (2), varies rapidly between time slots compared to
the variation caused by the mobility of a single contam-
inator in a fixed schedule. In fact, the impact of pilot
sequence hopping, from a contamination perspective, can
be viewed as a dramatic increase of the mobility of the
contaminator. This in turn leads to a lowered autocor-
relation, or decorrelation, in the contaminating signal,
which is the motivation behind performing pilot sequence
hopping.
The level of decorrelation is related to the time between

two instances, where the same user acts as a contaminator.
We refer to this as the collision distance, and we denote it
as tkc for the kth user, see Fig. 4. Note that in the case of
a fixed pilot schedule, tkc = 1. The goal of pilot sequence
hopping is to maximize tkc , either in an expected sense or
maxmin sense, i.e., maximization of the minimum value.
The latter can be pursued through aminimal level of coor-
dination of pilot sequence schedules among neighboring
cells. However, this work is strictly restricted to a frame-
work with no inter-cell coordination; hence, we focus on
the expected value of tkc . If pilot sequence hopping is per-
formed at random and τ = K , then tkc follows a geometric
distribution, such that
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Fig. 3 Examples of mobility models

P
(
tkc = w

)
= (1 − p)w−1p, w = 1, 2, . . . ,∞

p = 1
K
, (3)

where P
(
tkc = w

)
is the probability that the collision dis-

tance is w and p is the probability of a given UE being
the next contaminator. We then have E

[
tkc

] = K , i.e., the
expected collision distance increases with the number of
users/pilots per cell, which follows intuition. Note that the
collision distance is a user-specific measure, which holds
for all potential contaminators in the system. Hence, the

analysis still holds when considering systems with more
than one neighboring cell.
The maximization of E

[
tkc

]
leads to a decorrelation of

the contaminating signals. The benefit of this is reaped
using appropriate filtering techniques. For this purpose,
we have chosen a modified version of the Kalman filter,
which is described next.

3.2 Modified Kalman filter
The problem of estimating a time-varying channel based
on pilot signals, also termed channel tracking, can be
solved using the Kalman filter [18]. The Kalman filtering

Fig. 4 An example of a random pilot schedule for the UE of interest and potential contaminators in a neighboring cell. Green boxes represent pilots,
which are orthogonal to the pilot from the UE of interest. Red boxes represent contamination and xi denotes a pilot sequence
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framework consists of a process equation and a measure-
ment equation. The process equation expresses how the
variable under estimation develops over time. We already
chose such a model in (1); however, Clarke’s model does
not fit the structure of the Kalman filter. As a result, we
choose an autoregressive (AR) model as an approximation
of the model in (1). An AR model is said to have order
d + 1 if it expresses the current and d previous values as a
function of the d + 1 previous values. As d increases, the
approximation of Clarke’s model is increasingly valid. In
our context, if we define hn = [

hn . . . hn−d
]T , the process

equation for the Kalman filter is expressed as

hn = Anhn−1 + vpn, (4)

An =
⎡

⎣
a1n . . . ad+1

n
Id 0d×1

⎤

⎦ , (5)

where Id is the d × d identity matrix, 0d×1 is a d × 1 vec-
tor of zeros, and vpn = [

vpn(1) . . . vpn(d + 1)
]T is the process

noise, which is zero mean circularly symmetric Gaussian
with covariance matrix QnId+1, where

Qn = γ 0
n −

d+1∑

j=1
ajnγ

j
n. (6)

Here, γ
j
n is the autocovariance of the channel coeffi-

cient at a lag of j time slots, and γ 0
n , i.e., channel power, is

assumed known. Since γ
j
n = γ

−j
n , we can find γ

j
n for j > 0

by solving the Yule-Walker equations
⎡

⎢⎢⎢
⎣

γ 1
n

γ 2
n
...

γ d+1
n

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

γ 0
n γ −1

n . . . γ −d
n

γ 1
n γ 0

n
. . .

...
...

. . . . . . γ −1
n

γ d
n . . . γ 1

n γ 0
n

⎤

⎥
⎥⎥⎥
⎦

×

⎡

⎢⎢⎢
⎣

a1n
a2n
...

ad+1
n

⎤

⎥⎥
⎥
⎦
. (7)

The corresponding measurement equation for the
Kalman filter is expressed based on (2) as follows:

yn = Xnhn + vmn , (8)

Xn =
⎡

⎢
⎣

xn(1) 0 . . . 0
...

... τ × d
...

xn(τ ) 0 . . . 0

⎤

⎥
⎦ , (9)

where vmn is the measurement noise, which is zero mean
circularly symmetric Gaussian with covariance matrix
σ 2
o Iτ +σ 2

c XnXH
n . Here, σ 2

o and σ 2
c are noise power and total

contamination power (average over time), respectively,
which are both assumed known.
In a conventional Kalman filter, An is assumed constant

and known. However, this cannot be assumed in our case;
thus, the varying elements, ajn, j = 1, . . . , d + 1, must be
tracked along with the channel coefficients. For this pur-
pose, we must modify the conventional Kalman filter to

include an AR model tracker. First, we state the conven-
tional Kalman filter [18] in our context, where the AR
coefficients are assumed known.

For all n :

en = yn − XnAn−1ĥn−1, (10)
Rn = XnPnXH

n + σ 2
o Iτ + σ 2

c XnXH
n , (11)

Kn = PnXH
n R

−1
n , (12)

ĥn = Anĥn−1 + Knen, (13)
Fn = Id+1 − KnXn, (14)

Pn+1 = AnFnPnAH
n + QId+1, (15)

where Iτ is the τ ×τ identity matrix and ĥn is the estimate
of hn.
For the tracking of the AR coefficients, an approach

similar to the one in [19] is taken. In [19], the inclusion
of a first-order AR coefficient tracker is presented for a
Kalman predictor, i.e., a filter with the purpose of predict-
ing the channel, hn, based on all observations until yn−1.
In this work, we extend this approach to higher order AR
models taking all observations until yn into account.
The approach is based on the principle of gradient

descent. The gradient, ∇n, with respect to An of the cost
function, the mean squared error (MSE), is derived and
used to adjustAn in the direction of decreasingMSE. Note
that this iterative numerical method is attractive since an
analytical minimization of the cost function is complex to
perform at every iteration. Furthermore, theminimization
may only be feasible under certain conditions. Gradient
descent is therefore a more robust and computationally
simple solution. The gradient of the MSE is

∇n(i, j) = ∂

∂An−1(i, j)
E

[|en|2
]

= −�
[(

qHn−1,i,jA
H
n−1X

H
n + ĥ

H
n−1�

H
i,jX

H
n

)
en

+ eHn
(
XnAn−1qn−1,i,j + Xn�i,jĥn−1

)]
,

�i,j = ∂An
∂An(i, j)

,

�i,j(k, �) =
{
1, if i = k and j = �,
0, elsewhere.

(16)

Here, qn,i,j = ∂ĥn
∂An(i,j) and is found by differentiating (13)

with respect to An(i, j), such that

qn,i,j = Fn
(
Anqn−1,i,j + �i,jĥn−1

)
+ Mn,i,jen. (17)

where Mn,i,j = ∂Kn
∂An(i,j) , which is found by differentiating

(12) with respect to An(i, j); hence,

Mn,i,j = FnSn,i,jXH
n R

−1
n . (18)
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We introduced Sn,i,j = ∂Pn
∂An(i,j) , which is a differentiation

of (15) with respect to An(i, j), giving us

Sn+1,i,j = �i,jFnPnAH
n + AnFnSn,i,jFH

n A
H
n

+ AnFnPn�
H
i,j + UnId+1

(19)

Finally, we have Un = ∂Qn
∂An(i,j) , which can be found ana-

lytically by solving for Qn in (6) and (7) and differentiating
with respect to An(i, j). Using∇n, we can then adjustAn as
follows:

An = An−1 − μ[∇n]+ν−ν , (20)

where μ is a parameter adjusting the convergence speed
and the brackets denote truncations. The truncation to
ν is for avoiding dramatic adjustments in situations with
a high slope. The need for this will be explained in
Section 5. In addition to the truncation, we enforce |zj| <

0.999, where zj are the roots of the polynomial zd+1 −
∑d+1

j=1 ajnzd+1−j. This ensures a stationary AR process.
We can now state the modified Kalman filtering algo-

rithm including an AR coefficient tracker:

For all n :

en = yn − XnAn−1ĥn−1,
Rn = XnPnXH

n + σ 2
o Iτ + σ 2

c XnXH
n ,

∇n(i, j) = −�
[(

qHn−1,i,jA
H
n−1X

H
n + ĥ

H
n−1�

H
i,jX

H
n

)
en

+ eHn
(
XnAn−1qn−1,i,j + Xn�i,jĥn−1

)]
,

An = An−1 − μ[∇n]+ν−ν ,
Kn = PnXH

n R
−1
n ,

ĥn = Anĥn−1 + Knen,
Mn,i,j = FnSn,i,jXH

n R
−1
n ,

qn,i,j = Fn
(
Anqn−1,i,j + �i,jĥn−1

)
+ Mn,i,jen,

Pn+1 = AnFnPnAH
n + QnId+1,

Sn+1,i,j = �i,jFnPnAH
n + AnFnSn,i,jFH

n A
H
n

+ AnFnPn�
H
i,j + UnId+1.

(21)

In the following subsection, we derive the lower bound
on the MSE of an estimate of the channel coefficients.
It serves as a benchmark in the numerical evaluations in
Section 5.

4 Analysis
Initially, we present a simplified analysis of a toy exam-
ple, in order to help the understanding of the benefit from
pilot sequence hopping. Consider the ideal case of a con-
stant channel between BS and UE of interest and a single
contaminating neighboring cell. Noise is disregarded since

attention is on decontamination. Moreover, for this toy
example only, we assume an infinite amount of orthogonal
pilot sequences and an infinite amount of users per cell,
such that τ = K = ∞ and E

[
tkc

] = ∞, which means con-
taminating signals in all time slots are independent. For
simplicity, we assume xHn xn = 1, such that the estimate in
time slot n is

ĥn = h + h′
n, (22)

where h′
n is the channel of the contaminator in time slot

n. We define the MSE of this estimate as E
[(

h − ĥn
)2]

.

Now, consider a new estimator, ¯̂hn, which is the average of
all estimates until time slot n. Hence, we have

¯̂hn = h + 1
n

n∑

i=1
h′
i. (23)

In this case, the error in the estimate is solely com-
posed of the average of the contaminating signals,
which are independent and have variance σ 2

c . Hence,

E

[(
h − ¯̂hn

)2] = σ 2
c

n+σ 2
c
, if prior knowledge on h is a stan-

dard Gaussian. If pilot sequence hopping had not been
performed, the MSE had remained σ 2

c
1+σ 2

c
since h′

n would
be constant. Note that the MSE goes towards zero for
n → ∞, when pilot sequence hopping is performed. This
is a result of the fact that a pilot signal in the infinite past
carries as much information about the current channel
as the most recent pilot signal, in the ideal example of a
constant channel. Note also that for finite τ (and K ) and
thereby finite E

[
tkc

]
, the MSE is lower bounded by σ 2

c
K+σ 2

c
since only a maximum of K independent estimates can be
achieved. In a more practical example with a time-varying
channel, the amount of information carried in a pilot sig-
nal decays over time. We can account for this in a more
elaborate Bayesian analysis, which is described next.

4.1 Bayesian analysis
Given a set of observations, Y n = [

y1, . . . , yn
]
, we are

interested in deriving the distribution, in particular the
variance, of the resulting estimate, ĥn, of the most recent
channel coefficient, hn. Here, yk = xkhk + vmk , which
through least squares estimation gives us a scalar obser-
vation ylsk = (

xHk xk
)−1 xHk yk = hk + vmk , where vmk is the

residual scalar noise, which is zero mean Gaussian with
variance σ 2

o
τ

+ σ 2
c . We define ylsn =

[
yls1 , . . . , ylsn

]
and can

then express the conditional probability density function
of the vector of channel coefficients hn = [h1, . . . , hn]T
using Bayes’ theorem as

f
(
hn|ylsn

)
= f

(
ylsn |hn

)
f (hn)

f
(
ylsn

) , (24)
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where f (hn) is a multivariate Gaussian with mean vec-
tor 0 and covariance matrix �, where �i,j = γ

i−j
n =

B0
(
2π fdts

(
i − j

))
and B0 is the zeroth-order Bessel func-

tion of the first kind. Furthermore, f
(
ylsn |hn

)
is a multivari-

ate Gaussian with mean vector hn and covariance matrix
C =

(
σ 2
o
τ

+ σ 2
c

)
In. It is well known that combining a

Gaussian prior and a Gaussian likelihood provides a Gaus-
sian posterior. This Gaussian posterior can be expressed
as

f
(
hn|ylsn

)
= 1√

(2π)n|V |e
− (hn−μh)

HV−1(hn−μh)
2 , (25)

V−1 = C−1 + �−1, (26)

μh = V�−1ylsn . (27)

Equations (26) and (27) provide the optimal coefficients
of a Bayesian filter and the corresponding covariance.
The lower right corner element of V is then the vari-
ance of a causal filter estimating the most recent channel
coefficient, hn.
With Eqs. (25) to (27) as a starting point, we can analyze

filters based on different assumptions on the underlying
model of the channel.
The proposed Kalman filter with a first-order AR model

is based on a Markovian assumption, where a channel
coefficient only depends on the previous channel coeffi-
cient, see Fig. 5. Under this assumption, the posterior of
hn simplifies to the following recursive expression:

f
(
hn|ylsn

)
=

f
(
ylsn |hn

)
f
(
hn|ylsn−1

)

f
(
ylsn |ylsn−1

) , (28)

f
(
hn|ylsn−1

)
=

∫

hn−1
f (hn|hn−1)f

(
hn−1|ylsn−1

)
dhn−1,

(29)

where f
(
ho|ylso

) = f (ho) since no observation is made
at time zero, and f (ho) is a standard Gaussian, such that
the recursion is terminated. From the applied model,
we have 0

f
(
ylsn |hn

)
= 1

√
2π

(
σ 2
o
τ

+ σ 2
c

) e

−
(
ylsn−hn

)2

2
(

σ2o
τ +σ2c

)

, (30)

f (hn|hn−1) = 1
√
2π(1 − a2)

e−
(hn−ahn−1)

2

2(1−a2) , (31)

f
(
hn−1|ylsn−1

)
= 1

√
2πσ 2

hn−1

e
−

(
hn−1−μhn−1

)2

2σ2hn−1 , (32)

where a = B0
(
2π fdts

)
. The integral in (29) can be viewed

as the scaling factor in a product of the involved Gaussian
distributions, such that

f
(
hn|ylsn−1

)
= 1

√
2π

(
a2σ 2

hn−1
+ 1 − a2

) e
−

(
hn−aμhn−1

)2

2
(
a2σ2hn−1

+1−a2
)

,

(33)

where a change of variable has been performed in (32)
from hn−1 to ahn−1 in order to conform to its represen-
tation in (31). We can then express the scaled product of
Gaussian distributions in (28) as follows:

f
(
hn|ylsn

)
= 1

√
2πσ 2

hn

e
− (hn−μhn)

2

2σ2hn , (34)

μhn =
(
a2σ 2

hn−1
+ 1 − a2

)
ylsn +

(
σ 2
o
τ

+ σ 2
c

)
aμhn−1

a2σ 2
hn−1

+ 1 − a2 + σ 2
o
τ

+ σ 2
c

,

(35)

σ 2
hn =

(
a2σ 2

hn−1
+ 1 − a2

) (
σ 2
o
τ

+ σ 2
c

)

a2σ 2
hn−1

+ 1 − a2 + σ 2
o
τ

+ σ 2
c

. (36)

We are primarily interested in the evolution of the vari-
ance and thereby theMSE of the estimator. Figure 6 shows
evaluations of (36) for different levels of mobility, ts =
0.5 ms, σ 2

c = 0.6, σ 2
o = 0.2, and τ = 96. It shows how the

Fig. 5 Bayesian network representing the Markovian assumption applied in the Kalman filter
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Fig. 6MSE as a function of the number of pilot signals included in the filter. The results hold for the assumption of a first-order AR model and an
optimal filter

MSE converges faster for higher mobilities since the infor-
mation in past pilot signals decays faster. Note that these
results act as a lower bound for the modified Kalman fil-
ter since we in (36) assume perfect knowledge of the AR
coefficient, a. Any estimation error in the AR coefficient
tracker will lead to increased MSE.
In the following subsection, we derive the lower bound

on the MSE for arbitrary AR model order. Along with the
bound for first-order AR models in (36), it serves as a
benchmark in the numerical evaluations in Section 5.

4.2 Cramer-Rao lower bound
The Cramer-Rao lower bound (CRLB) [20] expresses the
lower bound on the error covariance of any unbiased esti-
mator based on a set of observations. In our context,
the observations are Y = [

y1, . . . , yn
]
, and the esti-

mation error covariance is E
[(

ĥ − h
) (

ĥ − h
)H]

, where

h = [h1, . . . , hn]T . We follow a Bayesian framework, well
suited to the tracking of time-varying parameters; thus, we
employ the Bayesian CRLB. Having chosen Clarke’s model
as the channel model, it follows that the a priori distribu-
tion of the parameter h is well approximated as a Gaussian
distribution. Furthermore, we adapt a compact formula-
tion for the case of complex parameters (see [20, p. 529]).
The complex Bayesian CRLB is expressed as

E

[(
ĥ − h

) (
ĥ − h

)H]
≥ J−1, (37)

where J is the Fisher information matrix. The matrix
inequality means that E

[(
ĥ − h

) (
ĥ − h

)H]
− J−1 is

positive semidefinite. The Fisher information matrix is
given by

J ij = E

[
−∂2log fY ,h (Y ,h)

∂hi∂hj

]
, i, j = 1, . . . , n. (38)

Here, fY ,h (Y ,h) is the joint probability density function
of the observations and the channel coefficients. This can
be expressed as

fY ,h (Y ,h) = fY |h (Y |h) fh(h), (39)
fh(h) = c1 exp

(−hH�−1h
)
, (40)

fY |h(Y |h)=
n∏

i=1
c2 exp

(
−(

yi−hixi
)H C−1 (

yi − hixi
))

,

(41)

where c1 and c2 are constants with independence from Y
and h, �−1 is the inverse of the n × n covariance matrix
of h, and C−1 is the inverse of the τ × τ observation error

Table 1 Simulation parameters

Parameter Value Description

σ 2
o 0.2 Noise variance

L 7 Number of cells

K 96 Users per cell

τ 96 Pilot length

μ 10−5 Convergence speed

ν 100 Derivative cap

fc 1.8 GHz Carrier frequency

Ns 20 Number of scatterers

ts 0.5 ms Time between pilots

ĥ0 0 Initial estimate

q0 0 Initial differentiated estimate

P1 0 Initial error covariance

S1 0 Initial differentiated error covariance
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Fig. 7MSE as a function of the autoregressive model coefficient and the speed of the UE. The coefficient with minimumMSE is marked with a white
curve

covariance matrix. The CRLB at time n is the correspond-
ing submatrix of J−1; it gives a lower bound on channel
estimation at time n accounting for the past observations.
By introducing the n × n matrix �, where

�i,j = E

[
− ∂2log fY |h(Y |h)

∂hi∂hj

]
and combining (38) through

(41), we get

J = � + �−1,

�i,j =
{
xHi C

−1xi, if i = j,
0, if i �= j,

C = σ 2
o Iτ + σ 2

c xnx
H
n ,

�i,j = B0
(
2π fdts

(
i − j

))
,

(42)

Working with the inverse of � may cause numerical
problems at low mobility, where � is near-singular. This
can be avoided by utilizing the matrix inversion lemma.
We thus have

J−1 = � − � (In ⊗ xi)H
((
In ⊗ C−1)−1

+ (In ⊗ xi) � (In ⊗ xi)H
)−1

(In ⊗ xi) �,
(43)

where ⊗ denotes the Kronecker product. Furthermore,
expression (43) allows a continuity with the case of no
mobility for which the channel estimate of time n is the
result of an average (see Eq. (23)).

Fig. 8 Comparison between the proposed scheme and conventional solutions with respect to mean squared error as a function of mobility. The M1
mobility model is applied, and SIR is 2.2 dB
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Fig. 9 AR model coefficients, found by solving (7), as a function of the speed of the UE

5 Numerical results
The proposed scheme has been simulated and compared
to the conventional solutions of least squares (LS) esti-
mation and minimum mean squared error (MMSE) esti-
mation based on a single time slot. The expressions for
the LS and MMSE estimators are given in (44) and (45),
respectively. An overview of the parameters, which are
common for all simulations, is given in Table 1. The choice
of μ is based on experiments showing that this is a good
compromise between convergence speed and limitation
of noise-induced variance in the estimate. Throughout all
simulations, we assume that contaminating signals have
zero autocorrelation between time slots, which is justified
by the choice of K = 96, such that E

[
tkc

] = 96. All sim-
ulation results are averages of 100 iterations of a scenario
as specified by the mobility models in Section 2.2.

ĥlsn = (
xHn xn

)−1 xHn yn, (44)

ĥmmse
n = xHn

(
xnxHn + σ 2

n Iτ + σ 2
c xnx

H
n

)−1 yn. (45)

Initially, results are shown for the conventional Kalman
filter expressed in Eqs. (10) through (15), using a first-
order AR model as the process equation. MSE, defined

as E
[(

hn − ĥn
)2]

, as a function of the user mobility, v,

and the AR coefficient, a1n, is shown in Fig. 7. From this
figure, it is evident how important it is to have an accurate
AR model, which suits the current mobility of the UE of
interest. This stresses the need for the modification of the
Kalman filter, as proposed in Section 3.2. Moreover, it is
seen that the derivative of the MSE with respect to a1n may

Fig. 10 Comparison between AR models with different orders with respect to mean squared error as a function of the signal-to-interference ratio



Sørensen and Carvalho EURASIP Journal onWireless Communications and Networking  (2017) 2017:156 Page 12 of 15

Fig. 11 Comparison between the proposed scheme and conventional solutions with respect to mean squared error as a function of the
signal-to-interference ratio

attain very high values at high a1n. This can cause undesir-
ably high variance in the estimate of the optimal a1n, which
motivates the use of a derivative cap, ν.
Figure 8 shows a comparison of the proposed estimator,

the LS estimator, and the MMSE estimator, with respect
to MSE as a function of the speed of the UE using mobil-
ity model M1. The simulations apply T1 = 100 s and
σ 2
c = 0.6. For the proposed estimator, AR models of first,

second, and third order are included. In all three cases, the
initial AR model coefficients are numerically optimized
through a parameter sweep. The results were a10 = 0.3
for the first-order model, a10 = 0.8 and a20 = 0.2 for
the second-order model, and a10 = 0.7, a20 = −0.3, and
a30 = −0.2 for the third-order model. The results show
that a significant performance improvement is achieved

at medium and high levels of mobility when increasing
the AR model order from one to two. Further increas-
ing to a third-order model yields a more mixed result. At
medium mobility, a significant gain is achieved, whereas
at higher mobility, the performances of the second- and
third-order models are quite close and take turns in being
the better. At low mobility, no gain is achieved when
increasing the order of the AR model. At first glance,
this may be surprising, but when looking at the coef-
ficients found from solving the Yule-Walker equations,
see Fig. 9, it is evident that low mobility presents a par-
ticularly challenging tracking task for a third-order AR
model, due to large dynamics. Compared to the conven-
tional methods of LS and MMSE, the proposed scheme
offers a performance in an entirely different league. The

Fig. 12 Example of a simulation with a third-order AR model and the M2 mobility model. SIR is 2.2 dB
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Fig. 13 Example of a simulation with a third-order AR model and the M3 mobility model. SIR is 2.2 dB

gain decreases as speed increases, but only at unusu-
ally high speeds is the gain insignificant. There is still
a gap to the Cramer-Rao lower bound, although much
of it has been closed when comparing to the conven-
tional methods.When comparing to the bound associated
with a first-order AR model, as expressed in (36), it is
seen that the lack of performance gain at high mobility is
largely explained by the choice of process model for the
Kalman filter.
A different perspective is given in Fig. 10. Here, theMSE

is plotted as a function of the signal-to-interference ratio
(SIR), at typical mobility levels as defined by 3GPP [21].
Again, it is seen how increasing the order of the ARmodel
is an advantage at medium and high mobility, but not at
lower speeds. Figure 10 shows that this holds in a wide
range of SIR.

From the same perspective, Fig. 11 shows a comparison
of the conventional methods and the proposed scheme
with a third-order model. Here, it is seen that the
performance improvement is achieved in the entire SIR
range. Decreasing the SIR is particularly penalizing the LS
method, whileMMSE and the proposedmethod are better
able to cope with the increased interference.
Next, we look at the more sophisticated mobility mod-

els, M2 and M3. For M2, we use parameters T2,1 =
T2,3 = 100 s, T2,2 = 800 s, δ2,+ = 2.6 m/s2, δ2,− =
−2.6 m/s2, and v2 = 300 km/h. An example of a sim-
ulation with a single sequence of channel realizations is
shown in Fig. 12. For M3, we use parameters T3 = 1000 s,
v = [05 . . . 120] km/h, p+ = p− = 0.00025, δ3,+ =
2.5 m/s2, and δ3,− = −4 m/s2. Figure 13 shows a simula-
tion example with this mobility model. It is seen that with

Fig. 14 Comparison of different AR model orders when using M2 and M3 mobility models
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Fig. 15 The achievable downlink rate as a function of the number of antennas,M, at the BS

both mobility models, the AR parameter tracker is able to
adjust to the varying speed and thereby adapt to the vary-
ing amount of information available in past pilot signals.
In general, we expect to see a low MSE when the speed
is low and vice versa. The figures confirm that this is in
fact achieved. Figure 14 shows a comparison of the differ-
ent AR model orders. It shows that increasing the order
also provides performance enhancements in a wide range
of SIR when considering M2 and M3.
Finally, we evaluate how the improvements of the chan-

nel estimates translate into increased achievable uplink
and dowlink rates in a TDD massive MIMO system with
M antennas at the BS. The achievable rates of such a sys-
tem were derived in [22, p. 4]. We apply the proposed
scheme for each individual channel coefficient in the
system and evaluate the resulting achievable uplink and

downlink rates. Furthermore, we evaluate the achievable
rates in a system with perfect CSI at the BS and a system
with CSI achieved with a conventional MMSE estimator
at the BS. These act as upper and lower bounds, respec-
tively, to the proposed scheme. The results are shown in
Figs. 15 (downlink) and 16 (uplink). It is evident that the
proposed scheme provides a significant improvement in
achievable rates compared to the system with MMSE esti-
mation. At low mobility, it even comes fairly close to a
system with perfect CSI. Although the improvements are
more visible at very high and impractical values ofM, sig-
nificant relative improvements are also achieved at lower
values of M. As an example, the achievable uplink and
downlink rates are increased by 42 and 46%, respectively,
for M = 128, compared to MMSE estimation. Another
important observation is that the system with MMSE

Fig. 16 The achievable uplink rate as a function of the number of antennas,M, at the BS
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estimation converges to a limit as M goes to infinity. The
limit is found as log2

(
1 + 1

σ 2
c

)
and is the well-known

limitation caused by pilot contamination. As in the case
of perfect CSI, the proposed scheme is able to break
this limit, which demonstrates its ability to mitigate pilot
contamination.

6 Conclusions
We have presented a solution to pilot contamination in
channel estimation, which is a major challenge in TDD
massive MIMO systems. It is based on a combination of
a pilot sequence hopping scheme and a modified Kalman
filter. The pilot sequence hopping scheme involves ran-
dom shuffling of the assigned pilot sequences within a
cell, which ensures decorrelation in the time dimension of
the contaminating signals. This is essential since it enables
subsequent filtering to suppress the contamination. For
this filtering, the Kalman filter has been chosen, due to
its ability to track a time-varying state. However, a con-
ventional Kalman filter is not able to adapt to changes in
the underlying model, which is necessary when users have
unknown and varying levels of mobility. For this problem,
we have presented a modified Kalman filter, which can
adapt the underlying model based on a minimization of
the mean squared error.
Numerical evaluations show that the proposed solution

can suppress a significant portion of the contamination at
low and moderate levels of mobility. Even at high mobil-
ity, i.e., car speeds of 100 to 130 km/h, the proposed
solution can provide a noticeable gain over conventional
estimation methods.
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