14 research outputs found

    Remedial brushless AC operation of fault-tolerant doubly salient permanent-magnet motor drives

    Get PDF
    The doubly salient permanent-magnet (DSPM) machine is a new class of stator-PM brushless machines, which inherently offers the fault-tolerant feature. In this paper, a new operation strategy is proposed and implemented for fault-tolerant DSPM motor drives. The key is to operate the DSPM motor drive in a remedial brushless ac (BLAC) mode under the open-circuit fault condition, while operating in the conventional brushless dc mode under normal condition. Both cosimulation and experimental results confirm that the proposed remedial BLAC operation can maintain the average torque, reduce the torque ripple, and retain the self-starting capability under the open-circuit fault. © 2006 IEEE.published_or_final_versio

    Stator-flux-oriented fault-tolerant control of flux-switching permanent-magnet motors

    Get PDF
    Flux-switching permanent-magnet (FSPM) motors are a newly developed brushless AC (BLAC) machine having magnets in the stator. This paper proposes and implements a stator-flux-oriented (SFO) control strategy for fault-tolerant operation of FSPM motors. The key is to set the q-axis component of armature current invariant before and after the fault. In the rotor reference frame, by building a SFO-dq equation of the FSPM motor, the fault-tolerant control strategy is deduced. The finite-element method and the field-circuit cosimulation method are employed to analyze the performance of the FSPM motor drive. Finally, a dSPACE-based FSPM motor drive platform is built for experimental verification. Both the steady-state and dynamic performances at normal and fault-tolerant operations are tested, confirming that the proposed fault-tolerant operation can keep the output torque invariant while offering good dynamic performance during fault. © 2011 IEEE.published_or_final_versionThe IEEE International Magnetic Conference (INTERMAG2011), Taipei, Taiwan, 25-29 April 2011. In IEEE Transactions on Magnetics, 2011, v. 47 n. 10, p. 4191-419

    Phase Open Fault Tolerant Control of High Reliability Doubly-Salient Wound-Field Machine

    Get PDF
    Doubly Salient Wound-Field Machine (DSWFM) can be employed on aeronautics starter-generator because it has good performance on both power generation and starting. To improve the system reliability, a three-phase four bridge legs converter which has fault tolerant capability is proposed to solve one phase open-circuit fault problem of the DSWFM. And the advantage of the proposed converter to the full-bridge converter fault-tolerant mode is analyzed. With the study of DSWFM theory and torque equation, a constant torque fault-tolerant strategy is proposed to keep the performance and reduce the torque ripple. The drive system after fault identification can be reconstructed by the proposed method, and the machine performance can recover quickly. Simulations confirm the feasibility of the proposed fault tolerant system

    Remedial injected harmonic current operation of redundant flux-switching permanent magnet motor drives

    Get PDF
    published_or_final_versio

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Overview of Stator Slot-opening Permanent Magnet Machines

    Get PDF
    In the past few decades, the stator permanent magnet (PM) machines have attracted much research attention because of their reliable rotor structure, high power density, wide speed range, and strong fault-tolerant ability. Among the recently proposed stator PM machine topologies, the stator slot-opening PM (SS-PM) machines are becoming increasingly popular because of their higher stator space utilization and robust rotor structure. According to the SS-PM magnetization direction, the SS-PM machines can be classified into three categories, namely, the tangentially magnetized stator slot-opening PM (TMSS-PM) machines, the radially magnetized stator slot-opening PM (RMSS-PM) machines, and the compound magnetized stator slot-opening PM (CMSS-PM) machines. The associated working principle and electromagnetic performance of different SS-PM machines can be diverse. Therefore, this paper gives an overview of SS-PM machines in terms of machine design, working principle, and machine performance. A qualitative performance evaluation and comparative study of SS-PM machines are presented, and the future challenges and potential opportunities in the SS-PM machine design are discussed

    Design and Analysis of Linear Fault-Tolerant Permanent-Magnet Vernier Machines

    Get PDF

    Influence of stator/rotor pole combination on electromagnetic performance in all/alternate poles wound partitioned stator doubly salient permanent magnet machines.

    Get PDF
    In this paper, the influence of stator/rotor pole combinations on electromagnetic performance in partitioned stator (PS) doubly salient (DS) permanent magnet (PM) (DSPM) (PS-DSPM) machines is investigated, in terms of open-circuit flux-linkage, back-EMF, cogging torque, on-load torque characteristics. Analytical deduction shows that by modifying the all poles wound winding to alternate poles wound winding in the 12/11- and 12/13 stator/rotor pole PS-DSPM machines, the fundamental distribution factor and hence the fundamental winding factor can be enhanced, resulting higher torque density. Consequently, among the 12-stator-pole all and alternate poles wound PS-DSPM machines, the 10- and 11-rotor-pole machines exhibit the highest torque density, respectively. However, the 12/10- and 12/14-pole alternate poles wound PS-DSPM machines suffer from higher phase back-EMF even harmonics, resulting larger torque ripple. The 12/10- and 12/11-pole all and alternate poles wound prototypes are built and tested to verify the FE analysis

    Flux-adjustable permanent magnet machines in traction applications

    Get PDF
    This paper overviews the recent advances in flux-adjustable permanent magnet (PM) machines for traction applications. The flux-adjustable PM machines benefit from the synergies of the high torque density and high efficiency in conventional PM machines as well as the controllable air-gap field in wound-field machines, which are attractive for the traction applications requiring enhanced capabilities of speed regulation and uncontrolled voltage mitigation. In general, three solutions have been presented, namely the hybrid excited (HE), the mechanically regulated (MR), and the variable flux memory (VFM) machines. Numerous innovations were proposed on these topics during the last two decades, while each machine topology has its own merits and demerits. The purpose of this paper is to review the development history and trend of the flux-adjustable PM machines, with particular reference to their topologies, working mechanism, and electromagnetic performance

    Investigation of Doubly Salient Stator Slot Permanent Magnet Machines

    Get PDF
    Variable flux reluctance machines (VFRMs), which have both field and armature windings on the stator, are novel types of magnetless machines with a simple and robust mechanical structure and a low manufacturing cost. However, their electromagnetic performance, especially their overloading capability, is limited by high magnetic saturation due to field excitation. Therefore, circumferentially magnetized permanent magnets (PMs) are placed in the stator slot openings in order to (a) alleviate the magnetic saturation and (b) increase the torque capability based on VFRM, which leads to novel machine topologies, i.e. hybrid excited stator slot PM machines (HESSPMs) and stator slot PM machines (SSPMs). The effects of PMs in the stator slot openings are comparatively investigated for VFRMs, HESSPMs and SSPMs together with the discussion of the unique fault tolerant feature in stator slot PM machines. Furthermore, the overlapping winding (OW) layouts with coil pitches of 3 stator slot pitches are proposed in the three machine topologies in order to enhance the torque density. The electromagnetic performance of each machine topology, with OW and non-overlapping winding (NOW) and various feasible stator slot/rotor pole number combinations, is comparatively studied by finite element method. It shows that the proposed OW layout can improve the average torque of VFRM, HESSPM and SSPM with the optimal stator/rotor pole number combination. The proposed OW layout will be more competitive for the machines with a longer axial length and reduced end-effect. Prototype machines for these three machine topologies with both NOW and OW are built and tested to validate the finite element predicted results
    corecore