106 research outputs found

    Effect of Input Noise and Output Node Stochastic on Wang's k WTA

    Get PDF

    Neuromorphic Online Learning for Spatiotemporal Patterns with a Forward-only Timeline

    Full text link
    Spiking neural networks (SNNs) are bio-plausible computing models with high energy efficiency. The temporal dynamics of neurons and synapses enable them to detect temporal patterns and generate sequences. While Backpropagation Through Time (BPTT) is traditionally used to train SNNs, it is not suitable for online learning of embedded applications due to its high computation and memory cost as well as extended latency. Previous works have proposed online learning algorithms, but they often utilize highly simplified spiking neuron models without synaptic dynamics and reset feedback, resulting in subpar performance. In this work, we present Spatiotemporal Online Learning for Synaptic Adaptation (SOLSA), specifically designed for online learning of SNNs composed of Leaky Integrate and Fire (LIF) neurons with exponentially decayed synapses and soft reset. The algorithm not only learns the synaptic weight but also adapts the temporal filters associated to the synapses. Compared to the BPTT algorithm, SOLSA has much lower memory requirement and achieves a more balanced temporal workload distribution. Moreover, SOLSA incorporates enhancement techniques such as scheduled weight update, early stop training and adaptive synapse filter, which speed up the convergence and enhance the learning performance. When compared to other non-BPTT based SNN learning, SOLSA demonstrates an average learning accuracy improvement of 14.2%. Furthermore, compared to BPTT, SOLSA achieves a 5% higher average learning accuracy with a 72% reduction in memory cost.Comment: 9 pages,8 figure

    Memristor-Based HTM Spatial Pooler with On-Device Learning for Pattern Recognition

    Get PDF
    This article investigates hardware implementation of hierarchical temporal memory (HTM), a brain-inspired machine learning algorithm that mimics the key functions of the neocortex and is applicable to many machine learning tasks. Spatial pooler (SP) is one of the main parts of HTM, designed to learn the spatial information and obtain the sparse distributed representations (SDRs) of input patterns. The other part is temporal memory (TM) which aims to learn the temporal information of inputs. The memristor, which is an appropriate synapse emulator for neuromorphic systems, can be used as the synapse in SP and TM circuits. In this article, a memristor-based SP (MSP) circuit structure is designed to accelerate the execution of the SP algorithm. The presented MSP has properties of modeling both the synaptic permanence and the synaptic connection state within a single synapse, and on-device and parallel learning. Simulation results of statistic metrics and classification tasks on several real-world datasets substantiate the validity of MSP

    Learning of chunking sequences in cognition and behavior

    Get PDF
    We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson's disease and Schizophrenia

    Semantic learning in autonomously active recurrent neural networks

    Full text link
    The human brain is autonomously active, being characterized by a self-sustained neural activity which would be present even in the absence of external sensory stimuli. Here we study the interrelation between the self-sustained activity in autonomously active recurrent neural nets and external sensory stimuli. There is no a priori semantical relation between the influx of external stimuli and the patterns generated internally by the autonomous and ongoing brain dynamics. The question then arises when and how are semantic correlations between internal and external dynamical processes learned and built up? We study this problem within the paradigm of transient state dynamics for the neural activity in recurrent neural nets, i.e. for an autonomous neural activity characterized by an infinite time-series of transiently stable attractor states. We propose that external stimuli will be relevant during the sensitive periods, {\it viz} the transition period between one transient state and the subsequent semi-stable attractor. A diffusive learning signal is generated unsupervised whenever the stimulus influences the internal dynamics qualitatively. For testing we have presented to the model system stimuli corresponding to the bars and stripes problem. We found that the system performs a non-linear independent component analysis on its own, being continuously and autonomously active. This emergent cognitive capability results here from a general principle for the neural dynamics, the competition between neural ensembles.Comment: Journal of Algorithms in Cognition, Informatics and Logic, special issue on `Perspectives and Challenges for Recurrent Neural Networks', in pres

    A Biologically Based Spatio-Temporal Framework for the Matching and Encoding of Data

    Get PDF
    This thesis presents a neuron model and framework for the architecture and interaction of neurons in order to accomplish two tasks, 1) data matching, and 2) the storage and retrieval of information. The tasks are approached from the basis of biologically inspired spiking neural network theory. The fundamental aspects of this model are extracted and implemented in conjunction with the designed framework, resulting in a model that takes advantage of the spatio-temporal nature of neurons to match, store, and retrieve data. The driving features are the rest, or refractory, period of the neurons, and the finite, positively sloped post-synaptic responses. When superposed these responses may increase a neuron’s potential past the threshold, causing the neuron to fire. A framework, the Competitive Classifying Unit, composed of groups of dynamic threshold neurons is used to match binary strings, with and without noise present. In the absence of noise, results show an increase in accuracy with decreasing standard deviation in the randomness of the neuron threshold. With noise present, the framework retains its ability to identify the specified sequence. To realize the second task, an additional architectural structure for storing and retrieving data based on the spike time arrival is presented. Training pulse arrival times in conjunction with firings caused by upstream neurons result in synapse weight adjustments. Ultimately, the data is storable and retrievable due to the synapse connections developed between neurons in a network, synapse connections that are either strengthened or pared away during training. Due to the precise timing requirements of system, a clock is required to measure the passage of time. This necessity which implies periodicity, synchronicity is supported by the number of upstream neuron firings required to cause a downstream neuron to fire, and all of this is supported by homeostasis constraints. Finally, the limits for data storage capacity (i.e.: the number and length of binary strings) is determined based on number of neurons in a neuron cluster

    Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence

    Full text link
    This paper presents a new methodology to alleviate the fundamental trade-off between accuracy and latency in spiking neural networks (SNNs). The approach involves decoding confidence information over time from the SNN outputs and using it to develop a decision-making agent that can dynamically determine when to terminate each inference. The proposed method, Dynamic Confidence, provides several significant benefits to SNNs. 1. It can effectively optimize latency dynamically at runtime, setting it apart from many existing low-latency SNN algorithms. Our experiments on CIFAR-10 and ImageNet datasets have demonstrated an average 40% speedup across eight different settings after applying Dynamic Confidence. 2. The decision-making agent in Dynamic Confidence is straightforward to construct and highly robust in parameter space, making it extremely easy to implement. 3. The proposed method enables visualizing the potential of any given SNN, which sets a target for current SNNs to approach. For instance, if an SNN can terminate at the most appropriate time point for each input sample, a ResNet-50 SNN can achieve an accuracy as high as 82.47% on ImageNet within just 4.71 time steps on average. Unlocking the potential of SNNs needs a highly-reliable decision-making agent to be constructed and fed with a high-quality estimation of ground truth. In this regard, Dynamic Confidence represents a meaningful step toward realizing the potential of SNNs
    corecore