
A BIOLOGICALLY BASED SPATIO-TEMPORAL FRAMEWORK FOR THE 

MATCHING AND ENCODING OF DATA 

A Thesis 

by 

MICAELA AMANDA LANDIVAR 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Chair of Committee,  David C. Hyland 

Committee Members, Srinivas R. Vadali 

Harry A. Hogan 

Head of Department, Rodney Bowersox 

August 2015 

Major Subject: Aerospace Engineering 

Copyright 2015 Micaela Amanda Landivar 



 

ii 

 

ABSTRACT 

 

This thesis presents a neuron model and framework for the architecture and 

interaction of neurons in order to accomplish two tasks, 1) data matching, and 2) the 

storage and retrieval of information. The tasks are approached from the basis of 

biologically inspired spiking neural network theory. The fundamental aspects of this 

model are extracted and implemented in conjunction with the designed framework, 

resulting in a model that takes advantage of the spatio-temporal nature of neurons to 

match, store, and retrieve data. The driving features are the rest, or refractory, period of 

the neurons, and the finite, positively sloped post-synaptic responses. When superposed 

these responses may increase a neuron’s potential past the threshold, causing the neuron 

to fire. A framework, the Competitive Classifying Unit, composed of groups of dynamic 

threshold neurons is used to match binary strings, with and without noise present. In the 

absence of noise, results show an increase in accuracy with decreasing standard 

deviation in the randomness of the neuron threshold. With noise present, the framework 

retains its ability to identify the specified sequence.  

To realize the second task, an additional architectural structure for storing and 

retrieving data based on the spike time arrival is presented. Training pulse arrival times 

in conjunction with firings caused by upstream neurons result in synapse weight 

adjustments. Ultimately, the data is storable and retrievable due to the synapse 

connections developed between neurons in a network, synapse connections that are 

either strengthened or pared away during training. Due to the precise timing 



 

iii 

 

requirements of system, a clock is required to measure the passage of time. This 

necessity which implies periodicity, synchronicity is supported by the number of 

upstream neuron firings required to cause a downstream neuron to fire, and all of this is 

supported by homeostasis constraints. Finally, the limits for data storage capacity (i.e.: 

the number and length of binary strings) is determined based on number of neurons in a 

neuron cluster. 



 

iv 

 

DEDICATION 

 

This work is dedicated to my God, my Dad, who has always been there for me 

and believed in me even when I didn’t. This is a beginning and I hope to do better with 

each task He gives me. 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I thank my advisor, Dr. Hyland for patiently teaching and explaining, for his 

contagious energy, for the joy he takes in tackling a problem, and for his support during 

my course work. I thank my committee members, Dr. Vadali, and Dr. Hogan, for their 

support and effort in helping me complete this work. 

Thanks also go to my friends and colleagues and the aerospace department 

faculty and staff for their guidance and support, particularly, Dr. Bowersox, Karen 

Knabe, and Dr. Haisler. 

And I thank my family and friends for being kind, supportive, and all around 

awesome. 



vi 

TABLE OF CONTENTS 

Page 

ABSTRACT ................................................................................................................. ii 

DEDICATION.............................................................................................................. iv 

ACKNOWLEDGEMENTS ........................................................................................... v 

TABLE OF CONTENTS .............................................................................................. vi 

LIST OF FIGURES .................................................................................................... viii 

1. INTRODUCTION AND LITERATURE REVIEW ................................................ 1

1.1 Rate Based Artificial Neural Networks ........................................................... 6 
1.1.1 Artificial Neuron Structure ......................................................................... 8 

1.1.2 Artificial Neural Network Architecture ....................................................... 9 
1.1.3 Backpropagation Learning Algorithm ....................................................... 10 

1.1.4 Training .................................................................................................... 11 
1.2 Correlation of Simple Shapes Using Gradient Descent for Error 

Minimization ........................................................................................................... 11 
1.2.1 2D Mapping Equation ............................................................................... 16 

1.2.2 Implementation ......................................................................................... 19 
1.2.3 Results ...................................................................................................... 20 

1.3 Spiking Neuron Models ................................................................................ 21 
1.4 Spike Response Model ................................................................................. 26 

1.5 Post-Synaptic Response ................................................................................ 28 

2. THE COMPETITIVE CLASSIFYING UNIT ...................................................... 30

2.1 The Shift Determiner Framework ................................................................. 31 
2.2 Shift Determiner Blocks ............................................................................... 32 

2.3 Shift Determiner Firing Condition ................................................................ 35 
2.4 The Associator Structure .............................................................................. 37 

2.5 Case Study: Sensitivity to Non-concurrently Arriving Impulses.................... 42 

3. SENSITIVITY ANALYSIS OF RANDOMLY VARYING THRESHOLD

VALUES ..................................................................................................................... 47 

3.1 Experiment with Randomly Varying Thresholds without Noise .................... 48 

3.2 Experiment with Randomly Varying Thresholds with Noise ......................... 51 



vii 

4. NETWORK THEORY ......................................................................................... 53

4.1 Periodic Spike Timing .................................................................................. 54 

4.2 Dynamic Model of Spike Times ................................................................... 57 
4.3 Synchronous and Periodic Spike Times ........................................................ 59 

4.4 Implications of Homeostasis ......................................................................... 63 
4.5 Learning Binary Sequences .......................................................................... 71 

5. SYNCHRONOUS AND PERIODIC FIRING NEURON CLUSTER ................... 78

5.1 Simulation Specifications and Constraints .................................................... 80 

5.2 Training Simulation 1 ................................................................................... 82 
5.3 Test Simulation 1 ......................................................................................... 86 

5.4 Analysis ....................................................................................................... 88 
5.5 Training Simulation 2 ................................................................................... 88 

5.6 Testing Simulation ....................................................................................... 93 
5.7 Analysis 2 .................................................................................................... 95 

6. FAST LEARNING NETWORKS ........................................................................ 97

6.1 Network Algorithm ...................................................................................... 97 

6.2 Network Demonstration ............................................................................. 110 

7. CONCLUSION .................................................................................................. 117

REFERENCES .......................................................................................................... 120 

APPENDIX ............................................................................................................... 125 



viii 

LIST OF FIGURES 

Page 

Figure 1.1. Diagram of the artificial neuron structure. ................................................. 8 

Figure 1.2. Diagram of ANN feedforward architecture. .............................................. 9 

Figure 1.3. Depiction of an image divided into operable segments for neuron 

operations. .................................................................................................... 12 

Figure 1.4. Depiction of synapse mappings for an identity transformation. ............... 13 

Figure 1.5. Depiction of synapse mappings for a +1 translational transformation. ..... 14 

Figure 1.6. Depiction of synapse mappings for +3 translational transformation. ........ 15 

Figure 1.7. A transformed image- Left: an example of a known ideal, 𝑰 and Right: 

the scene, 𝑪, to be matched. .......................................................................... 16 

Figure 1.8. Steps to transform and image- Left to right: Ideal, dilation, rotation, and 

translation of the original ideal. ..................................................................... 17 

Figure 1.9. Input (Left) and Output Scenes (Right) of the gradient descent method 

for simple shape matching. ............................................................................ 20 

Figure 1.10. Definition of pre-synaptic and post-synaptic response (PSR). .............. 22 

Figure 1.11. Gerstner and Kistler’s [19] portrayal of the PSR due to incoming 

pulses. ........................................................................................................... 23 

Figure 1.12. Mass and Bishop’s portrayal of the integrate and fire model [20]. ....... 25 

Figure 1.13. Associator version of the PSR and superposition to reach the 

threshold. ...................................................................................................... 29 

Figure 2.1. Depiction of the +1 Shift Determiner. ..................................................... 30 

Figure 2.2. Demonstration of the superposition of postsynaptic responses required 

to reach threshold. ......................................................................................... 32 

Figure 2.3. Equating the -1 Shift Determiner setup to the visual representation of a 

shift block. .................................................................................................... 33 

Figure 2.4. Depiction of the Shift Blocks required for the -1 shift example with 10 

stimulus data points....................................................................................... 34 



ix 

Figure 2.5. Comparison of the shifts +1 Shift Determiner (Left) and the -1 Shift 

Determiner (Right). ....................................................................................... 35 

Figure 2.6. Visual example: more incoming pulses lead to faster firing. .................... 36 

Figure 2.7. Depiction of inhibition wiring among the Shift Block output neurons. .... 38 

Figure 2.8. Compact depiction of the Shift Blocks, inhibitory connections, and final 

output. .......................................................................................................... 39 

Figure 2.9. Depiction of the Shift Blocks that make up the Associator. ..................... 40 

Figure 2.10. Depiction of the Competitive Classifying Unit matching an external 

stimulus to the correct ideal........................................................................... 41 

Figure 2.11. The Shift Determiner. .......................................................................... 42 

Figure 2.12. Depiction of a single comparator neuron receiving ideal and stimulus 

inputs. ........................................................................................................... 43 

Figure 2.13. Depiction of the response of a comparator neuron to two concurrently 

arriving pulses............................................................................................... 44 

Figure 2.14. The effect of increasingly non-concurrent pulse arrival times on 

neuron potential. ........................................................................................... 45 

Figure 3.1. The percentage of accurately selected winners v standard deviation in 

randomly varying firing threshold values where each data point is 100 trials. 49 

Figure 3.2. Average winning threshold versus standard deviation in average firing 

threshold. ...................................................................................................... 50 

Figure 3.3. Presentation of stimulus and ideal patterns selected by the Shift 

Determiner with increasing noise in the input. ............................................... 52 

Figure 4.1. Depiction of neuron cluster with all-to-all connections, a prompt signal 

input to an arbitrary neuron (in this case neuron 1), and a training signal 

input to an arbitrary neuron (in this case neuron 8). ....................................... 71 

Figure 4.2. Learning Window, 𝑭𝒕𝒋 − 𝒕𝒊, presents experimentally obtained 

information concerning neuron pair interaction. ............................................ 75 

Figure 5.1. Neuron 8 cluster connection structure. .................................................... 78 

Figure 5.2. Left: Initial state of the N8 cluster at the first time step, and Right: N8 

cluster at the second time step. ...................................................................... 82 



 

x 

 

Figure 5.3. N8 cluster at time step three where N2 induced the firing of N8. ............. 83 

Figure 5.4. Final firings of the N8 cluster: firings of N4-N7. ..................................... 84 

Figure 5.5. Initial state of the N8 cluster at the first time step (Left), and N8 cluster 

at the second time step (Right). ..................................................................... 86 

Figure 5.6. Final firings of the N8 cluster: firings of N3-N7, where N2 induced the 

firing of N8 during the third time step. .......................................................... 87 

Figure 5.7. Initial state of the N8 cluster at the first time step (Left), and N8 cluster 

at the second time step (Right). ..................................................................... 88 

Figure 5.8. N3 firing and N8 induced by N2. ............................................................ 89 

Figure 5.9. N4 firing. ................................................................................................ 90 

Figure 5.10. N5 firing and N8 firing due to N4 (Left), and N6 firing and N8 firing 

due to N5 (Right). ......................................................................................... 91 

Figure 5.11. N7 firing (Left), and N8 firing induced by N7 (Right). ........................ 92 

Figure 5.12. Initial state of the N8 cluster at the first time step (Left, and N8 

cluster at the second time step (Right). .......................................................... 93 

Figure 5.13. N3 firing and N8 firing due to N2 (Left), and N4 firing (Right). .......... 94 

Figure 5.14. N5 firing and N8 firing due to N4 (Left), and N6 firing and N8 firing 

due to N5 (Right). ......................................................................................... 94 

Figure 5.15. N7 firing (Left), and N8 firing (Right). ................................................ 95 

Figure 6.1. Depiction of cluster events during time step 1A: neuron 1 and neuron 8 

fire. ............................................................................................................... 99 

Figure 6.2. Depiction of cluster events during time step 1B: weight adjustment of 

the synapse between neuron 2 and 1. ........................................................... 100 

Figure 6.3. Depiction of cluster events during time step 1C: connections to 

neuron 1 are trimmed except for those along the perimeter of the cluster. .... 101 

Figure 6.4. Depiction of cluster events during time step 2A: neuron 2 fires and the 

connection to neuron 8 is reinforced. ........................................................... 102 

Figure 6.5. Depiction of cluster events during time step 2B: the connection between 

neuron 2 and 3 is reinforced. ....................................................................... 103 



xi 

Figure 6.6. Depiction of cluster events during time step 2C: connections leading to 

neuron 2 are trimmed except for those between it and the last-to-fire and 

next-to-last-to-fire neurons. ......................................................................... 104 

Figure 6.7. Depiction of cluster events during time step 3A-C: the connection to 

neuron 8 is made ineffective according to the training pattern, the 

connection to neuron 4 is strengthened, and all other connections to neuron 

3 are made ineffective. ................................................................................ 105 

Figure 6.8. Depiction of cluster events during time step 4AC: neuron 4’s 

connection to neuron 8 is strengthened according to the training pattern, the 

connection to neuron 5 is strengthened, and all other connections to neuron 

4 are made ineffective. ................................................................................ 106 

Figure 6.9. Depiction of cluster events during time step 7A-C: neuron 7’s 

connection to neuron 8 is made ineffective according to the training pattern, 

the respective connections to neuron 6 and 7 are strengthened, and all other 

connections to neuron 5-7 are made ineffective. .......................................... 107 

Figure 6.10. Depiction of the cluster’s capability to learn an entirely new 

sequence: the blue lines indicate the connections formed by the additional 

sequence learned using a different neuron as the training neuron. ................ 109 

Figure 6.11. Representation of the FLA connections at 𝒕 = 𝟏: neuron 1 has fired, 

the connections to all but neuron 6 and neuron 10 have been made 

ineffective. .................................................................................................. 111 

Figure 6.12. Representation of the FLA connections at 𝒕 = 𝟐: neuron 7 has fired, 

the connections to all but neurons 5 and 8 and coming from 1, are 

ineffective. .................................................................................................. 113 

Figure 6.13. Depiction of the shape of the self-structuring network at the point 

represented previously ................................................................................ 114 

Figure 6.14. Representation of the FLA when training is completed: the spatial 

connections between the final neuron and other neurons is shown in column 

10, and the temporal sequence generated by the network is shown in the last 

row.............................................................................................................. 115 

Figure 6.15. Depiction of the final shape of the self-structuring network after 

training. ...................................................................................................... 116 

Figure A-1 Comparison of input, a square, (Left) and output (Right) of the gradient 

descent program. ......................................................................................... 125 



 

xii 

 

Figure A-2 Graphical representation of the error (Left) and the participation 

coefficient values for each test shape (Right)............................................... 126 

Figure A-3 Comparison of input, an oval, (Left) and output (Right) of the gradient 

descent program. ......................................................................................... 126 

Figure A-4 Graphical representation of the error (Left) and the participation 

coefficient values for each test shape (Right) .............................................. 127 

Figure A-5 Comparison of input, a triangle, (Left) and output (Right) of the 

gradient descent program ............................................................................ 127 

Figure A-6 Graphical representation of the error (Left) and the participation 

coefficient values for each shape (Right) ..................................................... 128 



 

1 

 

1. INTRODUCTION AND LITERATURE REVIEW 

 

The human brain is an astounding organ. It is capable of storing approximately 

2.5 petabytes according to current estimates, regulating involuntary body functions, 

processing, analyzing, and storing sensory stimuli, and gauging appropriate responses to 

the stimuli, to just scratch the surface of its ability. And that is exactly what humans 

have done in our study of its functionality: simply scratched the surface. Despite the 

copious amounts of experimentation and simulation that have been done beginning in 

earnest in the late 1800s and taking off in the mid-twentieth century, there is still much 

that is not understood [1]. This is unfortunate because the full appropriation of the 

brain’s abilities would open up entirely new horizons for data storage, analysis and data 

processing, artificial intelligence, etc. Only taking into account the brain’s ability to 

assimilate data from an information rich environment, encode (or compress) the data into 

“brain language,” then decode the data, exemplifies that there is potential for more 

efficient methods of data handling. In addition, the brain’s rapid data correlation ability 

could be applied to noise removal techniques in image processing, to the autonomous 

control of vehicles and obstacle avoidance, and to object identification, data mining and 

fast decision-making. 

The problem of understanding brain functionality—for the purpose of utilizing 

its capabilities—has been attacked in various ways and in multiple disciplines [2]-[4]. 

The field has been aided not only by neurobiology but psychology. Psychologist’s 

discoveries about cognitive development, “learning, forgetting, and recognition” have 



 

2 

 

contributed valuable pieces of information to determine how the brain performs [1]. In 

this process of discovery, the modelers come from two distinct categories which [1] 

designate as biologically focused and system focused, indicating the importance placed 

on the biological accuracy of the model as opposed to the functional capability of the 

model to learn.  

As neurons are the basic unit of the brain, a great deal of research has gone into 

determining how they work and a plethora of neuron models have been developed to 

describe their behavior and also to determine effective connective architectures for the 

neurons. The most widely known and widespread neuron models, until recently, have 

been spatially dependent models based on the average firing rate of neurons [5]. The 

philosophical reasoning behind rate based models held that all the necessary information 

passed from downstream neuron to upstream neuron(s) was found in the average firing 

rate of that neuron. Hence, the information to be stored is solely spatially dependent. 

(There is no dependence on exactly when a neuron fires with respect to its neighbors.) 

While technology based on average firing rate models exists and is utilized, the great 

expectations of the creators and proponents were not met [6], [1]. 

After a lull, a recent renewal of interest in the study of neurons and neural 

networks came about due to the idea that input data is actually encoded in the 

spatiotemporal pattern of the spikes emitted by a given neuron as opposed to the rate. 

These new models are called spiking or pulsed neural network models (SNN or PNN), 

and they range from extremely detailed—capturing the changes in the individual ions 



 

3 

 

that determine the neuron potential—to functional—describing only the “high level” 

events of neuronal activity.  

This research presents a framework to solve correlation (or matching) problems 

using a competitive neuron firing structure and a framework for learning or storing 

patterns. While attempting to devise a mechanism capable of mimicking the recognition 

capabilities of the brain, I began with the investigation of models within the “second 

generation” models of artificial neural networks. These are models based on the average 

firing rate of artificial neurons. Second generation models are coupled with some form 

of training, or error minimization, algorithm the most well-known of which is 

backpropagation.  

The human brain is capable of perceiving objects (i.e.: sound, images) in the 

surrounding environment and recalling similar or matching stimuli extremely quickly. 

However, these response rates are not possible in second generation models because the 

models require the passage of time over which the number of incoming pulses will be 

averaged. In addition to the above obstacle, there are the pitfalls of backpropagation 

implementation as well as the implementation of other training algorithms (i.e.: offline 

error minimization) and the uncertainty of using gradient descent itself.  

Early in this study, I attempted to replicate the recognition capability of the 

visual portion of the brain under such transformations as rotation, translation, and 

dilation, using gradient descent for error minimization to solve the problem of matching 

basic shapes (i.e.: squares, circles, triangles). Results showed variable accuracy for this 



 

4 

 

approach. The process is extremely sensitive to the speed of descent. Local minimums 

and maximums were often selected instead of global values.  

Thus, the search carried on to an investigation of spiking neural networks, a 

neural network model that incorporates temporal information, not just spatially 

transmitted information, into the working models of brain activity. These models which 

store information in temporal patterns, or firing frequencies, are more in line with 

experimental data than second generation models as they can accommodate the higher 

reaction rates observed in humans. In selecting this model as a launching pad, I then 

continued to determine the major feature of this model: the finite slope of the post-

synaptic pulse. These topics are covered in the first section. 

Taking advantage of the finite nature of the postsynaptic pulse led to the 

construction of a competitive setup of neurons, the Competitive Classifying Unit (CCU), 

capable of matching a stimulus to a stored “memory pattern.” The base unit of the CCU 

is the Shift Block, composed of two competing teams of neurons that detect the 

correlation between an input and ideal pattern. The Associator is composed of Shift 

Blocks, where the various blocks race against time to determine which incremental shift 

produces the greatest correlation between the ideal pattern and the input. Several 

Associator Units are interconnected to form the CCU. For simplicity, the CCU is 

presented here as operating on one dimensional binary sequences. A performance 

analysis of the CCU’s functionality was carried out by finding an ideal, “memory 

pattern,” within a given stimulus. The experiment was performed with and without noise 



 

5 

 

present. This subject is covered in the second section and the experiments are presented 

in section three. 

In order for temporal calculations to be carried out, a way to measure the passage 

of time, a “clock,” is necessary. This led to an investigation of homeostasis. Homeostasis 

refers to the neuron’s natural drive toward a stable state with respect to the limited 

chemicals used in signal transmissions. It is shown that homeostasis favors periodic and 

synchronous firing in interconnected neurons, or neuron clusters. The periodic aspect of 

neuron interaction, coupled with a specific neuron interconnection pattern, provides the 

necessary clock. This theory is the subject of section four. 

A simulation was performed, implementing a simplified form of the all-to-all 

connected network with homeostasis constraints, periodicity and synchrony resulting in 

a neuron cluster with the ability to “learn” simple patterns, repeat, and maintain these 

patterns in “memory.” The learning capability of a simplified, sparse network like that 

presented in the theory is demonstrated in section five. 

While the previous section presented a limited version of a fast learning network 

where certain connections were “hardwired,” the subsequent section provides the 

algorithm for realizing a spike-time dependent, self-constructing network. The network 

starts with random connection strengths and builds up the connections as needed to learn 

the given training sequence. A MatLab simulation demonstrating the networks fast 

learning, the connections between neurons and the final output is presented. The 

explanation and step by step operation for the fast learning network are given in section 



 

6 

 

six. Finally, section seven, the conclusion, summarizes results, contains concluding 

remarks, and areas for further research. 

 

1.1 Rate Based Artificial Neural Networks 

The ability of artificial neural networks to classify inputs has made them a 

common tool for object recognition, identification of problem areas in patient X-Ray 

images, classification problems, such as handwriting recognition, even for odor 

identification, financial forecasting, etc. [6]-[9].  There are other options besides ANNs, 

such as feature-based tools, which break down image information into local and global 

features. A local feature is a property of a single pixel or small patch, while global 

features cover regions of an image. Both are represented by a descriptor vector. The 

local feature areas are located by a region of interest detector, such as the Harris-Affine 

invariant region, Harris point based detectors, or the difference of Gaussian detector. 

Several local features—i.e., color, gradient, intensity, etc.—together form a descriptor. 

Alternatively, global features take into account large pixel regions or the entire image in 

order to form the desired representation of the significant image information [10]. The 

most commonly used region of interest descriptor algorithms are SIFT, SURF, and PCA. 

Feature-based methods can be used in conjunction with artificial neural networks, as in 

the stacked generalization neural network of Lin-Cheng, to perform more accurate object 

recognition [11]. 

ANNs, on the other hand, can be used with any type of input, not just feature 

descriptors; however, more input parameters require a larger training set and longer 



 

7 

 

training and convergence times. The use of feature descriptors is one way to lessen the 

input space of the ANN, which is highly desirable for the above reasons.  

Some approaches to image analysis using ANNs are used in facial recognition 

techniques and include the use of low resolution images to locate the desired feature’s 

general region within the image, then using that location as input to attempt to match the 

feature to one in memory [6]. Dividing the image into superpixels or raster scanning 

before inputting to the ANN are other methods useful for matching an input to a replica 

stored in a library while simultaneously reducing the computational costs. 

The first artificial math model of a single biological neuron using binary 

threshold functions was developed by McCulloch and Pitts in the 1940s [1]. Over the 

next thirty years came the integration of the optimal weight adjustment algorithms 

(learning algorithms), multilayer networks were developed, and new activation functions 

were implemented to replace the simple binary threshold functions [1]. 

The evolution of the field led to the realization of the three building blocks of any 

ANN: the structure of the most basic unit (the artificial neuron), the standard layout of 

the connections between each of the artificial neurons (the network architecture), and the 

weight adjustment algorithm (learning algorithms). 

  



 

8 

 

1.1.1 Artificial Neuron Structure 

 

 

 

Figure 1.1. Diagram of the artificial neuron structure. 

  

 

The artificial neuron (AN) structure is composed of the same features in any type 

of ANN, though there are multiple options for types of features that may be selected. For 

example, as illustrated in Figure 1.1 above, every AN takes in inputs, 𝑖𝑗. Each input is 

multiplied by its particular weight coefficient, 𝑤𝑗. Next, in most ANNs, each product is 

summed to a single value, 𝑦𝑘 , within the neuron of interest (NOI). Then, the sum is input 

to the activation function, the output of which is the AN’s output. There are many 

different types of activation functions from which to choose, but the sigmoid function is 

a well-known option [12]. 

  



 

9 

 

1.1.2 Artificial Neural Network Architecture 

 

 

 

Figure 1.2. Diagram of ANN feedforward architecture. 

 

 

There are many options for network architecture, but we will only look at the 

most commonly used architecture: the feedforward network. As the name suggests, 

information is fed forward from each preceding layer only to each subsequent layer, as 

shown in Figure 1.2. This is opposed to other architectures, such as fully connected 

networks, or generic layered networks. Fully connected networks connect each neuron to 

every other neuron and generic layered networks allow connections that skip the layer 

immediately following it or have intra-layer connections, both of which do not appear in 

the feedforward architecture.  



 

10 

 

1.1.3 Backpropagation Learning Algorithm 

Lastly, we will examine the backpropagation learning scheme. There are many 

other learning algorithms a few of which are additive momentum, self-adaptive learning 

rate, resilient backpropagation, quasi-Newton, conjugate gradient backpropagation, 

Bayesian regulation backpropagation, etc. [13]. The most commonly used learning 

algorithm is backpropagation [14]. As mentioned previously, backpropagation makes 

use of the gradient descent: weights are adjusted such that the error between the 

“correct” output, 𝑐, and the network’s calculated output, 𝑜, is minimized [15]. Different 

error functions may be used, such as a simple vector difference or a norm-based function 

of the difference, such as the mean squared error,  

 𝐽 =
1

2
(𝑐 − 𝑜)2. 

(1.1)  

As the error is a function of the network output and the output is a function of the 

weights, the change in weights required to drive the error to a minimum can be 

calculated as a function of the “correct” output, the actual output, and the derivative of 

the activation function [15]. The change in weights for each preceding layer can then be 

calculated or “back propagated” to the previous layer, resulting in the first change in 

weight equation of the form 

 ∆𝑤 = 𝛼(𝑐 − 𝑜)𝑓′(𝑜) 
(1.2)  

where 𝛼 is a proportionality constant, often referred to as the “learning rate” and 𝑓′(𝑜) is 

the derivative of the activation function as a function of the network output. The change 



 

11 

 

in weights is used to adjust the weights. This process is iterated until the weights 

converge, indicating the network has learned the “correct” value [15]. 

 

1.1.4 Training 

Once the neurons have been defined, the connection, architecture type, and 

learning algorithm chosen, the network is iteratively trained in such a way as to provide 

for the desired amount of flexibility in its functionality. Overtraining results in a network 

with little capacity for generalization—its answer space will only contain exact or near 

exact matches of the training inputs. Conversely, the answer space for an undertrained 

network will contain many spurious results. Hence, the network must be trained to a 

point within a range between undertraining and overtraining [16]. 

 

1.2 Correlation of Simple Shapes Using Gradient Descent for Error 

Minimization 

The theoretical basis for the following assessment of gradient descent and 

ultimately the backpropagation algorithm is the idea that neurons can be thought of as 

applying transformation equations to the data they receive. For example, let us take a 

picture of a simple shape—a rectangle—and divide that surface into small segments 

representing the areas over which a neuron will operate. (Each rectangle represents the 

portion of the image operated on by a single neuron.) 



 

12 

 

 

Figure 1.3. Depiction of an image divided into operable segments for neuron 

operations. 

 

 

By forming specific connections (synapses) between neurons, we can perform 

transformations on an image. Firstly, we can represent the same image, meaning no real 

transformation has occurred as in Figure 1.4. 



 

13 

 

 

Figure 1.4. Depiction of synapse mappings for an identity transformation. 

 

 

Neural networks allow for the maintenance of existing synapses while adding 

more synapses that can perform different transformations, as in Figure 1.5. 



 

14 

 

 

Figure 1.5. Depiction of synapse mappings for a +1 translational transformation. 

 

 

In the above figure, the previous connections exist but the active synapses 

transform the original rectangle (right) one segment up (left). In the next figure, the same 

concept is portrayed but for a +3 translation. 

 



 

15 

 

 

Figure 1.6. Depiction of synapse mappings for +3 translational transformation. 

 

 

What follows is a mathematical interpretation of the above conceptual model. In 

order to test the effectiveness of the gradient descent algorithm—ultimately with the 

intent to test the backpropagation algorithm itself—an experiment was devised to 

incrementally adjust the parameters governing the translation, rotation, and dilation of 

simple, perceived 2D shapes such that the difference between the input perceived shape 



 

16 

 

and an “ideal” shape stored in memory was minimized. In other words, the gradient 

descent was used to find the parameter values that caused two shapes to be matched. 

What follows is the theory formulated to set up the experiment, succeeded by the 

results of a program implemented to test the theory. Coordinate frames were set to 

describe the translation, rotation, and dilation leading to the 2D equation specifying the 

mapping from the original shape to the modified shape. Finally, the parameters—for the 

x and y coordinates—were adjusted such that the 2D mean squared error function was 

minimized. 

 

1.2.1 2D Mapping Equation 

 

 

 

Figure 1.7. A transformed image- Left: an example of a known ideal, 𝑰 and 

Right: the scene, 𝑪, to be matched. 

 

 

The algorithm for mapping one shape, or “scene,” to another shape, or “ideal,” 

begins with the transformation equations in Table I-1 below. The parameters 𝛼 and 𝛽 

determine the extent and direction of dilation of the known ideal shape, 𝐼, for the x-



 

17 

 

coordinates and y-coordinates, respectively. After dilation, the subsequent equations first 

rotate the x and y values then translate them as shown below, leading to the transformed 

output, 𝑂. The output, 𝑂, is then compared with the scene, C, the error is calculated to 

enable the adjustment of the parameters to minimize the error. 

 

Dilation 𝑥1 = 𝛼𝑥 𝑦1 = 𝛽𝑦 

Rotation 𝑥2 = 𝑥1𝑐𝑜𝑠𝜃 + 𝑦1𝑠𝑖𝑛𝜃 𝑦2 = 𝑦1𝑐𝑜𝑠𝜃 − 𝑥1𝑠𝑖𝑛𝜃 

Translation 𝑥3 = 𝑥2 + 𝑑𝑥 𝑦3 = 𝑦2 + 𝑑𝑦  

Table 1.1. Equations for the dilation, rotation, and translation of the ideal image 

stored in memory which will be transformed to match the perceived scene. 

 

 

The synapse mappings from the ideal image to the final image are worked upon 

by the transformation equations to create the desired change. The figure below 

demonstrates dilation, rotation, and translation. 

 

 

Figure 1.8. Steps to transform and image- Left to right: Ideal, dilation, rotation, 

and translation of the original ideal. 

 



 

18 

 

The equations in Table 1.1 may be written as a matrix function, 

 [
𝑥3
𝑦3
] = [

𝑑𝑥
𝑑𝑦
] + [

𝛼cos(𝜃) 𝛽sin(𝜃)
−𝛼sin(𝜃) 𝛽cos(𝜃)

] [
𝑥
𝑦]. (1.3)  

Similarly, we can define 𝑆 as the transformation function used to take the ideal to the 

output, 𝑂, yielding, 

 𝑂 = 𝑆(𝑑𝑥 + 𝛼 cos(𝜃) 𝑥 + 𝛽 sin(𝜃) 𝑦, 𝑑𝑦 − 𝛼 sin(𝜃) 𝑥 + 𝛽 cos(𝜃) 𝑦). (1.4)  

Taking the mean squared error,  

 𝐽 =
1

2
(𝑂 − 𝐼)2 

(1.5)  

as the error function to be minimized, where 𝐼 is the ideal. After taking partial 

derivatives of the error function with respect to the parameters, and discretizing the 

results we are left with the evolution of those parameters over time as shown. 

 
𝑑

𝑑𝑡

[
 
 
 
 
𝑑𝑥
𝑑𝑦
𝛼
𝛽
𝜃 ]
 
 
 
 

= −𝜇∑∑(𝑂 − 𝐼)

[
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑂

𝜕𝑥3
𝜕𝑂

𝜕𝑦3

[
𝜕𝑂

𝜕𝑥3

𝜕𝑂

𝜕𝑦3
] [
cos(𝜃)𝑥
−sin(𝜃)𝑥

]

[
𝜕𝑂

𝜕𝑥3

𝜕𝑂

𝜕𝑦3
] [
sin(𝜃) 𝑦

cos(𝜃) 𝑦
]

[
𝜕𝑂

𝜕𝑥3

𝜕𝑂

𝜕𝑦3
] [
𝑦3 − 𝑑𝑦
−𝑥3 − 𝑑𝑥

]
]
 
 
 
 
 
 
 
 
 
 
 

𝑦𝑥

 
(1.6)  

In the above equation, 𝜇 adjusts the fineness, or rate, of the increment of the 

shape characterization parameters. 

 

 



 

19 

 

1.2.2 Implementation 

A discrete form of these equations was programmed in MatLab. The first step 

was to minimize the error between each of the three ideal shapes and the scene, 

respectively. This was done by incrementing the above transformation parameters until 

the output converged. To further minimize the error, a composite of the three estimated 

shapes at the point of convergence were respectively compared to the scene. Error 

minimization was accomplished by adjusting the 𝜇 values controlling the participation 

coefficients—weights that determine how much each shape estimate contributes to the 

composite shape. Each participation coefficient’s 𝜇 value determines the rate of change 

in the weighting of each estimate shape. The option to add a specified amount of noise to 

the scene was included in the program. 

  



 

20 

 

1.2.3 Results 

 

 

 

Figure 1.9. Input (Left) and Output Scenes (Right) of the gradient descent 

method for simple shape matching.  

Note: Although these images appear 3D, all computations were performed on 2D 

shapes. MatLab’s 3D plot function generated these 3D images from 2D input to 

enable detection of miniscule differences not apparent using 2D plot. 

 

 

Without noise, the error between an input scene and its ideal could be as low as 

6%. However, during the experiments, it was found that a distinct set of participation 

constant 𝜇 values was required to avoid a local minima and acquire the global minimum 

for the error between a given scene and ideal. In other words, minimizing the error 

between a scene containing a square and an ideal would require discovering a different 

set of 𝜇 values then would be needed to minimize the error between a scene containing a 

circle and its ideal. Furthermore, these 𝜇 values were often mutually exclusive. The 

conclusion: the abundance of local minima for even simple shapes with noise makes a 

normal gradient descent method of reaching a global minimum impractical. See the 

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

Input scene

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

50

Output shape



 

21 

 

appendix for the results of additional shapes. These results illustrate how the firing rate 

model with backpropagation is unsuited for fast, reliable pattern recognition or image 

processing. 

 

1.3 Spiking Neuron Models 

One of the strongest arguments for spiking neural networks as opposed to 

average firing networks as better neuron models is human reaction time. In experiments, 

reaction time is too fast to allow for averaging pulses [17]. In an experiment to classify 

images into two groups, participants were able to complete the task within 400-500 

ms—200-300 ms of which are required for the act of pressing a button—leaving 200-

300 ms for the act of classification. Additionally, EEG signals demonstrated that the 

classification was performed in less than 200 ms. These experiments strongly indicate 

that the mean firing assumption, while it may be useful, is not an accurate description of 

brain activity. Not only are the neurons a more fitting model, as indicated above, but are 

a means for “representing time frequency, phase and other features” [18]. 

Because the spiking neural network model stores information in pulse/spike 

arrival times as opposed to being dependent purely on the mean rate at which pulses 

arrive, it is a more accurate model. In SNNs, the spike arrival times affect the 

downstream neuron’s chemical levels, and if a sufficient number of pulses arrive within 

a given timeframe, the downstream neuron’s response is to generate a pulse of its own.  

 

 



 

22 

 

 

Figure 1.10. Definition of pre-synaptic and post-synaptic response (PSR). 

 

 

Generally, the “downstream neuron’s response” is referred to simply as the post-

synaptic response, PSR, and the upstream neuron’s response is referred to as the pre-

synaptic response. The prevailing SNN theories often describe the PSR as finite 

sloped—usually an exponential function [19]. For example, in presenting the Spike 

Response Model, Gerstner and Kistler, [19], choose the PSR to be an exponential 

function, 휀, as shown in the following figure.  



 

23 

 

 

Figure 1.11. Gerstner and Kistler’s [19] portrayal of the PSR due to incoming 

pulses. 

 

 

In (A), only one of the two “upstream neurons,” or pre-synaptic neurons, 

generates a pulse, resulting in a single corresponding response in the “downstream 

neuron’s” potential, or post-synaptic response of the action potential [19]. In the SRM, 

the action potentials are mathematically modelled by Dirac deltas. Hence, in (B), both 



 

24 

 

presynaptic neurons generate APs leading to multiple post-synaptic responses to those 

arriving APs [19]. As the pre-synaptic neurons fire, the change induced in the post-

synaptic neuron potential is modelled by superposing the representative function of the 

PSP to incoming APs—an exponential function—until the total potential crosses a 

threshold value, causing the neuron to fire (C) [19]. An equation, again exponential, 

describing the evolution of the PSR over time is given in Maass and Bishop [20].  

Maass and Bishop go on to describe the same kind of PSR for other threshold 

models such as the Integrate and Fire Model. This model characterizes the ion flow 

through the neuron membrane as a circuit composed of a resistor in parallel with a 

capacitor as shown below [21]. Going a step further, Burkitt and Clark [22] stipulate that 

the slope should have a “max magnitude of order one,” but no reason or support is given 

for this assumption. 

 

 



 

25 

 

 

Figure 1.12. Mass and Bishop’s portrayal of the integrate and fire model [20]. 

 

 

Finally, Maas and Bishop [20] validate the SRM model and its assumptions, i.e.: 

finite sloped PSR feature of the model, by showing that it may be used to approximate 

the Hodgkin Huxley model—the main empirical model that was created based on data 

from a giant squid axon. 

In the each of these cases, no reason is given for the finite slope assumption. 

After more searching, it’s possible to discover that the finite slope of the SRM is based 

on a generalization of the experimental potential response of a neuron [23], [24].   

Given the incredible complexity of neurons, care should be taken to determine 

which features are crucial for integration into neuron models. A thorough screening of 

the features incorporated into neuron models will increase our understanding of the 

neuron itself as well as our ability to explore further with confidence in the firm 



 

26 

 

foundational understanding of the required assumptions and implications. As the finite 

slope assumption of these models has not been subjected to a simple thought experiment 

to test its concurrence with physics or logic, we will do so in the following pages. 

 

1.4 Spike Response Model 

Many models describing the biological function of neurons have been formulated 

[25]. Though the models vary, there are fundamental portions that recur in the various 

mathematical models. As seen in the Hodgkin-Huxley model [26], ion channel model 

[19], FitzHugh-Nagumo model [27], Izhikevich model [28], Integrate and Fire model 

[29], etc., our knowledge of neural networks is complex and detailed, but it remains to 

be determined which details are crucial to the performance of learning in pattern 

recognition.  

Below, is a very simple model presented by Gerstner and Kistler: the Spike 

Response Model, SRM0 [19] and [21]. This section contains a brief explanation of the 

SRM0, featuring a finite sloped PSR. Following that is a pulse response equation created 

to meet the simple needs of the Associator neurons of the Shift Determiner framework, 

which will be introduced later.  

According to the SRM0, at any given time, 𝑡, the following equation describes the 

voltage potential, 𝑢𝑖(𝑡), of a single neuron, 𝑖, with presynaptic neurons, 𝑗,  

 𝑢𝑖(𝑡) = 𝜂(𝑡 − �̂�𝑖) +∑𝑤𝑖𝑗
𝑗

∑𝜖0(𝑡 − 𝑡𝑗
(𝑓)
) +∫ 𝜅0(𝑠)𝐼

𝑒𝑥𝑡𝑑𝑠
∞

0
𝑡
𝑗
(𝑓)

. 
(1.7)  

The model dictates that neuron 𝑖 will fire when the following conditions are met 



 

27 

 

 𝑢𝑖(𝑡) = 𝜗  and  
𝑑𝑢𝑖(𝑡)

𝑑𝑡
> 0. 

(1.8)  

When the potential of the neuron has been raised by a sufficient number of 

presynaptic firings so that it is equal to the constant threshold value, 𝜗, and the slope of 

the potential is increasing, the neuron will fire. This time instant is referred to as 𝑡 =

𝑡𝑖
(𝑓)

. The latest firing time of a neuron is indicated by �̂�. 

In the voltage potential equation, the kernel 𝜂 describes the shape of the action 

potential, or spike, and the refractory period of neuron 𝑖. It is dependent on the last firing 

time of neuron 𝑖. 𝜖0 describes the shape of the response of neuron 𝑖 to pulses generated 

by upstream neurons and is dependent upon the most recent firing times, 𝑡𝑗
(𝑓)

, of 

presynaptic neurons, 𝑗. 𝜅0 describes the shape of those presynaptic pulses entering 

neuron 𝑖 during the refractory period. It depends on 𝑠, where 𝑠 is defined as 𝑡 − 𝑡𝑗
(𝑓)

. 

𝐼𝑒𝑥𝑡 refers to an externally applied stimulus, or input. Finally, 𝑤𝑖𝑗  is the coefficient 

denoting the strength of the connection between neuron 𝑖 and its presynaptic neurons. 

The SRM0 is a neuron model with the following assumptions distinguishing it 

from other models: that the entering pulses, are dependent solely on the firing time of the 

presynaptic neuron and not additionally dependent on the last firing time of neuron 𝑖. 

Below are possible explicit equations for the kernels 𝜂, 𝜖0 and 𝜅0: 

 𝜂(𝑡 − �̂�) = 𝛿(𝑡 − �̂�) − 𝜂0 exp (−
𝑡 − �̂�

𝜏𝑟𝑒𝑐𝑜𝑣
), (1.9)  

 
𝜖0(𝑡 − 𝑡𝑗

(𝑓)
) = 𝑡 exp (−

𝑡 − 𝑡𝑗
(𝑓)

𝜏𝐸
) (1.10)  



 

28 

 

 
𝜅0(𝑠) = 𝑡 exp (−

𝑡 − 𝑡𝑗
(𝑓)

𝜏𝑘
) (1.11)  

 

All above information is modified from Gerstner and Kistler. In Equations 1.10-

1.12,  𝜖0 and 𝜅0 were modified by replacing the constant before the exponential with the 

variable 𝑡. 𝛿 is the dirac delta.  

While the above kernels make up the SRM0, the complexity of these equations is 

not necessary to accomplish the specific goal to create a spike response model to show 

that a relevant feature of these models is the finite slope of the PSR. This will be 

demonstrated through the Associator framework which will be presented subsequently. 

 

1.5 Post-Synaptic Response 

As previously mentioned, the basic unit of the Competitive Classifying Unit is 

the Shift Determiner. Associators are composed of blocks of Shift Determiners that 

employ this competitive structure such that the higher the correlation between an ideal 

pattern and a stimulus the faster that correlation is identified as the correct match.  

The minimum components required to for the above described functionality of 

Shift Determiner neurons are: 1) an initially finite, nonzero, positively sloped ramp 

modeling the change due to incoming pulses, and 2) a refractory period, both of which 

may be modeled by triangular pulses. In particular, the linear behavior of the rising 

potential is based on the superposition of the triangular pulses representing the spikes, as 

shown in the following figure. These requirements are the final components that must be 

explained before the Shift Determiner can be explained in detail. 



 

29 

 

 

Figure 1.13. Associator version of the PSR and superposition to reach the 

threshold. 

 

 

Assuming that each post-synaptic response to an incoming AP has a max height 

of 𝛾 (the red curve in the above figure), a pulse half-width of 𝑤 ms, then the simple 

equation for a single post-synaptic response to an incoming spike is: 

 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑡) ≝ Λ(𝑡) = 𝛾 {
1 −

1

𝑤
|𝑡 − 𝑤|,0 ≤ 𝑡 ≤ 2𝑤

0,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1.12)  

When multiple post-synaptic responses are generated within the neuron of 

interest at the same time, they superpose, generating a higher neuron potential (the 

purple curve). Finally, if there are a sufficient number of incoming pulses, the responses 

will superpose so that the neuron’s threshold potential is reached (green curve). 

 



 

30 

 

2. THE COMPETITIVE CLASSIFYING UNIT 

 

 

 

Figure 2.1. Depiction of the +1 Shift Determiner. 

 

 

The goal of this analysis is a multilayered design which will find the best 

correlation between a presented stimulus and a remembered ideal pattern using the finite 

slope feature presented in the previous section. Because the neural architecture for 

recognizing 2D images is very complex, this explanation is confined to 1D strings of 

light and dark pixels. Similarly, only one remembered ideal pattern will be assumed. We 

describe the situation where the perceived string is only translated relative to the correct 

pattern in memory. Once this simple example is understood, the additions needed to 

extend to multiple remembered patterns and to 2D can be implemented. 



 

31 

 

2.1 The Shift Determiner Framework 

The +1 Shift Determiner, represented in the box above, is a framework for 

detecting the translation, or shift, of a stimulus relative to an “ideal” pattern in memory. 

The stimuli and remembered ideal are binary patterns. In Figure 2.1, the light ovals 

represent 1s and the dark ovals represent 0s. Thus, the external stimulus is composed of 

a zero and four contiguous ones followed by five contiguous zeroes. The ideal contains 

the same pattern of ones, but centered. 

At 𝑡 = 0, the stimulus data and the remembered ideal are sent, as spikes, to 

comparator neurons. These “neurons” are similar to spiking neural network neurons in 

that they have a firing threshold, however, they do not have the weight coefficients or 

algorithms that mimic learning.  

As shown in the figure above, each comparator neuron is wired to accept a pulse 

from the remembered ideal and from the external stimulus. In order to fire, the threshold 

of each comparator neuron must be reached. If a pulse has a max value of  𝛾, then the 

threshold value, 𝜗, for a comparator neuron is set to 2𝛾 to ensure that firing occurs when 

the highest correlation is found, as seen in the figure below. 



 

32 

 

 

Figure 2.2. Demonstration of the superposition of postsynaptic responses 

required to reach threshold. 

 

 

Thus, when the comparator neuron receives two pulses, the threshold will be 

reached and the neuron will fire. In the +1 shift example, only one comparator neuron 

receives a pulse from both the ideal and the stimulus, consequently, only that comparator 

neuron fires a pulse. The spikes from all comparator neurons are routed to the output 

node and summed as presynaptic input. The size of the total postsynaptic response of the 

output neuron is proportional to the correlation between the external stimulus and the 

remembered ideal. 

 

2.2 Shift Determiner Blocks 

Now, as we can see, the correlation between the stimulus and ideal can be 

increased by shifting the external stimulus down. If we look at the −1 shift in synapse 



 

33 

 

connections between the stimulus and the comparator neurons, we get the following 

representation: the Shift Determiner Block. 

 

 

 

Figure 2.3. Equating the -1 Shift Determiner setup to the visual representation of 

a shift block. 

 

 

The synapses between the stimulus and comparator neurons have been shifted 

down by two units, leading to a −1 positioning of the Shift Determiner. In the coming 

pages, we will symbolize the ±𝑛 Shift Determiner architecture by the block on the right.  

Continuing with the −1 shift example, we can easily see that while that shift has 

a high correlation, a −2 shift will yield the highest correlation. In this simple example, it 

is easy to find highest correlation shift, however as the complexity increases, we need to 

know how many shifts can be investigated in order to find the shift leading to the highest 



 

34 

 

correlation. The question is: how many Shift Determiner Blocks are needed to account 

for all possible translations in a given stimulus? 

 

 

 

Figure 2.4. Depiction of the Shift Blocks required for the -1 shift example with 10 

stimulus data points. 

 

 

If we have an external stimulus and an ideal both composed of 𝑘 values, then 

2𝑘 − 1 Shift Determiner Blocks will be enough to find the translation between the 

remembered ideal and the external stimulus. On the other hand, if the ideal is composed 

of 𝑚 units, then 𝑘 + 𝑚 − 1 will be enough to find the translation between the 

remembered ideal and the external stimulus. 



 

35 

 

If we look at the −1 Shift example, there are 10 stimulus data points. Thus, 

𝑘 = 10, meaning 19 Shift Determiner Blocks would be able to account for any shift 

between the ideal pattern and the stimulus. 

 

2.3 Shift Determiner Firing Condition 

 

 

 

Figure 2.5. Comparison of the shifts +1 Shift Determiner (Left) and the -1 Shift 

Determiner (Right). 

 

 

The final element of the ±𝑛 Shift Determiner Block that needs to be discussed is 

the firing condition of the block output neuron. Looking at the +1 and −1 Shift 

Determiner blocks, it would appear that setting a threshold for this neuron would 

presuppose something about the correlation between the ideal and the stimulus. 

For example, if the threshold is set to 2𝛾 as it is for the comparator neurons, then the 

underlying assumption would seem to be that there only need to be two points of 



 

36 

 

correlation between the ideal and the stimulus for firing to occur. However, due to the 

fact that the PSR has a finite, nonzero, positive slope, the more spikes that are 

superposed, the steeper the slope becomes, and the faster the threshold is reached. This 

concept is demonstrated in the two cases below. 

Assuming 𝛾 is a neuron’s potential response to a single pulse and 2𝛾 is the 

neuron’s threshold, then for case 1 shown in Figure 2.6, when the single post-synaptic 

responses are summed, the height of the resulting potential is 2𝛾. Note that in this case 

2𝛾 is reached at a time interval equal to half the width of the post-synaptic response. 

 

 

 

Figure 2.6. Visual example: more incoming pulses lead to faster firing. 



 

37 

 

In the second case, three post-synaptic responses are added, creating a potential 

that reaches the 2𝛾 threshold value at a time interval that is less than half the pulse 

width. So, the second case brought the neuron to the threshold value at an earlier time 

than in the first case. This means that the Shift Block that generates the most comparator 

neuron pulses will cause its block output neuron to fire before the output neurons of all 

the other Shift Blocks. Thus, the “winner” (most correlated shift block) is singled out 

through competition between shift blocks, and the block with the most correlations fires 

before all the other block output neurons. 

 

2.4 The Associator Structure 

Finally, we note that all the block output neurons are interconnected with 

inhibitory synaptic weights. When the “winner” block output neuron fires, its pulse 

inhibits the firing of all other output block neurons. Going back to our previous example 

to see how this applies, the first Shift Determiner Block to reach the threshold would be 

the −2 Shift Block. The block output neurons of all blocks are “wired,” for two-way 

communication, to the block output neurons of all other Shift Blocks, as shown in the 

next figure. 



 

38 

 

 

Figure 2.7. Depiction of inhibition wiring among the Shift Block output neurons. 

 

 

Thus, a pulse from the −2 Shift Block would reach all the other output neurons 

and inhibit them, so they do not fire. The full framework is depicted in the figure below 

by replacing the representations of the inter-block connections in the figure above with 

the double headed arrows and adding a final output node. The final output node receives 

the pulse of the block with highest correlation. 



 

39 

 

 

Figure 2.8. Compact depiction of the Shift Blocks, inhibitory connections, and 

final output. 

 

 

In order to facilitate the explanation of the next section, the above image will first 

be depicted compactly. Thus, the following figure shows the new representation of all 

the Shift Blocks, the inhibiting connections, and the final output node as a single module 

hereafter referred to as an Associator. 



 

40 

 

 

Figure 2.9. Depiction of the Shift Blocks that make up the Associator. 

 

 

The function of the Associator, starting from the basic unit, the Shift Determiner, 

has been established: competition between shift blocks, inhibitory connections between 

shift blocks, and the final output node receiving the “winning” pulse.  

The final piece that the Associator addresses is the assumption of a single 

remembered ideal. For simplification, the initial assumption was that only one ideal 

would be available. However, in order for this design to be of use, it needs to be capable 

of “remembering” various ideals and distinguishing which remembered ideal has the 



 

41 

 

highest correlation with the external stimulus. We will now address multiple ideals, or 

the Competitive Classifying Unit (CCU). 

Each Associator in the CCU takes in unique remembered ideal as well as the 

external stimulus. The Associators are inhibitorily connected to each other to extend the 

competition to include competition between the remembered ideal patterns. 

 

Figure 2.10. Depiction of the Competitive Classifying Unit matching an 

external stimulus to the correct ideal. 

 



 

42 

 

For example, we see that Associator 1 will fire before the other Associators 

because, as seen before, Ideal 1 will have the highest correlation with the −2 Shift 

Block. Thus, the CCU will be able to classify more than just a single stimulus. 

 

2.5 Case Study: Sensitivity to Non-concurrently Arriving Impulses 

 

 

 

Figure 2.11. The Shift Determiner. 

 

 

The simplified case of the Shift Determiner has been investigated holding to the 

following assumptions: 

1) The remembered ideal and the external stimulus are input to the Shift 

Determiner at the same time instant.  



 

43 

 

2) Both the remembered ideal and external stimulus are 1D. 

3) Only a single remembered ideal pattern is available. 

At the end of the section entitled the Associator Structure, assumption 3 was addressed 

and expanded so as to account for the remembrance of multiple ideal patterns. In this 

section, we will address assumption 1. 

We start with the simplest case, the case in which there is a single comparator 

neuron receiving a 1 from both the remembered ideal and the external stimulus. 

However, in this instance, one of the two inputs arrives at the comparator neuron later 

than the other input. What we will determine is how sensitive the Shift Determiner is to 

variation in the input arrival time of the ideal and stimulus. 

 

 

 

Figure 2.12. Depiction of a single comparator neuron receiving ideal and 

stimulus inputs. 

 

 

If the two inputs arrive at the same instant, the comparator neuron’s potential 

response was previously determined to be as in the figure below. 



 

44 

 

 

Figure 2.13. Depiction of the response of a comparator neuron to two 

concurrently arriving pulses. 

 

 

The two responses superpose, resulting in a pulse height that is equal to 2𝛾. 

However, as pulse arrival times are varied, becoming farther apart, the superposition 

yields a smaller and smaller max potential. The following figures assume the standard 

value of a single postsynaptic response, 𝛾, is 1, the abscissa is time, and the ordinate is 

the measured response. 



 

45 

 

 

Figure 2.14. The effect of increasingly non-concurrent pulse arrival times on 

neuron potential. 

 

 

It is apparent that if the threshold for the comparator neuron is 2, as previously 

assumed, then the neuron will only fire in the case in which the responses occur 

concurrently. If it is not possible for the responses to be triggered concurrently, then the 

comparator neuron threshold may be lowered according to the following equation, 

 (𝑛 − Δt𝑑)𝛾 > 𝜗 where Δt𝑑 < 1 
(2.1)  

where 𝑛 is the number of incoming responses and Δt𝑑is the time delay between 

responses. It should be noted that to avoid false positives, Δt𝑑 needs to be less than 1. 

Otherwise, as can be seen in the example response graphs above (1.0 Off), the neuron 

would fire with only one incoming response, giving a false result. 

This brief analysis of non-concurrent arrival times raises the question of how 

much delay time the design can withstand before the system will no longer match the 



 

46 

 

stimulus to the correct ideal. If the threshold is set just above 𝑛 − 1, then the maximum 

allowable delay time before any false values occur is Δt𝑑 = 1 − 𝜖 (where 𝜖 is a number 

much less than 1) coupled with the threshold set according to the equation above. Thus, 

the system will function correctly as long as the arriving pulses are just short of a pulse 

width apart. 

  



 

47 

 

3. SENSITIVITY ANALYSIS OF RANDOMLY VARYING THRESHOLD 

VALUES 

 

This section contains the simulation and performance of the Shift Determiner 

framework with 1D inputs. The analysis inputs a stimulus and a single ideal pattern 

without noise into the comparator neurons of a shift determiner. The same ideal pattern 

is also introduced to the comparator neurons separately. Here we study the sensitivity of 

the system to random variations in the firing threshold. 

Reviewing the Shift Determiner process, if the input value from the ideal pattern 

and the corresponding input from the stimulus are both 1, the comparator neuron will 

fire, inducing a postsynaptic response of 𝛾 in its block output neuron. There is no 

randomness in the comparator neuron threshold. 

Thus, each shift block takes in a version of the stimulus that has been shifted by a 

single unit to provide alternatives for comparison with the ideal. The block output 

neuron of each shift block has a random threshold taken from a uniform distribution. 

This threshold is chosen from an interval to determine the design’s sensitivity to 

randomness in the threshold. 

Finally, the block output neuron that receives the most inputs will have a 

potential that rises more steeply than the other blocks. As soon as the potential of the 

block output neuron reaches the threshold value, the block output neuron will fire a pulse 

inducing a PSR of  𝛾 in the Associator neuron. Whichever block output neuron pulse 



 

48 

 

that arrives at the Associator neuron first will correspond to the correct shift that causes 

the greatest equality between the ideal and the stimulus. 

 

3.1 Experiment with Randomly Varying Thresholds without Noise 

The following stimulus and ideal pattern were used for all experiments. 

stimIn  = [ 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 ] 

idealIn = [ 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 

The correct shift for all experiments is 7 due to the zeroes the program pads both 

sides of the stimulus and ideal with in order to facilitate comparison over the various 

shifts. Six runs of 100 trials each were performed to determine the relationship between 

the framework’s accuracy and the amount of randomness in the threshold. The accuracy 

of the ‘winning’ shift was found by comparing the true shift value of the stimulus to the 

shift selected as ‘winner’ by the Shift Determiner framework. The results, presented 

graphically in Figure 3.1, show that as the standard deviation of the random threshold 

decreases, the accuracy of the program increases. From the graph, with a standard 

deviation in the firing threshold of ~0.8, 90% of the selected winners will be accurate. 

 



 

49 

 

 

Figure 3.1. The percentage of accurately selected winners v standard deviation 

in randomly varying firing threshold values where each data point 

is 100 trials. 

 

 

The standard deviation, 𝜎, for a uniform distribution is 

 𝜎 =
𝑏 − 𝑎

√12
 

(3.1)  

where 𝑏 and 𝑎 are the upper and lower bounds of the uniform distribution. In this case, 

the max possible potential (seen by the Block Output neuron) due to matching of the 

stimulus to the ideal is 5𝛾 and the minimum is 0. Thus the standard deviation for this 

uniform distribution is 1.4𝛾.  

In order to vary the randomness of the threshold for the different trials, one of the 

bounds must be changed so that the threshold is chosen from a different interval. For 

ease in finding the changes due to randomness in the threshold, a varying percentage, 𝑃, 

of the lower bound, 𝑎, was used to calculate the threshold and then used in the 

calculation of the standard deviation. In the equation below,  𝑎 and 𝑃 are directly related, 

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

%
 o

f 
A

cc
u

ra
te

ly
 S

e
le

ct
e

d
 

W
in

n
e

rs
 

Standard Deviation of the Random Threshold 



 

50 

 

so as 𝑃 is increased toward 100%, the threshold is selected from a narrower interval that 

contains higher values. 

 𝑎 = 𝑏𝑃 
(3.2)  

Thus leading to the standard deviation equation 

 𝜎 =
𝑏(1 − 𝑃)

√12
. 

(3.3)  

The correlation between the standard deviation and the average ‘winning’ 

threshold for the previously mentioned example is shown below. The range around each 

value shows the range from with the average firing threshold could be chosen for those 

100 trials. 

 

 

 

Figure 3.2. Average winning threshold versus standard deviation in average 

firing threshold. 



 

51 

 

As expected, when the threshold has no randomness, the average ‘winning’ 

threshold is equal to the true value, 5𝛾. But, as the interval in which the threshold may 

be chosen increases, the average ‘winning’ value gets further from the true value.  

 

3.2 Experiment with Randomly Varying Thresholds with Noise 

In this test, noise was added to the previously used stimulus by a bit-flipping rule 

and subsequently introduced to the program for analysis. The noise injection method is 

as follows: each element, 𝑖 of a random vector, 𝑣, composed of elements from the 

uniform distribution is compared to a user specified value, 𝑝. If 𝑣𝑖 ≤ 𝑝, the 𝑖𝑡ℎelement of 

the stimulus vector, 𝑠, is flipped to the alternative value. In this method, a high value for 

𝑝 indicates a greater amount of noise in the stimulus vector. 

The accuracy of the ‘winning’ shift was determined by comparing the true shift 

value of the stimulus to the shift selected as ‘winner’ by the Shift Determiner 

framework. For each of the nine values of 𝑝 between 0 and 1, the noisy input stimulus 

and the shifted ideal were run through the Shift Determiner. The following tables give 

example inputs and outputs for the nine values of 𝑝.  

The red boxes outline the program-selected shift that finds the ideal within the 

stimulus. Note that the first three selections share the same shift value and also find the 

ideal within the noise. Examining the other selections shows that while the original shift 

location of the pattern within the image is not maintained due to the noise, the Shift  

Determiner does find the ideal pattern that, in these cases, has been created by the noise. 



 

52 

 

 

Figure 3.3. Presentation of stimulus and ideal patterns selected by the Shift 

Determiner with increasing noise in the input. 

 

 

As previously stated, the accuracy of the program is determined by comparing 

the original shift value to the winning shift value selected by the Shift Determiner. As 

noted, only the trials for 𝑝 ≤ 0.23 find the ideal pattern at the location of the original 

shift. Thus, only these values are indicated as accurately selected winners in the graph 

below. The graph does show how the percentage of accurate “winners” drastically 

decreases as the noise value increases. While the program does find the ideal pattern 

within the greater 𝑝 values, that is only possible because the simplicity of the ideal 

pattern means that the pattern will likely be generated by the noise itself.  



 

53 

 

4. NETWORK THEORY 

 

In this section, the theory of homeostasis and periodic spike timing is 

investigated with a view to expand the area of inquiry beyond matching and into the 

learning/memory portion. As explained, the CCU matches a given stimulus to an ideal 

stored in memory. The following section outlines the theoretical requirements of a 

network of neurons with the dedicated purpose of storing data. 

Firstly, the theory of homeostasis—the biological term describing the constraint 

on total neural chemicals required for firing and the natural tendency for an constant 

state to be maintained—is carried through to its logical conclusions with respect to a 

neural network. Explicitly, homeostasis implies periodic, synchronous firing within a 

network or cluster of neurons, as aperiodic firing will result in the shutdown of the 

network (catatonia). This is due to the fact that multiple firings are required to induce a 

downstream neuron to fire. The spiking neural network model is discretized in terms of 

the pulse times, the differential equations for firing are provided, and the mathematical 

proofs for synchronicity and periodicity are shown. Finally, the issue of network 

learning is addressed with particular attention to the order of training a network of 

neurons and the spike time window. 

  



 

54 

 

4.1 Periodic Spike Timing 

The starting point is the phenomenological spike response model based on 

Gerstner and Kistler but which differs slightly from the 𝑆𝑅𝑀0 presented in the first 

section. The state of neuron 𝑖 is described by the neuron potential, 𝑢𝑖
𝑡𝑜𝑡(𝑡) , which has a 

resting value of zero. If the neuron potential reaches a threshold, 𝜃, an output spike is 

triggered. Assuming that the last spike is fired at time �̂�𝑖 , the evolution of the total 

potential is given by: 

𝑢𝑖
𝑡𝑜𝑡(𝑡) = 𝜎(𝑡 − �̂�𝑖) + 𝑢𝑖(𝑡) (4.1)  

𝑢𝑖(𝑡) = 𝜂(𝑡 − �̂�𝑖) +∑𝑤𝑖𝑗
𝑗

∑휀𝑖𝑗 (𝑡 − �̂�𝑖 , 𝑡 − 𝑡𝑗
(𝑓)
) +∫ 𝜅(𝑡 − �̂�𝑖𝑠)𝐼(𝑡 − 𝑠)𝑑𝑠

∞

0
𝑡
𝑗
(𝑓)

 
 

Here, 𝜎(𝑡 − �̂�𝑖) describes the action potential or spike, while 𝑢𝑖(𝑡) is the 

relatively slowly varying response after the spike. The function 𝜂 represents the 

afterpotential, or negative overshoot which typically follows a spike. This gives rise to 

refractoriness, i.e. the observation that for a period of time after the action potential, it is 

much more difficult to trigger a second spike. The function 휀𝑖𝑗 represents the time 

response of neuron 𝑖 to an incoming spike from presynaptic neuron 𝑗. 𝑤𝑖𝑗  is the synaptic 

efficacy of the synapse receiving input from neuron 𝑗 and transferring it to neuron 𝑖. 

Unless otherwise stated, 𝑤𝑖𝑗  is assumed non-negative for all 𝑖 and 𝑗, and is allowed to be 

time-varying The two sums run over all presynaptic neurons, 𝑗, and all firing times 

𝑡𝑗
(𝑓)
< 𝑡 of neuron 𝑗.  



 

55 

 

Firing occurs whenever the (post-spike) membrane potential reaches the 

threshold 𝜃: 

 𝑡 = 𝑡𝑖
(𝑓)
⇔ 𝑢𝑖(𝑡) = 𝜃, and 

𝑑𝑢𝑖(𝑡)

𝑑𝑡
> 0 

(4.2)  

 �̂�𝑖 = max{𝑡𝑖
(𝑓)
< 𝑡} 

 

𝜃 may be time-varying, but for this exposition we assume it to be constant. 

As stated previously, the spike shape, 𝜎(𝑡 − �̂�𝑖), is essentially the same for all 

neurons and all spikes. Moreover, the learning rule for adapting the synaptic efficacies is 

also independent of the spike shape. Hence, 𝜎(𝑡 − �̂�𝑖) carries no essential information 

and we henceforth model it by a delta function. Thus we characterize the neural response 

by 𝑢𝑖(𝑡) and the above threshold crossing firing rule. 

Next, we simplify this model in order to render the analysis of the dynamics of 

learning more intelligible and reasonably tractable. Analysis of the more complex model 

given by (4.1) is deferred. 

First, in accordance with the simplified spike response model 𝑆𝑅𝑀0 given by 

Gerstner and Kistler in [30], the function 휀𝑖𝑗(𝑡 − �̂�𝑖, 𝑡 − 𝑡𝑗
(𝑓)
) is assumed independent of 

�̂�𝑖. We ignore the external input term, since training inputs will be achieved by 

constraining the firing times of a subset of “output” neurons. Further, we choose to make 

휀𝑖𝑗(𝑡 − 𝑡𝑗
(𝑓)
) uniform for all neurons, i.e. 휀𝑖𝑗(𝑡 − 𝑡𝑗

(𝑓)
)=휀(𝑡 − 𝑡𝑗

(𝑓)
). At this point, our 

model is: 



 

56 

 

 𝑢𝑖(𝑡) = 𝜂(𝑡 − �̂�𝑖) +∑𝑤𝑖𝑗
𝑗

(𝑡𝑗
(𝑓)
)∑휀𝑖𝑗(𝑡 − 𝑡𝑗

(𝑓)
)

𝑓

 
(4.3)  

 𝑡 = �̂�𝑖 ⇔ 𝑢𝑖(𝑡) = 𝜃, and 
𝑑𝑢𝑖(𝑡)

𝑑𝑡
> 0 

 

 �̂�𝑖 = max{𝑡𝑖
(𝑓)
< 𝑡} 

 

In the above equation, we allow 𝑤𝑖𝑗 , 𝑗 = 𝑖 to be nonzero, representing a self-

stimulating capability. This allows autonomous, periodic firing of an individual neuron. 

In addition, we impose the following conditions on the functions 𝜂(𝑡) and 휀(𝑡): 

C.1: Both 𝜂(𝑡) and 휀(𝑡) vanish for non-positive arguments. 

C.2: For non-negative arguments, 𝜂(𝑡) and 휀(𝑡) are continuous and differentiable 

up to second order. 

C.3: 𝜂(0) = 0, 𝜂(𝑡) ≤ 0∀𝑡 ≥ 0, 𝜂(𝑡) increases monotonically from the 

minimum value −�̂�(�̂� > 0) at 𝑡 = 0. 

C.4: 휀(0) = 0, 휀(𝑡) ≥ 0∀𝑡 ≥ 0, 휀(𝑡)  has the globally maximum value 휀̂(> 0) 

at 𝑡 = 𝜏𝜀. 

C.5: 휀̂ < �̂�, 𝜏𝜀 < 𝜏𝜂  

Simple specific choices for these functions might be: 

 𝜂(𝑡) = {
−�̂�𝑒𝑥𝑝(−𝑡 𝑡𝜂⁄ ), 𝑡 > 0

0, 𝑡 ≤ 0
 

(4.4)  

 
휀(𝑡) = {

휀̂
𝑡

𝑡𝜀
exp(1−𝑡 𝑡𝜀⁄ ) , 𝑡 > 0

0, 𝑡 ≤ 0

  



 

57 

 

Typically, �̂� ≈ 10휀̂, 𝜃 휀̂⁄ ≈ 10 − 30, and 𝜏𝜂 ≈ 3𝜏𝜀. Thus it takes some tens of 

post-synaptic responses to trigger a spike (assuming the efficacies to be of order unity on 

the average). 

 

4.2 Dynamic Model of Spike Times 

It is generally agreed that it is the spatiotemporal pattern of the spiking times that 

encodes information within the network. Therefore, instead of phrasing the neural 

dynamics in terms of the neural potentials, we use (4.3) to obtain the equations 

determining the spiking times themselves.  

First, let us order the 𝑡𝑖
(𝑓)

 as follows: 

 𝑡𝑖
(1)
≤ 𝑡𝑖

(2) ≤ ⋯ ≤ 𝑡𝑖
(𝑛)

 
(4.5)  

where 𝑡𝑖
(1)

 is the first spike of neuron 𝑖 following some initial time and �̂�𝑖 = 𝑡𝑖
(𝑛)

. Next, 

define the time interval between successive spikes of neuron 𝑘: 

 𝐶𝑘(𝑛) = 𝑡𝑘
(𝑛)
− 𝑡𝑘

(𝑛−1)
 

(4.6)  

and let: 

 𝑇𝑘(𝑛) = 𝑡𝑘
(𝑛)
= ∑𝐶𝑘(𝑛)

𝑛

𝑛=1

 (4.7)  

denote the 𝑛𝑡ℎ spike time of neuron 𝑘. 

Now consider Equation (4.3a) at time 𝑡𝑘
(𝑛+1)

. Clearly, (𝑡𝑘
𝑛+1) = 𝜃 , so that (4.3a) 

yields: 



 

58 

 

 
𝜃 = 𝜂(𝐶𝑖(𝑛 + 1)) +∑∑𝑤𝑖𝑗(𝑚){

휀 (𝑇𝑖(𝑛 + 1) − 𝑇𝑗(𝑚)) , 𝑖𝑓𝑇𝑗(𝑚) ≥ 𝑇𝑖(𝑛)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

𝑚𝑗

 
(4.8)  

where 𝑤𝑖𝑗(𝑚) denotes the value of the efficacy at time 𝑡𝑗
(𝑚)

. To streamline notation, we 

introduce the right-continuous Heaviside function: 

 𝐻(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 
(4.9)  

Then we write the expression {
휀 (𝑇𝑖(𝑛 + 1) − 𝑇𝑗(𝑚)) , 𝑖𝑓𝑇𝑗(𝑚) ≥ 𝑇𝑖(𝑛)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} as  

휀 (𝑇𝑖(𝑛 + 1) − 𝑇𝑗(𝑚))𝐻 (𝑇𝑗(𝑚) − 𝑇𝑖(𝑛)) to obtain: 

𝜃 = 𝜂(𝐶𝑖(𝑛 + 1)) +∑∑𝑤𝑖𝑗(𝑚)휀 (𝑇𝑖(𝑛 + 1) − 𝑇𝑗(𝑚))𝐻 (𝑇𝑗(𝑚) − 𝑇𝑖(𝑛))

𝑚𝑗

 
(4.10)  

In view of (4.3c), 𝐶𝑖(𝑛 + 1) is the minimum positive quantity that satisfies the above 

relation. Hence, noting that 𝑇𝑖(𝑛 + 1) = 𝑇𝑖(𝑛) + 𝐶𝑖(𝑛 + 1) we obtain, for a group of 𝑁 

neurons with all-to-all coupling: 

∀𝑖 = 1,… ,𝑁,and 𝑛 = 0,1, …:  

𝐶𝑖(𝑛 + 1) = 𝑚𝑖𝑛{

Λ > 0:

𝜃 = 𝜂(Λ) +∑∑𝑤𝑖𝑗(𝑚)휀 (Λ + 𝑇𝑖(𝑛) − 𝑇𝑗(𝑚))𝐻 (𝑇𝑗(𝑚) − 𝑇𝑖(𝑛))

𝑚≥0𝑗

} (4.11)  

𝑇𝑖(𝑛 + 1) = 𝐶𝑖(𝑛 + 1) + 𝑇𝑖(𝑛)  

Note that since the term on the right-hand side within the brackets begins at zero 

at Λ = 0, it can only reach 𝜃 if its slope is positive. Hence the condition 𝑡 = �̂�𝑖 ⇔


𝑑𝑢𝑖(𝑡)

𝑑𝑡
> 0 in (4.3b) is already implied. We conclude that (4.11) determines the spiking 

times implied by (4.3a-c). 

 



 

59 

 

4.3 Synchronous and Periodic Spike Times 

Operation of the network (4.11), including synaptic plasticity evidently requires a 

level of vigorous neural activity in the form of frequent spiking. Yet, in many instances 

it takes tens of pre-synaptic spikes to cause a post-synaptic neuron to fire. One could 

imagine a situation where the pre-synaptic spikes arrive incoherently and the resulting 

post-synaptic response is insufficient to attain the threshold potentiation. Were this to 

happen for a sufficient fraction of neurons, the spiking activity of system (4.11) could 

decline and eventually cease altogether. Experimental evidence for synchronous firing 

can be found in [31]. Here we consider how to improve the efficiency with which the 

spiking frequency can be stimulated. 

First note that it is the accumulation of post-synaptic responses represented by 

the term ∑ ∑ 𝑤𝑖𝑗(𝑚)휀 (Λ + 𝑇𝑖(𝑛) − 𝑇𝑗(𝑚))𝐻 (𝑇𝑗(𝑚) − 𝑇𝑖(𝑛))𝑚≥0𝑗  that builds up to exceed 

the threshold and cause a spike. In view of C.4, the postsynaptic response can never be 

larger than when the presynaptic spikes all occur at the same time. To be precise, define: 

D.1: The spiking of system (4.11) is synchronous when    

𝑇𝑗(𝑛) = 𝑇𝑖(𝑛), ∀𝑖, 𝑗 = 1,… ,𝑁, 𝑎𝑛𝑑∀𝑛 = 0,1, …      

D.2: The spiking of the system in (4.11) is periodic when 𝐶𝑖(𝑛) is a constant 

∀𝑖, 𝑗 = 1,… ,𝑁, 𝑎𝑛𝑑∀𝑛 = 0,1, …    

In connection with these definitions we have: 

Theorem 1 

For system (4.11) and the related assumptions: 



 

60 

 

(a) A necessary condition for synchronous spiking is that the sum of the weights 

from firing neurons leading to a given neuron at a given time step, ∑ 𝑤𝑖𝑗
𝑓(𝑚)𝑗 , 

equals a constant that is independent of 𝑖. In other words: 

 ∑𝑤𝑖𝑗
𝑓(𝑚) = 𝑁�̅�(𝑚)

𝑗

, ∀𝑖 
(4.12)  

where �̅�(𝑚) is a non-negative function of the spike index 𝑚. 

(b) Under condition (4.12) and D.1, the spike intervals are given by: 

 ∀𝑖 = 1,… ,𝑁; 𝑎𝑛𝑑𝑛 = 0,1,…: 
 

 𝐶𝑖(𝑛 + 1) = 𝐶̅(𝑛 + 1) (4.13)  

 𝐶̅(𝑛 + 1) = min{Λ > 0: 𝜃 = 𝜂(Λ) + 𝑁�̅�(𝑛)휀(Λ)} 
 

when a solution to (4.13) exists. 

(c) A necessary condition for spiking to be both synchronous and periodic is that: 

 ∑𝑤𝑖𝑗
𝑓(𝑚) = 𝑁�̅�

𝑗

, ∀𝑖, ∀𝑚 = 0,1,… 
(4.14)  

where �̅� is a positive, real number. 

(d) Under condition (4.14), and D.1 and D.2, the spike intervals are all constant 

and equal to 𝐶̅, given by: 

 𝐶𝑖(𝑛) = 𝐶̅, ∀𝑖 = 1,… ,𝑁; and𝑛 = 0,1, … (4.15)  

 𝐶̅ = 𝑚𝑖𝑛{Λ > 0: 𝜃 = 𝜂(Λ) + 𝑁�̅�휀(Λ)} 
 

when a solution to (4.15) exists. 

  



 

61 

 

Proof: 

(a) In view of C.1, 휀 (Λ + 𝑇𝑖(𝑛) − 𝑇𝑗(𝑚)) vanishes if 𝑇𝑗(𝑚) > Λ + 𝑇𝑖(𝑛), and 

because of D.1, the number of spikes occurring up to any time is the same for all 

neurons. Therefore the summation over 𝑚 in the term ∑ ∑ 𝑤𝑖𝑗
𝑓 (𝑚)휀 (Λ +𝑚≥0𝑗

𝑇𝑖(𝑛) − 𝑇𝑗(𝑚))𝐻 (𝑇𝑗(𝑚) − 𝑇𝑖(𝑛)) is restricted to 𝑚 = 𝑛. Hence (4.11b) becomes: 

𝐶𝑖(𝑛 + 1) = 𝑚𝑖𝑛{Λ > 0: 𝜃 = 𝜂(Λ) +∑𝑤𝑖𝑗
𝑓(𝑛)휀 (Λ+ 𝑇𝑖(𝑛) − 𝑇𝑗(𝑛))𝐻 (𝑇𝑗(𝑛) − 𝑇𝑖(𝑛))

𝑗

} (4.16)  

Moreover, 𝑇𝑖(𝑛) = 𝑇𝑗(𝑛) , so that the Heaviside function assumes the value unity 

and (4.16) becomes: 

 𝐶𝑖(𝑛 + 1) = 𝑚𝑖𝑛{Λ > 0: 𝜃 = 𝜂(Λ) + 휀(Λ)∑𝑤𝑖𝑗
𝑓(𝑛)

𝑗

} (4.17)  

Finally, D.1 implies that all the increments, 𝐶𝑖(𝑛), are the same function of 𝑛, 

denoted by 𝐶̅(𝑛). Then (4.17) gives: 

 𝐶̅(𝑛 + 1) = 𝑚𝑖𝑛{Λ > 0: 𝜃 = 𝜂(Λ) + 휀(Λ)∑𝑤𝑖𝑗
𝑓(𝑛)

𝑗

} 
(4.18)  

Since this must hold for all 𝑖, it is necessary that ∑ 𝑤𝑖𝑗
𝑓(𝑛)𝑗  be independent of𝑖. 

This proves part (a).   

(b) Using (4.12), (4.18) yields (4.13). 



 

62 

 

(c) Under D.1 and D.2 the 𝐶𝑖(𝑛) are all the same function of 𝑛, denoted by 𝐶̅(𝑛), 

and 𝐶̅(𝑛) is the same positive constant, 𝐶̅, for all 𝑛. Then (4.18) holds for 

𝐶̅(𝑛 + 1) = 𝐶̅ and (4.15) follows. 

Regarding existence of solutions to (4.13) and (4.15), we have the following: 

Theorem 2 

Under C.3 and C.4, if 

 𝑁휀̂�̅�(𝑛) > 𝜃 + �̂�, ∀𝑛 
(4.19)  

then a unique solution to (4.13) exists. Likewise, if C.3, C.4, and (4.19) hold and �̅�(𝑛) is 

a constant, then a unique solution to (4.15) exists. 

Proof: 

By virtue of (4.19), and C.4: 

 𝜂(Λ = 𝜏𝜀) + 𝑁휀(Λ = 𝜏𝜀)�̅�(𝑛) (4.20)  

 = 𝜂(Λ = 𝜏𝜀) + 𝑁휀̂�̅�(𝑛) > 𝜂(Λ = 𝜏𝜀) + �̂� + 𝜃, ∀𝑛 
 

But C.3 states that (Λ) ≥ −�̂� , therefore 𝜂(Λ = 𝜏𝜀) + �̂� ≥ 0 , and (4.20) yields: 

 [𝜂(Λ) + 𝑁휀(Λ)�̅�(𝑛)]Λ=𝜏𝜀 > 𝜃, ∀𝑛 
(4.21)  

By C.2 𝜂(t) and 휀(t) are continuous, and by C.3 and C.4, 𝜂(0) + 𝑁휀(0)�̅�(𝑛) = 0. 

Therefore 𝜂(Λ) + 𝑁휀(Λ)�̅�(𝑛) must cross 𝜃 from below at least once. Thus there exists a 

minimum value of Λ for which this occurs, and by definition this is the solution to 

(4.13). Obviously a similar argument shows the existence of a unique solution to (4.15) 

in the case that �̅�(𝑛) is a constant. 



 

63 

 

Comment: The existence of synchronous and periodic firing is widely observed 

in spiking neural nets. The above results are only the simplest manifestation of the 

phenomenon. For example, one could have separate groups of neurons, each having a 

different value of ∑ 𝑤𝑖𝑗
𝑓

𝑗  or 𝑁�̅�, and thus firing at different frequencies. Relatively 

sparse connections among such groups can result in all manner of interesting 

interference effects, but we do not pursue this subject further here. 

Comment: (4.12) and (4.14) are referred to as homeostasis conditions in the 

literature. They express the idea that the chemical resources available to transmit signals 

to a given neuron through all the incoming synapses are limited. Such conditions are 

well known to stabilize synaptic plasticity and prevent runaway growth in the synaptic 

efficacies. Note that the above result shows it is the 1-norm of the vector of incoming 

synaptic efficacies that should be used. In addition, as will be explored later, 

homeostasis provides a competitive mechanism that concentrates efficacy in relatively 

few synapses and speeds learning. The importance of the above two theorems is that 

synchrony and periodicity, phenomena that are ubiquitously observed in spiking nets, 

imply homeostasis.  

 

4.4 Implications of Homeostasis 

The next question is: Does homeostasis in the form (4.14) imply the stable 

convergence of the system to synchrony and periodicity? Until further notice, the 

simpler condition (4.14) is assumed, along with relation (4.15). 



 

64 

 

Suppose that the 𝑤𝑖𝑗
𝑓
 are constant and system (4.11) is initially constrained (perhaps by 

external stimulation) so that its neurons fire at slightly different times. That is, for 𝑛 = 0: 

 𝑇𝑖(0) = 𝛾𝑖(0), 𝑖 = 1, … ,𝑁 
(4.22)  

 max
𝑖
{|𝛾𝑖(0)|} ≤ 𝐶̅ 

 

where no two firing times are equal. Also, assume that �̅� is large enough that all neurons 

will fire due to the post-synaptic response to the initial firing times given by (4.22).  

Let us trace the evolution of the system. First, define the firing time at the initial 

time, 𝑡 = 0, to be 𝛾𝑁(0) and arrange the 𝛾𝑖(0) in order of increasing size: 

 𝛾1(0) < 𝛾2(0) < … < 𝛾𝑁(0) = 0 
(4.23)  

Note that we thus have: 

 |𝛾1(0)| > |𝛾2(0)| > ⋯ > |𝛾𝑁(0)| = 0 
(4.24)  

Because all neurons fire in response to the initial firing times, then for 𝑛 = 0, equation 

(4.11) becomes: 

 
𝑇𝑖(1) − 𝑇𝑖(0) = 𝑚𝑖𝑛 {Λ > 0: 𝜃 = 𝜂(Λ) +∑𝑤𝑖𝑗

𝑓
휀 (Λ + 𝛾𝑖(0) − 𝛾𝑗(0))

𝑁

𝑗≥𝑖

} (4.25)  

In view of max𝑖{|𝛾𝑖(0)|} ≤ 𝐶̅, let us define: 

 Λ = Λ0 + Λ1 
 

 Λ0 ≅ 𝑂(𝐶̅) (4.26)  



 

65 

 

 Λ1 ≅ 𝑂 (max
𝑖
{|𝛾𝑖(0)|}) ≤ 𝐶̅ 

 

then substitute this into the condition 𝜃 = 𝜂(Λ) + ∑ 𝑤𝑖𝑗
𝑓
휀 (Λ + 𝛾𝑖(0) − 𝛾𝑗(0))

𝑁
𝑗≥𝑖 , 

expand in Taylor series, and neglect terms of order (max𝑖{|𝛾𝑖(0)|})
2 or smaller, to get: 

 𝜃 = 𝜂(Λ0) +∑𝑤𝑖𝑗
𝑓
휀(Λ0)

𝑁

𝑗≥𝑖

⟹ Λ0 = 𝐶̅ (4.27)  

 Λ1 =
∑ 𝑤𝑖𝑗

𝑓𝑁
𝑗>𝑖 (𝛾𝑗(0) − 𝛾𝑖(0))

∑ 𝑤𝑖𝑗
𝑓𝑁

𝑗≥𝑖 +
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄

 
 

Since (max𝑖{|𝛾𝑖(0)|}) ≤ 𝐶̅, Λ = Λ0 + Λ1 with Λ0 and Λ1 given by (4.27) is still 

the minimum time needed to reach the threshold. Hence (4.25) becomes: 

 𝑇𝑖(1) = 𝐶̅ + 𝛾𝑖(1) (4.28)  

 
𝛾𝑖(1) =

∑ 𝑤𝑖𝑗
𝑓
𝛾𝑗(0) + (𝑤𝑖𝑖

𝑓
+
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄ )𝛾𝑖(0)

𝑁
𝑗>𝑖

∑ 𝑤𝑖𝑗
𝑓𝑁

𝑗≥𝑖 +
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄

  

To progress further, we need some elementary results concerning non-negative 

and positive matrices. A vector or matrix is non-negative (positive) if all its elements are 

non-negative (positive). If 𝑴 ∈ ℝ𝑁×𝐿 then the non-negative matrix formed by replacing 

each element by its absolute magnitude is denoted by |𝑴|. ℝ+
𝑁×𝐿  denotes the field of 

𝑁 × 𝐿 positive or non-negative matrices. If 𝑺 and 𝑹 are two non-negative or positive 

matrices having the same row and column dimensions then the double inequality 

notation 𝑺 ≪ 𝑹, or 𝑺 ≤≤ 𝑹 indicates element-by-element inequality. Denote by 𝒖 ∈ ℝ+
𝑁  



 

66 

 

the positive vector all of whose elements are unity. This is a vector of unit norm in the 

infinity norm. If 𝑣 ∈ ℝ𝑁  is some vector, then: 

 ‖𝒗‖∞ = 𝑚𝑎𝑥{|𝑣1|, |𝑣2|, … , |𝑣𝑁|} (4.29)  

Obviously, ‖𝒖‖∞ = 1. We have the following simple result: 

Lemma 1: 

Suppose 𝒗 ∈ ℝ𝑁, �̂� ∈ ℝ𝑁 and 𝒙 ∈ ℝ+
𝑁: 

 |𝒗| ≤≤ �̂� 
(4.30)  

 �̂� = 𝑴𝒙 
 

where 𝑴 ∈ ℝ+
𝑁×𝑁 is upper triangular, has no zero upper triangular elements, and has all 

of its row sums equal to unity. Further, the elements of 𝒙 ∈ ℝ+
𝑁  are arranged in order of 

decreasing magnitude with 𝑥𝑁 = 0: 

 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑁 = 0 
(4.31)  

Then: 

 ‖𝒗‖∞ < ‖𝒙‖∞ 
(4.32)  

Proof: 

From (4.30b) the first element through 𝑁 − 2 elements of �̂� are given: 

 
𝑣𝑖 ≤ ∑𝑀𝑖𝑚𝑥𝑚, 𝑖 = 1,… ,𝑁 − 2

𝑁−1

𝑚=𝑖

 (4.33)  

Since all elements of 𝒙 are less than or equal to 𝑥1 = ‖𝒙‖∞ and the row sums of 𝑴 are 

unity, (4.33) gives: 



 

67 

 

 
𝑣𝑖 ≤ ∑𝑀𝑖𝑚𝑥1 < 𝑥1 = ‖𝒙‖∞, 𝑖 = 1,… ,𝑁 − 2

𝑁−1

𝑚=𝑖

 (4.34)  

where the positivity of all upper triangular elements of 𝑴 has been used. For the 

(𝑁 − 1)𝑡ℎ and 𝑁𝑡ℎelements of �̂�, we have that 𝑣𝑁 = 0, and: 

 𝑣𝑁−1 = 𝑀𝑁−1,𝑁−1𝑥𝑁−1 < 𝑥𝑁−1 < ‖𝒙‖∞ 
(4.35)  

Thus all elements of �̂� are less than ‖𝒙‖∞. Therefore ‖𝒗‖∞ < ‖�̂�‖ < ‖𝒙‖∞ and (4.32) 

follows. Collecting together the above results, we can prove at least a limited statement 

regarding the asymptotic stability of the synchronous, periodic firing condition. 

 

Theorem 3: 

Assume condition (4.14) and that the 𝑤𝑖𝑗
𝑓
 are constant. Suppose system (4.11) is 

initially constrained so that its neurons fire at slightly different times, i.e.: 

 𝑇𝑖(0) = 𝛾𝑖(0), 𝑖 = 1, … ,𝑁 (4.36)  

 max
𝑖
{|𝛾𝑖(0)|} ≤ 𝐶̅ 

 

where the 𝛾𝑖(0) are ordered as in (4.23) and (4.24). Let �̅� be large enough that all 

neurons will fire due to the post-synaptic response to the initial firing times given above. 

Assume also, that max𝑖{|𝛾𝑖(0)|} is sufficiently small that (4.29) yields an approximate 

estimate of the next set of firing times of acceptable accuracy. Then: 

 

(a) max𝑖{|𝛾𝑖(1)|} < max𝑖{|𝛾𝑖(0)|} and to the same or better accuracy of 

approximation and for all 𝑛 = 0,1,…: 



 

68 

 

 𝑇𝑖(𝑛 + 1) = (𝑛 + 1)𝐶̅ + 𝛾𝑖(𝑛 + 1) (4.37)  

 
𝛾𝑖(𝑛 + 1) =

∑ 𝑤𝑖𝑗
𝑓
𝛾𝑗(𝑛) + (𝑤𝑖𝑖

𝑓
+
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄ )𝛾𝑖(𝑛)

𝑁
𝑗>𝑖

∑ 𝑤𝑖𝑗
𝑓𝑁

𝑗≥𝑖 +
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄

  

where for each 𝑛 the 𝛾𝑖(𝑛), 𝑖 = 1,… ,𝑁  are first ordered as In (4.23). 

 

(b) Let 𝛾(𝑛) ∈ ℝ𝑁 = [𝛾1(𝑛), 𝛾2(𝑛),…𝛾𝑛(𝑛)]
𝑇  . For all 𝑛 = 0,1,…: 

 ‖𝛾(𝑛 + 1)‖∞ < ‖𝛾(𝑛)‖∞ 
(4.38)  

 

(c) As 𝑛 → ∞, 𝛾(𝑛) converges to 0. Hence the firing is ultimately synchronous 

and periodic. 

 

Proof: 

(a) The 𝑤𝑖𝑗
𝑓
 are all positive, and by C.3, 𝜂(𝑡) is monotonically increasing so the 

term 𝜂′(𝐶̅) 휀′(𝐶̅)⁄  is positive. Then (4.37b) yields: 

 
|𝛾𝑖(1)| ≤

∑ 𝑤𝑖𝑗
𝑓
|𝛾𝑗(0)| + (𝑤𝑖𝑖

𝑓
+
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄ ) |𝛾𝑖(𝑛)|

𝑁
𝑗>𝑖

∑ 𝑤𝑖𝑗
𝑓𝑁

𝑗≥𝑖 +
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄

 (4.39)  

Letting 𝛾(𝑛) ∈ ℝ𝑁 = [𝛾1(𝑛), 𝛾2(𝑛),…𝛾𝑛(𝑛)]
𝑇, this has the matrix form: 

 |𝛾(1)| ≤ 𝚿|𝛾(0)| (4.40)  



 

69 

 

 𝚿𝑖𝑗 =

{
  
 

  
 
[(
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄ )𝛿𝑖𝑗 +𝑤𝑖𝑗

𝑓
]

∑ 𝑤𝑖𝑘
𝑓𝑁

𝑘≥𝑖 +
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄

0, 𝑗 < 𝑖

, 𝑗 ≥ 𝑖 
 

Thus 𝚿 is upper triangular, all its upper triangular elements are positive 

and its row sums are unity. Moreover, since the elements of |𝛾(0)| ∈ ℝ𝑁 =

[|𝛾1(0)|, |𝛾2(0)|, … , |𝛾𝑛(0)|]
𝑇 are ordered as are the elements of 𝒙 ∈ ℝ+

𝑁 in 

(4.31), all the conditions of Lemma 1 are met. Therefore  

max𝑖{|𝛾𝑖(1)|} < max𝑖{|𝛾𝑖(0)|} , or ‖𝛾(1)‖∞ < ‖𝛾(0)‖∞. 

Since the bounds on the elements of 𝛾(1) are tighter than those imposed 

on 𝛾(0), to the same or better degree of approximation as in the formulation of 

(4.29), we can obtain the expression for 𝛾(2) in terms of 𝛾(1) by ordering 𝛾(1) 

as in (4.23), substituting 𝛾(1) for 𝛾(0) and repeating the arguments leading from 

(4.23) to (4.37). In like manner, this process can be repeated ad infinitum to 

arrive at (4.37). 

 

(b) Equation (4.37b) yields: 

 |𝛾𝑖(𝑛 + 1)| ≤

∑ 𝑤𝑖𝑗|𝛾𝑗(𝑛)| + (𝑤𝑖𝑖 +
𝜂′(𝐶̅)

휀′(𝐶̅)
⁄ )|𝛾𝑖(𝑛)|

𝑁
𝑗>𝑖

∑ 𝑤𝑖𝑗
𝑁
𝑗≥𝑖 +

𝜂′(𝐶̅)
휀′(𝐶̅)
⁄

 

(4.41)  



 

70 

 

Again, using the notation (𝑛) ∈ ℝ𝑁 = [𝛾1(𝑛), 𝛾2(𝑛),… 𝛾𝑛(𝑛)]
𝑇 , this has 

the matrix form: 

 |𝛾(𝑛 + 1)| ≤ 𝚿|𝛾(𝑛)| 
(4.42)  

where 𝚿 is given in (4.40b). As in part (a), all the conditions of Lemma 1 are 

met. Therefore, (4.38) follows. 

(c) Via the above results, we have created an infinite sequence, {‖𝛾(𝑛)‖∞, 𝑛 =

0,… ,∞}, for which ‖𝛾(𝑛 + 1)‖∞ < ‖𝛾(𝑛)‖∞ for every 𝑛 ≥ 0. Furthermore, 

since 𝛾(𝑛) ∈ ℝ+
𝑁 ∀𝑛 ≥ 0, the sequence is bounded by zero. Then by the 

monotone convergence theorem, the sequence converges to inf𝑛{‖𝛾(𝑛)‖∞} = 0, 

so that the Theorem 3 is proved, as shown by Bibby in [32]. 

  



 

71 

 

4.5 Learning Binary Sequences 

 

 

 

Figure 4.1. Depiction of neuron cluster with all-to-all connections, a prompt 

signal input to an arbitrary neuron (in this case neuron 1), and a 

training signal input to an arbitrary neuron (in this case neuron 8).  

 

 

Suppose we have an 𝑁 neuron network with all-to-all coupling (see Figure 4.1) 

whose spiking times are governed by (4.11), with the homeostasis constraint (4.14) and 



 

72 

 

the bound (4.19) with �̅� a constant such that the network spikes periodically with period 

𝐶̅ satisfying (4.15).  

It is assumed here that prior to the onset of training, all synaptic efficacies are 

positive. It is desired to train the network to be able to duplicate a binary sequence when 

prompted by an initiation or prompting signal applied to neuron 1, and starting the 

network from a quiescent state. Let the prompt signal be an impulse at time 𝑡 = 0 and of 

strength �̅� = 𝑁�̅�, sufficiently large that it causes neuron 1 to fire at 𝑡 = 𝐶̅.  

The desired binary sequence is a spike train produced by neuron ‘𝑁’ having 

amplitudes either zero or unity. We assume that the sequence to be learned has spikes 

that are periodic and in synchrony with the periodic spiking of the network. In other 

words, if 𝑡 = 0 is the time of the prompt signal, then the spiking sequence that is desired 

from neuron 𝑁 has the form: 

 
𝐼(𝑡) = ∑ 𝐼𝑚𝛿(𝑡 − 𝑚𝐶̅), 𝐼𝑚 = 0or1

𝑀

𝑚=1

for𝑚 = 1,… ,𝑀 
(4.43)  

where 𝑀 is the total length of the binary sequence and the spike train begins at 𝑡 = 𝐶̅. 

However, the training signal has the form: 

where the reason for the form of �̂�(𝑚) will become apparent below. 

One first has to discover how the synaptic weights can evolve while satisfying 

(4.14). Consider the post synaptic neuron 𝑖. Define the non-negative matrix 𝑾𝑖 ∈ ℝ+
𝑁   

 

�̂�(𝑡) = �̅� ∑ 𝑇(𝑚)𝛿(𝑡 − 𝑚𝐶̅)

𝑀

𝑚=1

 

𝑇(𝑚) = 2(𝐼𝑚 −
1

2
) 

 

 

 

(4.44)  



 

73 

 

having 𝑤𝑖,𝑗
𝑓
; 𝑗 = 1,… ,𝑁 − 1 as its j

th
 element. Defining a vector of 𝒖 ∈ ℝ+

𝑁, composed of 

ones, conditions (4.14) take the form: 

 𝑾𝑖
𝑇(𝑛)𝒖 = 𝑁�̅� (4.45)  

where as indicated, we assume that the synaptic weight is constant over a given time 

period between spikes but is a function of the number of periods, 𝑛, that have elapsed 

since the first prompt signal. Let us assume that 𝑾𝑖(𝑛 + 1) is fully determined by its 

previous value, (𝑛) , and by the past spiking times. Then the time evolution is 

characterized by a relation for its increment over two successive periods. (4.45) 

immediately implies: 

 𝒖𝑇[𝑾𝑖(𝑛 + 1) −𝑾𝑖(𝑛)] = 0 (4.46)  

Further. (4.45) yields: 

Lemma 2: 

𝑾(𝑡) satisfying (4.46) has the form: 

 𝑾𝑖(𝑛) = 𝑁�̅�𝑫(𝑛)𝒇(𝑛) (4.47)  

 𝑫(𝑛) = 1 ∑ 𝑓𝑙
𝑁
𝑙=1

⁄   

for any 𝒇(𝑡) ∈ ℝ𝑁𝑥𝑁 such that no row of 𝒇(𝑡) is orthogonal to 𝒖. 

Proof: 

 Obviously, from (4.45), a necessary condition is that 𝑾(𝑡) cannot be orthogonal 

to 𝒖, so the same must be true for 𝒇(𝑛).  The rest is pure tautology since: 



 

74 

 

 
𝑊𝑖

𝑇𝒖 = 𝑁�̅�𝑫(𝑡)𝒇𝑇(𝑡)𝒖 = 𝑁�̅�𝑫(𝑡) [∑𝑓𝑙

𝑁

𝑙=1

] = 𝑁�̅� 
(4.48)  

Thus we obtain the stated result. 

Now there is the question concerning the choice of 𝒇(𝑛). 𝒇(𝑛) can be any vector 

with rows not orthogonal to 𝒖; including 𝑾𝑖(𝑛) itself. Indeed, the only quantities 

entering into the problem are 𝒖, 𝑾𝑖(𝑛), and, possibly, the spike time-dependent 

plasticity associated with each individual synapse, so 𝒇(𝑛) must be a function of one of 

these three or a combination. If 𝒇(𝑛) were 𝒖 then 𝑾𝑖(𝑛 + 1) = �̅�, which is untenable, 

since there would be no synaptic plasticity. Then, 𝒇(𝑛) must be 𝑾𝑖(𝑛), so that (4.47) 

becomes: 

 𝑾𝑖(𝑛 + 1) = 𝑁�̅�𝑾𝑖(𝑛) 𝒖
𝑇𝑾𝑖(𝑛)⁄  (4.49)  

Note that this expression would preclude any synaptic plasticity in the event that 

only one presynaptic neuron fires, for in that case 𝑾𝑖(𝑛) has only a single element so 

that 𝑾𝑖(𝑛 + 1) = 𝑁�̅�. Can (4.49) be altered to be consistent with spike time-dependent 

plasticity? By the latter (see Figure 4.2) we mean the behavior noted from experimental 

observations of single pairs of neurons and their connecting synapse [33]-[36]. If the 

presynaptic neuron fires a short time (approximately 40 ms) before the postsynaptic 

neuron then the efficacy is strengthened. If the postsynaptic neuron fires shortly before 

the presynaptic neuron, the efficacy is reduced. Finally if the firings are simultaneous or 

widely separated, there is no change. This behavior is summarized in the so-called 

Learning Window, �̂�(�̂�𝑗 − �̂�𝑖). 

 



 

75 

 

 

Figure 4.2. Learning Window, �̂�(�̂�𝒋 − �̂�𝒊), presents experimentally obtained 

information concerning neuron pair interaction. 

 

 

This might take the form: 

 �̂�(�̂�𝑗 − �̂�𝑖) =
1

�̂�
(�̂�𝑖 − �̂�𝑗)ℎ̂exp[1 − |�̂�𝑖 − �̂�𝑗| �̂�⁄ ] (4.50)  

where ℎ̂ is the maximum magnitude of �̂�(�̂�𝑗 − �̂�𝑖), and �̂� is the value of |�̂�𝑖 − �̂�𝑗| at which 

this occurs. 

It is clear that if the above plasticity model is correct for single synapses, then 

(4.49) must be modified so that the total efficacy, 𝑁�̅�, is no longer constant. In 

particular, the model in Figure 4.2 must be recovered whenever any one of the 

presynaptic neurons fires alone. Letting 𝑾𝑖,𝑗(𝑛) denote the j
th

 element of 𝑾𝑖(𝑛), the 

aforementioned condition implies: 

 Ψ𝑖𝑗(𝑛) = Ψ𝑖𝑗(𝑛 − 1) + �̂�(�̂�𝑗 − �̂�𝑖) (4.51)  



 

76 

 

 𝑾𝑖𝑗(𝑛) = Ψ𝑖𝑗(𝑛)𝑾𝑖𝑗(𝑛 − 1) 𝒖
𝑇𝑾𝑖(𝑛 − 1)⁄   

But now (4.45) is not satisfied, and moreover, if the total efficacy is time-

varying, then the network will not spike periodically. It follows that the plasticity rule, 

(4.50) or Figure 4.2, cannot be used.  

Under the assumption that the network fires periodically, we conclude that the 

total pre-synaptic efficacy feeding any one neuron is either �̅� = 𝑁�̅� or some level that 

is too small for the postsynaptic neuron to fire.  

The above observation prompts the following hypothesis. Although the spike-

time-dependent plasticity illustrated in Figure 4.2 is based upon much carefully collected 

data, it might be that the standard interpretation of this data confuses cause and effect, or 

rather confuses correlation with causation. The standard interpretation is that the firing 

of neuron 𝑖 after neuron 𝑗 causes the synaptic weight to increase; and, likewise the 

opposite situation causes the weight to decrease. Let us entertain the opposite 

interpretation. The firing of neuron j stimulates a higher concentration of neural-

transmitters (represented by the weight, 𝒘𝒊𝒋), at the gap of neuron i, inducing it to 

fire. Likewise the previous firing of neuron i depletes the neural transmitter 

concentration (𝒘𝒊𝒋 decreases) linking it to the pre-synaptic neuron. 

Under the above interpretation, learning occurs as a consequence of the 

stimulation of neural transmitter supply by the forced firing of neurons under training, 

together with the depletion of neural transmitter to related, but not directly stimulated 

neurons, such that the homeostasis condition required for periodic firing is maintained at 



 

77 

 

every step. This picture permits us to confine attention to the simplest possible synaptic 

weight adjustment, i.e. each weight is changed to either zero or �̅�. In the following 

section, we present a learning algorithm of this form, by which the network of Figure 4.1 

can organize itself to learn and store binary temporal sequences. 

  



 

78 

 

5. SYNCHRONOUS AND PERIODIC FIRING NEURON CLUSTER 

 

Continuing from the previous section’s theoretical setup of an all-to-all 

connected network of neurons, a computer model was developed using MatLab to 

simulate a simplified neuron cluster which, after training, will output the learned binary 

sequence when prompted. The major simplification in this simulation is that while in the 

previous section’s example, the neuron cluster was designed for all-to-all coupling, in 

this experiment, connections converge toward a single neuron. For this introduction, the 

central neuron is Neuron 8, as shown in the figure below. 

 

 

 

Figure 5.1. Neuron 8 cluster connection structure.  



 

79 

 

The simulation is composed of two sections: the learning portion and the testing 

portion. During the learning portion, the weights are incremented according to the 

learning rule until they have learned the given binary sequence. After the weights are 

randomly initialized to values between 0 and 1, the binary sequence is input to Neuron 1 

(N1) during the first period then to Neuron 8 (N8) two periods later. See Figure 5.1. The 

offset in the timing between the inputs to N1 and N8 when combined with the learning 

rule creates the learning capacity of the cluster.  

As stated in the previous section the constraint of N8 to fire at the specified time 

then induces the weight changes in the neuron connections. The learning rule is as 

follows: a weight is increased when a downstream neuron, N8, fires in the subsequent 

time step and is decreased if a downstream neuron does not fire in the next time step. 

Over the training time the weights within the outer ring are either decreased or increased 

according to that rule, until those weights correspond to the binary sequence being input 

to N8. Because, as was shown in the previous section, the sum of the weights of the 

upstream firing neurons, ∑ 𝑤𝑖𝑗
𝑓

𝑗 , must equal a constant, and as there is only a single 

upstream neuron leading into N8 at a given time step, the weight is set to the constant 

value, 1. Similarly, if N8 doesn’t fire, then the particular presynaptic weight feeding into 

N8 is “pruned” away, or becomes 0. 

  



80 

5.1 Simulation Specifications and Constraints 

The design specifications and constraints upon which the model was based are: 

1. Limited coupling as shown in Fig. 5.1, as opposed to the all-to-all coupling,

shown in IV-1. 

2. Synchronous and periodic neuron firing with a constant spiking period,

3. Homeostasis, or the sum total weight value of all presynaptic connections

leading to a given downstream neuron is conserved at each time step. 

∑w𝑖𝑗
𝑓
(𝑛) = 𝑁�̅�𝑓(𝑛)

𝑗

 
(6.1) 

4. Learning Rule: during training, a weight is increased to 1 when a downstream

neuron fires in the time step after the upstream neuron, 𝑛 + 1, and is 

decreased to zero if a downstream neuron does not fire a time step later. 

𝑤8𝑗(𝑛) = {
1, 𝑖𝑓 {

𝑁𝑗(𝑛 − 1) = 1

𝑁8(𝑛) = 1
0, 𝑒𝑙𝑠𝑒

(6.2) 

5. During training, a binary element from the training sequence will be input to

the final neuron, N8, two time step after that element is input to the first 

neuron, N1. 

𝑖𝑛𝑝𝑢𝑡 = [100000] 
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =  [100000] (6.3) 



 

81 

 

6. During testing, the weight values from training will be loaded, a single 

prompt will be input to the first neuron, and the final neuron will output the 

learned binary sequence. 

 𝑝𝑟𝑜𝑚𝑝𝑡 = [1] 
(6.4)  

7. During training, all weights will be randomly initialized to a value greater 

than 0 and less than or equal to 1. 

  



 

82 

 

5.2 Training Simulation 1 

As stated, the simulation is composed of two parts, the training portion and the 

testing portion. In the training portion, all weights for the first two training epochs are 

initialized to random values between 0 and 1. An epoch is eight time steps: the time it 

takes for the binary sequence’s effects to propagate through the neuron cluster. The first 

binary sequence to be input is  

[ 1 0 0 0 0 0 ]. 

 

 

 

Figure 5.2. Left: Initial state of the N8 cluster at the first time step, and Right: 

N8 cluster at the second time step. 

 

 

The following figures, starting with Fig. 5.2, show the response of the cluster to 

the binary training sequence at each time step. The weight values for each connection are 

displayed in the white boxes. At the first time step, the first element from the binary 

1

12

3

4

5 6

7

8

1

1

1

0.32

0.1

0.05

0.21

1

1

0.77

0.81

1

0.61

2

12

3

4

5 6

7

8

1

1

1

0.55

0.15

0.75

0.38

1

1

0.59

0.48

1

0.4



 

83 

 

sequence is entered into N1, causing it to fire, as indicated by the N1’s red color. The 

synapse connecting N1 and N2 is shown as red to indicate firing has occurred. At time 

step two, N2 fires, induced by the firing of the first neuron. 

 

 

 

Figure 5.3. N8 cluster at time step three where N2 induced the firing of N8. 

 

 

In the third time step, N3 and N8 fire, induced by the firing of N2 during the 

previous time step. Moreover, the first element of the binary sequence is entered into N8 

which additionally causes N8 to fire. The fact that N8 fires due to the training input and 

due to an induced firing is depicted by N8 turning orange instead of red. This scenario 

3

12

3

4

5 6

7

8

1

1

1

1

0.16

0.49

0.38

1

1

0.86

0.26

1

0.92



 

84 

 

also means that the weight value for the connection from 1 to 8 is positively incremented 

for time step 3 during the next training epoch.  

 

 

 

Figure 5.4. Final firings of the N8 cluster: firings of N4-N7. 

 

 

4

12

3

4

5 6

7

8

1

1

1

0.9

0

0.94

0.24

1

1

0.35

0.23

1

0.29

5

12

3

4

5 6

7

8

1

1

1

0.75

0.83

0

0.52

1

1

0.25

0.17

1

0.14

6

12

3

4

5 6

7

8

1

1

1

0.72

0.71

0.1

0

1

1

0.3

0.2

1

0.61

7

12

3

4

5 6

7

8

1

1

1

0.45

0.71

0.82

0.86

1

1

0.36

0

1

0.38



 

85 

 

Because all subsequent values of the binary sequence are zeros, there will be no 

other firings. Therefore, a cluster, when presented with this specific input, and after 

sufficient training, will only have a single connection to N8 remaining after training is 

complete. As shown in the above figures, the single spike propagates around the 

circumference of the cluster until N7. Due to the fact that the N7 to N8 connection is a 

data bearing connection and the input does not specify that there should be a nonzero 

connection there, N7 does not induce N8 to fire. 

  



 

86 

 

5.3 Test Simulation 1 

 

 

 

Figure 5.5. Initial state of the N8 cluster at the first time step (Left), and N8 

cluster at the second time step (Right). 

 

 

For the testing portion of the simulation, the weights for each connection at each 

time step of the final epoch (epoch 3 weights) of the training portion are loaded for use. 

The prompt, [1], is input to N1, causing it to fire as depicted in red above. In the 

second time step, N2 fires. In the third time step, N3 and N8 fire, induced by N2’s firing 

during the previous time step. The remaining time steps in the testing portion follow the 

pattern of the training portion. 

1

12

3

4

5 6

7

8

1

1

1

0.68

0.79

0.68

0.95

1

1

0.01

0.86

1

0.14

12

3

4

5 6

7

8

1

1

1

0.32

0.1

0.05

0.21

1

1

0.77

0.81

1

0.61

2

12

3

4

5 6

7

8

1

1

1

0.55

0.15

0.75

0.38

1

1

0.59

0.48

1

0.4



 

87 

 

 

Figure 5.6. Final firings of the N8 cluster: firings of N3-N7, where N2 induced 

the firing of N8 during the third time step. 

3

12

3

4

5 6

7

8

1

1

1

1

0.16

0.49

0.38

1

1

0.86

0.26

1

0.92

4

12

3

4

5 6

7

8

1

1

1

0.9

0

0.94

0.24

1

1

0.35

0.23

1

0.29

5

12

3

4

5 6

7

8

1

1

1

0.75

0.83

0

0.52

1

1

0.25

0.17

1

0.14

6

12

3

4

5 6

7

8

1

1

1

0.72

0.71

0.1

0

1

1

0.3

0.2

1

0.61

7

12

3

4

5 6

7

8

1

1

1

0.45

0.71

0.82

0.86

1

1

0.36

0

1

0.38



 

88 

 

5.4 Analysis 

Currently, after 3 epochs, the testing portion of the program returns a 0 for 

neurons that should not fire and 1 for the neurons that should fire over the eight time 

steps. In other words, for the binary sequence [10000], the testing output is 

[10000]. However, as the prompt is in actuality the same as the input sequence, an 

additional binary sequence, [101101], was input to ensure the functionality of the 

framework, where the final bit is the termination signal. 

 

5.5 Training Simulation 2 

 

 

 

Figure 5.7. Initial state of the N8 cluster at the first time step (Left), and N8 

cluster at the second time step (Right). 

 

 

1

12

3

4

5 6

7

8

1

1

1

0.8

0.55

0.82

0.16

1

1

0.02

0.4

1

0.76

2

12

3

4

5 6

7

8

1

1

1

0.6

0.04

0.12

0.31

1

1

0.97

0.86

1

0.07



 

89 

 

For the second simulation, the binary sequence to be learned is [101101]. As 

seen in the figure above, the first input in the training sequence is entered into N1, 

inducing N2 to fire at the subsequent time interval.  

 

 

 

Figure 5.8. N3 firing and N8 induced by N2. 

 

 

During the third time step, N3 and N8 fire, induced by N2. Again, N8 is depicted 

as orange because the training input induces N8 to fire during the same time step as one 

of the other seven neurons induces N8 to fire. In this case, that neuron was N2. The 

cumulative output at N8 is [1].  

3

12

3

4

5 6

7

8

1

1

1

1

0.13

0.64

0.25

1

1

0.47

0.37

1

0.74



 

90 

 

 

Figure 5.9. N4 firing. 

 

 

In time step four, N4 fires due to N3 firing previously. Note the 𝑤83 connection 

has been “pruned,” or decremented to zero, meaning N3 will not induce N8 to fire 

during the testing portion. The cumulative output at N8 is [10]. 

  

4

12

3

4

5 6

7

8

1

1

1

0.92

0

0.9

0.41

1

1

0.29

0.22

1

0.78



 

91 

 

 

Figure 5.10. N5 firing and N8 firing due to N4 (Left), and N6 firing and N8 

firing due to N5 (Right). 

 

 

N4 has caused N5 and N8 to fire, and a training input also causes N8 to fire. Note 

𝑤84 is stored as unity.  The cumulative output at N8 is [101]. During time step six, N5 

has caused N6 and N8 to fire, and a training input again causes N8 to fire. Note 𝑤85 is 

stored as unity. The cumulative output at N8 is [1011]. 

 

 

5

12

3

4

5 6

7

8

1

1

1

0.28

0.14

1

0.14

1

1

0.56

0.43

1

0.43

6

12

3

4

5 6

7

8

1

1

1

0.92

0.4

0.76

1

1

1

0.27

0.07

1

0.86



 

92 

 

 

Figure 5.11. N7 firing (Left), and N8 firing induced by N7 (Right). 

 

 

N6 induces N7 to fire, then in the next time step, N7 induces N8 to fire. In 

addition, another training input has been added to N8. The cumulative output at N8 is 

[101101], where the final bit is the termination signal. 

  

7

12

3

4

5 6

7

8

1

1

1

0.97

0.58

0.38

0.03

1

1

0.9

0

1

0.52

8

12

3

4

5 6

7

8

1

1

1

0.11

0.21

0.73

0.7

1

1

0.41

0.86

1

1



 

93 

 

5.6 Testing Simulation 

 

 

 

Figure 5.12. Initial state of the N8 cluster at the first time step (Left, and N8 

cluster at the second time step (Right). 

 

 

The time dependent weights from the training portion have been loaded. The 

prompt, [1], is introduced to N1 during the first time step, which causes N2 to fire in 

the subsequent time step.  

 

 

1

12

3

4

5 6

7

8

1

1

1

0.45

0.82

0.81

0.47

1

1

0.03

0.98

1

0.5

12

3

4

5 6

7

8

1

1

1

0.01

0.95

0.3

0.29

1

1

0.35

0.55

1

0.23

2

12

3

4

5 6

7

8

1

1

1

0.5

0.79

0.89

0.14

1

1

0.71

0.11

1

0.27



 

94 

 

 

Figure 5.13. N3 firing and N8 firing due to N2 (Left), and N4 firing (Right). 

 

 

For time step three, N2 induces N3 and N8 to fire because the training weight 

value for the 𝑤82 is 1. The cumulative output is [1]. During time step four, N3 induces 

the firing of N4. The cumulative output is [10]. 

 

Figure 5.14. N5 firing and N8 firing due to N4 (Left), and N6 firing and N8 

firing due to N5 (Right). 

3

12

3

4

5 6

7

8

1

1

1

1

0.85

0.28

0.72

1

1

0.16

0.61

1

1

4

12

3

4

5 6

7

8

1

1

1

0.67

0

0.57

0.73

1

1

0.91

0.57

1

0.7

5

12

3

4

5 6

7

8

1

1

1

0.55

0.52

1

0.41

1

1

0.85

0.58

1

0.69

6

12

3

4

5 6

7

8

1

1

1

0.6

0.21

0.51

1

1

1

0.19

0.87

1

0.38



 

95 

 

N4 induces the firing of N5 and N8 in time step 5. The cumulative output is 

[101]. Time step six shows the firing of N6 and N8. The cumulative output for both 

steps is [1011]. 

 

 

 

Figure 5.15. N7 firing (Left), and N8 firing (Right). 

 

 

N6 induces the firing of N7 then N8 in the subsequent time step, yielding the 

cumulative output: [101101].  

 

5.7 Analysis 2 

After 3 epochs of training, the testing portion of the program returns a 0 for 

neurons that should not fire and 1 for the neurons that should fire. For the input binary 

7

12

3

4

5 6

7

8

1

1

1

0.98

0.11

0.06

0.84

1

1

0.05

0

1

0.36

8

12

3

4

5 6

7

8

1

1

1

0.21

0.33

0.23

0.82

1

1

0.78

0.83

1

1



 

96 

 

sequence, the response from the prompt, [ 1 ], input at N1 is the output [ 1 0 1 1 0 1 ] at 

N8. The output is identical to the sequence the cluster was trained to learn. 

 



 

97 

 

6. FAST LEARNING NETWORKS 

 

The previous section presented a specialized structure of the network theory from 

section four, where the peripheral connections, or “delay” lines, were “hardwired.” On 

the other hand, this section presents an all-to-all network that starts with purely 

randomly weighted connections and constructs the previously demonstrated 

interconnection pattern seen in real time. This more general algorithm is capable of self-

organizing in the manner that had been assumed from the start in the previous network. 

 

6.1 Network Algorithm 

Recall the all-to-all connected network featured in Figure 4.1. Suppose all the 

weights initially have non-negative, but arbitrary values less than �̅�. As mentioned 

above we start training with a prompt signal at neuron 1 at 𝑡 = 0 causing it to fire at 

𝑡 = 𝐶̅. The training signal, (4.44) begins at 𝑡 = 𝐶̅ and is input to neuron 𝑁. In the 

following, we represent the time by the number of the periods, 𝑛, elapsed. We postulate 

the following learning process, where steps A-C occur each firing period: 

 

A. Consider the last neuron to fire (at the start it is neuron 1). Its stimulation 

builds a surge of neurotransmitter. The weight connecting it to neuron 𝑁 is adjusted so 

that: it equals �̅� if 𝑇(𝑛) = 1(𝐼𝑛 = 1) (the training signal enhances the neural 

transmitter, thereby increasing the weight), or zero if 𝑇(𝑛) = −1(𝐼𝑛 = 0) (the training 

signal is inhibitory, thus depleting the neural transmitter). 



 

98 

 

B. At the same time, the largest weight leading from the last neuron to fire 

(except the weight leading to neuron 𝑁) is set to �̅� due to the pulse of neural 

transmitter, and a pulse of magnitude �̅� is delivered to this postsynaptic neuron—so that 

it will fire after interval 𝐶̅, thus to become the last-neuron-to-fire in the next cycle. 

 

C. Finally, at the same instant as B: neural transmitter is depleted to all 

connections to and from the last-neuron-to-fire except the connections adjusted in steps 

A and B, connections already at maximum strength, and the connection to the next-to-

last-neuron to fire. In essence, the strengthening of the weight in B depletes the 

competing weights. Further, propinquity in time sustains the strength of the weight 

leading from the next-to-last-neuron to fire. 

 

D. Go back to A and repeat during the next cycle. 

 

When the binary sequence ends, it is padded with zeros, and the above process 

continues until all firing ceases.  

To fully explore this learning process, we use Figure 4.1 as an example. To 

simplify the explanation, neurons are numbered clockwise in such a way that the weights 

along the rim, starting at neuron 1 and moving in the clockwise direction, are initially the 

largest and are arranged in order of descending magnitude as one proceeds. Thus 𝑤12 is 

the largest, 𝑤23  the second largest, etc. The sequence to be learned is 𝐼(𝑛) = [1, 1, 0, 1]. 



 

99 

 

It is padded with zeros so the training input is                  

𝐼(𝑛) = [1, 1,−1, 1,−1, −1,−1,−1] . 

 

 

 

Figure 6.1. Depiction of cluster events during time step 1A: neuron 1 and 

neuron 8 fire. 

 

 



 

100 

 

Figure 6.1 shows the situation at 𝑛 = 1, at completion of step A. Since both the 

prompt signal and the training signal are both reinforcing, the weight is increased to its 

maximum possible value. This is indicated by drawing the weight as a thick black arrow. 

At this stage, the last-neuron-to-fire is neuron 1. Figure 6.2 shows 𝑛 = 1, at completion 

of step B.  

 

 

 

Figure 6.2. Depiction of cluster events during time step 1B: weight adjustment 

of the synapse between neuron 2 and 1. 



 

101 

 

In accordance with our numbering convention, 𝑤12 is the largest weight leading 

from the last-neuron-to-fire so it is reinforced to maximum value. Then a pulse of 

magnitude �̅� is delivered to neuron 2, so that at time 𝑛 = 2 it will become the last-

neuron-to-fire.  

 

 

 

Figure 6.3. Depiction of cluster events during time step 1C: connections to 

neuron 1 are trimmed except for those along the perimeter of the 

cluster. 

 



 

102 

 

Finally, Figure 6.3 shows that all connections to and from neuron 1, except for 

those already reinforced are severed. In essence, there is a competition among all the 

weights linked to neuron one, and only the weights 𝑤18 and 𝑤12 survive. Note that 

because all the other links to neuron 1 are cut, it will not be possible to fire neuron 1 

again during the training process. Neuron 1 cannot become a member of a closed loop.  

 

 

 

Figure 6.4. Depiction of cluster events during time step 2A: neuron 2 fires and 

the connection to neuron 8 is reinforced. 



 

103 

 

Next, at time 𝑛 = 2, neuron 2 fires—thus becoming the last-neuron-to-fire. Since 

𝑇(2) is again positive the weight 𝑤28 is set to the maximum (See Figure 6.4).  

 

 

 

Figure 6.5. Depiction of cluster events during time step 2B: the connection 

between neuron 2 and 3 is reinforced. 

 

 



 

104 

 

On step B, as Figure 6.5 shows, aside from 𝑤28 , weight 𝑤23 is the largest weight 

issuing from neuron 2. This is reinforced, a firing pulse is delivered to neuron 3, and at 

time 𝑛 = 3, it will become the last-neuron-to-fire.  

 

 

 

Figure 6.6. Depiction of cluster events during time step 2C: connections leading 

to neuron 2 are trimmed except for those between it and the last-to-

fire and next-to-last-to-fire neurons. 

 

 



 

105 

 

Most importantly, as shown in Figure 6.6, all connections to and from neuron 2, 

except those already reinforced and except the connection from the next-to-last-neuron-

to-fire are zeroed out. Now we can see that the system is building a chain of neurons that 

fire successively, and without firing any one neuron more than once. 

 

 

 

Figure 6.7. Depiction of cluster events during time step 3A-C: the connection to 

neuron 8 is made ineffective according to the training pattern, the 

connection to neuron 4 is strengthened, and all other connections to 

neuron 3 are made ineffective. 



 

106 

 

These points become even clearer in Figure 6.7 which shows the situation at time 

𝑛 = 3 when steps A-C are carried out. Because 𝑇(3) = −1, in this case the weight from 

neuron 3 to neuron N is zeroed out. Likewise, Figure 6.8 shows the configuration at 

𝑛 = 4. 

 

 

 

Figure 6.8. Depiction of cluster events during time step 4AC: neuron 4’s 

connection to neuron 8 is strengthened according to the training 

pattern, the connection to neuron 5 is strengthened, and all other 

connections to neuron 4 are made ineffective. 



 

107 

 

Similar to the steps during neuron 2’s firing, A-C entail the strengthening of the 

connection between neuron 4 and neuron 8, between neuron 4 and neuron 5, and lastly, 

the depletion of neurotransmitter to all other connections to or from neuron 4. 

 

 

 

Figure 6.9. Depiction of cluster events during time step 7A-C: neuron 7’s 

connection to neuron 8 is made ineffective according to the training 

pattern, the respective connections to neuron 6 and 7 are 

strengthened, and all other connections to neuron 5-7 are made 

ineffective. 

 

 



 

108 

 

Finally, Fig. 6.9 shows the result once all firing has ceased. Since the training 

signal is inhibitory after 𝑛 = 4, there are no connections from the remainder of the rim 

to neuron 𝑁. However the chain of neurons is still completed as a result of step B.  

In summary, after one training session, the system has organized itself into a 

delay line: a chain of neurons that fire one after the other, without repetition. The fan of 

weights leading from this chain to neuron 𝑁 contains the information of the learned 

binary sequence. It is obvious that after a single training session, if the prompt signal is 

applied without training input, neuron 𝑁 will produce the output:  

 

𝐼(𝑡) = ∑ 𝐼𝑚𝛿(𝑡 − 𝑚𝐶̅), 𝐼𝑘 = 0or1
𝑀
𝑚=1 for𝑘 = 1,… ,𝑀 , as desired. 

 

 



 

109 

 

 

Figure 6.10. Depiction of the cluster’s capability to learn an entirely new 

sequence: the blue lines indicate the connections formed by the 

additional sequence learned using a different neuron as the 

training neuron. 

 

 

A further point is that additional sequences can be learned, by designating a “Tail 

end” neuron as the receptor of the training sequence. Figure 6.10 shows the final state 

when neuron 7 is the designated output node and the sequence to be learned is 𝐼(𝑛) =

[1,1,1,1]. For this second training session, the delay line is already built and steps B and 

C are already carried out. Only step A remains, resulting in the blue colored weights in 

the leading into neuron 7. Although neuron 8 will still fire in the sequence it has been 



 

110 

 

trained to repeat, it will have no effect on the weights going into neuron 7. Thus several 

sequences can be learned without over-writing. 

To complete our description, we set down the particularly simple mathematical 

algorithm. Let 𝜅(𝑛) denote the index of the last-neuron-to-fire at time 𝑛, with 𝜅(𝑛) = 1 .  

Define the following limiter function: 

 
L�̅�(𝑥) = {

0, 𝑥 < 0

𝑥, 0 ≤ 𝑥 < �̅�

�̅�, 𝑥 ≥ �̅�

 
(6.1)  

 

Then the learning algorithm is: 

 

w𝜅(𝑛),𝑁(𝑛 + 1) = L�̅�[w𝜅(𝑛),𝑁(𝑛) + �̅�𝑇(𝑛)] 

𝑚∗ = argmax
𝑚≠𝑁

{w𝜅(𝑛),𝑚(𝑛)} 

w𝜅(𝑛),𝑚(𝑛 + 1) = L�̅� [w𝜅(𝑛),𝑚(𝑛) + 2�̅� (𝛿𝑚,𝑚∗ −
1

2
)] , ∀𝑚 ≠ 𝑁 

w𝜅(𝑛),𝑚(𝑛 + 1) = L�̅�[w𝑚,𝜅(𝑛)(𝑛) − �̅�], ∀𝑛 ≠ 𝜅(𝑛 − 1) 

𝜅(𝑛 + 1) = 𝑚∗ 

(6.2)  

 

6.2 Network Demonstration 

This portion demonstrates the Fast Learning Algorithm (FLA), Eq. (6.2), 

presented in the previous section, using a simple MatLab simulation. The following 

figures show the structuring of a 10 neuron, initially all-to-all, connected network with 

randomly assigned connection weights. It is of note that while in the previous section’s 

example, the weight values around the perimeter were assumed to be decreasing in the 

clockwise direction, this simulation does not utilize that assumption. Thus, as the 



 

111 

 

network restructures itself to learn the training pattern, the path from one firing neuron to 

the next will not be orderly as it was previously. The program will maintain neuron 1 as 

the prompt neuron and the training pattern, 𝑇 =  [11110011], will be applied to 

neuron 𝑁, in this case 𝑁 = 10.  

 

 

 

Figure 6.11. Representation of the FLA connections at 𝒕 = 𝟏: neuron 1 has 

fired, the connections to all but neuron 6 and neuron 10 have been 

made ineffective. 

 

 



 

112 

 

In coordinate (1,8) the firing of neuron 1 can be seen to have strengthened the 

connection with neuron 8. Because the training element for this time step is 1, the 

connection to the output neuron, 10, has been strengthened as well. All other 

connections to neuron 1 have been made ineffective. Note that row 11 of the figure 

indicates the chronological firing pattern of the output neuron and column 10 presents 

the strengthening of the weights spatially. 

The figure below presents the state of the network at a later point during training. 

The row index indicates the neuron that the pulse is coming from and the column index 

is the neuron receiving the pulse.  

 

 



 

113 

 

 

Figure 6.12. Representation of the FLA connections at 𝒕 = 𝟐: neuron 7 has 

fired, the connections to all but neurons 5 and 8 and coming from 

1, are ineffective.  

  

 

 

By tracing the indices we can see that the following path has been formed:  



 

114 

 

 

Figure 6.13. Depiction of the shape of the self-structuring network at the point 

represented previously 

 

 

Now moving forward to when training has been completed, we have: 



 

115 

 

 

Figure 6.14. Representation of the FLA when training is completed: the spatial 

connections between the final neuron and other neurons is shown 

in column 10, and the temporal sequence generated by the 

network is shown in the last row 

 

 

Note that the temporal sequence in row 11 matches the training sequence. The 

figure below shows the final network shape. 



 

116 

 

 

Figure 6.15. Depiction of the final shape of the self-structuring network after 

training. 

 

 

  



 

117 

 

7. CONCLUSION 

 

In summary, this thesis presents a neural network model and framework 

describing the architecture required to accomplish two tasks, (1) recognition of image 

data and matching with stored patterns for image noise reduction, and (2) rapid learning 

of temporal sequences for dynamic system characterization.  

Concerning the recognition of image data and matching with stored patterns, we 

saw in section one that Stage II neural models based on the average firing rate by nature 

cannot encode data as well as spike-time based neurons. In addition to the Stage II 

neurons, backpropagation algorithm is found to be slow and unreliable. Experimental 

evidence based on human reaction times lends support to spike-time based neurons 

being a more accurate description of biological processes due to their faster processing 

time. Therefore, of the many models developed to accurately portray the mechanics of 

neurons, spiking neural net models are adopted to accomplish the tasks.  

There are many different SNN models that mathematically model the action of 

interconnected neurons, most of which focus on the evolution of neuron potential. 

However, while these models simulate the mechanical operations of neurons, sometimes 

in extreme detail, they do not attempt to find and isolate the necessary feature(s) 

responsible for the desired functionality. This thesis shows that the finite, initial slope of 

the postsynaptic response is a necessary feature that enables recognition of data and 

matching data to stored patterns in a competitive structure. That is demonstrated in the 

Competitive Classifying Unit, which is hierarchically composed of groups of 



 

118 

 

Comparator neurons that make up Shift Blocks which are the basic units of Associators. 

The Competitive Classifying Unit architecture exploits a competitive process to achieve 

very rapid identification and matching with low sensitivity to non-concurrent arrival 

times of inputs entering comparator neurons. Thus, the system will function correctly as 

long as the incoming pulses are just short of a pulse width apart, or as long as there is the 

slightest overlap between responses. Furthermore, the system has low sensitivity to 

variations in the firing threshold, showing that when the threshold is allowed to vary 

within several different intervals, the system will select the correct match up to 90% of 

the time with a standard deviation of 0.8 and 100% with smaller standard deviations. 

It is shown that certain homeostasis conditions are necessary and sufficient for 

synchronous and periodic firing. Stability conditions for periodic firing are determined. 

This provides the basis for an all-to-all connected, spiking net that maintains an internal 

“clock.” The training process for learning a periodic sequence of binary numbers is 

constructed. A simple synaptic weight update within a sparsely connected system of 𝑁 

neurons is simulated and is capable of quickly learning binary sequences. 

Subsequently, we developed a more generalized version of this structure, still 

based on the network theory from section four. In the new version, the “delay” lines are 

preset, or in other words, the basic structure of the all-to-all connected network is not 

predetermined: it starts with purely randomly weighted connections and constructs the 

interconnection pattern in real time. As the network is trained with a sequence, it takes 

on whatever structure that will accomplish the task. This more general algorithm is 

capable of self-organizing in the manner that had been assumed from the start in the 



 

119 

 

previous network. Finally, a MatLab simulation demonstrates the fast learning capability 

of this algorithm. 

Future work would be to address the assumption that the training sequence and 

the network are firing with the same period. The question would be: Can a network be 

trained to learn a new firing period? Similarly, different groups of neurons have been 

found to have different firing periods. Can information be encoded in the firing period 

itself? 

The human brain is still a black box. While we are gaining more and more 

knowledge of the minutiae of brain mechanics, we are still searching to find out which 

features will allow us to harness specific capabilities. While the search goes on, this 

thesis has answered a few of the plethora of questions. 

 

 

  



 

120 

 

REFERENCES 

 

[1]  K. Mehrotra, C. K. Mohan and S. Ranka. Elements of Artificial Neural Networks 

MIT Press, 1997. 

[2]  D. Marr. Vision : A Computational Investigation into the Human Representation 

and Processing of Visual Information, 1982. 

[3]  S. Cavallari, S. Panzeri and A. Mazzoni. “Comparison of the dynamics of neural 

interactions between current-based and conductance-based integrate-and-fire 

recurrent networks.” Frontiers in Neural Circuits, vol. 8, pp. 150-157, 2014. 

<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943173/>. 

[4]  J. R. Rabunal and J. Dorrado. Artificial Neural Networks in Real-Life Applications 

2006. <http://lib-

ezproxy.tamu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=tr

ue&db=nlebk&AN=140158&site=ehost-live>. 

[5]  X. Gu. "Spatial-temporal-coding pulse coupled neural network and its 

applications," in Neuronal Network Research Horizons, M. L. Weiss, Ed., 2007. 

[6]  Neural Networks for Vision, Speech, and Natural Language Ed. Myers and 

Nightingale, 1992.  

[7]  H. Lin. “Identification of spinal deformity classification with total curvature 

analysis and artificial neural network.” Presented at the 27th Annual International 

Conference of Engineering in Medicine and Biology, 2005. 



 

121 

 

[8]  A. Meyer-Bäse. “Neural net computing for image processing,” in Computer Vision 

and Applications a Guide for Students and Practitioners, H. Haussecker, Ed., 2000. 

[9]  M. Ghasemi Varnamkhasti. “Aging fingerprint characterization of beer using 

electronic nose.” Sensors and Actuators, vol. 159, pp. 51-59, 2011. 

[10]  R. Schuster, S. Schulter, G. Poier, M. Hirzer, J. Birchbauer, P. M. Roth, H. 

Bischof, M. Winter and P. Schallauer. “Multi-cue learning and visualization of 

unusual events.” Presented at Computer Vision Workshops (ICCV Workshops), 

2011 IEEE International Conference, 2011. 

[11]  L. Wang, S. Z. Der and N. M. Nasrabadi. “Automatic target recognition using a 

feature-decomposition and data-decomposition modular neural network.” Image 

Processing, IEEE Transactions, vol. 7, pp. 1113-1121, 1998. 

[12]  A. P. Engelbrecht. Computational Intelligence an Introduction, 2007.  

[13]  X. Pan, B. Lee and C. Zhang. “A comparison of neural network backpropagation 

algorithms for electricity load forecasting.” Presented at Intelligent Energy 

Systems (IWIES), IEEE International Workshop, 2013. 

[14]  N. Belghini, A. Zarghili, J. Kharroubi and A. Majda. “Color facial authentication 

system based on neural network.” Presented at Information Science and 

Technology (CIST), 2011. 

[15] L. V. Fausett. Fundamentals of Neural Networks : Architectures, Algorithms, and 

Applications, 1994. 

[16]  E. Soria, J. D. Martín and P. J. G. Lisboa. "Metaheuristic procedures for training 

neural networks," SpringerLink (Online service), Eds., 2006. 



 

122 

 

[17]  S. Thorpe and D. Fize. “Speed of processing in the human visual system.” Nature 

381(6582), pp. 520, 1996. <http://lib-

ezproxy.tamu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=tr

ue&db=a9h&AN=9606165495&site=ehost-live>. 

[18]  F. Y. Ahmed, B. Yusob and H. N. A. Hamed. “Computing with spiking neuron 

networks, A review.” International Journal of Advances in Soft Computing & its 

Applications, vol. 6, 2014. 

[19]  W. Gerstner and W. Kistler. Spiking Neuron Models: Single Neurons, Populations, 

Plasticity, 2002.  

[20]  W. Mass and C. M. Bishop. Pulsed Neural Networks 1999. 

[21]  W. Gerstner. Plausible neural networks for biological modelling, Kluwer 

Academic Publishers, Dordrecht, Boston, 2001.  

[22]  A. N. Burkitt and G. M. Clark. “Analysis of integrate-and-fire neurons: 

Synchronization of synaptic input and spike output.” Neural Computing, vol. 11, 

pp. 871-901., 1999. <http://dx.doi.org/10.1162/089976699300016485>. 

[23]  W. Gerstner. Time structure of the activity in neural network models. American 

Physical Society. vol. 51, pp. 738-758., 1995. 

<http://link.aps.org/doi/10.1103/PhysRevE.51.738>.  

[24]  J. J. B. Jack. Electric Current Flow in Excitable Cells, 1975.  

[25]  I.A. Kuznetsov & A.V. Kuznetsov, “Can numerical modeling help understand the 

fate of tau protein in the axon terminal?” Computer Methods in Biomechanics and 

Biomedical Engineering, 2015. 



 

123 

 

[26] L. Abbott and T. B. Kepler. “Model neurons: From hodgkin-huxley to hopfield,” 

Statistical Mechanics of Neural, 1990. 

[27] R. FitzHugh. “Impulses and physiological states in theoretical models of nerve 

membrane.” Biophys. J. vol. 1, pp. 445-466., 1961. 

<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366333/>. 

[28] E. M. Izhikevich. “Simple model of spiking neurons.” IEEE Trans. Neural 

Networks, vol. 14, pp. 1569-1572., 2003. 

[29] R. B. Stein. “Some models of neuronal variability.” Biophys. J. vol. 7, pp. 37-68. 

1967. 

[30] W. Gerstner, and W.M. Kistler. Spiking Neuron Models – Single Neurons, 

Populations, Plasticity. Cambridge University Press, Cambridge, U. K, 2002.  

[31] R. Eckhorn, H. J. Reitboeck, M. Arndt and P. Dicke. “Feature linking via 

synchronization among distributed assemblies: Simulations of results from cat 

visual cortex.” Neural Computing. vol. 2, pp. 293-307. 1990. 

<http://dx.doi.org/10.1162/neco.1990.2.3.293>.  

[32]  J. Bibby, "Axiomatisations of the average and a further generalization of 

monotonic sequences," Glasgow Mathematical Journal, vol. 15, pp. 63-65, 1974. 

[33] G. Bi and M. Poo, “Synaptic modifications in cultured hippocampal neurons: 

dependence on spike timing, synaptic strength, and postsynaptic cell type,” J. 

Neuroscience.,vol. 15, pp. 10464-10472, 1998. 



 

124 

 

[34] L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, and M. Poo, “A critical window 

for cooperation and competition among developing retinotectal synapses,” Nature, 

vol. 395, pp. 37-44, 1998. 

[35] V. Egger, D. Feldmeyer, and B. Sakmann, “Coincidence detection and changes of 

synaptic efficacy in spiny stellate neurons in barrel cortex,” Nature Neurosci., vol. 

2, pp. 1098-1105, 1999. 

[36] G. Q. Bi and M. M. Poo, “Distributed synaptic modification in neural networks 

induced by patterned stimulation,” Nature, vol. 401, pp. 792-796, 1999. 

  



 

125 

 

APPENDIX 

 

Although the input and output images appear 3D, all computations were 

performed on 2D shapes. MatLab’s 3D plot function generated these 3D images from 

2D input to enable detection of miniscule differences not apparent using the 2D plot 

function. 

 

 

 

Figure A-1 Comparison of input, a square, (Left) and output (Right) of the 

gradient descent program. 

  

 

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

Input scene

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

50

Output shape



 

126 

 

 

Figure A-2 Graphical representation of the error (Left) and the participation 

coefficient values for each test shape (Right). 

  

 

The above is the final error between the input scene and the output image. 

 

 

 

Figure A-3 Comparison of input, an oval, (Left) and output (Right) of the 

gradient descent program. 

 

 

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200
Final Error per iteration

E
rr

o
r

Itertation

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Participation Coefficients for each shape

Iteration

P
C

 

 

PC
rect

PC
cir

PC
tri

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

Input scene

0
10

20
30

40
50

0

20

40

60
-10

0

10

20

30

40

Output shape



 

127 

 

Due to the constraint that all participation coefficient parameters should sum to 

one, competition results in the rectangle “winning” around the seventieth iteration. 

 

 

 

Figure A-4 Graphical representation of the error (Left) and the participation 

coefficient values for each test shape (Right) 

 

 

 

Figure A-5 Comparison of input, a triangle, (Left) and output (Right) of the 

gradient descent program 

 

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700
Final Error per iteration

E
rr

o
r

Itertation

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Participation Coefficients for each shape

Iteration

P
C

 

 

PC
rect

PC
cir

PC
tri

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

Input scene

0
10

20
30

40
50

0

20

40

60
0

10

20

30

40

Output shape



 

128 

 

 

Figure A-6 Graphical representation of the error (Left) and the participation 

coefficient values for each shape (Right) 

 

 

It is important to remember that while the results of this matching experiment 

appear to show an effective method for matching, the process to acquire these results 

demanded adjustment user adjustment to match each new shape.   

 

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

800

900
Final Error per iteration

E
rr

o
r

Itertation

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Participation Coefficients for each shape

Iteration

P
C

 

 

PC
rect

PC
cir

PC
tri


