
Synaptic plasticity and memory addressing
in biological and artificial neural networks

Danil Tyulmankov

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2024

© 2023

Danil Tyulmankov

All Rights Reserved

Abstract

Biological brains are composed of neurons, interconnected by synapses to create large complex

networks. Learning and memory occur, in large part, due to synaptic plasticity – modifications in the

efficacy of information transmission through these synaptic connections. Artificial neural networks

model these with neural "units" which communicate through synaptic weights. Models of learning

and memory propose synaptic plasticity rules that describe and predict the weight modifications. An

equally important but under-evaluated question is the selection of which synapses should be updated

in response to a memory event. In this work, we attempt to separate the questions of synaptic

plasticity from that of memory addressing.

Chapter 1 provides an overview of the problem of memory addressing and a summary of the

solutions that have been considered in computational neuroscience and artificial intelligence, as

well as those that may exist in biology. Chapter 2 presents in detail a solution to memory addressing

and synaptic plasticity in the context of familiarity detection, suggesting strong feedforward weights

and anti-Hebbian plasticity as the respective mechanisms. Chapter 3 proposes a model of recall,

with storage performed by addressing through local third factors and neo-Hebbian plasticity, and

retrieval by content-based addressing. In Chapter 4, we consider the problem of concurrent memory

consolidation and memorization. Both storage and retrieval are performed by content-based

addressing, but the plasticity rule itself is implemented by gradient descent, modulated according to

whether an item should be stored in a distributed manner or memorized verbatim. However, the

classical method for computing gradients in recurrent neural networks, backpropagation through

time, is generally considered unbiological. In Chapter 5 we suggest a more realistic implementation

through an approximation of recurrent backpropagation.

Taken together, these results propose a number of potential mechanisms for memory storage and

retrieval, each of which separates the mechanism of synaptic updating – plasticity – from that of

synapse selection – addressing. Explicit studies of memory addressing may find applications not only

in artificial intelligence but also in biology. In artificial networks, for example, selectively updating

memories in large language models can help improve user privacy and security. In biological

ones, understanding memory addressing can help with health outcomes and treating memory-based

illnesses such as Alzheimers or PTSD.

Table of Contents

Acknowledgments . vi

Dedication . viii

Chapter 1: Memory addressing in biological and artificial neural networks 1

1.1 Introduction . 1

1.2 Memory addressing in computers . 3

1.3 Synaptic plasticity . 5

1.4 Memory addressing in neural networks . 9

1.4.1 Ideal observer models . 9

1.4.2 Strong feedforward weights . 10

1.4.3 Content-based addressing . 13

1.4.4 Content selection mechanisms . 17

1.4.5 Three-factor plasticity . 21

1.4.6 Credit assignment . 24

1.4.7 Memory addressing in artificial intelligence 29

1.4.8 Memory addressing in biological systems 32

1.5 Conclusion . 37

i

Chapter 2: Meta-learning synaptic plasticity and memory addressing for continual familiarity
detection . 39

2.1 Introduction . 40

2.2 Results . 43

2.2.1 Continual familiarity detection task . 43

2.2.2 HebbFF network architecture . 44

2.2.3 The "what" of synaptic plasticity: encoding via an outer product for general-
ization . 45

2.2.4 The "how" of synaptic plasticity: storage via an anti-Hebbian rule 49

2.2.5 The "when" of synaptic plasticity: continual learning without catastrophic
forgetting . 50

2.2.6 The "where" of synaptic plasticity: addressing via strong feedforward weights 51

2.2.7 Curriculum training and empirical capacity 56

2.2.8 Idealized model and theoretical capacity 58

2.2.9 HebbFF recapitulates neural data from inferotemporal cortex 59

2.2.10 Two subpopulations emerge in a classification-augmented task 62

2.2.11 Familiarity detection of real images . 63

2.3 Discussion . 65

2.4 Methods . 68

2.4.1 HebbFF and RNN training . 68

2.4.2 Bogacz-Brown model implementation . 69

2.4.3 Training FLD and SCC decoders . 70

2.4.4 Idealized model analytic capacity derivation 71

2.5 Supplementary figures . 80

ii

Chapter 3: Biological learning in key-value memory networks 88

3.1 Introduction . 88

3.2 Simplified learning mechanism . 91

3.2.1 Reading . 92

3.2.2 Writing keys . 93

3.2.3 Writing values . 95

3.3 Results . 96

3.3.1 Benchmark: autoassociative recall . 96

3.3.2 Meta-learning of plasticity rules . 97

3.3.3 Continual, flashbulb, and correlated memory tasks 100

3.3.4 Heteroassociative and sequence memory 102

3.4 Discussion . 104

3.5 Task details . 105

3.5.1 Benchmark: autoassociative recall . 105

3.5.2 Beyond simple recall . 106

3.5.3 Beyond autoassociative memory . 107

3.6 TVT key-value memory mechanism . 110

3.7 Supplementary results . 112

Chapter 4: Memorization and consolidation in associative memory networks 114

4.1 Introduction . 114

4.2 Related work . 116

4.3 Methods . 118

iii

4.3.1 Data . 118

4.3.2 Model . 118

4.3.3 Learning . 119

4.4 Results . 122

4.4.1 Feature-prototype transition . 122

4.4.2 Automatic memorization of exceptions . 123

4.4.3 Loss weighting vs. importance sampling 125

4.5 Discussion . 126

4.6 Supplementary figures . 127

Chapter 5: Efficient recurrent backpropagation in modern Hopfield networks 129

5.1 Introduction and related work . 130

5.2 Results . 131

5.2.1 Generalized modern Hopfield network . 131

5.2.2 Two layer network: spherical memory with attention 133

5.2.3 Speeding up gradient computation . 135

5.2.4 Empirical validation . 136

5.2.5 Time and memory complexity . 138

5.3 Supplementary Materials . 139

5.3.1 Two-layer network gradient derivation . 139

5.3.2 Energy function: Spherical memory with attention 140

5.3.3 Two-layer network gradient approximation 140

5.3.4 Time and memory complexity . 144

iv

Chapter 6: Conclusion . 146

References . 148

v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my thesis advisor, Larry

Abbott. I first encountered Larry during my undergrad, when he reviewed my first ever publication

[1]. At that time, I had little idea of how important a role he would play in my career. Since then,

the scientific skills that I learned will (hopefully) be evident in the rest of the dissertation, but the

mentorship I received is harder to quantify. While some of my peers complained about their advisors,

I was genuinely confused about their complaints: despite his fame, Larry was always available when

I needed him, always present when I met with him, always provided support – both scientific and

emotional – to help me grow, even letting me design my own course1. What I have come to admire

most, however, is his unbounded curiosity and genuine love for the process of science. As I was told

during my PhD interview, "Larry is a postdoc at heart". If I am fortunate enough to establish my

own academic lab, I hope to emulate not only his success as a scientist, but more importantly, his

wisdom as a mentor.

I am deeply grateful for the guidance and mentorship of Guangyu Robert Yang. As a postdoc

at Columbia, Robert was instrumental in getting my PhD off the ground. He not only helped me

assemble my first project from a collection of miscellaneous results into a single story, but also

to understand its broader implications. Indeed, the unifying theme of this dissertation – memory

addressing – is due to his suggestion. Always excited, enthusiastic, and supportive, he was the one

to encourage me to aim high when publishing my first PhD paper (and it worked! [2]). With no

topic off-limits for our conversations – from grand unifying theories of learning, to color schemes

for posters – Robert was truly my guide into the deep end of research.

I am also most indebted to Dmitry Krotov. Despite my lack of physics chops, he agreed to take

me on for an internship at the MIT-IBM Watson AI Lab, and I am lucky to have continued our

collaboration to this day. To Dima’s patience I owe my understanding of associative memory and

energy-based models, which has fundamentally changed my thinking about both neuroscience and

artificial intelligence in integral ways. Through Dima’s mentorship, not only did my knowledge of

1NBHV GU4359, Mathematical Tools for Theoretical Neuroscience, Columbia University.

vi

math and physics expand, but also my mastery of the Russian language, for the first time having a

chance to discuss highly technical subjects in my mother tongue. Although his technical expertise

matches the stereotype of the intimidating, hardcore, Russian theoretical physicist, I am grateful to

know him as the kind, patient, humorous, and joyful mentor that he is.

Finally, I believe in the theory that neuroscientists study their own weaknesses. Mine is memory.

Because I worry that I will forget an important name, at this point I will omit names entirely. Thank

you to my family (Hi, Mom!). To my roommates, classmates, colleagues, and collaborators, many of

whom became my friends. To my friends, some of whom became my colleagues and collaborators.

I want to thank the directors and administrators who kept everything running (and to apologize

to them for so often being delinquent in my PhD requirements). Thank you to the teachers and

professors who taught amazing classes. Most importantly, thank you to all of my mentors, past

and present – my thesis commitee; my undergraduate, Master’s, and PhD rotation advisors; my

internship managers; and everyone else who generously gave me their input and advice – all of

whom inspired me and guided me on the quest that is scientific research.

vii

Dedication

To educators everywhere.

viii

Chapter 1: Memory addressing in biological and artificial neural networks

1.1 Introduction

It is widely accepted that learning and memory occur in brains through synaptic plasticity,1 a

biological mechanism for updating (potentiating or depressing) the efficacy of synaptic connections

among a network of neurons. This process enables us to learn new skills – computations on external

inputs performed by our brain which in turn actuate our bodies in useful ways – and acquire new

memories – representations of previous experiences which inform our future behavior.

In computers, memory is distinct from computation. In neural networks, however, computation

and memory are intertwined [5]. To produce a desired computation, a neural network must "learn"

(i.e. program) it in the same way that a memory is "learned" (i.e. stored, written, or memorized) –

through synaptic plasticity, although the timescales on which these are implemented can differ by

orders of magnitude, ranging from seconds to generations. Indeed, because of the plastic nature of

the brain, it may be difficult to draw the distinction between input stimuli providing operands for a

computation or an algorithm, and stimuli modifying the operation itself [6]. Often, as in continual

learning, the action of performing a computation leads to an update in the computation, so that next

time it is performed slightly more efficiently, or using a slightly more accurate prior.

In this work, we define "memory" in a much more narrow sense, focusing specifically on storage

and retrieval of singular items, as is the case for episodic or declarative memory. Familiarity or

recognition memory (or, conversely, novelty detection) is a particularly useful testbed for investigating

these mechanisms since it requires only reporting whether a particular item (e.g. an episode or piece

of abstract knowledge) has been encountered. This makes readout much simpler than that for recall

1Although intrinsic neuronal mechanisms may also play a role in learning and memory [3]. In artificial neural
network models, learning can even be done by updating only the gains and biases of neurons with a fixed set of synapses
[4].

1

which requires reconstruction of the item, requiring less neural circuitry for decoding, thus making

it easier to separate the memory from the computation. We (mostly) avoid the neuroscientific

questions of synaptic or systems consolidation, as well as related questions from deep learning of

function approximation, generalization, and prevention of overfitting. Indeed, we specifically focus

on models which "overfit" – memorize the input data verbatim.

This implicitly suggests the hypothesis that although memory and computation can be intertwined,

there may also be distinct neurons or brain areas dedicated for "memory" storage and retrieval

(analogous to computer random-access memory, or RAM), which can operate based on some of

the principles described here. The hippocampus, for example, is a plausible candidate for such a

dedicated memory input-output device. Although we do not explore this idea further in this work,

by symmetry, other neurons or areas may be dedicated for computational processing (analogous to a

computer’s central processing unit, CPU), the computations of which are defined (programmed)

over extremely long-timescale mechanisms such as evolution.

For a memory device to be useful, it must implement the two aforementioned functions: storage

and retrieval. In a biological or artificial neural network, storage corresponds to updating a set of

synapses in response to an input stimulus, generally regarded as a pattern of activation in a subset

of neurons, such that when the activation has decayed away, the process of retrieval can be used

to reinstate the same pattern based on a cue, using the information that was stored by the synaptic

updates. In other words, storage uses neuronal activity to drive updates in synapses. Retrieval uses

the synaptic state to drive activity in neurons. Notably, storage and retrieval are separable. A failure

to recall an item does not necessarily correspond its absence in memory storage. Rather, it may be a

failure in retrieval. For example, it has been shown in a mouse model of Alzheimer’s disease that

retrieval of a memory that is inaccessible through natural recall cues is possible through optogenetic

activation instead [7].

Most work on neural network mechanisms of memory discusses plasticity rules, explicitly

seeking to establish a functional relationship between pre- and post-synaptic neuronal activity

and a change in a synaptic weight that optimizes memory capacity [8], fidelity, or persistence [9].

2

The question of memory addressing for storage – which synapses should be the ones undergoing

plasticity and how that selection is made – is often implicit or secondary in such studies. Addressing

for memory retrieval poses a similar challenge – which synapses were responsible for storing an

item, and how to access them to reinstate their information in neuronal activity. Although addressing

and plasticity go hand-in-hand and are often interdependent, in this work we explicitly highlight the

question of memory addressing during storage and retrieval, and attempt to (partially) orthogonalize

it from the problem of synaptic plasticity. This is a useful perspective to help us reliably find and

update, restore, or erase specific memories in a neural network without perturbing others. This may

find applications, for example, in treating post-traumatic stress disorder (PTSD) or Alzheimer’s

disease in biological networks, or reducing privacy concerns due to memorization of personal

information in artificial neural networks for artificial intelligence.

1.2 Memory addressing in computers

To set the context, we begin by discussing the more well-defined problem of memory addressing

in computer systems [10]. Although many implementations of computer memory have been proposed

[11], we will describe the most common one used today in personal computers – random-access

memory (RAM). This type of memory is called "random-access" because data can be read from or

written to any physical location on the storage device, in any order, in the same amount of time.

RAM is comprised of units called memory cells. Each memory cell stores one bit of information,

either a 0 or a 1. Memory cells are arranged into a memory array, with each of 2N memory cells

corresponding to an N -bit address. To access the information stored in a memory cell, the processor

sends a memory address along N address lines (one for each bit in the address) to an address

decoder – a circuit which converts the N -bit address to a 2N -bit representation where exactly one of

the 2N bits is active. This "one-hot" representation selects the corresponding memory cell in the

array, the contents (one stored bit) of which are then sent back to the processor via a data line. For

example, an address of length N = 3 can identify 2n = 8 different memory cells, and the address

"011" would correspond to the 4th cell. To write data, the memory cell is selected in the same way,

3

Figure 1.1: Schematic of a DRAM array with 64 memory cells arranged in 8 rows and 8 columns,
with m = k = 3 address lines. Image from [12].

but data is received from the processor along the data line. An auxiliary input controls whether the

memory array should be in read or write mode.

In practice, a memory cell in RAM (specifically, dynamic RAM or DRAM) consists of a

transistor and a capacitor, where the information bit is encoded as a high (1) or low (0) charge on

the capacitor, and the transistor gates current flow from/to the capacitor for reading/writing. The

memory cells are arranged in 2m rows and 2k columns (where m+ k = N) to make the memory

array (Figure 1.1). To access a memory cell, the device operates in two steps. First, it receives an

m-bit string row address from the processor, which is sent to the row address decoder. As before,

the decoder converts this to a one-hot representation and selects the corresponding row by opening

the gates of all transistors in that row, thus letting current flow from the capacitors. All 2k bits of

data in this row are read out by 2k circuits called sense amplifiers.

Next, the device receives a k-bit column address, which is sent to a column multiplexer along

with the 2k data bits from the sense amplifiers. The multiplexer acts as a 2k-way switch to select

4

the input corresponding to the k-bit column address, similar to the row address decoder, which

is then sent out through the data line to the processor. The rationale behind this grid layout is to

reduce the number of address lines, requiring max(m, k) instead of N lines, thus simplifying the

problem of routing wires on a circuit board and minimizing the number of pins on the memory

device. In practice, the column multiplexer and sense amplifiers take up much more space than the

row decoder, so m > k, requiring m address lines.

This process reads/writes a single bit of information from/to memory. To read/write B bits in

parallel, for example a "byte" (B = 8 bits) or a "nibble" (half a byte, B = 4 bits), we can replicate

this memory array B times to create a memory bank. Each array in the bank receives the same

address, but has its own data line. As a result, when the processor selects one N -bit memory address,

it receives (or is able to write) B bits along B data lines. This entire process is extremely fast,

occurring on the order of nanoseconds.

1.3 Synaptic plasticity

While a computer might store a bit of information by charging or discharging a capacitor, a

neural network stores information by changing the strength of its synaptic connections (but see

[5] for a review of other neural mechanisms of memory). A comprehensive review of synaptic

plasticity is beyond the scope of this work, but we provide an overview to set the context for the

complementary problem of memory addressing discussed in the remainder of this chapter.

A plethora of biochemical processes regulate the strength of a synapse, which can be measured

as the initial slope of a post-synaptic potential in response to a pre-synaptic spike [13], or the

amplitude of a post-synaptic current [14]. From a computational perspective, however, synaptic

plasticity commonly refers simply to the update of a scalar "synaptic weight". A post-synaptic

neuron’s activity (modeled either explicitly as a series of action potentials, or abstracted into a firing

rate) is controlled by its membrane potential, which is set by the total input current into the cell – a

weighted sum of all the currents transmitted by its pre-synaptic partner neurons. The weighting in

this sum is determined by the synaptic weights of the synapses connecting each pair of neurons.

5

Although, in general, synaptic plasticity may refer to any such weight modification – including

random fluctuations [15] or homeostatic mechanisms [16] – as it is commonly studied, plasticity is

the result of experience-driven updates that induce "learning" or "memory" in an organism or a

model.

In a model, the implementation for computing the synaptic weight update can be biological

or not. The most famous and foundational proposal for a biological synaptic weight update rule

is Hebb’s postulate [17], "neurons that fire together, wire together." In other words, if the firing

rates between two neurons are sufficiently correlated, the synapse between them will be potentiated

(strengthened). Mathematically, in its simplest form, the update ∆wij for the synaptic weight wij

between neurons i and j, with firing rates xi and xj can be expressed as simply the product of the

firing rates,

∆wij = xixj

If either neuron is silent, there is no update. If they are co-activated, the synapse is potentiated. More

generally, a "Hebbian" rule has become known to refer to any function of the pre- and post-synaptic

activity, and potentially the synaptic weight itself,

∆wij = F (wij, xi, xj)

Numerous models of plasticity building on the Hebbian rule have been proposed. For example,

Oja’s rule [18] ensures its stability and implements unsupervised learning (principal components

analysis, PCA). The BCM rule [19] enables bidirectional plasticity – not only potentiation but also

depression – with a sliding threshold to determine the sign of the update. In Chapter 2 of this thesis,

we consider "anti-Hebbian" plasticity, where neurons that fire together wire apart (correlated neural

activity causing synaptic depression) as a mechanism for familiarity detection [2]. In Chapter 3, we

consider a "neoHebbian" [20] three-factor plasticity rule for memory recall, which incorporates not

only pre- and post-synaptic activity but also a modulating factor [21].

More biophysically detailed models which implement individual action potentials of a neuron

6

𝒙𝒊

𝒙𝒋

𝒙𝒌

𝒘𝒋𝒊 𝒘𝒌𝒋
𝜹𝒋

𝜹𝒌

𝜹𝟏
𝒙𝟏

𝒘𝟏𝒋

Figure 1.2: Backpropagation in a feedforward network. Errors δ are backpropagated (red arrows)
through the network through weights wjk symmetric to the feedforward weights wkj (forward
information propagation indicated by green arrow), causing a biological implausibility known as the
weight transport problem. Image adapted from [26].

(rather than abstracting them into a scalar firing rate) consider plasticity rules that depend on the

temporal pattern of action potentials such as spike-timing dependent plasticity [22] or triplet rules

[23]. Including individual ions in the model suggests plasticity such as calcium-based rules [24].

Considering more complex circuit dynamics such as bursting leads to history-dependent structural

plasticity [25] . All of these can also be considered "Hebbian" plasticity rules as they only involve

information from pre- and post-synaptic neurons.

In modern "deep" artificial neural networks, synaptic weight updates are computed by the

backpropagation of errors algorithm [27], generally considered biologically implausible. The

synaptic weight update is the product of pre-synaptic activity and the post-synaptic neuron’s error.

This error is computed recursively as the weighted sum of errors from neurons downstream of

the post-synaptic neuron, weighted by the post-synaptic neuron’s efferent synaptic weights. As

implied by the name, the errors are propagated backwards from downstream neurons (closer to the

output layer) to upstream (closer to the input) through weights that are symmetric to the network’s

feedforward weights (Figure 1.2). This symmetry, or "weight transport" problem [28, 29] is difficult

to reconcile biologically, although alternative biologically plausible solutions have been proposed

7

[30, 31].

In a recurrent neural network (RNN), the problem of computing synaptic weight updates to

achieve the desired dynamics is more complicated. A synapse needs to consider its effect on

the network’s input/output function not only with respect to the other synapses, but also to the

entire trajectory of the neural dynamics. In an artificial neural network, this is solved by extending

the backpropagation algorithm to "backpropagation through time" (BPTT), which considers the

network’s history by "unrolling" the recurrent computation. Each timestep is considered a layer of a

deep feedforward network with identical weights between layers, and the backpropagation algorithm

is applied. However, not only does it suffer from the weight transport problem, but it also requires

neurons to store their history of activity [32]. Various biological solutions to this problem have been

proposed as well [33, 34, 35, 36].

In the special case of RNNs that obey dynamics which converge to a fixed point, a simpler

algorithm known as recurrent backpropagation [37, 38] can be used, taking advantage of the fact

that once the neural dynamics have converged to a fixed point, the trajectory by which they arrived is

irrelevant (see section 7.2 of [39] for a more didactic presentation and [40, 41] for a modern view).

In Chapter 5 of this thesis, we evaluate this algorithm in the context of the modern Hopfield network

[42] – a fixed-point RNN which is amenable to analysis from a memory addressing perspective (see

Section 1.4.3 and Section 1.4.6) – and connect it to Hebbian plasticity.

Whether expanding a network’s storage capacity [43], enabling continual learning [44, 45], or

inferring the plasticity rules [46, 47], much of the theoretical work on learning and memory focuses

on improved mathematical formulations of "synaptic plasticity". Here, we turn to a less well-studied

component of this problem, "memory addressing". Namely, the selection of synapses which undergo

plasticity, and the counterpart, their selection for subsequent retrieval.

8

1.4 Memory addressing in neural networks

1.4.1 Ideal observer models

We begin by describing a synaptic modeling paradigm that avoids the problem of memory

addressing altogether. In the "ideal observer" approach [9], we consider a set of synapses,

represented as a collection of weights W , without regard to the neurons which they connect or

network architecture they are part of. A "memory" in this case is simply the incremental change

(potentiation or depression) ∆w in the set of synaptic weights. Subsequent synaptic updates

occur randomly through ongoing activity, e.g. due to storage of memories, or random synaptic

fluctuations [43, 48, 49], although in general they can also be determined by a specific learning

paradigm (and therefore specific memory addressing mechanism) such as supervised, unsupervised,

or reinforcement learning [50].

To establish whether a memory remains available for recall, we consider its signal-to-noise ratio

(SNR). The signal corresponds to the overlap between the memory ∆w and the current synaptic

state, the exact definition of which depend on the specifics of the values for weights and statistics

of the updates [51]. The noise is the standard deviation of the signal. We can then quantify the

lifetime of the memory by calculating the number of subsequent synaptic updates it takes for the

SNR to drop below an arbitrary threshold (although the value depends on the threshold, the scaling

of the temporal lifetime does not). This approach avoids the need to design a mechanism from

extracting the information stored in synapses, simply assuming that the brain is capable of operating

optimally to access this data. As a result, this is an upper bound on the memory capacity, with

realistic readouts likely performing sub-optimally.

The ideal observer setup can also be thought of as a trivial (but foundational [52] and well-studied

[53]) neural network architecture with N input neurons connected through N synapses to a single

output neuron (Figure 1.3), performing a recognition task [54, 55]. The output neuron’s goal is

to report whether a stimulus has been previously presented, with its activity computed as the dot

product between the input vector and the synaptic weights, i.e. their overlap, and SNR can be

9

!"

!#

!$

!%

&"

&#

&%

&$
' =)&*!*

$

*+"

'

Figure 1.3: Single neuron, equivalent to an "ideal observer" setup.

computed from this value.

The problem is significantly more complicated when the synapses are arranged in even a simple

topology – one hidden layer (Figures 1.4 and 1.5). Now, storage/readout of information requires

carefully selecting the synapses to update/query. For storage, synaptic plasticity rules which are

typically considered "biologically plausible" must be local to the synapse, i.e. only depend on the

activity of pre- and post-synaptic neurons (although see Section 1.4.5). Since multiple synapses

project to a single neuron, synapses are no longer independent and can no longer be selected

arbitrarily as in the ideal observer model. Furthermore, unlike the topology in Figure 1.3, input

patterns are not necessarily one-to-one mapped to elements of the synaptic update vector ∆w. In

the rest of this work, we discuss potential solutions to this problem.

1.4.2 Strong feedforward weights

Feedforward weights for recognition

Extending the simple topology in Figure 1.3 of a single recognition neuron, we can consider one

with multiple recognition neurons, all of which receive the same input (Figure 1.4). The familiarity

signal is now encoded in their population activity, so an additional output neuron y is introduced to

decode this population signal. If the hidden neurons are identical, however, their population activity

will be equivalent to that of a single neuron.

10

𝒚

𝒉𝟏

𝒉𝟐

𝒉𝒏

𝒉𝟑

𝒙𝟏

𝒙𝟐

𝒙𝒏

𝒙𝟑

(a)

𝒙𝟏

𝒙𝑵

𝒉𝟏

𝒉𝟐

𝒉𝑴

𝒉𝟑 𝒚

(b)

Figure 1.4: Networks with one hidden (addressing) layer for familiarity detection. Blue lines indicate
fixed synaptic weights used for addressing. Red lines indicate plastic weights used for memory
storage. (a) One-to-one strong feedforward weights ensure the address is equal to the input. Adapted
from [56]. (b) Synaptic weights for addressing overlap with those used for storage. Meta-learned
fixed weights enable having an arbitrary address for each input as well as decoupling of the input
and hidden layer activities. Adapted from [2].

As one solution to this problem, [56] propose breaking the symmetry in the hidden neuron

activities with strong feedforward weights. Considering a network with N input units and N

hidden units, the authors propose strong synapses from the ith input neuron to the ith hidden neuron

(Figure 1.4a). These weights are fixed, while the remaining ones encode the (binary) input stimulus

according to a Hebbian plasticity rule. During both storage and readout, this mechanism ensures that

the only hidden units which participate in the memory are those whose corresponding input unit is

active. The input serves not only as the stimulus to store, but also as the address at which to store it.

A similar solution emerges through optimization ("meta-learning") of neural network parameters

for a continual familiarity task [2]. Unlike the one-to-one feedforward weights proposed in [56],

however, the fixed feedforward weights use a subset of input neurons to select the hidden neurons

which participate in the memory storage and readout (Figure 1.4b), resembling the sparse version of

the sparse distributed memory (SDM) address decoder matrix [57] discussed below. This not only

decouples the size of the input layer from that of the hidden layer, enabling the expansion of the

storage capacity without increasing the dimensionality of the input, but also increases sparsity in the

hidden layer activity (one-hot in the idealized case), therefore further decoupling the hidden neurons

11

𝒚𝟏

𝒚𝑩

𝒙𝟏

𝒙𝑵

𝒉𝟏

𝒉𝟐

𝒉𝑴

𝒉𝟑

𝐴 𝐶

Figure 1.5: Sparse Distributed Memory network with one hidden layer for recall. Fixed addressing
synaptic weight matrix A selects a hidden unit (the "address") according to the input x, which
indexes into the plastic content matrix C and retrieves the corresponding memory y. Adapted from
[60].

from each other. This work is discussed in detail in Chapter 2 of this thesis.

Feedforward weights for recall

A simple network for storing and recalling items, originally proposed as a model of human

long-term memory by [58] can function analogously to RAM, using feedforward weights to address

stored items [59]. In its simplest instantiation, the sparse distributed memory (SDM) is a three-layer

fully connected neural network (Figure 1.5) with binary inputs, outputs, and synaptic weights.

Matching the notation in section 1.2, the network is comprised of an input layer of size N , a hidden

layer of size M = 2N , and an output layer of size B. The input-to-hidden synaptic weight matrix A

is fixed and its rows enumerate all the 2N length-N binary strings. Now, given any binary input

vector, exactly one row of A will match the input. Therefore, using a step function nonlinearity in

the hidden layer with an appropriately set threshold, we can ensure that exactly one hidden unit

is active. This layer functions like the RAM address decoder, converting an N -bit address to a

length-2N one-hot representation in the hidden layer.

Propagating this one-hot hidden layer activity forward through the hidden-to-output synapses,

which we call the content matrix C, we index into exactly one (length-B) column of this synaptic

weight matrix. This corresponds to the B synapses efferent from the active hidden neuron. Each

12

neuron in the output layer will receive an input proportional to the single synaptic weight projecting

from the active hidden neuron, and therefore the contents of those synapses will be set in the

activations in the output layer and available for readout. To update the contents of that slot, we select

the hidden layer neuron the same way and, clamping the output layer to the desired value, update the

synapses according to a Hebbian plasticity rule: synapses afferent onto silent neurons get depressed

and those afferent onto active neurons get potentiated (and, in both cases, thresholded to remain in

the range {0, 1}).

A potential problem with this design is the exponential size of the hidden layer. One way to

ameliorate it is by taking only a subset of addresses (rows) in A, e.g. M << 2N , and setting the

hidden layer threshold such that a small number (k) of hidden units are active in response to an

input (hence, "sparse"), rather than exactly one. These hidden units correspond to the k addresses

closest in Hamming distance to the input. Now, when storing an item in C, it will be stored in

a "distributed" fashion in k slots (columns of C), and the retrieved pattern will be their average,

introducing noise in the recall process. Nevertheless, the memory is accessed through the fixed

addressing matrix A, although the address now maps onto a distributed (k-hot) rather than localized

(one-hot) representation in the hidden layer.

Other extensions of the addressing mechanism of SDM have been considered as well. A sparse

addressing mechanism was proposed by [57, 61], where the addressing matrix only considers a

subset q of the N input bits and activates the corresponding hidden unit if all q bits match those in

the address (this can be thought of as the binary input being represented by a vector in {+1,−1}N ,

rather than {0, 1}N , and each row of A having q entries set to +1 or −1, and the rest set to zero).

1.4.3 Content-based addressing

So far, we have discussed location-based addressing in which an input is used to query a particular

address, defined by a fixed feedforward synaptic weight matrix, from which the stored value is

returned. Addressing with feedforward weights compares the input and a set of stored addresses,

selecting the one which has the largest overlap with the input. The value at that address can be

13

𝒙𝟏
𝒕

𝒙𝟐
𝒕

𝒙𝟑
𝒕

𝒙𝟔
𝒕

𝒙𝟓
𝒕

𝒙𝟒
𝒕

𝒘𝟔𝟏

𝒘𝟐𝟏

𝒘𝟓𝟏

𝒘𝟒𝟏

Figure 1.6: Classical Hopfield network with N = 6 neurons, recurrently connected through a
symmetric synaptic weight matrix W .

updated or replaced. An alternative memory system is one which can be queried using its stored

contents rather than an address. Content-addressable memory (CAM), also known as associative

memory, stores items which can be retrieved by presenting a perturbed version of the item as the

input (e.g. partially blanked, bits flipped, or noise added), and will retrieve the original item as the

output. Content-based addressing has been considered as a memory paradigm for computer systems

for many decades [62] through to recent years [63], various neural network implementations of

which have been proposed as models of biological memory.

Implicit content addressing

The classical example of a neural network implementation of associative memory is the Hopfield

network [64]. A Hopfield network consists of N neurons fully interconnected by N2 synapses

(Figure 1.6) and stores P items {ξ1, . . . , ξP}, where each ξi is an N -dimensional binary vector in

{+1,−1}N . To store item ξi, it is represented as a synaptic update given by a Hebbian plasticity

rule,

∆W =
1

P
ξiξ

⊤
i

(note ∆W is an N ×N matrix, but could also be reshaped and thought of as a length-N2 vector

∆w, as described in Section 1.4.1). Readout of an item proceeds according to the dynamics

14

x(t+1) = sign(Wx(t))

where x(t) is an N -dimensional binary vector representing the state of the neurons at time t.

The initial state x(0) is a perturbed version of a stored item, and the retrieved item is the resultant

fixed point x∗ of these dynamics, i.e. x∗ = sign(Wx∗). Many extensions of this network have been

considered, including continuous versions [65], hetero-associative memories [66], or those with

extremely large storage capacities [67, 68, 69].

The difficulty with such models is that the memory representation ∆W stored in the synaptic

weights is fully distributed and overlapping with other stored representations. This makes it

challenging to isolate an individual memory the way that we could with, for example, the SDM,

where a single fixed bit string indexes a row (or a few rows) of the contents matrix, allowing direct

access to a single memory stored in the synaptic weights. In other words, in the classical Hopfield

network, memories do not have an explicit "address." There are, however, generalizations of this

model reminiscent of the SDM which use modifiable content-based addresses (in combination with

various content selection mechanisms – see Section 1.4.4) rather than addressed locations to store

and retrieve items. We will now discuss such models.

Explicit content addressing

The Modern Hopfield Network (MHN) [69] or Dense Associative Memory (DAM) [68] can

be generically implemented as a neural network with two layers of recurrently connected neurons

(Figure 1.7) [42]: a visible layer which projects to a hidden layer through synaptic weight matrix W ,

which recurrently projects back to the input layer through symmetric synaptic weights W⊤. The

choice of nonlinearity in the hidden layer reduces this general setup to specific cases of this network,

such as the DAM for a polynomial nonlinearity, or the MHN for a softmax function in the hidden

layer.

The rows of the input-to-hidden synaptic weight matrix W (equivalently the columns of the

hidden-to-input weights W⊤) are the memory slots, analogous to those of the content matrix C in

15

𝒙𝟏
𝒕 𝒙𝑵

𝒕

𝒉𝟏
𝒕 𝒉𝟐

𝒕 𝒉𝑴
𝒕

𝒘𝟏𝟏 𝒘𝟐𝟏 𝒘𝑴𝟏 = 𝒘𝟏𝑴

Figure 1.7: Modern Hopfield network, or Dense Associative Memory. A visible layer x projects to
a hidden layer h, which projects back to the visible layer through symmetric synaptic weights. The
hidden layer may be interpreted as an address, analogous to Figure 1.4 or Figure 1.5. Adapted from
[70].

the SDM. Now, however, the contents also serve as the addressing mechanism for lookup – to locate

an item, rather than using the overlap between the input and a fixed address, we consider the overlap

between the input and the stored contents. Upon the initial presentation of a perturbed input, a

subset of hidden units are activated, each unit’s membrane potential proportional to the overlap (dot

product) between the input and the vector of synaptic weights afferent onto that unit. Their activity

is further sparsified by the activation function (discussed in Section 1.4.4). The hidden activity is

then projected back to the input layer through W⊤, the membrane potential of which is the weighted

sum of the stored memories (columns of W⊤, or equivalently rows of W), weighted proportional to

the hidden unit activities. These recurrent dynamics continue until convergence to a fixed point,

where the activity of the input layer has converged to a retrieved item, addressed by one or more

hidden units, which index corresponding memories stored in the synaptic weights (rows of W).

Note that the classical Hopfield network is also a special case of this model, with the activation

function being the identity for the hidden layer and the sign(·) function for the input layer. In this

case, the effective weight matrix is the outer product of the explicit weight matrices that project

from the input to the hidden layer and back, Weff = WW⊤. In this way, the classical Hopfield

network can be thought of as a MHN with the addressing mechanism (i.e. the hidden layer activity)

integrated out.

A similar model is used in [21], although without weight symmetry and without recurrent

dynamics. We consider a network with the same topology as the SDM – an input, hidden, and output

16

5.0 2.5 0.0 2.5 5.0
0.00

0.25

0.50

0.75

1.00

(a) Heaviside step function
5.0 2.5 0.0 2.5 5.0

0.00

0.25

0.50

0.75

1.00

(b) Logistic function

Figure 1.8

layer. The input-to-hidden synapses comprise the "key" matrix, analogous to the addressing matrix

of the SDM. The hidden-to-output synapses store the "value" analogous to the contents matrix.

Memory retrieval proceeds in a feedforward manner, with the key serving as a memory address.

Unlike the SDM, however, items are stored as key-value pairs, so the addressing (key) matrix is

updated dynamically alongside the contents (value) matrix. For this reason, we refer to this model

as a key-value memory (KVM). Note that it can also be used as an auto-associative memory like

the classical Hopfield network by setting the key equal to the value. The mechanism for writing

memories is discussed in Section 1.4.5.

1.4.4 Content selection mechanisms

Both in the case of location-based addressing implemented by strong feedforward weights, as

well as that of content-based addressing where memory slots are selected based on their similarity to

the cue, the hidden layer activity undergoes further refinement to achieve a desired level of sparsity.

This level of sparsity defines the number of slots activated during retrieval of a memory. In this

section, we discuss some of the mechanisms by which the hidden layer activity can perform this

computation.

17

Thresholding

The Heaviside step function

Θ(x) =


0 if x < 0,

1 if x ≥ 0

(Figure 1.8a) is a common activation function to use for neuron models which require a binary

decision, including those for pattern recognition [71], spiking neural networks [72], or, as described

in Section 1.4.2, address selection.

The sparse distributed memory (SDM) [73] (Section 1.4.2) uses the step function Θ(x− b) in

the hidden layer to ensure that exactly k hidden units (k = 1 in the special case where SDM behaves

like RAM) are activated in response to an input corresponding to an address. The threshold b must

be carefully adjusted based on prior knowledge of the input currents into the hidden layer such that

exactly the neurons above this threshold are activated (output a "1") and all others are silent (output

"0"). In a different example, in a familiarity detection network model, rather than a fixed threshold,

the authors [74] use a dynamic threshold to ensure that the coding level of the hidden layer (i.e.

fraction of hidden units active) is independent of the coding level of the input. The threshold is

proportional to the number of active input neurons, implemented with an inhibitory neuron that

receives projections from the input neurons and projects to the hidden layer.

Alternatively, the logistic function

σ(x) =
1

1 + e−x

(also called the sigmoid function2) can be considered a "soft" version of the step function, where the

output grows smoothly from 0 to 1 as the input increases (Figure 1.8b). From a modeling perspective,

the primary advantage of the logistic function as a neuronal nonlinearity is its differentiability.

Unlike the step function, which has derivative equal to zero everywhere that it’s defined, the logistic

2This common but imprecise, as any "S-shaped" function is a sigmoid, including the logistic function, but also
functions such as tanh(·), arctan(·), or erf(·).

18

function is differentiable everywhere. As a result, gradients can backpropagate through it, enabling

learning (or meta-learning [2]) in the network with a gradient descent based algorithm. Additionally,

unlike the step function, the logistic function has a tunable gain (i.e. slope of the function at the

origin), making the scale of the input meaningful, unlike the step function where Θ(ax) = Θ(x) for

any constant a. As the gain increases to infinity, the logistic function approaches the step function.

Recurrent inhibition

One limitation of using a neuron-wise threshold function (or soft-threshold in the case of the

sigmoid) to control the sparsity of the hidden layer activity is the need to fine-tune the threshold

value based on the statistics of the inputs into each neuron. If these change over time, the threshold

needs to be re-adjusted. Alternatively, it is possible to simply select the unit or units with the

highest membrane potential (controlled by the sum of input currents) and only have those fire, while

the rest remain silent. This function is known as the winner-take-all (WTA), or more generally

the k-winners-take-all (k-WTA) function, where the top k elements of an n-dimensional input are

returned as 1 and the rest are 0.

The price for this functionality, however, is additional anatomical complexity. To implement

k-WTA, we require recurrent (lateral) inhibitory connections among the neurons participating in the

function [75, 76]. Neurons with the highest firing rates send the strongest inhibitory inputs to the rest

of the circuit, further suppressing their activity and eventually silencing them completely. Although

such a circuit implementation can be explicitly modelled for a memory task [77], it is common to

implicitly assume that it exists and simply consider the hidden layer collective "nonlinearity" to be a

function (vector field) from RN to {0, 1}N (rather than element-wise) which selects the k largest

inputs (with k < N). This has been used for addressing both in models of familiarity [56] and recall

[78].

The continuous analogue of the k-WTA function is the softmax function, given by

softmax(x)i =
exi∑N
j=1 e

xj

19

Rather than setting the activity of the most-active units to a high value and the rest to zero, the

softmax performs normalized exponentiation such that units with high inputs are enhanced and

those with low inputs are suppressed. The entire vector is normalized such that it sums to 1, thus

allowing it to be interpreted as a probability distribution. Like the k-WTA function, it is possible to

implement the softmax with inhibitory recurrent connections and explicit dynamics [79], although

in practice it is treated as a collective nonlinearity applied to the entire input vector.

The softmax function is classically used as a generalization of the logistic function in the output

layer of a multi-class classifier network, although in recent machine learning literature it has been

used as an "attention" mechanism [80], most notably in the Transformer architecture [81]. Although

it is not performing recall of stored memories as described above, the softmax attention is being used

by the Transformer decoder in a similar way to address into the input sequence to select the most

relevant items for generating the next output token. Indeed, the attention mechanism of Transformers

is equivalent to the update dynamics of the modern Hopfield network [69]. This is made explicit in

the neural network description of the MHN, using a softmax nonlinearity in the hidden layer [42].

The same mechanism is used for memory retrieval in the key-value memory network from [21],

described in Chapter 3 of this thesis.

Like the logistic function, the softmax also has a tunable gain. Following terminology from

statistical mechanics, this is known as the inverse-temperature parameter, commonly denoted as β

which controls the "peaked-ness" of the function. As β approaches infinity, the softmax approaches

a one-hot vector; as β approaches zero, the softmax approaches a uniform distribution. In the context

of memory addressing, this parameter can be used to control the specificity of the address – a one-hot

address corresponds to the contents of exactly one slot, or a distributed address returns the weighted

average of several slots. This, in turn, impacts the type of stored representation – a "prototype"

representation where a single slot represents an individual item, or a "feature" representation where

multiple slots must be combined to output a stored item from memory. This is discussed further in

Chapter 4.

20

1.4.5 Three-factor plasticity

Thus far, in most of the examples of memory (recall or recognition) networks we have discussed,

storage of input stimuli has been performed through a Hebbian-like plasticity rule, with various

mechanisms in place to select the pre- and post-synaptic neurons which will be co-activated and

their corresponding synapse potentiated (or depressed). Both theoretical and experimental evidence,

however, shows that "third factors" such as reward, neuromodulators, dendritic plateau potentials, or

signaling molecules internal to the neuron/synapse can play a role in driving plasticity, or modulating

its timing, magnitude, or even its sign. Although three-factor plasticity has been used in a variety of

scenarios [82], here, we consider the perspective of the third factor as the addressing mechanism for

selecting neurons (and therefore their synapses) to be updated for memory storage.

Global third factors

Three-factor plasticity rules [83] classically rely on "global" third factors such as reward, novelty,

or attention, corresponding to dopamine, acetylcholine, noradrenaline, or other neuromodulators

which impinge globally on all plasticity sites in a learning circuit to control plasticity. Mathematically,

it is represented as a scalar value common across all synapses which modulates a Hebbian (two-factor,

i.e. pre- and post-synaptic activity) plasticity rule.

The classical example of a global third factor comes from reinforcement learning [84], in which

a population of cells s representing spatial location projects to another population a representing

actions. If the action performed at a given location, given by a = Ws, leads to a reward, all

the synapses encoding that action are strengthened in proportion to the reward value r (or, more

precisely, the deviation from the expected reward),

∆wij = raisj

In a more recent example from supervised learning [85], a recurrent neural network is endowed with

ongoing synaptic plasticity which follows a Hebbian rule. One of the network outputs corresponds

21

to a time-varying third factor M(t) referred to as "backpropamine", which controls the scale and

timing of the plasticity updates across all synapses,

∆wij = M (t)h
(t)
i h

(t)
j

During training, this network must learn to generate its own global third factor for gating plasticity.

A global third factor is also used in [21] (see Chapter 3) to switch between storage and retrieval

phases of a recall task.

Local third factors

Due to its scalar nature, a global third factor can be regarded as a mechanism for gating "whether"

or "when" rather than "where" plasticity occurs, which is the focus of this chapter. "Local" third

factors, on the other hand, have the spatial specificity to control plasticity in individual neurons or

synapses [20]. A compelling piece of experimental evidence for local third factors comes from [86],

where the authors observe that the formation of a hippocampal place cell occurs only as a result of a

strong prolonged depolarization in the apical dendrites of pyramidal neurons, known as a dendritic

plateau potential or a calcium spike.

In the most general case, appropriately controlled local third factors can have been theorized

to solve the credit assignment problem in a biologically plausible manner [30] (see Section 1.4.6).

Here, we suggest a simpler alternative for the role of local third factors (e.g. dendritic plateau

potentials). Consider either the modern Hopfield network [42] or similarly the key-value memory

[21]. Rather than encoding an error signal as suggested by [30], a local third factor can simply

activate one or several hidden neurons, selecting their corresponding afferent, efferent, or both

sets of synapses for writing. Note that in the MHN, afferent synaptic weights are equal to efferent

synaptic weights due to weight symmetry, but this is not the case for the KVM.

Local third factors may be triggered randomly, sequentially [21], based on recency of activation

[87], or in another systematic ordering. A random activation can be performed through intrinsic

22

Figure 1.9: Local third factors generated by an external gating circuit (green) define the addressing
function by selecting hidden neurons for memory storage in a familiarity detection task. Image from
[89].

neuronal mechanisms, for example where noise-induced membrane potential fluctuations cross a

threshold to generate a plateau potential. Sequential activation can be achieved through timing

mechanisms, where each of N neurons generates a local third factor approximately every 1
N

seconds,

for example by integrating a tonic input until reaching a threshold and resetting. Synfire chains [88]

are another potential mechanism for generating a sequence, where one neuron’s local third factor

triggers activation of the next one through feedforward connectivity. An integration mechanism can

also be used to determine the most- or least-recently-used neuron by integrating the history of local

third factors and comparing this value across neurons using a WTA function. Finally, control of

the ordering can be done by an external gating circuit [89] which generates a control sequence in

any of the aforementioned ways and triggers local third factors through dedicated projections to the

addressing (hidden) neurons (Figure 1.9).

Selection of hidden neurons through local third factors is analogous to the way in which strong

feedforward weights in the sparse distributed memory [59] select a subset of hidden neurons through

an explicit addressing matrix, whose efferent synapses (i.e. columns of the content matrix) are

updated with a Hebbian rule (see Section 1.4.2). Unlike the SDM, however, when storing an item,

the address selection with local third factors is independent of the existing synaptic weights, whether

23

they correspond to fixed addresses or to "keys" of previously stored items. Moreover, rather than a

standard Hebbian rule involving pre- and post-synaptic activity, the "neo-Hebbian" [20] plasticity

rule now involves a local third factor.

1.4.6 Credit assignment

When considering a topology that is more complicated than a set of synapses afferent onto a

single neuron, addressing mechanisms are required to select the synapses to update for storage,

or to query for retrieval. We have discussed several solutions for the simple neural architecture

of one hidden layer. The problem becomes less tractable when considering truly "deep" neural

networks with many hidden layers (Figure 1.10) or more complicated architectures such as residual

or convolutional neural networks [90], recurrent neural networks [91], or Transformers [81]. Rather

than an explicit mechanistic algorithm for storing items, such networks are typically trained with

gradient descent methods [92] to perform tasks such as classification, regression, translation,

generation, or decision making. In this case, the weight update,

∆w = −η∇wL

does not correspond to storing an additional item in memory, but rather to an incremental correction

to the network to improve its task performance as measured by the loss function L, with the size of

the increment controlled by the learning rate η.

The problem of computing the synaptic weight updates is referred to as "credit assignment",

because each synapse needs to be given credit (or, conversely, blame) for its contribution to the loss,

while factoring in contributions of all the other synapses in the network. This is classically solved

by the backpropagation of errors algorithm [27], although it is generally considered biologically

implausible. More realistic alternatives have been proposed [93, 94] performing credit assignment

by a three factor rule (see Section 1.4.5) – an error term modulating a two-factor Hebbian update rule

in proportion to the error a given neuron contributes to solving a task, as defined by a loss function

24

Figure 1.10: Deep feedforward network

[30]. The errors are hypothesized to be computed in the apical dendrites of pyramidal neurons and

manifested as dendritic plateau potentials, which have been shown to drive learning in vivo [86].

In this way, credit assignment can be thought of as a problem of memory addressing, i.e.

selecting which synapses to update in order to produce the desired output in response to a cue

(although in this work we focus on the much more narrow scenario where the cue is intended for the

network to return a previously stored item rather than solve a pattern recognition task or perform a

desired action). When training a network with such an error-driven plasticity rule, however, the

synaptic weight updates corresponding to a single item are distributed, incremental, and dependent

on the other items being learned. As a result, it is harder to isolate the representation of an item as it

appears stored in the synapses of a network, even with full access to the synapses as in the ideal

observer model.

Unintentional memorization in deep neural networks

Neural networks are typically not trained explicitly to store and retrieve a set of items the

way a SDM or a Hopfield network does (although see Section 1.4.6). Rather, their goal is to

approximate a function which convert inputs into a different representation in a generalizable way.

For instance, a classifier converts an image into a one-hot vector corresponding to the class, a

sequence-to-sequence network converts speech to text, or a generative model converts a query to a

25

meaningful response. Ideally, the details of the individual training items are discarded in favor of a

consolidated representation.

Nevertheless, a neural network with a sufficiently large number of parameters can "memorize"

the training set (often, unlike the classical overfitting intuition from statistics, without sacrificing

generalization performance [95]). This phenomenon, however does not always correspond to the

type of memory we describe here. In the supervised learning scenario, memorization refers to

"label memorization" – having zero error on the training set [96, 97, 95], analogous to creating a

lookup table. An individual item can also be considered memorized if excluding it from the training

data would have a strong impact on the network’s ability to classify it [98], i.e. the network cannot

generalize to this item from others in the dataset. In this case, if an item is memorized, it is not

necessarily the case that it is possible to extract it from the network (although see [99] for an example

of adversarial attacks which attempt to do this).

On the other hand, generative models such as variational autoencoders [100], generative

adversarial networks [101], diffusion models [102], or large language models [103] that are trained

to produce samples from a distribution (which is implicitly defined by the training dataset) have

been shown to memorize and return training examples verbatim rather than generating novel ones

based on learned statistics [104, 105, 106, 107, 108]. A number of benchmarks have been proposed

to detect this type of memorization based on sample outputs [109, 110] or directly querying the

network [111], as this type of memorization is undesirable for privacy concerns, and methods have

been proposed to prevent it [112].

Memorization by gradient descent

Associative Memories Other work intentionally uses gradient descent to explicitly store and

retrieve memories. As originally proposed, Dense Associative Memories or modern Hopfield

networks are trained with gradient descent for image classification [68] or multiple-instance learning

[113]. We also use this approach in [114] (see Chapter 4).

In [68], the rows of the weight matrix are not a predefined set of memories to be stored. Rather

26

the "memories" are learned by gradient descent. Although any individual weight update ∆w is not

interpretable as a memory as it is with ideal observer models, SDM, or Hopfield networks trained

with a Hebbian plasticity rule, after convergence of the gradient descent algorithm, each row can be

considered a memory and retrieved through content-based addressing as described in Section 1.4.3.

To train this network, we present a perturbed input and allow the network to converge to a fixed

point which indicates the network’s output. We then compute the loss (e.g. mean-squared error

or binary cross-entropy) between the output and the unperturbed input and update the parameters

according to the gradient of the loss.

Since the gradient depends on the activations of the hidden units, we can consider the incremental

weight update to be addressed by the hidden layer in the same way that an update of the contents

matrix for the SDM is addressed by its hidden layer. Indeed, in Chapter 5, we consider computing

the gradient in a MHN with recurrent backpropagation [37, 38]. Taking the first-order term of

this expression, we can show that the gradient update (approximately) corresponds to a Hebbian

plasticity rule, with the pre-synaptic term being the error in the output units and the post-synaptic

term being the hidden layer activity (along with higher-order correction terms). In this network,

however, the hidden activity is determined by content-based addressing, so this training algorithm

can be thought of as content-addressed writing or storage (in comparison to content-addressed recall

described in Section 1.4.3).

Nevertheless, since the training set size is larger than the pure memorization capacity of the

network, the inputs are correlated, and training is done with an iterative gradient-based scheme, the

network learns consolidated representations of the data (either features or prototypes [68], depending

on the sharpness of the hidden layer nonlinearity; see Section 1.4.4 and Chapter 4) rather than

verbatim memorization. In Chapter 4. we extend this idea to train a MHN to perform concurrent

memorization and consolidation. If an item occurs frequently, it should be consolidated and stored

in a distributed manner, so that common features are extracted and fine-grained details discarded. If

it is rare, it should be memorized verbatim since there is not enough information about which details

are dispensable and which constitute the item’s essential defining features. To do so, we propose

27

a tunable content-addressed writing scheme, controlled by setting the learning rate low or high,

respectively, corresponding to incremental distributed learning or rapid few-shot memorization of a

localized representation [114].

In [113], the authors use a different approach, where the stored memories are indeed (learned

embeddings of) individual inputs. "Memory Networks" [115, 116] discussed in Section 1.4.7, as

well as examples from reinforcement learning (RL) [117, 118, 119] use a similar memory structure

that sequentially stores the entire input history for an episode. Although the authors do not specify

an explicit network mechanism for writing, a three-factor rule as in [21] with sequential third factors

can be used (see Section 1.4.5). In this case, rather than the memory contents, the query is learned

by gradient descent (this is different from Memory Networks or memory-augmented RL networks,

where the query is either dynamically generated from the input or by the "controller" network), but

the lookup mechanism is still an explicit content-based address as in Section 1.4.3.

Autoencoders Autoencoders with a single hidden layer, which have a network architecture similar

to the KVM (with keys equal to the values, by definition of the auto-encoder), can be interpreted

in the same way: rows of the encoder matrix are content-based memory addresses (keys), and the

columns are the corresponding values, although both are now learned through gradient descent

rather than stored through a single update. In this way, the hidden layer representation is analogous

to the coordinates for a basis that consists of the columns of the hidden-to-output layer – an address

in the space of memories, allowing linear combinations of stored items to be recalled. The latent

space of deep autoencoders with multi-layer encoding and decoding functions can be considered

an "address" in the same way, although the individual memories are harder to define because they

can be hierarchical or fully distributed as discussed above. To complicate matters further, because

their decoders are nonlinear, combinations of latent space neurons do not correspond to linear

combinations of their individual outputs.

Autoencoders can be trained in several configurations. A denoising autoencoder [120] is trained

similarly to the Dense Associative Memory described above – a perturbed item is given as the

28

input, the loss between the its recovered ("denoised") output and the original unperturbed target is

computed, and a gradient update step is performed. A sparse (e.g. [121]) or undercomplete [122]

autoencoder uses the unperturbed item as both the input and target, but introduces a bottleneck in

the hidden layer – either sparsity or a dimensionality reduction, respectively – to prevent the network

from learning the trivial feed-through (identity) function. Variational autoencoders [100] introduce

noise in the hidden layer. This encourages continuity in the latent space and, by randomly sampling

from it, enables the network to generate novel outputs from the same distribution as the inputs. In

this way, memorization of items and generation of new ones of the same type can be seen as part of

a continuum – indeed, similarities between generative diffusion models and associative memories

have recently been discussed [123, 124].

As a result of this training, although in the dataset the input keys are equal to the output values,

their representation in memory (rows and columns of the encoder and decoder matrices) in general

is not. This is in contrast to the MHN where the rows of the feedforward/encoder/addressing matrix

are, by definition, the transposes of the columns of the feedback/decoder/contents matrix. From

a perspective of memory addressing, this can be understood as the encoder being optimized for

content-based memory lookup, which is not necessarily the optimal representation for memory

retrieval. Interestingly, overparameterized autoencoders, where the dataset size is much smaller

than number of network parameters, have been shown to behave similarly to Hopfield networks

despite their lack of explicitly enforced weight symmetry [125]. Recursively feeding the autoencoder

output back into the input leads to fixed-point dynamics, where the fixed point is exactly one of the

memories that was learned by the autoencoder.

1.4.7 Memory addressing in artificial intelligence

Thus far, we have discussed neural networks designed to be models of biological memory, and

the memory addressing mechanisms that they propose. In recent years, neural networks used for

artificial intelligence have been augmented with explicit memory structures that can be used to read

and write intermediate information during computations.

29

Figure 1.11: Simplified Differential Neural Computer / Neural Turning Machine architecture. A
recurrent neural network "controller" (left) interacts with an external memory bank (right) by
generating read and write keys which are transformed into a content-based address for indexing into
the memory. Adapted from [126].

Neural Turing Machines [127], later improved and referred to as the Differentiable Neural

Computer [128], consist of an RNN "controller" that interacts with an external memory through read

and write operations (Figure 1.11). The memory is instantiated simply as an N ×M matrix, and can

be interpreted as synaptic weights analogous to those of the contents matrix C of the SDM [59] (see

Section 1.4.2) with n memory slots, each containing a vector of length m (although see [129] for

more complex instantiations of the memory bank). In addition to the standard recurrent dynamics

of updating the hidden unit state, at each timestep the RNN receives a length-m "read" vector from

the memory bank which is used as an input to the RNN at the next timestep, and generates length-m

"add" and "erase" vectors which define the contents to be written or removed from the memory bank.

Critically, the RNN also generates a length-n addressing vector, analogous to the hidden layer

of the SDM. At each timestep, a length-m "key" vector is generated and used as a content-based

address into the memory matrix (see Section 1.4.3). This returns a length-n vector subsequently

sharpened by the softmax function, the specificity of which is controlled by an inverse-temperature

parameter (see Section 1.4.4) also generated at each timestep by the controller. As a second step, to

add a location-based addressing component, the addressing mechanism allows the possibility to

circularly shift the content addressing vector, enabling the weighting to iterate over a sequence of

30

addresses in consecutive timesteps. The result is a length-n addressing vector that is used to index

the locations of the memory matrix for both reading and writing.

Memory networks [115, 116] use a similar approach applied to textual reasoning tasks. In

this model, the authors store sentences (embedded in a continuous vector space) in memory slots

sequentially, avoiding the need for complex addressing mechanisms for writing. Given an embedding

of a sentence query, the model uses the stored information to find the appropriate response. This

addressing mechanism for retrieval is also simpler, using purely content-based addressing by

comparing the query to stored keys via the dot product, and either a hard threshold address selection

mechanism [116] analogous to WTA or k-WTA (see Section 1.4.4), or its differentiable analogue,

the softmax [115]. Similar networks have also been used to enhance the memory capabilities of

reinforcement learning agents [117, 118, 119].

Memory-Augmented Neural Networks [87] use the same content-addressable reading mechanism

with a softmax but, unlike the NTM, use distinct addressing vectors for reading and writing. The

distinct write-addressing vector allows the controller to interpolate between writing to the most

recently accessed memory slot (given by the read vector), or replacing the contents of the least

recently written-to slot. To solve the problem of computational overhead due to large memory sizes,

[130] use a similar network, but enforcing sparsity in the read vector (which implies sparsity in the

write) through a k-WTA function. Note, however, that this is unlikely to be a problem in biological

networks which would query or update all of the memory slots in parallel without having to rely on

the sequential processing in a CPU.

In this literature, the authors do not specify a biological mechanism for reading from and writing

to the memory bank. In [21] (Chapter 3), we propose an implementation of this type of memory that

has an explicit network architecture for readout of information, along with biologically plausible

three-factor learning rules for storage.

Other work has also considered using ongoing plasticity dynamics, referred to as "fast weights"

[131] in an RNN as an auxiliary memory structure. In addition to the usual recurrent dynamics, the

authors propose that the synaptic weights are updated at each timestep according to a Hebbian rule.

31

In this case, however, this memory structure is not a flexible input/output memory the way that the

NTM memory is, and does not have an explicit mechanism for addressing reads and writes. Rather,

it is "equivalent to attending to past hidden vectors in proportion to their scalar product with the

current hidden vector" [131]. In [132], the authors also meta-learn the relative weightings of the

Hebbian component of each synapse, which can be interpreted as a static addressing mechanism,

but the exact operating principles of which are opaque.

Finally, note that even "vanilla" RNNs [133] without any explicit memory mechanism can store

memories through persistent recurrent activity3. Gated RNNs such as LSTMs [91] or GRUs [135]

make this explicit through additional structure which allows them to clamp values in a gated memory

cell over time. However, there is again no transparent addressing mechanism to access the stored

input, other than the dynamics of the RNN which can change the internal representation of a stored

item over successive timesteps. In fact, there is no reason a priori that memory-augmented RNN

controllers or plastic RNNs cannot use persistent activity as a memory mechanism in addition to

(or instead of) the dedicated memory bank. Conversely, is also possible that a gated RNN uses the

gates simply as an auxiliary computational structure rather than a memory (although see [136]),

making the question of memory addressing difficult to analyze.

1.4.8 Memory addressing in biological systems

Compared to computational models, memory addressing mechanisms in biological organisms

are more difficult to analyze because they cannot be as readily isolated. As discussed in section 1.1,

unlike computer systems, neural networks generally perform computation and memory storage and

retrieval using shared hardware. Rather than a dedicated processor operating on inputs retrieved

from memory, the memory may define or modulate the computation itself. Even if there exist

dedicated "memory" and "compute" subsystems, they are more difficult to disentangle as they may

be co-located and not readily differentiated based on taxonomies such as cell types or anatomical

3Note that in this case, "memories" refer to "stored input history", limited by the network’s "input capacity",
controlled by the number of dynamic variables in the model. This is different from a network’s "task capacity" which
limits is the information extracted from a training dataset, and is controlled by the number of tunable parameters in the
model [134].

32

features. Moreover, unlike neural recordings, we do not have large-scale experimental access to the

dynamics of synaptic weights in vivo. This makes it difficult to directly fit plasticity rules [137, 46],

or even establish which synapses are plastic. Nevertheless, there is some evidence to support that

biological neural networks may follow some of the memory addressing principles described in this

work.

Engram cells and cell assemblies

Once deemed elusive [138], engrams are now considered to be the biological substrate for

memory in the brain. Understanding their formation and subsequent retrieval can provide insights for

refining the computational models of memory addressing discussed so far, building more powerful

memory structures for artificial intelligence, and enabling translational research into human memory

in health and disease. Generically, "engrams" refer to any of the long-lasting physical changes in

the brain as a result of learning, whether these changes are synaptic or neuronal, implemented on

a molecular, protein, or cellular level [139]. In practice, the engram literature is centered around

"engram cells" which comprise interconnected "engram cell assemblies". These are populations of

cells that are activated during a learning event, and which are subsequently reactivated during its

retrieval.

Gain- and loss-of-functions studies have demonstrated the sufficiency and necessity of engrams

for memory-driven behavior [140, 141]. In a natural setting, an engram cell assembly would be

reactivated by an external cue, such as a particular context for a fear conditioning experiment where

a context (an experimentally chosen combination of textures, colors, shapes in the surrounding

environment) gets paired with a foot shock. Being placed in the same context again causes expression

of a fear memory – in a mouse, this corresponds to freezing behavior.

It is possible, however, to induce freezing in a neutral context (not paired with a foot shock)

by optogenetically reactivating the cells that were active during the fear conditioning procedure,

which correspond to the cell assembly representing that memory [142]. Conversely, it has been

shown that silencing the engram cells when placed in the foot-shock context reduces the amount

33

of freezing, therefore (putatively) suppressing the fear memory [143]. It is also possible to create

"silent engrams" that cannot get reactivated by natural cues but can be reactivated by artificial

stimulation of the neural ensemble. These can be created through blocking of protein synthesis after

the learning event, behavioral extinction, or simply memory decay.

In this way, engram retrieval is reminiscent of content-addressable memory. Partial activation of

an ensemble reinstates the full memory, like presenting a perturbed input restores the original vector

through fixed-point dynamics of a Hopfield network. Suppressing the ensemble activity for a specific

memory suppresses that memory’s expression, but not others, as long as the ensembles are disjoint.

Finally, silent engrams, due to their inability to be activated by natural cues, demonstrate a problem

of memory addressing. These neurons cannot be activated by the brain’s intrinsic addressing

mechanisms (e.g. through the feedforward weights of a MHN), but knowing the "address" (set of

hidden neurons) in advance and activating those specific neurons shows that the memory is still

encoded4 (e.g. by reinstating it it through the feedback weights of an MHN). It is, however, unclear

whether the network architecture is that of a classical Hopfield network with implicit addressing, a

modern Hopfield network where explicit addresses can be found, or another associative memory

network structure.

The process of engram formation is the process of memory writing. Although plasticity rules

have not been investigated specifically in the context of engrams, it is plausible that they are

created through some form of Hebbian plasticity. First, it has been shown that neurons which are

more excitable are more likely to be "allocated" to an engram during an encoding event [144].

Those that are allocated also show an increase in dendritic spine density. This is consistent with

Hebbian plasticity, as neurons that are more likely to fire are also more likely to strengthen synaptic

connections among them. This holds true whether their elevated excitability is experimentally

controlled or intrinsic [141]. In the latter case, it can be due to random variation, or to selection of

those neurons through one of the addressing mechanisms discussed in this work. A similar motif is

4An alternative explanation is that there is no silent engram and the experimenter is simply activating a representation
of a fearful context in an absolute sense rather than reactivating a memory. In other words, as a thought experiment, if
we were to optogenetically activate that same "silent engram" set of neurons without the mouse ever having experienced
the fear conditioning paradigm, the alternative hypothesis is that the mouse may still exhibit freezing behavior.

34

discussed in Section 1.4.4 – inhibitory neurons control a neuron’s excitability to decorrelate it from

other neurons’ activities [74].

It has also been shown in a biophysical model that in addition to intrinsic excitability, engram

formation is mediated by inhibitory competition [145]. Regardless of the overall level of excitability,

the same number of neurons are recruited for the engram. To explain this observation, the authors

suggest that the most excitable neurons suppress the rest of the candidate cells through inhibitory

interneurons. Indeed, this may be an instantiation of the content selection mechanism described in

Section 1.4.4, in the form of either the softmax or the k-WTA function.

Hippocampus as an addressing system

Originally proposed by [146], the hippocampal memory indexing theory suggests that while

the neocortex stores information about an event, the hippocampus serves as a "coordinate system",

"index", or "map" of the cortical modules that were active during the event. The hippocampus stores

only the spatiotemporal sequencing of cortical modules, and not an neural encoding of the event

itself. In this framework, memory storage occurs when the neocortex, representing an episode to be

remembered, activates a set of hippocampal synapses which are strengthened as a result. During

recall, a partial activation of the neocortical representation can activate the corresponding "index"

in the hippocampus, the synapses of which were potentiated during storage. The hippocampus

then projects back to the neocortex to reinstate the full activation, thus retrieving the memory in a

content-addressable manner (Figure 1.12).

In this view, the hippocampus can be modeled by the hidden layer (i.e. the addressing function)

of one of the recall memory networks discussed here – the SDM (Section 1.4.2), MHN (Section 1.4.3

and Chapters 4 and 5), or KVM (Sections 1.4.3 and 1.4.5 and Chapter 3) – while the cortex is

represented by the input/output layers. The two-layer model of the modern Hopfield network,

however, is much simpler than the structure in the hippocampo-cortical circuit, which consists of

anatomically and functionally distinct sub-regions including the entorhinal cortex, dentate gyrus,

CA3 and CA1. Nevertheless, despite differences (or abstractions) in the model implementation, the

35

Figure 1.12: Memory storage and retrieval mechanisms in the hippocampal memory indexing
theory closely resemble the bipartite structure of the modern Hopfield network, where the visible
(input/output) layer corresponds to the cortex (large top square) and the hidden layer corresponds to
the hippocampus (small bottom square). Image from [147].

computational principle of indexing remains the same. To incorporate this anatomy, [147] suggest a

hierarchical indexing structure, where the hippocampus does not index the neocortex, but rather the

entorhinal cortex, which then in turn indexes the neocortex. Following this structure, it is possible to

extend the MHN to incorporate multiple layers, known as the hierarchical associative memory [148].

A modern look on the hippocampal indexing theory connects it to the results seen in engram

studies. In [149], the authors suggest that hippocampal engrams can be exactly interpreted as a

hippocampal index. Notably, in a contextual fear conditioning paradigm, reactivating engram-tagged

cells in sensory cortices does not reinstate behavior as efficaciously as hippocampal engrams,

suggesting their importance as an index [150]. Other work [151] observes only a subset (~25%)

of place cells which function as engram cells (identified as expressing c-fos, an immediate early

gene activated by neural activity) during memory formation. Similarly, a study in the hippocampus

of food-caching birds [152] shows a dissociation between "barcode" cells which uniquely encode

individual memory episodes, and cells encoding location or food identity. These results suggest

a distinct role for a subset of hippocampal neurons in instantiating an index which reactivates

36

either a contextual memory [151] or a food-caching event [152]. The authors in [149] furthermore

propose that hippocampal dysfunction due to injury or psychiatric illness might be interpreted as an

"indexopathy" – an inability to perform "hippocampal-dependent information routing" – in the same

way that silent engrams are a problem of retrieval rather than the absence of a memory.

1.5 Conclusion

In both biological and artificial neural networks, memory storage can be broken down into

two complementary but interrelated components. The first is synaptic plasticity – modifications to

synaptic weights in response to an input stimulus, calculated by a rule that depends on the network’s

neural activity, input history, and/or a target signal. The second is memory addressing – the function

by which the synapses that should be updated are selected during memory storage, as well as a

(potentially different) function by which those synaptic updates are retrieved and decoded back

into the neural representation of the original input stimulus or, in the case of familiarity, a signal

indicating that the stimulus has been previously encountered.

In this chapter, we have discussed a number of mechanisms by which this selection can be

performed. First, fixed strong feedforward weights can operate on an input "query" as an "address

decoder" to activate a set of neurons that serve as the memory’s "address". Synapses efferent

from these neurons can be updated to store a desired stimulus through simple Hebbian plasticity

controlled by pre- and post-synaptic neural activity. Retrieving memories stored in this manner

is similar – given the same query, the corresponding address is selected and the stored memory is

retrieved through feedforward activation (Chapter 2).

Second, rather than a fixed address decoder function, the address for memory retrieval can be

selected by comparing the query with a modifiable set of "keys". Known as content-addressable

memory, this function selects the address which maximizes the overlap (usually measured as the dot

product or cosine similarity) between the keys and the query.

In this case, memory storage can proceed in one of two ways. The simplest is through a local

third factor which, independently of the memory contents, selects a slot to be written or updated

37

(Chapter 3). Alternatively, storage can be done in a content-addressable manner as well. A forward

pass selects the address (hidden layer activation), and the corresponding synapses are updated with a

gradient descent step ([114] and Chapter 4). In the modern Hopfield network, such gradient descent

methods can also be approximated by a Hebbian plasticity rule, where the pre-synaptic factor is not

neural activity but an error (Chapter 5).

In each case, a mechanism for refining the specificity of the address is necessary. Implemented

as a neuronal nonlinearity, this can be either a simple threshold – if an overlap between the query

and a key in the address decoder is sufficiently large then the corresponding address bit (neuron)

is activated – or a more complicated function where all the inputs to the address vector (hidden

layer) are compared and either the maximum is taken (winner-take-all), or they are sharpened in an

adjustable manner, as a "soft" version of the maximum (softmax).

By explicitly highlighting the function and mechanisms of memory addressing, we hope to

separate this component of memory storage from that of synaptic plasticity. Although not arbitrarily,

addressing mechanisms for storage and retrieval can be combined with each other and with different

plasticity rules. For example, we can consider using complex synapses [121] together with a

sparse distributed memory, or a key-value memory network for an improved storage capacity.

Gradient-based synaptic updates can be combined with a meta-learned sparsity mask which selects

a subset of synapses to update through gradient descent [153]; in the view of memory addressing,

the sparsity mask can be interpreted as an address to control the location of synaptic plasticity.

Finally, we discussed applications of these addressing mechanisms for dedicated memory devices

in artificial intelligence systems, and considered experimental evidence to support their existence

and functionality in biological organisms. A deeper understanding of memory addressing can help

us improve security in artificial intelligence systems by selectively removing memories of private

data, as well as aid in treatment of "indexopathies" [149] in biological organisms.

38

Chapter 2: Meta-learning synaptic plasticity and memory addressing for

continual familiarity detection

The work presented in this chapter was done in collaboration with Guangyu Robert Yang and LF

Abbott. The text is an unabridged version of the work published in [2]. We thank Stefano Fusi, Ken

Miller, Dmitriy Aronov, James Murray, Marcus Benna, SueYeon Chung, Juri Minxha, Taiga Abe,

and Denis Turcu for helpful discussions.

Over the course of a lifetime, we process a continual stream of information. Extracted from this

stream, memories must be not only efficiently encoded but also stored in an addressable manner

for subsequent retrieval. To explore potential encoding and addressing mechanisms, we consider

a continual familiarity detection task in which a subject must report whether an image has been

previously encountered. We design a class of feedforward neural network models endowed with

biologically plausible synaptic plasticity dynamics and a static addressing matrix, both of which are

meta-learned to optimize familiarity detection over long delay intervals. After training, we find

that anti-Hebbian plasticity leads to better performance than Hebbian and replicates experimental

results from the inferotemporal cortex, including repetition suppression. A combinatorial addressing

function also emerges, selecting a unique neuron as an index into the synaptic memory matrix

for storage or retrieval of a given stimulus. Unlike previous models, this network both operates

continuously without requiring any synaptic resets and generalizes to intervals it has not been

trained on. We demonstrate this not only for uncorrelated random stimuli but also for images of

real-world objects. Our work suggests a biologically plausible mechanism for continual learning,

and demonstrates an effective application of machine learning for neuroscience discovery.

39

2.1 Introduction

Every day, a continual stream of sensory information and internal cognitive processing causes

lasting synaptic changes in our brains that alter our responses to future stimuli. It remains a mystery

how neural activity and local synaptic updates coordinate to support distributed storage and readout

of information and, in particular, how ongoing synaptic changes due to either new memories or

homeostatic mechanisms do not interfere with previously stored information.

Memory research in theoretical neuroscience and machine learning has addressed these questions

through modeling studies, but important features remain to be clarified. First, memories of an

individual's history are encoded in a one-shot manner – this is different from typical neural network

models which use a prolonged incremental training process to learn a complex task. Such training

algorithms use a global error signal and perform per-synapse credit assignment through knowledge

of the entire network [27], whereas biological synapses typically only have access to local pre- and

postsynaptic activity [17] and various modulatory signals [83, 20]. Second, biological synapses

change continually in response to ongoing activity, whereas models commonly assume that synapses

are fixed after training ends, such as the classical Hopfield network [64] and most deep neural

networks [154]. Unregulated continual updating of synapses can cause catastrophic forgetting in

which a network either erases previous memories [44, 45] or renders stored information unreadable

[155]. Recurrent neural networks are commonly used to perform tasks that involve memories

sustained by neural activity [133, 91, 156], however most memories are likely stored through

synaptic potentiation and depression [16]. Synaptic memory has sometimes been studied through

an ideal observer approach [43, 49] in which synaptic weights are directly accessible for readout,

but biological organisms must read out synaptic storage through neuronal activations. In fact, the

readout may not be a dedicated circuit as in attractor network models of memory [64], but rather

manifested as a change in ongoing neural processing [157]. Finally, machine learning research

often eschews biological plausibility and mechanistic understanding in favor of performance on

benchmark tasks [131, 158, 127, 159, 132, 85].

40

Familiarity detection – identifying whether a stimulus has been previously encountered – is

a simple and ubiquitous form of memory that serves as a useful testbed for addressing these

issues. Classical studies have demonstrated that human recognition memory capacity for images

is "almost limitless" in a two-alternative-forced-choice task with separate encoding and testing

phases: retention follows a power law as a function of the number of items viewed [160]. Pioneering

theoretical work has shown that the number of memories stored by a familiarity detection network

depends on the synaptic plasticity rule and, in the case of uncorrelated inputs, capacity can scale

proportionally to the number of synapses [161]. More recent behavioral work further demonstrates

an impressive capacity in a continual setting, the error rate as a function of the number of intervening

items exhibiting a "power law of forgetting" [162]. Theoretical studies have shown that power-law

forgetting is achievable by synapses with metaplasticity, using both uncorrelated inputs [49] and face

images [163]. Neural signals of visual familiarity have been observed as reductions in responses

to repeated presentations of a stimulus, a phenomenon known as repetition suppression [164, 165,

166, 167]. At the timescales relevant for this task – one-shot memorization on the order of seconds

and long-term forgetting on the order of days – this is plausibly caused by depression of excitatory

synapses or potentiation of inhibitory ones [46].

Previous modeling work on recognition memory used a predesigned architecture and plasticity

rule and both empirical and analytic evaluation of performance [168, 161, 169, 170]. An emerging

approach employs a machine learning technique known as "meta-learning," or "learning how to learn"

[171], that uses optimization tools to rapidly search for mechanisms that artificial neural networks

can use to solve a learning/memory task. In contrast to hand-designed models, meta-learning enables

exploration of a large family of architectures and plasticity rules and reduces the bias inherent in

human guesswork. Importantly, it is possible to impose constraints that ensure biological plausibility

[172]. For example, given a spiking or rate-based network architecture and a family of biologically

plausible plasticity rules with tunable parameters, the meta-learning algorithm can search for the

optimal plasticity rules that enable the network to solve a supervised [173, 174], semi-supervised

[175], unsupervised [176, 173, 177], or reinforcement learning [173, 178] task or – as in our case –

41

to store the input history for subsequent use. The meta-learning algorithm itself can be a variation

of gradient descent [175, 174], an evolutionary strategy [176, 173, 178], or another optimizer

depending on the nature of the network and the task.

In this work, we investigate not only "how" memories are stored – the synaptic plasticity rule

– but also "where" – the mechanism for addressing the storage and retrieval locations. Classical

models of memory rely on "content-based addressing" [64], where a partial cue elicits recall of

the full memory through recurrent dynamics, but do not explicitly select which synapses store the

memory. On the other hand, "key-value" memory networks in machine learning [127, 159], store

values in a memory matrix indexed explicitly by keys, analogous to the addressing in a computer

random-access memory (RAM), although such models lack a biological interpretation [21]. Our

model includes both a synaptic plasticity rule and a realistic addressing mechanism.

Positing that the answer to "when" plasticity should occur is "always", we consider a simple

version of "what" to remember – familiarity. We construct a family of models that recognize

previously experienced stimuli and, importantly, learn and operate continuously without separate

learning and testing phases. The capacity of these networks remains constant over time, so they can

be continually fed new inputs with no reduction in steady-state memory performance.

We use a feedforward network architecture with ongoing Hebbian plasticity in its synaptic

weights, parameters of which are meta-learned using gradient descent to optimize the continual

familiarity detection process. To isolate synaptic plasticity as the unique memory mechanism, we

avoid recurrent connectivity that could store memory through maintained neuronal activations. This

architecture, unlike recurrent networks, generalizes naturally over a range of repeat intervals even if

trained on a single interval. We show that an anti-Hebbian plasticity rule (co-activated neurons cause

synaptic depression) enables repeat detection over longer intervals than a Hebbian rule, and this is

the solution most frequently found by meta-learning. This rule leads to experimentally observed

features such as repetition suppression in the hidden layer neurons. Furthermore, an addressing

function emerges through strong static feedforward weights, selecting a unique neuron to index the

synapses for storage of a novel stimulus and detection of a familiar one.

42

Figure 2.1: Continual familiarity detection task and HebbFF model. (A) The continual familiarity
detection task. Given a continual stream of stimuli x(t), the desired output is y(t) = 1 if the
stimulus has appeared previously and y(t) = 0 otherwise. For a given dataset, repeat stimuli always
appear at an interval R after their first presentation. Although the task is continual, for the purposes
of network training we use a finite-duration trial of length T ≫ R. (B) The HebbFF network
architecture. A feedforward layer is endowed with ongoing Hebbian plasticity, the parameters of
which are optimized using stochastic gradient descent. The hidden units are linearly read out to
produce the network's estimate of familiarity ŷ(t).

2.2 Results

2.2.1 Continual familiarity detection task

We consider a continual familiarity detection task (Figure 2.1A) in which a stream of stimuli

is presented to a network. With probability 1− p, the stimulus at time t is chosen as a randomly

generated d-dimensional binary vector x(t), where each component is either +1 or −1 (note that for

sufficiently large d, spurious chance repeats are extremely unlikely). With probability p, the stimulus

is a copy of the stimulus presented R time steps ago, so that x(t) = x(t−R). However, we ensure

that a stimulus is repeated at most once so, if x(t−R) is already a repeat, i.e. x(t−R) = x(t−2R),

a new x(t) is generated. As a result, the fraction of novel stimuli, which we call f , is not equal to

1− p, but rather f = 1
1+p

. We use p = 1
2
, so f = 2

3
. The output of the network should be y(t) = 0

if x(t) is novel and y(t) = 1 if it is familiar, i.e. has appeared previously.

The accuracy of the network (Pcorrect, the probability of correctly responding to a stimulus)

depends on two factors: the true positive rate (PTP , the probability of correctly reporting a repeated

stimulus as "familiar"), and the false positive rate (PFP , the probability of incorrectly reporting a

43

novel stimulus as "familiar"). These two factors are weighted by the fraction of novel stimuli f , so

that Pcorrect = (1− f)PTP + f(1− PFP). Through our choice of loss function (section 2.4), we

are effectively training the networks to maximize accuracy, so the "chance" level performance is f

(for f > 1
2
), which a network can achieve by reporting all stimuli as novel (PTP = PFP = 0).

In our paradigm, a given dataset has a single repeat interval R, which differs slightly from

previously studied experimental paradigms [162, 165]. However, we evaluate performance on

multiple datasets with various values of R. For testing, this is analogous to evaluating a single

dataset with multiple repeat intervals and computing accuracy for each interval separately. We use

this approach because it allows us to test generalization by training on one value of R and testing

on others. It also allows us to train the network to its maximal capacity by gradually increasing R

during "curriculum training", and simplifies analytic calculations.

We begin by considering familiarity detection for uncorrelated stimuli, but, in later sections, we

generalize to a task that requires simultaneous familiarity detection and binary classification, and to

a dataset of real-world object images.

2.2.2 HebbFF network architecture

To investigate the effectiveness of synaptic plasticity for solving this task, we use a feedforward

neural network with a single hidden layer and, to implement the memory function, activity-dependent

ongoing Hebbian plasticity (HebbFF) (Figure 2.1B). We purposefully do not include any recurrent

connections to ensure that memory cannot be stored through persistent neuronal activity, thus

isolating synaptic plasticity as the only possible memory mechanism.

In the HebbFF network, a group of hidden layer neurons with firing rates given by an N -

dimensional vector h(t), receives a d-dimensional input x(t). The variable t indexes stimulus

presentations which occur sequentially, so we refer to it as "time". The input to each hidden-layer

neuron is weighted by its corresponding synaptic strength and then transformed into a hidden-

layer firing rate through a nonlinear activation function σ(·). The synaptic strength between the

postsynaptic neuron with rate hi(t) and the presynaptic neuron carrying the input xj(t) is the (i, j)

44

component of an N -by-d matrix that is the sum of a fixed matrix W1 and a plastic matrix A(t).

Thus, the firing rate of the hidden layer is given by

h(t) = σ ((W1 +A(t))x(t) + b1)

A(t+ 1) = λA(t) + ηh(t)x(t)T

Finally, the output of the network ŷ(t) is a linear readout of the hidden layer and, since the target

y(t) is binary, we bound the readout with the logistic function,

ŷ(t) = σ(W2h(t) + b2)

The response of the network is "familiar" if ŷ(t) > 1/2 and "novel" otherwise. Although in the

general case W2 is unconstrained, to simplify analysis we later consider a uniform readout where

all entries of W2 are equal, with no appreciable change in performance.

To construct the network, we use backpropagation through time (BPTT) to "meta-learn" the

parameters W1, b1, W2, b2, λ, η, which are fixed once training is completed (section 2.4). The

continual familiarity detection task – the "learning" task – is then performed exclusively by the

ongoing synaptic dynamics of A(t), determined by the fixed parameters. These dynamics are

a biologically plausible mechanism for solving the continual memory task, but BPTT is simply

used as an optimization tool to find suitable parameters of the network. Although the optimization

mechanism is non-biological, we can nevertheless interpret the learned fixed parameters as changing

over much longer timescales (generations or years) than those of the plastic matrix (minutes or

seconds).

2.2.3 The "what" of synaptic plasticity: encoding via an outer product for generalization

As a benchmark for comparing HebbFF performance, we first train a long short-term memory

(LSTM) network [91] – a recurrent neural network (RNN) architecture well-suited for memory

performance – on the continual familiarity detection task. Unlike HebbFF, which stores its input

45

Figure 2.2: RNN performance on continual familiarity detection. (A) Training an LSTM (d = 100
input dimension, N = 100 recurrent units) on a single dataset of a familiarity detection task
(T = 500 stimulus presentations, repeat interval R = 3). Although the loss (top) approaches zero
and accuracy (bottom) approaches 1 on the training dataset (red curves), performance on a validation
dataset (blue) with the same parameters fails to generalize even when tested in-distribution with the
same R. (B) Training the RNN using "infinite data." New datasets, each with R = 3, are generated at
every epoch of training (red). Accuracy (top), as well as true positive and false positive probabilities
(bottom) is shown as a function of the repeat interval on validation datasets. The same is repeated
with another RNN using R = 6 (blue). The RNNs perform well in-distribution on datasets with
the same repeat interval as used during training, but fail to generalize out-of-distribution to other
repeat intervals. (C) Training the RNN with "infinite data," using datasets with both repeat intervals
R = 3 and R = 6. The RNN interpolates between the intervals – performance is high when tested
on repeat intervals 3 ≤ RR ≤ 6 – but fails to extrapolate. Performance quickly drops for longer
repeat intervals, and even for shorter ones.

46

history in the plastic synaptic matrix A(t), an RNN uses ongoing neuronal activity.

If we train the RNN using a single dataset with T = 500 image presentations (section 2.4) and

a repeat interval of R = 3, it successfully learns the training set, but entirely fails to generalize

to new test sets with the same R (Figure 2.2A). To fix this, we use an "infinite data" approach in

which we generate a new dataset for every iteration of BPTT, each with the same value of R = 3.

Trained in this way, the RNN now generalizes "in-distribution" across datasets with R = 3 (i.e.

to datasets drawn from the same distribution as the training data, which is parameterized by R),

but fails to generalize "out-of-distribution" to data with any other value of R (i.e. to datasets from

a different distribution) (Figure 2.2B). The same result holds with R = 6 (Figure 2.2B). We can

further train the RNN with items spaced at intervals of both R = 3 and R = 6 (i.e. the value

of R is chosen randomly for each familiar stimulus rather than being fixed). While the network

can interpolate between the trained values, it does not extrapolate well to larger or smaller ones

(Figure 2.2C). Although it is likely possible to train the RNN to perform well for multiple values of

R by using more complex training schedules, we believe that poor out-of-distribution generalization

is a bottleneck of the RNN approach.

In contrast, the HebbFF network exhibits both in-distribution and out-of-distribution generaliza-

tion. Even when trained on a single dataset with a fixed repeat interval R, the network generalizes

not only to new test sets with the same R, (Figure 2.3A) but even to those with different R values.

Critically, the training procedure is the same as for the RNN above, but HebbFF successfully learns

a qualitatively different solution due to its better inductive bias. Trained with "infinite data" (the

scheme we use in general), HebbFF generalizes to datasets with smaller and even larger R values

(Figure 2.3B). If we match the number of dynamic variables rather than the number of hidden

neurons, HebbFF still shows superior generalization compared to the RNN (Figure 2.8). This

qualitative difference in performance suggests that Hebbian plasticity provides a more "natural"

mechanism of memory for the purpose of familiarity detection.

The generalization performance of HebbFF is due to the fact that the memory representation

of an item does not change over time, other than being scaled by a factor. A stimulus x(t) is

47

Figure 2.3: Hebbian vs. anti-Hebbian plasticity and continual operation. (A) Training the HebbFF
network (d = N = 100), as in Figure 2.2A. Both training and validation loss decrease, and accuracy
increases, for a single instance of the dataset with R = 3, indicating in-distribution generalization.
Over many iterations, however, overtraining occurs due to the use of a single dataset, increasing the
final validation loss. (B) HebbFF network trained with "infinite data" as in Figure 2.2B (R = 3,
red; R = 6, blue) shows not only in-distribution generalization to any dataset with R = 3 (R = 6,
resp.), but also out-of-distribution to datasets with any smaller R and some larger R's. (C) HebbFF
with a different initialization converges to a qualitatively different solution with a negative learning
rate η, an anti-Hebbian learning rule (see also Figure 2.15). The anti-Hebbian solution shows
generalization performance over a larger range of R values than Hebbian. (D) Model from [161],
evaluated on the continual familiarity detection task, varying the length T of the trial. Accuracy
(top) is near-perfect regardless of the repeat interval R (blue vs. red curve) until the model reaches
its capacity (P ∗ ≈ 100 for network size d = N = 100) because the model reliably stores the first P ∗

patterns. Accuracy rapidly drops below chance for T > P ∗ as the model begins to report familiar
stimuli as novel (see Figure 2.9B). (E) HebbFF network operates continuously, as its accuracy (top)
is consistent with the generalization curve from (C), with near-perfect performance for Rtest = 5
and above 80% for Rtest = 20 for any trial length. True and false probabilities (bottom) are better
representations as accuracy (top) is artificially higher for small T due to the low proportion of
familiar stimuli.

48

initially stored as the outer product of h(t) and x(t), multiplied by the plasticity rate η. The plastic

component of the connectivity matrix also contains terms arising from previously stored memories

which, for the purposes of this particular stimulus, act as additive noise ε:

A(t+ 1) = ηh(t)x(t)T + ε

A(t+ k) = λkηh(t)x(t)T + λkε+ ε′

Unlike HebbFF, RNNs are poor at generalizing across intervals R because the dynamics of their

units allow the memory representation of a stimulus to change arbitrarily over time. The RNN only

generates the appropriate representation at the time when a query is expected, namely after a delay

equal to the value of R used during training. This makes it difficult to generalize across intervals.

2.2.4 The "how" of synaptic plasticity: storage via an anti-Hebbian rule

The plasticity rate η in HebbFF can be positive or negative, resulting in either Hebbian or

anti-Hebbian plasticity. For the Hebbian solution with η > 0, synapses are potentiated in response

to a stimulus. When it is repeated, the hidden layer activity is higher than for a novel stimulus due

to the increased strength of the synapses storing the memory. For anti-Hebbian plasticity, η < 0,

synapses are depressed when a memory is stored. In this case, the hidden layer activity is lower for

a familiar stimulus than a novel stimulus, which is consistent with experimental results of repetition

suppression [164, 165, 167]. Furthermore, the meta-learning algorithm is more likely to converge to

the anti-Hebbian solution, especially when trained with a relatively large repeat interval, even if the

initial value of η is positive, and almost always when the initial value is negative (Figure 2.15).

Interestingly, anti-Hebbian plasticity enables successful familiarity detection over considerably

longer intervals than a Hebbian rule (Figure 2.3C). To understand this, note that the memory of a

stimulus is degraded in two ways: additional plasticity events obscure existing memories, and the

plastic weights decay over time. With an anti-Hebbian plasticity rule, the hidden layer activation

h(t) is close to zero for a familiar stimulus due to repetition suppression. As a result, the plasticity

49

update ηh(t)x(t)T when the stimulus is repeated is negligible – as if a stimulus was not presented at

that time step. This effectively reduces the number of plasticity events, reducing the disruption of

existing memories. As a secondary effect, the smaller number of plasticity events allows a larger λ

(smaller decay rate) to be used while still controlling the amplitude of plastic weights (Figure 2.15).

This slower decay rate further extends the lifetime of the memory. Due to their superior performance

and consistency with experimental results, we only consider anti-Hebbian solutions throughout the

following sections.

2.2.5 The "when" of synaptic plasticity: continual learning without catastrophic forgetting

Previous modeling work using anti-Hebbian plasticity mechanisms for familiarity detection

[161] focused on a paradigm used in classic studies of recognition memory [160] in which subjects

are serially presented an entire dataset and later asked to identify which stimulus is familiar in a

two-alternative-forced-choice (2AFC) test. Analogously, this previous modeling work used explicit

"learning" and "testing" phases and demonstrated an impressive capacity for recognition memory

[161] (Figure 2.9A). When evaluated on the continual memory task that we use, the Bogacz-Brown

model has near-perfect performance if the number of stimuli T in the dataset is smaller than the

model's capacity P ∗, independent of the value of the repeat interval R (Figure 2.3D). That is, the

model successfully stores all T < P ∗ stimuli. As the dataset size T increases, however, the model

performance declines due to catastrophic interference (Figure 2.3D, Figure 2.9B; section 2.4). To

store additional memories, the old memories must be removed by resetting the synaptic weights.

In real-world scenarios, however, an organism typically does not experience a dedicated

"learning" phase. The answer to "when" synaptic plasticity should occur is "always." As such, the

HebbFF model operates continually rather than using separate learning and evaluation phases. Its

performance is independent of the length of the dataset, and it can operate continuously without any

need to reset the synaptic weights. For example, a HebbFF network trained with R = 5 operates

at near-perfect performance irrespective of the duration of the trial T when tested with R = 5

(Figure 2.3E). Similarly, when tested with R = 20, it operates continually at near 80% accuracy

50

(Figure 2.3E), as expected from the generalization curve in Figure 2.3C (note that for small T the

accuracy (Figure 2.3E, top, blue) is transiently elevated because the fraction of novel stimuli is more

than 2
3
). In other words, the model has a moving window in time within which it can successfully

detect a familiar stimulus, and it forgets old stimuli gracefully without suffering from catastrophic

interference.

2.2.6 The "where" of synaptic plasticity: addressing via strong feedforward weights

In the HebbFF network, the hidden layer plays a dual role. On the one hand, it must produce

a reliable familiarity signal for the readout to decode. On the other, it must create a robust

representation of the input stimulus during the Hebbian plasticity update. The hidden activity

is controlled by the fixed parameters W1 and b1, as well as the plastic matrix A(t). Here, we

investigate how W1, b1, and A(t), impact these two aspects of the familiarity detection task.

To simplify this analysis, we restrict W2 to be a scaled 1-by-N matrix of ones, W2 =

α2[1, . . . , 1], where α2 is a trained scalar. Similarly, we restrict b1 = β1[1, . . . , 1]
T . Since the

hidden units now contribute equally to the readout, they are statistically identical (although not

necessarily independent). Therefore, the rows of W1 and A(t) are statistically identical, allowing

us to meaningfully plot histograms of the corresponding input currents. Empirically, performance is

not affected by this choice of output weights (Figure 2.10A), the distribution of ŷ(t) for familiar

and novel stimuli is the same (Figure 2.10B), the readout vector W2 and the bias term b1 have

similar features (Figure 2.10C), and anti-Hebbian plasticity is still the preferred form of plasticity.

Networks trained with larger R have sparser hidden unit activity (Figure 2.3A-C): the sparser

the activity, the less plasticity is evoked, and thus the longer memories can be retained without

overwriting. In the limiting case we might expect that exactly one neuron is active for a novel

stimulus and none are active for familiar stimuli. Associated with this increased sparsity in activity,

W1 is also sparser for larger R (Figure 2.3D-F, Figure 2.15).

To isolate the effect of W1 on hidden unit activity, we compute a histogram of the input current

into the hidden layer due to the non-plastic synapses, W1x(t) + b1, across units and across time

51

52

Figure 2.3 (previous page): Storage and readout mechanism. (A-C) Hidden layer activity h(t) over
20 consecutive timesteps for networks with input dimension d = 25 and N = 25 hidden units,
trained on datasets with R = 1, 7, or 14, respectively. Familiar stimuli (black rectangles) cause
silencing i.e. repetition suppression of hidden layer activity. Activity for novel stimuli becomes
sparser for networks trained with larger R. (D-F) Static weight matrix W1 of the networks from
(A-C). The weight matrix becomes sparser (Figure 2.15), and individual weight magnitudes increase
for networks trained with larger R, enabling more sparse activity in the hidden layer for novel stimuli.
(G-I) Distributions of input current into the hidden layer due to the static component of the synapses,
i.e. the matrix W1 and bias b1, for the networks from (A-C). We do not distinguish familiar and
novel stimuli since the current due to the static component is the same regardless of novelty. For
networks trained with larger R, the distribution becomes multi-modal, with the number of modes
equal (approximately) to the number of high-magnitude values per row of W1, plus one. Due to the
bias, only the rightmost mode has the potential to produce firing rates that are significantly above
zero. (J-L) Distributions of input current into the hidden layer due to the plastic component of
the synapses, i.e. the matrix A(t), for novel (red) and familiar (green) stimuli. We only consider
the trained network from (C,F,I) and evaluate its behavior on test sets with R = 14, 40, or 100,
corresponding to perfect, intermediate, and chance accuracy. The large central mode occurs due to
stored stimuli uncorrelated with the input stimulus x(t). In the novel case, the input is uncorrelated
with all the stored stimuli by definition, and thus there is only one mode. Similarly, in the familiar
case with a long delay interval R = 100 the stored stimulus has decayed sufficiently that its signal
is lost. In the case of familiar stimuli presented at shorter delay intervals, R = 14 or 40, there is
an additional mode due to the correlation between the input x(t) and its copy x(t−R) previously
stored in the plastic matrix A(t). (M-O) Distributions of the total input current into the hidden
layer on test sets with R = 14, 40, or 100. Only the values above zero cause high firing rates
after applying the logistic sigmoid nonlinearity. Since all the input currents are low for familiar
stimuli (green) for small values of R, there is repetition suppression. (P-R) Correlation between
the input current into the hidden layer from static and plastic synapse components at each of 20
consecutive timepoints. Asterisks indicate output response errors. For sufficiently small R, the
input currents are more anti-correlated for familiar stimuli (black circles) than for novel. Combined
with the distributions of input currents, this indicates that the units receiving positive input current
from the static synapses receive negative input current from the plastic synapses.

53

(Figure 2.3G-I). AsR increases, the distribution becomes multi-modal as a result of the combinatorial

structure of the rows in W1 (more evident in the idealized model: see below and section 2.4). In

general, the number of peaks in this distribution depends on the number of large-magnitude values

of W1 per row. Critically, due to the logistic function nonlinearity, only the rightmost peak in

Figure 2.3I is large enough to elicit appreciable activity in the hidden layer. This peak drives the

small number of hidden units that are significantly activated by a novel stimulus. In other words

the W1 matrix acts like an addressing function to select a small subset of hidden units to store the

memory of a given stimulus.

We next consider the effect of A(t), focusing on the network trained to maximum capacity

(Figure 2.3C,F,I) (see next section). For a novel stimulus, the distribution of the input current due to

the plastic synapses A(t)x(t) is unimodal and symmetric about zero (Figure 2.3J-L). For a familiar

stimulus, however, there is an additional peak at approximately λR−1ηd. This peak is due to the dot

product of the input vector x(t−R) (stored in the matrix A(t) as λR−1ηh(t−R)x(t−R)T), and

the familiar input vector x(t) = x(t−R). Importantly, the neurons that exhibit this behavior are

the same ones active due to W1 when the stimulus was novel. Thus, again, W1 provides addressing

functionality (now indirectly through its effect on A(t)), allowing the system to probe the same

neurons not only during storage but also during recall.

Finally, the total hidden layer input current is the sum of these two components, (W1 +

A(t))x(t) + b1 (Figure 2.3M-O). Comparing Figure 2.3I and Figure 2.3O, we see that the large

central symmetric mode of the A(t)x(t) distribution does not significantly impact the total hidden

layer input current. Rather, the familiarity signal arises because the smaller peak of the A(t)x(t)

distribution pushes the rightmost peak of the W1x(t) + b1 distribution below zero (Figure 2.3M).

Anti-correlation between the two input currents for familiar stimuli (Figure 2.3P-R) indicates that

this shift is caused by the input current from the plastic component of the synapse cancelling the

input current from the fixed component, resulting in lower activation, i.e. repetition suppression.

54

Figure 2.4: Curriculum training and empirical capacity. (A) The value of R used over the course of
curriculum training for four different network sizes. R is incremented once the network achieves an
accuracy > 0.99. Training is considered converged when the value of R is not incremented for at
least 1 million iterations. (B) The final value of R after curriculum training (i.e. network capacity)
as a function of the number of plastic synapses in the network, plotted on a log-log scale. The color
of the points corresponds to the number of input units, colors from panel (D). The least-squares fit
(black line, slope k, bias c) indicates that the empirical network capacity scales sub-linearly with the
number of synapses. (C) Capacity as a function of the input dimension d for various hidden layer
sizes N . (D) Capacity as a function of the hidden layer size for various input dimensions d. Capacity
primarily depends only on the number of synapses, rather than on the hidden or input layer sizes.

55

2.2.7 Curriculum training and empirical capacity

A randomly-initialized HebbFF network may fail to find a solution if directly trained with a large

value of R (Figure 2.15). Instead, we use a curriculum training procedure to bootstrap the optimized

solution. First, the network is trained on data with R = 1, using the "infinite data" regime. Once

the accuracy is above 99%, R is incremented by one and training continues on data with R = 2.

This process continues until R becomes large enough that the network cannot find a solution with

accuracy above 99%, i.e. if R is not incremented for at least 2 million iterations (Figure 2.4A). We

thus define the memory capacity Rmax as the largest value of R for which the familiarity detection

accuracy is above 99%.

We curriculum-train networks of different sizes and plot the capacity Rmax for each one

(Figure 2.4B). For consistency and ease of training, we restrict the networks to the anti-Hebbian

solution and use the uniform readout as above. We find that the capacity depends primarily on the

number of synapses, rather than on the number of pre- or postsynaptic neurons (Figure 2.4C,D),

consistent with previous familiarity detection results [161]. To estimate the scaling, we compute a

linear least-squares fit of log (Rmax) as a function of log (Nd). Empirically, we find that the capacity

of the network scales as

Rmax ≈ 0.10(Nd)0.79

In contrast, the model of Bogacz and Brown [161] for the non-continual task has a capacity that

is linear in the number of synapses. To determine whether the difference between the empirical

performance of HebbFF and the Bogacz-Brown model reflects a fundamental limitation in the

feedforward architecture, we developed an idealized version of the model (Figure 2.5A) that we

could study analytically (section 2.4).

56

Figure 2.5: Idealized model. (A) The idealized HebbFF network architecture. In contrast to the
original HebbFF network with a single effective matrix W1+A(t), the input x(t) is effectively split
into two sections of size n and D = d−n that serve as inputs into separate static and plastic synaptic
matrices W1 and A(t), respectively (section 2.4). The hidden layer size is N = 2n. The readout
unit outputs ŷ(t) = 1 whenever any of the hidden units is active. (B) The analytic calculation of
network performance (solid line) matches simulation results for the idealized network (x's), shown
for two different network sizes (red, blue). (C) A least-squares fit of the analytic performance
curve of the idealized network to a trained HebbFF network of the same size for two network
sizes. The idealized network has similar performance to the HebbFF model if its decay rate and
bias are scaled appropriately: λ ≈ 0.986, b1 ≈ −4.771 (for all units) for d = 200, N = 32, and
λ ≈ 0.993, b1 ≈ −4.771 for d = 200, N = 32. (D-F) Same as Figure 2.3(L,J,M), but for the
idealized network (D = 400, N = 32, R = 300).

57

2.2.8 Idealized model and theoretical capacity

We noted above that the limiting behavior of the network at maximum capacity appears to

have W1 activate just a single unit for memory storage. We build this limiting behavior into the

idealized model through a specific choice of W1 and b1, set by design rather than through a training

procedure. Specifically, we use the first n≪ d components of x(t) as an identifier by choosing the

first n columns of W1 so that a unique hidden unit is activated by each possible n-bit combination

of these components (section 2.4), and set the remaining columns of W1 to zero. To simplify the

model, we do not allow plasticity to operate on the inputs from these bits and set the first n columns

of A(t) to zero (Figure 2.5A). This isolates the addressing function of the fixed matrix from the

memory storage. Furthermore, instead of a sigmoid nonlinearity for the hidden units, we use a

Heaviside step function Θ(·). Thus, the hidden layer in the idealized model is governed by

h(t) = Θ ((W1 +A(t))x(t) + b1)

For the nonzero entries of A(t), plasticity is the same as in the trained model. However, because

the Heaviside function does not depend on the scale of the input, we can set the plasticity rate to

η = −1 without loss of generality. The optimal synaptic decay rate λ can be computed analytically.

Finally, a stimulus is considered familiar if all hidden unit activities are identically zero, and novel

otherwise (section 2.4).

This idealized model exhibits qualitatively similar behavior to HebbFF. We can fit the analytic

functional form of the true and false positive probabilities computed from the idealized model

(Figure 2.5B) to the corresponding probabilities of HebbFF (Figure 2.5C). Furthermore, the

histograms of inputs to the hidden layer are qualitatively similar: W1x(t) + b1 has the same

multimodal distribution with more prominent peaks in the middle (Figure 2.3I, Figure 2.5D) (due to

the structure of W1, see section 2.4), a bimodal distribution of A(t)x(t) with a large symmetric

central peak and a smaller one corresponding to the familiarity signal (Figure 2.3J, 6E), and a similar

distribution of the total input current (W1+A(t))x(t) + b1 (Figure 2.3O, Figure 2.5F). From this,

58

we conclude that the memory storage and readout mechanisms are analogous in the meta-learned

HebbFF network and the idealized model.

Along with the true and false positive probabilities, the memory capacity of the idealized

model can be computed analytically (section 2.4). As in the Bogacz-Brown model [161], the

capacity, as characterized by 99% accuracy, is proportional to the number of synapses Nd. There

are several possible reasons for the discrepancy between this analytic capacity, as well as that of the

Bogacz-Brown model, relative to the empirical capacity for HebbFF.

First, the idealized HebbFF model uses a dedicated set of synapses through the fixed W1 matrix,

and the Bogacz and Brown model selects the units that have the highest input current implicitly

through inhibitory competition. Both of these are dedicated addressing functions for the hidden

layer, but meta-learned HebbFF must multiplex this functionality with memory storage, leading to

correlations between the hidden layer input currents from the plastic and fixed synapse components

(Figure 2.11A).

In addition, replacing the logistic function with a Heaviside function means that familiar stimuli

truly generate no plasticity in the idealized model, reducing overwriting at the cost of not reinforcing

partially-decayed memories (Figure 2.11B-C). For the same reason, in contrast to HebbFF, the

idealized model achieves maximal plasticity for any suprathreshold level of input to a hidden layer

unit.

Finally, training the HebbFF model may lead to specialized solutions for small d and N that

have better performance than that predicted by the asymptotic analysis. Similarly, training may

not converge to the optimal solution for large d and N because it requires the use of very long

repeat intervals R. This means the dataset size T must be very large to include a sufficient number

of familiar examples, which may lead to practical issues such as vanishing gradients. Thus, the

empirical capacity may scale sublinearly with the number of synapses because of over-performance

at low R, under-performance at high R, or both.

2.2.9 HebbFF recapitulates neural data from inferotemporal cortex

59

60

Figure 2.6 (previous page): Comparison to IT cortex data. (A) Left: neurons from the IT cortex used
to predict the behavioral outputs of a monkey performing continual familiarity detection, decoded
using the Fisher linear discriminant (FLD, blue) or spike count classifier (SCC, red). Right: units
from the hidden layer of a trained HebbFF network (trained with unconstrained W2) used to detect
familiarity obtained from SCC and FLD decoders. In both cases, the number of neurons/units
available to the decoder was varied, added in order of increasing weight according to the FLD
decoder. While the FLD decoder accuracy saturates, the SCC decoder accuracy peaks and begins to
decline as more neurons/units are included in the decoder. (B) Distribution the FLD decoder output
for IT cortex neurons (left) and HebbFF hidden units (right) for novel stimuli, and familiar stimuli at
varying delay intervals. In both cases, the distribution shifts towards lower values as delay interval
increases. For HebbFF, the distribution gets narrower for shorter delay intervals due to saturation in
the hidden layer units. (C) Distribution of the FLD decoder weights for decoding IT cortex data (left)
or HebbFF hidden unit activity (right). In both cases, the majority of output weights are negative,
with some positive values. (D) Left: measured reaction time as a function of delay interval for
correct and error trials (red, blue curves) in monkeys performing the continual familiarity detection
task. Black lines indicate reaction times predicted using strength theory analysis. Right: HebbFF
predicted reaction times using analogous strength theory analysis, using constants of proportionality
from [165] (section 2.4). Both result in a qualitatively similar x-shaped pattern. Plots on the left
side of (A-D) adapted from [165]. (E) The weight matrix W1 of the HebbFF network trained on the
augmented task, requiring simultaneous classification and familiarity detection. Hidden units split
into "classification" and "familiarity" units, with classification units (marked with asterisks) having
very strong input weights to overcome the noise from the plastic A(t) matrix.

We next compare the optimized HebbFF model with experimental results. Meyer and Rust

(2018) recorded neurons from the inferotemporal (IT) cortex of monkeys performing familiarity

detection and compared the quality of two decoders in predicting behavior from neural data as a

function of neural population size. The authors considered a "spike count classifier" (SCC) decoder,

which amounts to comparing a simple average of neuronal firing rates to a threshold, as well as

a Fisher linear discriminant (FLD), which instead considers a weighted average, with weights

computed from the data [165].

We perform a similar analysis. We first construct an FLD decoder of the hidden unit firing

rates and rank the units in reverse order of their FLD readout weights (i.e. units with the most

negative weights are top-ranked; section 2.4). We then consider decoders that use increasingly larger

subsets of hidden units, adding them according to their ranking [165]. As in the experimental data,

performance saturates for the FLD and declines for the SCC readout beyond a certain number of

61

decoded units (Figure 2.6A). This can be explained by the fact that some units do not provide a

reliable signals of familiarity – in the network this is due to suboptimal training, and in the IT cortex

possibly due to those neurons performing an unrelated task (see supplement). Including them hurts

performance of the SCC decoder, but since the FLD readout weight for these units is close to zero,

they do not alter its familiarity detection performance.

Comparing the experimental and model distributions of readout activity shows a qualitatively

similar pattern for outputs to novel and familiar stimuli (Figure 2.6B). Both distributions shift toward

smaller values as R increases, as the outputs for familiar stimuli approach those for novel. The

fact that the distribution of outputs becomes narrower for HebbFF as R decreases, unlike in the

data, may be due to repetition suppression causing hidden units to have near-zero responses for

highly familiar (low R) stimuli, thus causing the readout distribution to cluster around its minimal

value. On the other hand, biological neurons that exhibit repetition suppression may never be fully

silenced – for example if it takes multiple repetitions to achieve maximal familiarity or if neurons

are multiplexed with another task that requires a baseline level of activity. Furthermore, as in the

data, the distribution of readout weights is biased towards negative values (Figure 2.6C).

Finally, using a similar "strength theory" analysis as in the experimental results [165, 179],

which suggests that reaction times are inversely proportional to the distance of the readout from the

threshold, we can qualitatively reproduce the x-shaped reaction time curves seen in the data [165].

We used the same proportionality constant determined experimentally to compute network "reaction

times" (Figure 2.6D). Overall, we find that the HebbFF model captures a number of features seen in

the experimental results.

2.2.10 Two subpopulations emerge in a classification-augmented task

IT cortex encodes object identity as well as familiarity [180, 181]. To match this dual functionality,

we augment familiarity detection with object classification. We first create a large pool of random

vectors and randomly assign a binary label to each one. We then generate a familiarity detection

dataset as before, except that each novel input is drawn from this pool (without replacement) rather

62

than being generated anew. In addition to the scalar readout of familiarity, the network must now

report the class of the stimulus through a second binary output. Critically, both outputs are read out

from the same hidden layer activity (section 2.4).

The augmented task could be solved by having all the neurons multiplexed to encode both

familiarity and object identity. Alternatively, the neurons could split into two subpopulations,

one of which detects familiarity and the other classifies objects [182]. We find that the HebbFF

model converges to this second solution, an even split between familiarity and classifier units, as

evident from inspecting the W1 matrix (Figure 2.6E). Consistent with this, the capacity of the

classifier-augmented HebbFF with 50 hidden units (Rmax ≈ 13) is approximately the same as the

original network with 25 units (Rmax ≈ 14). In accord with this split, SCC decoder performance

peaks in the split-task network when half of the top-ranked units are included (Figure 2.12D) because

including units responsible for object identity but not familiarity degrades the familiarity readout.

The other similarities to experimental results discussed in the previous section also hold for the

task-augmented network (Figure 2.12).

2.2.11 Familiarity detection of real images

To validate the HebbFF model in a more realistic scenario, we evaluate its performance on

real-world object images. We consider the dataset used by Brady et al. to study familiarity detection

in humans [162]. As a stand-in for the processing done by the visual stream before the inferotemporal

or perirhinal cortices, we use a pre-trained convolutional neural network (CNN), and extract the

activity in its penultimate layer (before the final classification step). We use the ResNet18 network

[90], although any CNN could, in principle, be used. This activity is a 512-dimensional vector, which,

if used as the HebbFF input dimension d, would lead to the capacity Rmax being prohibitively large

for training purposes. To keep the performance in a reasonable range, we downsample to d = 50,

either by partial sampling (Figure 2.7A) or by introducing an intermediate layer (Figure 2.13A). We

use the uniform readout W2 for simplicity of training and analysis, although the results are similar

for the unconstrained readout.

63

Figure 2.7: HebbFF performance on real-world images. (A) Network architecture for familiarity
detection of real-world images. The activity of the penultimate layer of a convolutional neural
network (ResNet18, pre-trained on ImageNet) is downsampled and passed to the HebbFF network
(d = 50, N = 16) for familiarity detection. Only the HebbFF portion of this network is trained, via
curriculum training. (B) Distribution of inputs x(t) to HebbFF. After down-sampling by extracting
the first 50 units of the CNN, the activity is centered at zero and binarized. (C) Histogram of the
correlations between all pairs of input stimuli x(t). On average (vertical dashed line) the correlation
is slightly positive. (D-H) Same plots as Figure 2.3(F,C,I,J,M), respectively (Rtrain = Rtest = 12).
(J) Generalization performance, compared to a network of the same size trained on uncorrelated
binary random vectors, is lower due to correlations in the input images.

64

As the first method of downsampling, we truncate the output of the CNN (Figure 2.7A). To keep

the same input datatype as in previous sections, we also shift the inputs to zero mean and binarize

them by taking the sign of each input component (Figure 2.7B). Unlike in previous sections, however,

the inputs to HebbFF now have correlations that tend to be positive (Figure 2.7C). Nevertheless, this

network has qualitatively similar features as the networks trained on uncorrelated vectors. The W1

matrix has a similar structure (Figure 2.3F, 8D), the hidden layer activity is sparse (Figure 2.3C, 8E),

and the hidden unit input current distributions have similar shapes (Figure 2.3I,J,M, 7B, 8F-I). Due

to the added correlations, however, there is a decline in performance compared to a network of the

same size trained and evaluated on uncorrelated binary random vectors (Figure 2.7J).

As another way to downsample, we add a trainable linear layer that transforms the CNN output

to a 50-dimensional real-valued vector (Figure 2.13A). After training, the resulting inputs to HebbFF

are no longer binary, but they are zero-mean (Figure 2.13B) and have zero-mean correlations

Figure 2.13C). Interestingly, the network learns to generate this representation automatically to

optimize familiarity detection over long intervals, which further supports storing uncorrelated

stimuli. Although the W1 matrix (Figure 2.13D) and the distribution of input currents from the fixed

component of the synapses (Figure 2.13F) have a different structure compared to the original network,

the operating principle remains the same: the W1 matrix acts as a addressing function to select

a unique neuron in the hidden layer (Figure 2.13E) that is then suppressed for a familiar stimulus

through the A(t) matrix (Figure 2.13G-H). The network maintains its generalization performance

across repeat intervalsR, and across permutations of the sequence of images (Figure 2.13J). However,

it does not generalize well to images it has not been trained on. It is possible that this difficulty is

due to the relatively small number of images used during training and may be addressed by using a

much larger dataset such as ImageNet [183].

2.3 Discussion

Continual familiarity detection is a memory task that we perform every day, typically without

being aware that we are doing it. We have used meta-learning to generate networks that solve this

65

task using synaptic plasticity. This is distinct from memory storage in RNNs that maintain memory

traces through persistent activity. Given the extraordinary capacity and robustness of recognition

memory, the idea that biological networks use ongoing activity for this purpose appears untenable

[184, 185]. If a neuronal network is storing a stimulus by maintaining a particular firing rate pattern

across its neurons, any other computation risks disrupting that memory trace. In contrast, storage

through synaptic updates leaves the neuronal activity free to perform other computations unrelated

to memory storage [131]. In addition, we found that synaptic plasticity provides a better inductive

bias than recurrence for familiarity detection. After optimization through meta-learning, the HebbFF

network not only outperforms RNNs on the task, but also easily generalizes both in-distribution and

out-of-distribution of the training data. Although RNNs are a common approach to tasks that require

storage of the input history [133, 91, 156], this result highlights the importance of considering

alternative architectures and storage mechanisms, such as those that rely on synaptic, rather than

neuronal, dynamics.

In answer to the question of "how" memories are stored, we find that anti-Hebbian plasticity, in

which neuronal co-activation causes synaptic depression (alternatively this may be interpreted as

potentiation of inhibitory synapses [186]), is a better storage mechanism for familiarity detection

than Hebbian. An anti-Hebbian rule generalizes better, has a larger capacity, and is discovered by

meta-learning more frequently and reliably. Although this result is consistent with previous work

[161], the underlying reasons are different. Bogacz and Brown showed that in a non-continual

version of the familiarity detection task, an anti-Hebbian plasticity rule leads to a larger storage

capacity, although this advantage only held in the case of correlated inputs. In their case, the

anti-Hebbian rule automatically suppresses common input features, effectively storing only the

uncorrelated components, leading to an increased capacity. In contrast, anti-Hebbian HebbFF shows

an advantage even for uncorrelated inputs in the continual task. This is due to an effective decrease

in the number of plasticity events – a synaptic update is weak for a familiar stimulus because the

postsynaptic activity is low, leading to smaller updates that are less disruptive to stored memories.

Equally important is the question of "where" memories are stored. HebbFF explicitly selects

66

storage locations through an addressing function implemented by strong feedforward weights W1,

independent of the previously stored memories A(t). By inducing hidden layer activity – typically

a single active neuron – W1 selects only those afferents for storing a novel memory. This is in

contrast to implicit addressing through recurrent inhibition in a previous anti-Hebbian model [161]

which selects 50% of hidden layer neurons. Although much experimental and theoretical work has

been devoted to elucidating the plasticity rules used in memory storage, our work highlights the

equal importance of studying the addressing functions of neuronal circuits as well.

Critically, unlike classical models, these answers emerged from meta-learning. The architectural

features were not due to decisions made by the modeler but rather discovered through optimization.

Although our particular meta-learning algorithm, BPTT, does not easily map onto a biological

mechanism, we can nevertheless interpret it as a stand-in for structural changes over long time scales

– an addressing function developing in a newborn's brain over the first years of her life, or a plasticity

rule emerging within a species across generations. Evolutionary strategies for meta-learning [176,

173, 178] imply the latter interpretation. In contrast, the plasticity rule itself is a biologically realistic

mechanism for learning over short time scales – seconds or minutes to store a memory that may be

retrieved throughout a lifetime.

Thus, the HebbFF model predicts that there should be two populations of synapses – a small set

of slow-varying or fixed synapses for addressing the memory neurons (the hidden layer of HebbFF)

and a larger set of highly plastic synapses for encoding memories.

The HebbFF model also allows us to make a more quantitative experimental prediction. Although

is obvious that the true positive rate (probability of correctly identifying a repeated stimulus as

"familiar") should decrease with longer delay intervals R, we also observe that the false positive

rate slightly increases (Figure 2.14A). This occurs because false negatives (incorrectly reporting a

familiar stimulus as "novel") due to spuriously elevated activity in the hidden layer cause storage of

a familiar stimulus in additional neurons, as determined by the addressing function. Subsequently, a

novel stimulus is more likely to generate a false positive response due to a collision in the addressing

function. (Note that although this effect increases false positives, it may also boost the true positive

67

rate since the memory gets more robustly encoded). Prior experimental paradigms have not measured

this effect because each trial had familiar stimuli interleaved at various delay intervals, so novel

stimuli could not be separated scored depending on the difficulty of the dataset and false positive

probability was reported in aggregate. If biological networks implement familiarity detection

through an anti-Hebbian plasticity mechanism, we expect the false positive rate to increase with

larger R. Neither the Hebbian mechanism nor the RNN trained on a single R show this behavior

(Figure 2.14B,C). Note, however, that anti-Hebbian plasticity is merely sufficient, not necessary, for

this result, so the converse may not be true (Figure 2.14D).

There are experimental results that the HebbFF model does not capture. For example, data

from human subjects shows a very slow decrease in performance as a function of R that begins at

relatively small value [162]. In contrast, HebbFF has near-perfect performance for all R < Rmax,

and then performance drops off quickly. However, it is likely that errors in the experiments do not

reflect limitations on recognition memory but rather are due to factors such as fatigue and lack of

attention that were not included in the model.

Finally, along with other recent applications of this technique [176, 175, 173, 174, 177, 178],

our work demonstrates the utility of meta-learning as a tool for neuroscience discovery. We

used meta-learning to optimize a network architecture and plasticity rule that solves the continual

familiarity detection task, contrasted it with an alternative sub-optimal solution, and subsequently

used analytic methods to understand its mechanism. A similar approach can be used for other

networks, plasticity rules, datasets, and tasks.

2.4 Methods

2.4.1 HebbFF and RNN training

To set the fixed HebbFF parameters W1, b1, W2, b2, λ, η, as well as the RNN weight and

bias matrices, we use the PyTorch implementation of the Adam optimizer with the suggested default

hyperparameters [92]. For a single trial, we use a dataset containing T stimuli, with familiar ones

appearing at a repeat interval R. We present stimuli to the network sequentially, and compute the

68

binary cross-entropy loss

L =
1

T

T∑
t=1

y(t) log ŷ(t) + (1− y(t)) log (1− ŷ(t))

For each trial, we either use the same pre-generated length-T dataset, or we generate a new

length-T dataset using the same repeat interval R. We refer to the latter case as the "infinite data"

training regime since the sample space is much larger than the network would explore during training.

Note that in the infinite data regime, we do not consider a validation dataset, since the training set

is new every time and the training accuracy is therefore the same as the validation accuracy. In

both cases, one trial corresponds to one step of gradient descent. To train the HebbFF network, the

plastic matrix A(t) is reset to a matrix of zeros at the start of each trial. Similarly, when training

the RNN, hidden unit activity is reset to zero. In practice, the plastic matrix of HebbFF reaches its

steady state distribution quickly and the transient does not contribute significantly to the gradient, so

any reasonable initialization can be used.

To train the HebbFF network on the augmented familiarity detection/object classification task,

we simply sum the cross-entropy losses from the classifier and familiarity output units:

L =
1

2T

T∑
t=1

2∑
a=1

ya(t) log ŷa(t) + (1− ya(t)) log (1− ŷa(t))

For every trial, we draw a new dataset from the pre-generated pool of stimuli. The class of

each stimulus remains the same across datasets, but the ordering and repeats are chosen randomly

each time. Although the network will have seen all of the stimuli during training in order to learn

their classes, we can test generalization performance on the familiarity subtask by varying R and

generating previously unseen permutations of the stimuli.

2.4.2 Bogacz-Brown model implementation

To validate it on the (non-continual) two-alternative-forced-choice (2AFC) familiarity detection

task, we implement the anti-Hebbian model as described by Bogacz and Brown [161], with the

69

exception that the distribution of weights in the plastic weight matrix must be normalized such that

its variance is equal to 1
N

, rather than unit variance as stated in the paper. In the encoding phase, the

network is presented a sequence of P random patterns. In the testing phase, it is shown the original

P patterns, as well as P novel ones. Critically, there are no plastic updates in the testing phase. A

stimulus is reported as "familiar" if the output unit activity is below the mean across all 2P test

patterns and "novel" otherwise. We see that this model performs well on the 2AFC task with a range

of plasticity rates η (Figure 2.9A), so we arbitrarily choose η = 0.7 to test its performance on the

continual task.

The continual task, unlike the 2AFC task, does not have an equal proportion of novel and familiar

stimuli since we ensure that a stimulus is repeated at most once. So, we set the readout threshold

such that an item is considered novel if it is in the f th quantile of output unit activity for that trial,

where f is the fraction of novel stimuli in the trial. This ensures that the fraction of stimuli reported

as "novel" is equal to the true fraction of novel stimuli. In the case of equal proportions of novel and

familiar stimuli, this reduces to the threshold being equal to the mean of the output unit activity for

that trial.

Finally, note that unlike in the 2AFC task (Figure 2.9A), the performance of this model does not

go to chance levels for large dataset sizes T in the continual task (Figure 2.3D). Rather, the true

positive rate goes to zero and the false positive rate is ≈ 0.5, so accuracy is ≈ 0.33. The reason for

this difference is that the second presentation of a stimulus in the continual task causes an additional

plasticity event, unlike the 2AFC task where the test phase is offline. As a result, for datasets much

larger than the network capacity T ≫ P ∗, the output unit activity for familiar stimuli becomes larger

than the activity for novel stimuli (Figure 2.9B).

2.4.3 Training FLD and SCC decoders

To construct the Fisher linear discriminant (FLD) and spike count classifier (SCC) decoders,

we first generate a dataset of length T = 1000. To better match the experimental dataset [165],

we use multiple values of R in this single stream. For each familiar stimulus, the value of R is

70

drawn uniformly at random from 34 unique values, log-spaced from 1 to 100 (in practice, the results

are qualitatively the same regardless of the number of items, the range, or whether the spacing is

linear or logarithmic). We evaluate the trained network on this dataset and use the firing rates of the

hidden layer to perform analyses analogous to those reported in [165].

We compute the readout weight and bias terms for the FLD decoder as

WFLD
2 = Σ−1

(
hnov − hfam

)
, bFLD

2 = −WFLD
2 ·1

2

(
hnov + hfam

)
where hnov and hfam are the average firing rates of the hidden layer for novel and familiar

stimuli, respectively, and the mean covariance matrix is calculated as

Σ =
Σfam +Σnov

2

where Σfam and Σnov are the covariance matrices of the firing rates of the hidden layer for

familiar and novel stimuli, respectively. The SCC decoder is a simple weighted average

WSCC
2 =

1

N

(
hnov − hfam

)
, bSCC

2 = −WSCC
2 ·1

2

(
hnov + hfam

)
To get the ranking of the units for both decoders, we sort their readout weights and consider the

most negative weights as the highest ranked. Note that for both decoders, the sign of the weights is

flipped compared to [165], and high-ranked units have the most negative weights rather than positive.

This is due to the fact that we ask the network to label familiar stimuli as y(t) = 1, whereas [165]

readout a familiar stimulus as y(t) = 0. The two cases are symmetric and this does not change the

results.

2.4.4 Idealized model analytic capacity derivation

For notational simplicity, we only consider the nonzero submatrices of W1 and A(t), each of

which acts on its corresponding subset of the input vector x(t). Thus, equivalently, input layer of

the idealized network is a d-dimensional vector split into two parts x(t) = [xW(t), xA(t)], of

71

dimension n and D respectively (d = n+D). Thus, the firing rate of the hidden layer is given by

h(t) = Θ (W1xW(t) +A(t)xA(t) + b1)

for an N × n matrix W1, an N ×D matrix A(t), and an N × 1 vector b1. In other words, the

firing rate of the ith hidden unit is

hi(t) = Θ

(
n∑

j=1

Wijxj(t) +
D∑

k=1

Aik(t)xn+k(t) + b

)
(2.1)

for i = 1, . . . , N , where Θ(·) is the Heaviside step function, i.e. Θ(z) = 0 for z < 0 and 1 for

z ≥ 0. We fix the value of b to be the same for all i. As before, the elements of x(t) are +1 or

−1 with equal probability. We would like to specify the network parameters such that exactly one

hidden neuron is active for a novel stimulus and none for familiar, which will serve as the familiarity

readout mechanism.

The N × n matrix W1 is designed such that the vector W1xW(t) has exactly one maximal

entry given any such x(t). Importantly, this matrix must act like a hash function such that different

values of xW(t) result in different entries of W1xW(t) attaining the maximum value. One such

W1 is one whose rows enumerate all of the binary length-n strings consisting of entries +1 and −1.

This sets the number of rows N to be equal to the total number of such strings, N = 2n. To set the

overall scale of the input current (the term inside the nonlinearity), we scale this matrix by a factor

K, to be determined later. For example, if n = 3,

W1 = K



+1 +1 +1
+1 +1 −1
+1 −1 +1
+1 −1 −1
−1 +1 +1
−1 +1 −1
−1 −1 +1
−1 −1 −1


Thus, we have

∑n
j=1Wijxj(t) = Kn for exactly one value of i, specifically the row where

72

Wij= xj(t) for all j. This is the unique maximal value and will correspond to a different row for each

instance of xW(t). Subsequently,
∑n

j=1Wijxj(t) = K(n− 2) for n values of i, specifically those

where Wij ̸= xj(t) for exactly one j, and so on. This structure explains the multi-modal distribution

of W1xW(t) + b1 in Figure 2.5D and by extension that of W1x(t) + b1 in Figure 2.3G-I.

Assuming that the vector A(t)xA(t) is zero-mean with sufficiently small variance (this will be

made rigorous shortly), we can now choose the scalar offset b such that exactly one element of h(t)

is equal to 1 and all others are zero.

The N × D matrix A(t) is updated at every timestep by A(t + 1) = λA(t) − ηh(t)xA(t)
T ,

where the plasticity rate η is now restricted to be positive, corresponding to an anti-Hebbian learning

rule. Considering one entry in this matrix and unrolling this recurrence, we find that

Aik(t+ 1) = λAik(t)− ηhi(t)xn+k(t)

= λt+1Aik(0)− η
t∑

t′=0

λt−t′hi (t
′)xn+k (t

′)

≈ − η
t∑

t′=0

λt−t′hi (t
′)xn+k (t

′)

We can now consider the middle term of Eq. 2.1, which we denote by εi(t). We consider it as a

random variable and compute its mean and variance. By definition, we have

εi(t) =
D∑

k=1

Aik(t)xn+k(t)

=
D∑

k=1

(
− η

t−1∑
t′=0

λt−1−t′hi (t
′)xn+k (t

′)

)
xn+k(t)

= −η
t−1∑
t′=0

λt−1−t′hi (t
′)

D∑
k=1

xn+k (t
′)xn+k(t) (2.2)

In the case where x(t) is novel, xn+k (t
′) and xn+k(t) are independent Bernoulli random variables

73

that take on values ±1 with probability 0.5. Thus, Xk (t
′) = xn+k (t

′)xn+k(t) is also a Bernoulli

random variable with the same distribution, zero mean and unit variance, so

εi(t) = − η
t−1∑
t′=0

λt−1−t′hi (t
′)

D∑
k=1

Xk(t
′)

Since the entries of x(t) are independent by definition, the Xk(t
′) are also independent across k,

so summing over these indices, the variances add. Therefore, X (t′) =
∑D

k=1Xk (t
′) is a random

variable with mean 0 and variance D, and

εi(t) = − η
t−1∑
t′=0

λt−1−t′hi (t
′)X(t′)

Next, we need the statistics of the term hi (t
′). Since it is a function of the random variable x(t),

we also consider it as a random variable. Let feff denote the fraction of stimuli reported as "novel"

by the network. Note that there are two ways for a network to report a stimulus as "novel" – by

correctly identifying a novel stimulus ("true negative"), or incorrectly identifying a familiar one

("false negative") – so if we let f denote the true fraction of novel input stimuli, we have

feff = PTNf + PFN(1− f) = (1− P FP)f + (1− PTP)(1− f)

where PTN , P FN , PTP and PFP are the true negative, false negative, true positive, and false

positive rates, respectively. Since by design there is exactly one hidden unit active for a novel

stimulus, we have hi (t
′) = 1 with probability feff

N
, and hi (t

′) = 0 with probability 1 − feff
N

. So,

hi (t
′) is a Bernoulli random variable with mean feff

N
and variance feff

N

(
1− feff

N

)
. Now, we let

Hi (t
′) = hi (t

′)X (t′), so

εi(t) = − η
t−1∑
t′=0

λt−1−t′Hi (t
′)

Although hi (t
′) is, in principle, a function of x(t′), we assume they are independent. Since

X (t′) is zero-mean, the mean of Hi (t
′) is also zero. Using the identity var(XY) = var(X)var(Y)+

74

var(X)E2[Y] + var(Y)E2[X], which holds for independent random variables X and Y , we have

that the variance of Hi (t
′) is feffD

N
. Finally, for convenience we can rewrite this as

εi(t) = − η

√
feffD

N

t−1∑
t′=0

λt−1−t′ξi (t
′)

where ξi (t′) is a zero-mean, unit-variance random variable. Furthermore, we now see that by the

Central Limit Theorem εi(t) is a Gaussian random variable since we are considering the steady-state

performance at large t, so we can take t→∞.

We can now compute the mean and variance of εi(t). First, since xn+k(t) is zero-mean and

independent of Aik(t),

E[εi(t)] = E

[
D∑

k=1

Aik(t)xn+k(t)

]
= 0

To compute the variance,

var (εi(t)) = E[ε2i (t)]− E2[εi(t)] = E[ε2i (t)]

= E

(− η

√
feffD

N

t−1∑
t′=0

λt−1−t′ξi (t
′)

)2


= E

[(
− η

√
feffD

N

t−1∑
t′=0

λt−1−t′ξi (t
′)

)(
− η

√
feffD

N

t−1∑
t′′=0

λt−1−t′′ξi (t
′′)

)]

= η2
feffD

N

t−1∑
t′=0

t−1∑
t′′=0

λt−1−t′λt−1−t′′E [ξi (t
′) ξi (t

′′)]

In general, we have E [ξi (t
′) ξi (t

′′)] = 1 for t′ = t′′ since ξi (t
′) is a zero-mean, unit-variance

random variable. For t′ ̸= t′′, we again make a simplifying independence assumption. In

principle, ξi (t′′) is not independent of ξi (t′) since hi (t
′′) depends on hi (t

′) for t′′ > t′ through

the memory stored in the A(t) matrix. This dependence, however, is sufficiently weak, so we let

E [ξi (t
′) ξi (t

′′)] = 0 for t′ ̸= t′′. As a result, the double-sum collapses and we have

var (εi(t)) = η2
feffD

N

t−1∑
t′=0

λ2(t−1−t′)= η2
feffD

N

1− λ2t

1− λ2

75

where the second equality comes from the standard geometric series. As before, since we are

considering the steady-state with t→∞, we have γ2t → 0, so

var (εi(t)) = η2
feffD

N

1

1− λ2

Thus, for a novel input x(t) we can write

εi(t) = ξiη

√
feffD

N (1− λ2)
(2.3)

for all i, where ξi is a zero-mean, unit-variance Gaussian random variable, since εi(t) is Gaussian.

For a familiar stimulus, where x(t) = x(t − R), clearly xn+k (t
′) and xn+k(t) are no longer

independent for t′ = t−R. Thus, we consider this term separately, rewriting the sum in Eq. 2.2 as

εi(t) = − ηλt−1−(t−R)hi(t−R)
D∑

k=1

xn+k(t−R)xn+k(t)− η
t−1∑
t′=0

t′ ̸=t−R

λt−1−t′hi (t
′)

D∑
k=1

xn+k (t
′)xn+k(t)

Assuming no errors, by design, hi(t− R) = 1 for exactly one neuron i, since the stimulus at

time t − R was guaranteed to be novel (we enforce that a stimulus is repeated at most once in

this task). We consider the statistics of εi(t) for this particular neuron. In the first term, the sum∑D
k=1 xn+k(t−R)xn+k(t) = D since by assumption xn+k(t) = xn+k(t−R) for all k. The second

term has the same distribution as the one for a novel input since we have only removed one term

from the sum and t is large. Thus, for a familiar stimulus we can write

εi(t) = − ηλR−1D + ξiη

√
feffD

N (1− λ2)

for exactly one value of i, where ξi is a zero-mean, unit-variance random variable as before. For all

other values of i, Eq. 2.3 holds.

Having established the statistics of the hidden layer input currents for a novel and a familiar

stimulus, we can now write down the conditions for the model to work, use them to find the optimal

76

values of the parameters and calculate the true positive and false positive probabilities, and compute

the capacity – the largest value of R for which the error is below a predetermined threshold. First, to

ensure that exactly one unit is active for a novel stimulus (true negative), since we are using a step

function nonlinearity, we must have the largest input current take on a positive value (since ξi is an

identically distributed standard normal random variable for every neuron, for simplicity we suppress

the index i),

Kn+ ξη

√
feffD

N (1− λ2)
+ b > 0

and second-largest to be below zero,

K(n− 2) + ξη

√
feffD

N (1− λ2)
+ b < 0

Second, to ensure there are no units active for a familiar stimulus (true positive),

Kn− ηλR−1D + ξη

√
feffD

N (1− λ2)
+ b < 0

For sufficiently large R, i.e. if ηλR−1D < 2K, the third of these conditions implies the second.

Since we are interested in maximizingR, we only consider the first and third conditions. Furthermore,

note that these conditions are overparameterized. If we divide all three equations by η (e.g. let

k = K
η
, B = b

η
), we can eliminate this free parameter. In other words, for any value of η we can

scale K and b proportionally to satisfy the conditions, so for simplicity we choose η = 1. Similarly,

the term Kn+ b can be replaced by a single parameter since for any choice of K we can rescale b to

keep this sum constant. To ensure that the condition ηλR−1D < 2K holds for all R, we can choose

K = D. For convenience, we also let b = βD and
√

feffD
N(1−λ2)

= αλD, the subscript indicating

explicit dependence on λ. Dividing both inequalities by D, the conditions simplify to

n+ αλξ + β > 0, n+ β + αλξ − λR−1 < 0

The accuracy, i.e. probability of a correct response, is given by Pcorrect = (1−f)PTP + fPTN .

77

For convenience, we compute the false positive instead of the true negative rate, noting that

PTN = 1− PFP . The false positive and true positive rates are given by

PFP= P
[
ξ < −n+ β

αλ

]
, PTP= P

[
ξ < −n+ β − λR−1

αλ

]
Since ξ is a standard Normal random variable, P[ξ < z] = 1

2
erfc

(
− z√

2

)
, so

PFP =
1

2
erfc

(
n+ β

αλ

√
2

)
, PTP =

1

2
erfc

(
n+ β − λR−1

αλ

√
2

)
We would now like to set the optimal values of λ and β which maximize R, given a desired

true positive and false positive probability P ∗
FP , P

∗
TP . Note that fixing these probabilities also fixes

feff = f ∗ = (1− P ∗
FP)f + (1− P ∗

TP)(1− f). Rearranging the previous equations, we get

n+ β

αλ

=
√
2erfc

−1
(2P ∗

FP) ,
n+ β − λR−1

αλ

=
√
2erfc

−1
(2P ∗

TP)

The first equality sets the value for β. To determine λ, we substitute β into the second equality

to get

√
2erfc

−1
(2P ∗

FP)−
λR−1

αλ

=
√
2erfc

−1
(2P ∗

TP)

For notational convenience, let E =
√
2
[
erfc−1 (2P ∗

FP)− erfc−1(2P ∗
TP)
]
. Using the definition

of αλ and feff = f ∗, we have λ =
√

1− f∗

α2
λND

. Rearranging, we have

(
1− f ∗

α2
λND

)R−1
2

= αλE

Assuming N and D are large (so λ is close to 1), we can use the first-order Taylor expansion

exp(−z) ≈ 1− z for the term in parentheses (this will be necessary to get a closed-form expression

for the optimal λ) and solve for R

exp

(
− f ∗

α2
λND

· R− 1

2

)
= αλE ⇒ R = 1 +

2Dα2
λ

f ∗ ln

(
1

αλE

)
78

Setting dR
dλ

= 0 and solving for λ gives the optimum

λ =

√
1− eE2f ∗

ND

Rmax = 1 +
ND

eE2f ∗

where f ∗ and E are constants that depend on P ∗
FP and P ∗

TP (f ∗ also depends on the true fraction of

novel stimuli f). For instance, if we impose that P ∗
FP = 0.01 and P ∗

TP = 0.99, with our value of

f = 2
3
, we get

Rmax = 1 +
ND

e·2 ·
[
erfc−1 (2P ∗

FP)− erfc−1 (2P ∗
TP)
]2 · [(1− P ∗

FP)f + (1− P ∗
TP)(1− f)]

= 1 +
ND

2e [1.645− (−1.645)]2 [0.98f + 0.01]

= 1 +
0.017ND

0.98f + 0.01

= 1 + 0.026ND

It is clear that that the capacity scales in proportion to the number of plastic synapses in the network.

Furthermore, since d = n+D, i.e. D = d− log2 (N), the capacity scales in proportion to the total

number of synapses d, as long as D ≫ n.

Rmax = O(ND) = O (N(d− n)) = O(Nd−N logN)) = O(Nd)

Finally, note that the equations for PFP and PTP are a function of feff due to the αλ parameter,

and therefore recursively depend on PFP and PTP . We cannot compute the closed-form solution for

these, but we can approximate the values with arbitrary accuracy by iterating through this recurrence

until convergence to the fixed point. As the initial value for the recurrence, we use PFP and PTP

computed using feff = f , i.e. assuming no errors.

79

2.5 Supplementary figures

Figure 2.8: HebbFF and RNN comparison, matching total number of dynamic variables. (A,B)
RNN performance as in Figure 2.2A-B, with d = 25 and N = 625. (C,D) HebbFF performance as
Figure 2.3A-B, with d = 25 and N = 25. The number of plastic synapses in the HebbFF network
N ∗ d = 625 is the same as the number of recurrent units in the RNN, matching the number of
dynamic variables between the networks rather than the number of neurons. HebbFF still shows
better generalization in both training scenarios.

80

Figure 2.9: Validation of network from [161]. Related to Figure 2.3, section 2.4. (A) Performance
of the anti-Hebbian network from (Bogacz and Brown, 2003) (d = N = 100) on the non-continual
familiarity detection task. The network is shown P uncorrelated randomly generated patterns, and
tested on all the presented patterns as well as P novel ones. If the network's readout falls below a
threshold, the corresponding input is classified as "familiar," otherwise "novel." The threshold is set
such that that exactly half of the test inputs are classified as "familiar." The plot shows the network's
performance for a range of learning rates η as a function of the number of patterns presented. (B)
Performance of the same network (η = 0.7) on the continual task. Plots show the probability
distribution of the network's readout for novel (red) and familiar (green) stimuli. Threshold for
familiarity (vertical black line) is set such that the top f of outputs are classified as novel (fraction f
equal to proportion of novel stimuli in dataset), analogous to that in [161]. Network performance
declines as the distributions get closer together for increasing dataset size T . For very large dataset
sizes, e.g. T = 5000, the readout for familiar stimuli is actually higher than that for novel, which
causes overall performance (Figure 2.3D) to fall below chance.

81

Figure 2.10: Comparison of uniform and trained readout. Related to Figure 2.3. (A) Generalization
performance of a trained HebbFF network (d = N = 25) with a fully trainable readout matrix, i.e. a
weighted average of the hidden layer activity (red) and a version where all the entries of the readout
matrix are constrained to be equal, i.e. a scaled average of the hidden layer (blue). Performance is
not affected by this choice of output weights. (B) Distributions of the output unit activity (prior to
applying the nonlinearity) for a trained network, for several test values of R. The output distributions
are almost identical for both versions of the readout. (C) Examples of the W2 readout matrix,
as well as the bias b1 for the weighted (top) and uniform (bottom) readouts. Values for both are
negative, indicating a qualitatively similar readout mechanism. Note that the weight matrices are
plotted transposed for visualization. Also note that anti-Hebbian plasticity is the preferred form of
plasticity for both versions of the readout.

82

Figure 2.11: Idealized and HebbFF model differences. Related to Figure 2.5. (A) Correlation
between the hidden layer input currents due to static and plastic synapses for the idealized model
(left) and HebbFF (right) for novel (red) and familiar (green) stimuli as a function of delay interval
(d = 25, N = 32). In the idealized model, due to the split static and plastic synapses, the currents
are uncorrelated for novel stimuli and familiar stimuli at long delay intervals. At short intervals, the
two input currents are anti-correlated, which enables repetition suppression. In the HebbFF model,
there is anti-correlation in both cases, although there is still less anti-correlation for novel stimuli.
(B) Performance of the idealized network on the continual familiarity detection task with familiar
stimuli repeated either exactly once, as used throughout this work (red), or multiple times (blue).
Since there is exactly zero hidden unit activity for a familiar stimulus it does not get reinforced
in memory, and less likely to be recognized on its second and subsequent repetitions. (C) The
HebbFF network, trained to maximum capacity on the single-repeat task does not suffer any loss in
performance due to multiple repeats.

83

Figure 2.12: Behavior on augmented task. (A-D) Correspond to the right-hand side plots of
Figure 2.6A-D, but for the classifier-augmented HebbFF network (d = 25, N = 50) performing
binary classification and familiarity detection simultaneously. (E) The weight matrix W1 of the
HebbFF network trained on the augmented task, requiring simultaneous classification and familiarity
detection. Hidden units split into "classification" and "familiarity" units, with classification units
(marked with asterisks) having very strong input weights to overcome the noise from the plastic
A(t) matrix.

84

Figure 2.13: Performance on real-world images. Subplots as in Figure 2.7, but using a trained
fully-connected linear layer to transform the activations of the CNN's penultimate layer into the
inputs of HebbFF (Rtrain = Rtest = 19).

85

Figure 2.14: Close-up of false positive probability curves. (A) Same as Figure 2.3C, bottom plot,
zoomed. HebbFF with anti-Hebbian plasticity shows an increase in false positive probability (dashed
curves) with increasing R, and is a sufficient mechanism to explain this effect. This occurs because
false negatives due to spuriously elevated activity in the hidden layer cause storage of a familiar
stimulus in additional neurons, as determined by the addressing function. Subsequently, a novel
stimulus is more likely to generate a false positive response due to a collision in the addressing
function. (Note that although this effect increases false positives, it may also boost the true positive
rate since the memory gets more robustly encoded). Prior experimental paradigms have not measured
this effect because each trial had familiar stimuli interleaved at various delay intervals, so novel
stimuli could not be separated scored depending on the difficulty of the dataset and false positive
probability was reported in aggregate. (B) Same as Figure 2.3B. Hebbian plasticity does not exhibit
an increase in false positives. (C) Same as Figure 2.2A. RNNs trained with a single R also do not.
(D) Same as Figure 2.2C. An RNN trained on multiple R's also shows this effect. An increase in
false probabilities may be caused by an alternative mechanism. Thus, anti-Hebbian plasticity is
sufficient but not necessary for this effect.

86

Figure 2.15: Evolution of parameters. Related to Figure 2.3. HebbFF is initialized with λ = 0.9, η
between −1 (blue) and +1 (red), W1 drawn from a zero-mean normal distribution with variance N ,
and trained on R = 3, (left) 9, (middle), or 15 (right). Loss, accuracy, sparsity of W1 (fraction of
entries below a threshold 0.01), λ and η are plotted over the course of training for each condition (λ
and η plotted for fewer iterations to better visualize their trajectories, since they converge sooner).
For each value of R there exist only two qualitatively different solutions – Hebbian and anti-Hebbian.
All networks with sufficiently small (not necessarily negative) η converge to an anti-Hebbian solution.
Networks with a Hebbian plasticity rule converge more slowly and to a lower accuracy/higher loss
than those with an anti-Hebbian rule, although training may diverge for larger R (right, dark blue
curve). Anti-Hebbian networks and networks trained with larger R have λ closer to 1 and sparser
W1 matrices.

87

Chapter 3: Biological learning in key-value memory networks

The work presented in this chapter was done in collaboration with Ching Fang (equal contribution),

Annapurna Vadaparty, and Guangyu Robert Yang; published in [21]. We are particularly grateful

for the mentorship of Larry Abbott. We also thank Stefano Fusi, James Whittington, Emily

Mackevicius, and Dmitriy Aronov for helpful discussions. Thanks to David Clark for bringing

Bidirectional Associative Memory to our attention.

In neuroscience, classical Hopfield networks are the standard biologically plausible model of

long-term memory, relying on Hebbian plasticity for storage and attractor dynamics for recall.

In contrast, memory-augmented neural networks in machine learning commonly use a key-value

mechanism to store and read out memories in a single step. Such augmented networks achieve

impressive feats of memory compared to traditional variants, yet their biological relevance is unclear.

We propose an implementation of basic key-value memory that stores inputs using a combination

of biologically plausible three-factor plasticity rules. The same rules are recovered when network

parameters are meta-learned. Our network performs on par with classical Hopfield networks on

autoassociative memory tasks and can be naturally extended to continual recall, heteroassociative

memory, and sequence learning. Our results suggest a compelling alternative to the classical

Hopfield network as a model of biological long-term memory.

3.1 Introduction

Long-term memory is an essential aspect of our everyday lives. It is the ability to rapidly

memorize an experience or item, and to retain that memory in a retrievable form over a prolonged

duration (days to years in humans). Neural networks capable of long-term memory have been

88

studied in both neuroscience and machine learning, yet a wide gap remains between the mechanisms

and interpretations of the two traditions.

In neuroscience, long-term associative memory is typically modeled by variants of Hopfield

networks [187, 188, 189]. Rooted in statistical physics, they are one of the earliest and best known

class of neural network models. A classical Hopfield network stores an activation pattern ξ by

strengthening the recurrent connections W between co-active neurons using a biologically-plausible

Hebbian plasticity rule,

W ←W + ξξ⊺ (3.1)

and allows retrieval of a memory from a corrupted version through recurrent attractor dynamics,

xt+1 = sign(Wxt) (3.2)

thereby providing a content-addressable and pattern-completing autoassociative memory.

In a more recent parallel thread in machine learning, various memory networks have been

devised to augment traditional neural networks [126, 190, 191, 192, 193]. Memory-augmented

neural networks utilize a more stable external memory system analogous to computer memory,

in contrast to more volatile storage mechanisms such as recurrent neural networks [194]. Many

memory networks from this tradition can be viewed as consisting of memory slots where each slot

can be addressed with a key and returns a memory value, although this storage scheme commonly

lacks a mechanistic interpretation in terms of biological processes.

Key-value networks date back to at least the 1980s with Sparse Distributed Memory (SDM) as a

model of human long-term memory [73, 60]. Inspired by random-access memory in computers, it is

at the core of many memory networks recently developed in machine learning [126, 195, 190, 196,

192]. A basic key-value network contains a key matrix K and a value matrix V . Given a query

89

vector x̃, a memory read operation will retrieve an output y as

h = f(Kx̃)

y = V h

(3.3)

where f is an activation function that sparsifies the hidden response h.

Variations exist in the reading mechanisms of key-value memory networks. For example, f may

be the softmax function [190], making memory retrieval equivalent to the "key-value attention" [197]

used in recent natural language processing models [198]. It has also been set as the step function

[73] and hard-max function [199]. There is an even greater variation across writing mechanisms of

memory networks. Some works rely on highly flexible mechanisms where an external controller

learns which slots to write and overwrite [195, 126], although appropriate memory write strategies

can be difficult to learn. Other works have used simpler mechanisms where new memories can be

appended sequentially to the existing set of memories [190, 200, 201] or written through gradient

descent [193, 191, 192, 202]. [60] updates the value matrix through Hebbian plasticity, but fixes the

key matrix. [191] turns memory write into a key-target value regression problem, and updates an

arbitrary feedforward memory network using metalearned local regression targets.

A clear advantage of key-value memory over classical Hopfield networks is the decoupling

of memory capacity from input dimension [60, 203]. In classical Hopfield networks, the input

dimension determines the number of recurrent connections, and thus upper bounds the capacity. In

key-value memory networks, by increasing the size of the hidden layer, the capacity can be much

larger when measured against the input dimension (although the capacity per connection is similar).

There exists a gap between these two lines of research on neural networks for long-term memory

– classical Hopfield networks in the tradition of computational neuroscience and key-value memory

in machine learning. In our work, we study whether key-value memory networks used in machine

learning can provide an alternative to classical Hopfield networks as biological models for long-term

memory.

Modern Hopfield Networks (MHN) [202, 203, 201, 204] begin to address this issue, suggesting a

90

neural network architecture for readout of key-value pairs from a synaptic weight matrix, but lacking

a biological learning mechanism. MHNs implement an autoassociative memory (key is equal to the

value, so V = K⊺) [201, 203], but they can be used for heteroassociative recall by concatenating

the key/value vectors and storing the concatenated versions instead. To query the network, keys

can be clamped, and only the hidden and value neurons updated [202]. With a particular choice of

activation function and one-step dynamics, this architecture is mathematically equivalent to a fully

connected feedforward network [202], and thus analogous to the memory architecture proposed by

[60].

It remains unclear whether a biological mechanism can implement the memory write. We will

show that such biologically-plausible plasticity rules exist. We consider a special case of the MHN

architecture and introduce a biologically plausible learning rule, using local three-factor synaptic

plasticity [205], as well as respecting the topological constraints of biological neurons with spatially

separated dendrites and axons. We first suggest a simplified version of the learning rule which uses

both Hebbian and non-Hebbian plasticity rules to store memories, and evaluate its performance in

comparison to classical Hopfield networks. Adding increasing biological realism to our model, we

find that meta-learning of the plasticity recovers rules similar to the simplified model. We finally

show how the feedforward, slot-based structure of our network allows it be naturally applied to more

biologically-motivated memory tasks. Thus, the addition of our learning rules makes key-value

memory compatible with applications of the classical Hopfield network, particularly as a biologically

plausible mechanistic model of long-term memory in neuroscience.

3.2 Simplified learning mechanism

We consider a neuronal implementation of slot-based key-value memory, and endow it with a

biologically plausible plasticity rule for memorizing inputs. We first describe a simplified learning

rule for storing key-value pairs, which sets an upper bound on the network memory capacity and

serves as a benchmark against existing memory networks. In later sections, we modify this rule to

further increase biological realism.

91

Figure 3.1: Network architecture and read/write mechanism. (a) Memory reading. The network
is given a query x̃ (input layer activation with a corrupted version of stored key x), selects the
most similar stored key through approximately-one-hot hidden layer activity h, and returns the
corresponding value ỹ ≈ y. (b) Writing keys. The input xt is written into the ith slot of the
input-to-hidden weight matrix Kt by a "pre-only" plasticity rule, selecting the corresponding hidden
neuron via local third factor [γt]i = 1. (c) Writing values. The same ith hidden neuron is selected
through an intermediate hidden unit activation h′

t and the target yt is written to the hidden-to-output
weight matrix Vt by a Hebbian update.

The network operates sequentially and consists of three fully-connected layers of neurons

(Figure 3.1): a d-dimensional input with activity at time t given by the vector xt, an N -dimensional

hidden layer ht, and an m-dimensional output layer yt. The ith key memory slot corresponds to

the synaptic weights from the input layer to a single hidden neuron (ith row of the key matrix Kt,

storing key xi). The corresponding value is stored in the weights from that hidden neuron to the

output (ith column of the value matrix Vt, storing value yi).

3.2.1 Reading

The network stores a set of key-value pairs {(xi,yi)}, such that if a query x̃, e.g. a corrupted

version of a stored key x, is presented to the network, it returns the corresponding value y. Given a

query x̃ (Figure 3.1a), the hidden layer computes its similarity hi to each stored key xi (ith row of

Kt) as a normalized dot product:

h = softmax(Ktx̃) (3.4)

92

where the softmax function normalizes the hidden unit activations, and can be approximated

biologically with inhibitory recurrent connections. The output layer then uses these similarity scores

to compute the estimated value as the weighted sum of the stored values through a simple linear

readout:

ỹ = Vth =
N∑
i=1

hiyi (3.5)

Assuming uncorrelated keys, the dot product of the query x̃ will be maximal with its corresponding

stored key x, and near-zero for all other stored keys, so h will be approximately one-hot. Thus,

Eq. 3.5 reduces to ỹ ≈ y as desired. If target values are binary, yt ∈ {+1,−1}m (neurons are either

active or silent), we use sign(ỹ) when evaluating performance.

Mathematically, this architecture is equivalent to an MHN constrained to the heteroassociative

setting with a fixed choice of activation functions [203], and recurrent dynamics updated for exactly

one step [202]. Alternatively, it can be thought of as an differentiable version of an SDM [73] with a

softmax rather than step function activation function in the hidden layer [60]. Unlike these networks,

however, we introduce a novel biologically plausible writing mechanism to one-shot memorize

key-value pairs by updating both the key and value matrices.

3.2.2 Writing keys

Key-value pairs are learned sequentially. Given an input xt at time t, we write it into slot i

of the key matrix using a non-Hebbian plasticity rule, where the presynaptic neuronal activity

alone dictates the synaptic update, rather than pre- and postsynaptic co-activation as in a traditional

Hebbian rule. A local third factor [γt]i ∈ {0, 1} (Figure 3.1b, red circle) gates the plasticity of all

input connections to hidden unit i, enabling selection of a single neuron for writing. Biologically,

this may correspond to a dentritic spike [206, 207], which occur largely independently of the somatic

93

activity ht performing feedforward computation1. This plasticity rule resembles behavioral time

scale plasticity (BTSP) [209], recently discovered in hippocampus, a brain structure critical for

formation of long-term memory.

In this simplified version we approximate local third factors as occurring in the least-recently-used

neuron by cycling through the hidden units sequentially:

[γt]i =


1 if t = i mod N

0 otherwise
(3.6)

This can be biologically justified in several ways. Each neuron may have an internal timing

mechanism that deploys a local third factor every N timesteps; the neurons may be wired such that a

dendritic spike in neuron i primes neuron i+1 for a dendritic spike at the next time step; or the local

third factors may be controlled by an external circuit that coordinates their firing. Alternatively,

we consider a simpler mechanism, not requiring any coordination among the hidden layer neurons:

each neuron independently has some probability p of generating a dendritic spike:

[γt]i ∼ Bernoulli(p) (3.7)

To gate whether a stimulus should be stored at all, we include a scalar global third factor

qt ∈ {0, 1}. Biologically, this may correspond to a neuromodulator such as acetylcholine [210] that

affects the entire population of neurons, controlled by novelty, attention, or other global signals.

Although it can also be computed by an external circuit, in our experiments this value is provided as

part of the input. Thus, the learning rate of the synapse between input unit j and hidden unit i is the

1The same synaptic update could be accomplished without third factors, using a Hebbian rule, if the hidden layer
were one-hot. However, since the hidden layer activity is determined by its weight matrix and the input, there is no
simple neuronal mechanism to independently select a hidden neuron. More complicated versions may involve an
external circuit which controls the activity of the hidden layer during writing, or strong feedforward weights which do
not undergo plasticity [208].

94

product of the local and global third factors:

[ηk
t]ij = qt[γt]i (3.8)

Finally, to allow reuse of memory slots, we introduce a forgetting mechanism, corresponding to

a rapid synaptic decay mediated by the local third factor. Whenever a synapse gets updated we have

[ηk
t]ij = 1, so we can zero out its value by multiplying it by 1− [ηk

t]ij . If there is no update (either

third factor is zero), the weight is not affected. The synaptic update is therefore:

Kt+1 = (1− ηk
t)⊙Kt + ηk

t ⊙ [1xT
t] (3.9)

where ⊙ indicates the Hadamard (element-wise) product, and 1 ≡ (1, 1, .., 1).

3.2.3 Writing values

Having stored the key xt, the hidden layer activity at this intermediate stage is given by:

h′
t = softmax(Kt+1xt) (3.10)

Note we are using the updated key matrix with xt stored in the ith slot. In the idealized case of

random uncorrelated binary random memories xt ∈ {+1,−1}d, the ith entry of Kt+1xt will be

equal to xt · xt = d. All other entries will be near 0, since they are uncorrelated with xt. Thus,

after normalization via the softmax, h′
t will be approximately one-hot, with [h′

t]i ≈ 1.

To store the value, the output layer activity is clamped to the target yt (Figure 3.1c). Biologically,

this can be achieved either by strong one-to-one residual connections from the input to the output

layer, or by having a common circuit which drives activity in both the input and output layers. Since

the only hidden unit active is the one indexing the ith column of the value matrix, we can update the

synapse between hidden unit i and output unit k by a Hebbian rule with learning rate [ηv
t]ki = qt[γt]i

95

and rapid decay rate analogous to the key matrix:2

Vt+1 = (1− ηv
t)⊙ Vt + ηv

t ⊙ yt(h
′
t)

T (3.11)

3.3 Results

3.3.1 Benchmark: autoassociative recall

As a simple evaluation of our algorithm’s performance and comparison to other memory

networks, we consider the classical autoassociative memory recall task where the key is equal to

the value, (d = m, Figure 3.1). The network stores a set of T stimuli {xt} and the query x̃ is a

corrupted version of a stored key (60% of the entries are randomly set to zero). The network returns

the corresponding uncorrupted version (section 3.5, Figure 3.6).

We compute the accuracy as a function of the number of stored stimuli (Figure 3.2a). By design,

the plasticity rule with sequential local third factors performs identically to a simple non-biological

key-value memory (TVT, [200], section 3.6). It has perfect accuracy for T ≤ N since every pattern

is stored in a unique slot. For T > N , previously stored patterns are overwritten one-by-one and

accuracy smoothly degrades. With random local third factors, accuracy degrades sooner due to

random overwriting. Importantly, this holds for arbitrary network sizes, unlike the classical Hopfield

network, which experiences a "blackout catastrophe" where all stored patterns are erased if the

network size is large and the number of inputs exceeds its capacity [211, 212] (we do not see this

here due to a relatively small network size).

Next, by measuring the number of patterns that the network can store before its recall accuracy

drops below a threshold (θ = 0.98), we can estimate this network’s memory capacity C. This is an

imperfect measure because some networks may have accuracy that stays above threshold longer

but drops sharply after that. Nevertheless, this metric allows us to investigate empirically how the

network’s performance scales with its size (Figure 3.2b). The empirical scaling of the classical

2If local third factors are dendritic spikes in the dendrites of hidden layer neurons, it may not be realistic for the axons
of the same neurons to be affected by these dendritic spikes. We consider this case for simplicity, as an upper-bound on
performance. We will later lift this assumption without significantly hurting performance.

96

Figure 3.2: Our network (d = N = 40) with sequential and random (p = 0.1) local third factors,
Hopfield network, and TVT [200] performance on the autoassociative memory task. (a) Accuracy as
a function of stored stimuli. (b) Capacity (maximum number of stored stimuli at ≥ 98% accuracy)
as a function of network size.

Hopfield network is C ∼ 0.14N , consistent with theoretical calculations [213], and the sequential

algorithm’s capacity scales approximately as C ∼ 1.0N , as expected analytically. Importantly, the

random algorithm’s capacity also scales linearly, C ∼ 0.16N , with a slope similar to the Hopfield

network. Note, however, that with the same number of hidden neurons our network has twice as

many connections as the Hopfield network. We also note that although the theoretical capacity of

the Hopfield network can scale as C ∼ 2N [214, 215], to our knowledge there is not a learning

algorithm that achieves this bound. Other work on autoassociative memory shows exponential

scaling, but lacks a biologically plausible readout [216].

3.3.2 Meta-learning of plasticity rules

We now introduce parameters that can be meta-learned to optimize performance on a particular

dataset without sacrificing biological plausibility. First, we enable varying the scale of the synaptic

plasticity rates – each one is multiplied by a learnable parameter η̃k, η̃v:

[ηk
t]ij = qt[γt]i[η̃

k]ij and [ηv
t]ki = qt[η̃

v]ki (3.12)

Next, as a further improvement on biological plausibility, we remove the assumption that the

hidden-to-output synapses (hidden layer axons) have access to the local third factors (hidden layer

97

dendritic spikes). Note that ηv
t above no longer contains a γt term. Instead, as a forgetting

mechanism, the hidden-to-output synapses decay by a fixed factor λ̃ each time a stimulus is stored:

λt = (1− qt) + qtλ̃ (3.13)

where λt is the decay at time t, and qt ∈ {0, 1}. Although in general η̃k, η̃v, and λ̃ can each be a

matrix which sets a learning/decay rate for each synapse or neuron, we consider the simpler case

where each is a scalar, shared across all synapses.

Most importantly, we parameterize the update rule itself. Each of the pre- and postsynaptic firing

rates is linearly transformed before the synaptic weight is updated according to the prototypical

"pre-times-post" rule. The jth input neuron’s transformed firing rate is given by

[fk(x)]j = ãf
k
xj + b̃f

k (3.14)

and others fv, gk, gv are analogous. Although these functions can take arbitrary forms in general,

this simple parameterization enables interpolating between traditional Hebbian, anti-Hebbian, and

non-Hebbian (pre- or post-only) rules. The update rules can be summarized as follows:

Kt+1 = (1− ηk
t)⊙Kt + ηk

t ⊙ [gk(ht)f
k(xt)

T] (3.15)

Vt+1 = λt ⊙ Vt + qtη̃
v ⊙ [gv(yt)f

v(h′
t)

T] (3.16)

We begin by training this network on the benchmark task from Section 3.3.1, optimizing these

parameters using stochastic gradient descent (Adam, [217]). Figure 3.3a shows the performance of

the meta-learned algorithms in comparison to the corresponding simplified versions (section 3.2)

for either sequential and random local third factors. Importantly, removing the unrealistic local-

third-factor-mediated rapid synaptic decay in the hidden-to-output synapses and replacing it with a

passive decay does not significantly impact performance, as long as the decay rate is appropriately

set. Indeed, this even slightly improves performance for longer sequences.

98

In the case of a random local third factor, we also compare values of p (not trained). Empirically,

we find that p ≈ 4/N produces desirable performance: it ensures that the probability of no local

third factor occurring (and therefore no storage) is small (< 2%) while minimizing overwriting.

Computing the capacity (Figure 3.3b), we see that there is an advantage for the probability to scale

with the network size (p = 4/N) rather being a fixed value (p = 0.1).

Figure 3.3: (a) Performance comparison of simple (dashed curves) and meta-learned (solid) network
(d = N = 40, p varied, shown in legend.) (b) Capacity of trained network with sequential or
random local third factor. In the random case, p is either fixed or scales with N . (c) Training
the sequential and random (p = 0.1) network from (a,b). Although accuracy is not 1.0 during
training, the network successfully generalizes to unseen sequence lengths. (d) Learning trajectory
of the plasticity parameters in the sequential network converges to qualitatively similar solutions
as the original simplified network (see also Figure 3.9). Note that the input-to-hidden plasticity is
independent of the post-synaptic firing rate (bottom left plot, ãgk ≈ 0)

We next investigate the training trajectories. Figure 3.3c shows the loss and accuracy curves

99

over the course of training for networks with sequential and random local third factors. Training

data consists of sequence lengths between T = N/2 and T = 2N (above capacity for both versions

of the network), so accuracy does not reach 1.0. Nevertheless, the network successfully generalizes

to lengths outside of this range, indicating a robust mechanism for memory storage.

Most importantly, we examine the plasticity rule discovered by optimization. Figure 3.3d shows

the slope ã and offset b̃ parameters for the firing rate transfer functions gk, fk, gv, fv in the sequential

algorithm over the course of meta-learning. The plasticity rule for the input-to-hidden connections

(Figure 3.3d, left) becomes pre-dependent (ãfk ≈ 0.5, b̃fk ≈ 0) but not post-dependent (ãgk ≈ 0,

b̃g
k ≈ 0.5), analogous to the idealized plasticity rule described in section 3.2. Similarly, the plasticity

rule for the hidden-to-output connections becomes Hebbian (both pre-dependent and post-dependent,

b̃g
v ≈ b̃f

v ≈ 0, but ãgv ≈ ãf
v ≈ 1). The random version shows qualitatively similar trained behavior

(Figure 3.9).

Since the performance and parameterization of the meta-learned algorithm is almost identical to

the simple case when using sequential local third factors, we only consider the random version for

meta-learning in subsequent sections.

3.3.3 Continual, flashbulb, and correlated memory tasks

We next test our plasticity rules on more ecologically relevant memory tasks. These tasks reflect

the complexity of biological stimuli and the functionality needed for versatile memory storage.

In realistic scenarios, memories are stored and recalled in a continual manner – the subject

sees an ongoing stream of inputs and is required to recall a stimulus that was shown some time

ago (section 3.5) – rather than being presented a full dataset to memorize before testing, as in the

benchmark autoassociative task. Figure 3.7a shows such a sample dataset with a delay interval of

2. Our learning algorithm is naturally suited for this task due to its decay mechanisms – recent

stimuli are stored, but older ones are forgotten. Its accuracy decreases in steps of width N due to

the sequential nature of the local third factor (section 3.5). Performance with random third factors

decays smoothly since writing is stochastic, but both networks show better overall performance than

100

Figure 3.4: (a) Performance on continual recall task, accuracy measured as a function of the number
of timesteps between the storage and recall of a memory. "Trained" corresponds to the meta-learned
algorithm with random local third factors. (b) Same as (a), but including five "flasbulb" memories.
Performance of simplified algorithm with meta-plasticity, using sequential (left) or random (middle)
local third factors. For Hopfield network (right), increasing darkness of each line corresponds
to higher write strength for flashbulb memories, with values 10, 50, 103, and 106. (c) Same as
Figure 3.2a, but with memories having correlation of 0.6.

the Hopfield network (Figure 3.4a).3

Next, we consider "flashbulb" memories, a phenomenon where highly salient experiences are

remembered with extreme efficacy, often for life [219]. Functionally, these memories may be used

to avoid adverse experiences or seek out rewarding ones. We modify the continual recall task

such that a small number of stimuli are deemed salient and accompanied by a stronger global third

factor (qt = 10) akin to a boosted neuromodulatory influence on learning (Figure 3.7b). We add a

simple meta-plasticity mechanism to our plasticity rule, a stability parameter [St]ij for each synapse,

initially set to 0. If the learning rate for that synapse crosses a threshold [ηt]ij > 1, then [St+k]ij = 1

for all k > 0 and suppresses subsequent plasticity events. Thus, the learning rate for the key matrix

3For fair comparison, we introduce an empirically chosen synaptic decay parameter λ = 0.95 to the Hopfield
network. We also considered a version of the Hopfield network with bounded weights [218], designed for continual
learning, but found that synaptic weight decay has better overall performance. Furthermore, we include a global third
factor which controls overall plasticity identically to our model.

101

is as follows (learning rate ηv
t is analogous):

[ηk
t]ij = (1− [Sk

t]ij)qt[γt]i (3.17)

With this meta-plasticity, the network retains flashbulb memories with minimal effect on its recall

performance on regular memory items (Figure 3.4b, left, middle). To perform this task in the

Hopfield network, introducing synaptic stability is significantly detrimental to performance, so we

simply store flashbulb memories as large-magnitude updates to the weight matrix. As a result, it

exhibits a tradeoff between storage of regular items and efficacy of flashbulb memories (Figure 3.4b,

right). Thus, an important benefit of the slot-based storage scheme is that flexible treatment of

individual memories can be naturally implemented.

Finally, real-world stimuli are often spatially and temporally correlated – for instance, two

adjacent video frames are almost identical. Storing such patterns in a Hopfield network causes

interference between attractors in the energy function, decreasing its capacity. In contrast, by

storing stimuli in distinct slots of the key and value matrices, key-value memory can more easily

differentiate between correlated but distinct memories. To verify this, we use a correlated dataset

by starting with a template vector and generating stimuli by randomly flipping some fraction of its

entries (Figure 3.7c). The performance of the plasticity rule is similar to that for uncorrelated data

(Figure 3.2a), with minor degradation due to spurious recall of similar stored memories (Figure 3.4c).

Figure 3.10 shows similar results for varying correlation strengths.

3.3.4 Heteroassociative and sequence memory

The network and learning mechanism is agnostic to the relationship between the input and

target patterns, and so naturally generalizes to heteroassociative memory. To draw comparisons

with Hopfield-type networks, we consider the Bidirectional Associative Memory (BAM) [220],

a generalization of the Hopfield network designed for heteroassociative recall. We evaluate the

networks on a modified version of the recall task from Section 3.3.1 where values are distinct from

102

keys, yt ∈ {+1,−1}m for d ̸= m (Figure 3.5a, top; Figure 3.8). Compared to the autoassociative

task (Figure 3.2), the Hopfield-type network’s performance on the heteroassociative task deteriorates

(Figure 3.5, bottom). On the other hand, the performance of our network remains unaffected in the

heteroassociative task, as its factorized key-value structure allows more flexibility in the types of

memory associations learned.

A more biologically relevant version of heteroassociative memory is sequence learning. Ex-

perimental and theoretical evidence suggests that hippocampal memory can serve as a substrate

for planning and decision making through the replay of sequential experiences [221, 222, 223].

As a simple probe for a similar functionality, we use a sequence recall task where the network is

presented with a sequence of patterns to memorize, using the value at time t as the key at time t+ 1.

Afterwards, it is prompted with a random pattern from the sequence and tasked with recalling the

rest. By adding a recurrent loop, using the output ỹt at time t as the input xt+1 at the next timestep

(Figure 3.5b, top), our network with sequential local third factors can perform sequence learning

without error until its capacity limit (Figure 3.5b, bottom). BAM does not perform as well, likely

due to propagating errors from incorrect recall of earlier patterns in the sequence.

Finally, we consider a more complex task that requires our memory module to be integrated

within a larger system, demonstrating the modular nature of our memory network. In the "copy-paste"

task [126], the system must store a variable-length sequence of patterns ((s1, s2, . . . , sT+1)) and

output this sequence when the end-of-sequence marker is seen (Figure 3.8). We train an external

network as a "controller" to generate xt, yt, and qt (Figure 3.5c, top) (for BAM, qt scales the

magnitude of the Hebbian update). With this controller, our network with sequential local third

factors successfully learns the task and generalizes outside the sequence lengths seen (Figure 3.5c,

bottom). The random and trained networks do not perform as well, likely due to lower memory

capacity. BAM successfully learns the task, but is not able to generalize outside the sequence lengths

seen in training.

103

Figure 3.5: (a) Architecture (d = N = 40,m = 20) and performance on heteroassociative version
of the benchmark task (Figure 3.2). (b) Recurrent architecture modification for sequence recall
(d = N = 40,m = 40), xt+1 = ỹt. Accuracy is plotted as a function of the length of the entire
sequence presented. (c) Network is embedded in a larger system with a feedforward network to
perform the copy-paste task (d = N = 40,m = 40). Dashed line is the maximum number of
patterns shown during training.

3.4 Discussion

We proposed models of biological memory by taking inspiration from key-value memory

networks used in machine learning. These biologically plausible models use a combination of

Hebbian and non-Hebbian three-factor plasticity rules to approximate key-value memory networks.

Due to the flexibility of their structure, they can naturally be adapted for biologically relevant

tasks. Our results suggest an alternative framework of biological long-term memory that focuses

on feedforward computation, as opposed to recurrent attractor dynamics. Importantly, both our

hand-designed and meta-learned results propose a role for recently discovered non-classical plasticity

rules [209] that are advantageous for this type of feedforward computation. Furthermore, we propose

an architecture where individual memories are stored more independently of each other than in

Hopfield networks. Such a factorized design creates opportunities for more versatile use and control

104

of memory.

Several questions remain. First, although long-term memory describes many categories of

memory supported by various brain regions, we have not disambiguated these differences and

their implications on testing and interpreting our model. To validate our network as not merely a

plausible model but as a true model of the brain, it is critical to make direct comparisons between our

algorithm and experimental findings in memory-related behavior and neural activity. Furthermore,

our aim is not to be competitive with state-of-the-art memory networks but rather to provide a

biologically realistic learning algorithm for MHNs that is on par with classical Hopfield networks.

To this end, we focus on artificial stimuli with simple statistical structures; it remains unclear how

our models will perform with more complex and naturalistic data, or how they compare to their

non-biological counterparts.

Taken together, our results take a neuroscience-minded approach to connect two lines of work in

memory networks that have been largely disparate.

3.5 Task details

3.5.1 Benchmark: autoassociative recall

For the autoassociative memory benchmark task, we generate T memories, each of which is

a uniformly randomly generated d-dimensional vector xt ∈ {+1,−1}d, for t = 1, . . . , T . During

the storage phase, the key and value matrices are initialized to zero and each pattern is shown to

the network sequentially with the network’s global third factor qt = 1 active for all patterns. For

storage, both the network’s input and output layers are clamped to the input value xt. Next, during

the test phase, the network is shown queries x̃t, corresponding to the previously shown stimuli with

60% of the entries in each vector randomly set to zero (Figure 3.6). Queries are shown in the same

order as the stimuli and the global third factor qt = 0 to ensure no plasticity occurs. Only the input

layer is clamped and the result is read out from the output layer ỹt. Accuracy is computed as the

105

total fraction of correctly recalled entries, calculated for varying values of T :

accuracy =
1

Td

T∑
t=1

d∑
i=1

I {[xt]i = sign([ỹt]i)} (3.18)

Note that for the classical Hopfield network, the input and readout neurons are the same, so by

presenting a query x̃t, a fraction of the output bits in ỹt are a priori set to the correct values from xt.

This raises the chance level of the classical Hopfield network compared to the other networks we

consider in Figure 3.2a.

Figure 3.6: Autoassociative recall benchmark task. d = 30, T = 15, 60% occluded during test.

3.5.2 Beyond simple recall

To test the network in a continual setting, rather than datasets of fixed length T , we use arbitrarily

long datasets where the network is asked to recall a stimulus that was presented R timesteps ago.

To generate the dataset, at each timestep with probability pgen = 0.5 the input xt is a randomly

generated binary vector (as in the benchmark dataset). With probability 1− pgen = 0.5, the input

is a query (as in the benchmark dataset) x̃t, corresponding to the input shown R timesteps ago4,

xt−R. For the generated stimuli which are subsequently queried, the modulator qt = 1 during their

initial presentation. Otherwise, qt = 0. To ensure that the network is operating in steady state

and therefore in the continual learning regime, we use a long trial duration T = max(1000, 20R).

Figure 3.7a shows 30 timesteps of such a trial with R = 2. Note that in a single trial, the delay

4We furthermore ensure that a query is not presented twice, so if the input R timesteps ago was a query, a stimulus
vector is generated.

106

interval between the stored stimulus and the query is always a fixed value R. However, we test the

network on multiple trials, each with a different value of R.

Performance of the network with sequential local third factors decreases in steps of width N

because it selects the next slot at each timestep regardless of whether the current one was written to.

Since a global third factor does not occur at every timestep, some slots left untouched when the

local third factor selects them for a second time, thus preserving their contents with a probability

which depends on the frequency of queries in the stream. This probability is the same for all delays

of length N + 1 to 2N , slightly lower for all delays of length 2N + 1 to 3N (i.e. the slot doesn’t get

written when the local factor selects it the second and the third time), and so forth, resulting in a

stepwise curve.

The "flashbulb" memory task is similar to the continual task, however for every trial, 5 memories

are selected as flashbulb memories. These are generated as the others, but are accompanied by a

very strong modulatory input qt = 10 rather than the normal qt = 1. Figure 3.7b shows a portion of

the continual stream, including two of the flashbulb memories.

To test the network performance on datasets with correlated stimuli, we generate T binary

random vectors and evaluate the network as in the benchmark task (Figure 3.6). The first "template"

vector is generated randomly x1 ∈ {+1,−1}d as before. All subsequent stimuli are generated by

randomly flipping a fraction (1 − ρ) of the entries in the template vector, resulting in correlated

stimuli with corr(xt,xt′) = ρ (Figure 3.7c). Figure 3.10 shows the network performance for

additional values of ρ.

3.5.3 Beyond autoassociative memory

The heteroassociative recall task (Figure 3.7a) is identical to the autoassociative memory

benchmark task (Figure 3.6) except we have the additional generation of m-dimensional vectors

yt ∈ {+1,−1}d, for t = 1, . . . , T . For our task, m = d
2
. Thus, although during the storage phase

the network’s input is clamped to some input value xt as in the autoassociative benchmark, the

output layer is clamped to the output value yt.

107

Figure 3.7: (a) Thirty timesteps of a continual autoassociative recall task with R = 2. (b) Thirty
timesteps of a flashbulb task, showing two of the flashbulb memories. Note colorbar range. For
visualization, modulation strength qt = 3 during flashbulb memories. (c) Autoassociative recall task
for correlated memories with ρ = 0.6.

In the sequence recall task (Figure 3.7b), similar to the benchmark task, we randomly generate

T memories, each of d-dimensions. This forms a T -length sequence. During the testing phase,

a prompt pattern xt from the middle of this sequence is shown. The goal of the task is to then

return the rest of the patterns in this sequence in order: (xt+1,xt+2, . . . ,xT). We run our network

recurrently so that, at time t, we clamp the network input to sign(ỹt−1) and the network output to xt.

In the copy-paste task (Figure 3.7c) we begin by randomly generating a T -length sequence as in

the sequence recall task. Each pattern st is of dimension D = 25 (we use a different variable name

since the stored keys xt will be different than the elements of the sequence). We add an additional

108

dimension to each pattern and an additional pattern to the sequence, such that the sequence is

(D + 1)× (T + 1). The additional dimension is used to denote the end-of-sequence (EOS) marker

and is set to −1 when it is not in use. The EOS marker is shown at the end of the sequence, at

time T + 1. Thus, the vector shown to the network at time T + 1 is sT+1 = [−1 − 1 . . . + 1].

After seeing the EOS marker, the goal of the task is to repeat the entire sequence (s1, s2, . . . , sT+1).

During training and evaluation, T is randomly drawn from 1 to 10 in the task.

We use three feedforward controller networks coupled with our memory network. At time t, each

controller network receives a (D+2d+1)-dimensional input vt: a concatenation of st,xt−1, ỹt−1

and qt−1. The outputs for the three networks are the d-dimensional key xt (d = 40), d-dimensional

value yt, and scalar global third factor qt for the memory module as follows. Then,

x′
t = tanh(Rxvt + bx)

y′
t = tanh(Ryvt + by)

qt = σ(Rqvt + bq)

where σ(·) is the logistic function, and Rx,Ry,Rq,bx,by,bq are learned matrices. These outputs are

normalized to have L2-norm
√
d to match the norm of the inputs presented in the autoassociative

memory task:

xt =
√
d

x′
t

||x′
t||

(3.19)

yt =
√
d

y′
t

||y′
t||

(3.20)

The controller outputsxt,yt, qt are presented to the memory network, which is updated according

to our proposed plasticity rules. With the updated key and value matrices, we retrieve the output

of the memory module ỹt, using xt as the query. Finally, ỹt is fed into a one-layer network to

109

transform the output from d dimensions to a D-dimensional output rt,

rt = tanh(Roỹt + bo) (3.21)

where Ro is learned. The values xt, ỹt, qt are then fed back into the controller as the input for

the next time step, along with st+1. The initial inputs x0, ỹ0 and q0 corresponding to s1 are also

learned.

When the network is prompted with the EOS marker, the output (rT+2, . . . , r2T+2) should be

equal to the original sequence (s1, . . . , sT+1). We train the network end-to-end with backpropagation

through time to minimize mean squared error loss.

For our simulations with BAM, we follow the same controller set-up as above. As is the case for

the previous heteroassociative tasks, we use the typical BAM update and update the weight matrix

by ηxty
⊺
t with learning rate η. The learning rate is modulated by the global third factor, as is the

case for our models. However, for training purposes, we found it helpful to scale the learning rate

such that η = 1
40
qt.

3.6 TVT key-value memory mechanism

TVT is an algorithm that enhances the learning of memory-based agents by combining attentional

memory access with reinforcement learning [200]. Here, we used the key-value memory mechanism

used by the model where inputs were written to memory and attentional memory access was used

to read stored inputs from memory. Unlike in the original work, there is no LSTM controller or

reinforcement learning component. We simply use the read and write functions to a memory matrix

as in the original paper, but do not use the TVT algorithm itself or any of the additional architecture

used in the original authors’ work.

First, a memory matrix is initialized whose rows will each store one stimulus along with its

read strength. There is a reader network and a writer network for the read and write operations

respectively. A call to write stores a stimulus. A call to read returns the H most similar memories,

110

Figure 3.8: (a) Heteroassociative recall task. d = 30,m = 15, T = 15, 60% occluded during test.
(b) Sequence recall task with d = 40 and T = 7. The prompt is the 4th pattern of the sequence. (c)
Copy-paste task with d = 8, T = 10.

where H is the number of read heads, or locations that can be read from simultaneously.

For the recall task, the writer receives an index indicating which row in memory should be

written to. During a write to memory, the specified row of the memory matrix is cleared and

the input vector is written to this cleared slot. During the storage phase, input vectors are stored

sequentially such that each incoming input vector is written to the next unfilled row of the memory

matrix. If the memory matrix is full, a filled row beginning with the first row will be cleared and an

incoming input will be stored in it.

111

During the retrieval phase of the recall task, the reader uses attentional memory access to retrieve

a weighted version the H most similar (smallest in cosine distance) memories from the memory,

using H read heads. First, it is given M ×H tensor of inputs where M is the length of each input

vector for each of the H read heads. Next, the read keys and the weights used for each key are

computed by passing the input through a linear layer that produces an (M + 1)×H output. The

softplus function is then applied to the keys and read strengths output by this linear layer. The

resulting (M + 1)×H tensor is separated into a M ×H tensor of read keys and a H × 1 tensor of

read strengths for each read head.

The read keys and the values in the memory matrix are then normalized and multiplied together.

This yields a tensor of cosine distances between each read key and each item in memory.

This is multiplied by the H × 1 tensor of read strengths, yielding a H ×R tensor of weighted

distances, where R is the number of rows in the memory matrix. These weighted distances are then

passed through a softmax function. Each row then has one element (corresponding to one row in the

memory) that is maximally activated. This tensor is then multiplied by the memory matrix, yielding

a tensor of memory reads that is a weighted sum of the rows most similar to the weighted read keys.

The linear layer used to generate the keys and read strengths is learned using SGD. A model

trained on 20000 steps was used, and with a 40-row memory matrix (to be compared with a size 40

hidden layer of our network).

In the simplified model, unlike in the original paper, only a single read head was used in order

to make comparisons with our network. The TVT’s key-value memory mechanism works very

similarly to the our network with sequential local third factors. The sequential network, however,

adds in the biological feature of plasticity rules to store memories.

3.7 Supplementary results

112

Figure 3.9: Same as Figure 3.3d, but for a network with random local third factors.

Figure 3.10: Same as Figure 3.4c, with different correlation strengths.

113

Chapter 4: Memorization and consolidation in associative memory networks

The work presented in this chapter was done in collaboration with Kimberly Stachenfeld, Dmitry

Krotov, and LF Abbott. A subset of these results is published in [114]. We are grateful to John

Cunningham, Ashok Litwin-Kumar, Stefano Fusi, and James Fitzgerald for helpful discussions and

suggestions. Thanks to Jan Funke for suggesting importance sampling as a potential approach.

Humans, animals, and machines can store and retrieve long-term memories of individual items,

while at the same time consolidating and learning general representations of categories, discarding

the individual examples from which the representations were constructed. Classical neural networks,

however, model only one of these two regimes. In this work, we propose a biologically motivated

model that can not only consolidate representations of common items but also memorize exceptional

ones. Critically, we consider the unsupervised learning regime where exceptional items are not

labeled as such a priori, so the signal to either memorize or consolidate items must be extracted

from the network itself. We propose a number of metrics for this signal and compare them for two

different algorithms inspired by traditional imbalanced data learning approaches – loss reweighting

and importance sampling. Overall, our model serves not only as a framework for concurrent

memorization and consolidation processes in biological systems, but also as a simple illustration

of related phenomena in large-scale machine learning models, as well as a potential method for

debiasing artificial intelligence algorithms.

4.1 Introduction

In human and animal experience, long-term memories of individual items can coexist with

generalized representations of categories. Individual items are, by definition, stored verbatim

114

(memorization), such that the specific details of the item can be recovered when needed. In other

cases, it can be advantageous to blend multiple examples from a category to create a flexible

representation, with the specifics of the individual examples being forgotten after consolidation;

conversely, seeing many related examples can induce the creation of a generalized category. These

processes are two essential but often opposing aspects of flexibly representing knowledge about the

environment [224, 225].

There are a number of examples from the neuroscience literature demonstrating a capacity

for both memorization and consolidation in humans and animals. For instance, human subjects

were trained to extrapolate new partially-occluded trajectories of moving dots based on previously

viewed example trajectories [226]. If trained on a few examples, subjects tend to memorize simple

mappings from stimuli to trajectory endpoints, whereas a large diverse training set results in learning

more generalizable predictive models. Other human studies investigate learning categories defined

by a general rule plus exceptions (e.g., if the data point has feature X , it is category A, unless

it also has feature Y), noting that such categories are readily learned, and that exceptions have

neural representations different from the rule-following items [227, 228]. In a different domain,

mice were subjected to a social recognition paradigm, given the option to explore a container with

either a novel conspecific or a familiar littermate. Neural representations recorded from the CA2

region of the hippocampus favor either a high-dimensional geometry when interacting with familiar

mice (optimal for memorization), and a low-dimensional geometry for novel mice (optimal for

generalization) [229].

Classical models typically operate in only one of these modes. For example, Hopfield networks

[230] can memorize and retrieve a predetermined set of datapoints, whereas deep networks [231]

learn a compact representation of a large dataset for classification, regression, or generation. In

this work, we describe a model that can flexibly perform both of these processes simultaneously,

memorizing examples of rare items and learning consolidated representations of common ones.

Additionally, we propose a biologically motivated implementation of two methods used in machine

learning for learning on imbalanced data – loss reweighting and importance sampling [232].

115

Critically, unlike the traditional supervised setting, we consider autoassociative recall, an

unsupervised learning setting where the class labels are not known to the learner a priori, and the loss

weights or sampling probabilities must be inferred online during learning. Using a number of metrics

extracted from the network to reweight or resample, we find that our model significantly outperforms

the baseline unweighted performance, and in some cases approaches that of ground-truth reweighting

using labels, permitting memorization and consolidation to occur in the same model. Moreover, this

framework permits insight on the tradeoffs between these two processes in biological and artificial

neural networks, suggesting potential signals to control the tradeoff, an optimal latent representation

for these to co-exist, and considerations on the stability of learning.

We consider a framework inspired by the complementary learning systems theory [224, 225]

in which a fast learner (e.g. the hippocampus) rapidly accumulates data, which it then "replays"

[233] to a slow learner (e.g. the cortex) for consolidation and long-term storage. To model the

cortex, we consider a modified version of the modern Hopfield network [234, 235, 70], trained with

stochastic gradient descent. Although it may be possible to use a biologically plausible variant of

backpropagation [236, 237], we compute gradients using the standard backpropagation through time

(BPTT) algorithm.

We do not explicitly model the fast learner and simply assume that there exists a mechanism for

storing a dataset in a buffer from which minibatches can be assembled for replay to the slow learner.

Such a buffer might be implemented biologically by a fast memory system such as the classical

Hopfield network with Hebbian learning rules and forgetting [230, 238], or a key-value memory

network with three-factor learning rules and rapid overwriting [239]. As a further step towards

biological plausibility, we also discuss a scenario that obviates the fast learner entirely and enables

directly training the slow learner online without a buffer.

4.2 Related work

There are several areas of research with similar themes to our work, but with different goals and

settings. For clarity, we outline them here and highlight the differences. The first is the broad area

116

of outlier/anomaly detection and rejection [240, 241, 242]. In our work, however, we emphasize

storing and retrieving the rare items rather than rejecting them. This problem is, in turn, superficially

related to training on imbalanced data. However, we consider the unsupervised learning scenario

with unlabeled data, so standard techniques for learning such as loss reweighting or importance

sampling [232] cannot be used out-of-the-box because we do not know which data points belong to

the rare classes a priori.

Other work focuses on models that can rapidly acquire memories in parallel with a slow

learning process [243]. However, fast learning means fast forgetting. We would like both common

and rare items stored long-term by the slow learner, some consolidated and some memorized.

Our work also differs from that on few-/one-shot learning [244]: we are modeling the process

of memorization/consolidation, and not explicitly evaluating the network’s ability to generalize

from few examples (although this may nevertheless be the case for our proposed algorithm).

Finally, a body of work investigates the double descent phenomenon [245] and the related case in

which overparameterized neural networks successfully generalize despite having the capacity to

memorize/overfit the entire training set [246, 95, 247]. Here, we focus on the more biologically

relevant underparameterized scenario, which forces the network to compress/consolidate the training

data while memorizing a critical subset.

We also highlight two pieces of work that have conceptual overlap with our approach. The

first suggests two separate subnetworks for storing the regular and exceptional items, along with an

anomaly detector to route examples to the appropriate subnetwork [248]. Another suggests the idea

of dynamic loss functions, continuously re-weighting the loss for each class as training progresses

to accelerate learning, although the authors only consider the supervised scenario with labeled data

[249].

117

4.3 Methods

4.3.1 Data

We consider a dataset consisting of R "regular" items from a commonly occurring class, of

which the learner sees many examples; and E "exceptions," which comprise a few examples from a

rare class:

D = {x1, . . . xR, xR+1, . . . , xR+E}, with R≫ E (4.1)

As a toy example, we use the MNIST dataset, where the "regular" subset consists of R = 6000

examples of zeroes, and the "exception" subset consists of E = 3 examples of ones. Critically, the

data are not labeled, and the learner does not know in advance which items belong to the regular

class or the exceptions. These must be inferred online over the course of learning. This furthermore

allows the possibility of treating unusual examples of regular items as exceptions and storing them

verbatim, which can play a role analogous to data pruning [250] or label memorization in learning

long-tailed data distributions [251].

Importantly, the dataset size is much larger than the capacity of the network, so to successfully

encode the dataset it is necessary to perform some sort of compression – for example storing only a

subset of exemplar items, a set of features which can be assembled to recreate the dataset, a set of

prototypes which are representative of the items, or a combination of these strategies.

4.3.2 Model

To model the (slow) learner, we consider a case of the modern Hopfield network (MHN) [70],

consisting of a visible layer with activity given by the vector v and hidden layer h. The dynamics of

this network are given by

τh
dh

dt
= −h+Wg(v)

τv
dv

dt
= −v +W⊤f(h)

(4.2)

118

Extending the set of models described in [70], we introduce a new model in which the visible

layer activity is restricted to lie on a unit sphere and the hidden layer has an attention mechanism,

represented by the transfer functions g(v) = v
||v|| and f(h) = softmax(βh). Biologically these

might be implemented by divisive normalization [252], lateral inhibition [253], or intermediate

neurons [254]. The weight matrix W ≜ [ξ1, . . . ξM]⊤ is normalized such that ||ξµ|| = 1, ensuring

that the softmax inverse-temperature parameter β is independent of the magnitude of the weights.

To run the network, we generate a perturbed input x̃i, corresponding to an item xi from the

dataset with a random 50% of the pixels set to zero. This is used as the initial state of the network

g(0). The unperturbed pixels are clamped to their initial values, and the rest evolve according to

Eq. 4.2, discretized with τv = 1, dt = 0.05. Assuming the dynamics of the hidden layer are much

faster than those of the visible layer, we set τh = 0, so that h = Wg(v) for all t. We run the network

until it reaches a fixed point, so g(T + dt) = g(T) ≜ g∗, which is used as the network output.

Other autoassociative models can be used, such as an energy-based convolutional architecture

[255], or undercomplete, sparse, or denoising autoencoders with or without convolutional layers.

However, there are a number of advantages to using the MHN. First, the structure of the weight

matrix allows us to directly look at and easily interpret the stored representations (Figures 4.2

and 4.7), differentiating them from the memories which correspond to the network’s fixed points

(Figure 4.1), as well as the hidden layer representations. Moreover, a rapidly growing transfer

function such as the softmax hidden layer nonlinearity allows the network to have a supralinear

storage capacity [234, 235, 256], and tuning its β parameter can place the network in different

operating modes (see Section 4.4.1), storing features, prototypes, or intermediate representations.

Finally, its relationship to the attention mechanism of the Transformer architecture [235] may enable

us go gain theoretical insight into larger models, or aid us with engineering more robust applications.

4.3.3 Learning

We train the network on the autoassociative memory task with stochastic gradient descent [257].

On each iteration we draw a minibatch B ⊂ D from the dataset, generate a perturbed input x̃b and

119

Figure 4.1: Both loss reweighting or importance sampling significantly improve memorizing
exceptions without impairing performance on regular items. Left: comparison of weighted (solid)
(top: loss reweighting, bottom: importance sampling) and unweighted (dashed) training, using
β = 5. Right: sample outputs, trained without weighting/resampling and with loss reweighting.

compute the output g∗b for every minibatch item xb. We then calculate the loss L on each minibatch

and update the parameters in proportion to the gradient of the loss ∇θL with respect to the network

parameters θ. Classically, minibatches would be drawn uniformly without replacement so that every

datapoint is seen exactly once per epoch. Furthermore, the loss would be the simple arithmetic

mean (or sum) of individual losses ℓb for each item xb in the minibatch. In the case of imbalanced

data, a typical approach would be to compute a weighted loss for the minibatch, where the weights

α̂b are taken inversely proportional to the relative frequency of the classes, assuming the class labels

are available:

L =

|B|∑
b=1

α̂b ℓ(xb, g
∗
b) (4.3)

Another common technique is to sample the minibatches with replacement according to a probability

distribution inversely proportional to the relative frequency of the classes:

p(xi ∈ B) = α̂i (4.4)

120

In many situations for both biological and artificial agents, however, the class labels are not known a

priori. In this work, we propose a number of metrics that can be used as dynamic signals si for

reweighting or sampling, either individually or in combination. These are re-computed for each

training iteration, and will vary over the course of training. To meaningfully compare the scores, we

normalize them to the range [0, 1] using the cumulative min/max of si seen so far during training:

αi =
si −min(si′)

max(si′)−min(si′)
(4.5)

The final loss weights or sampling probabilities are then given by

α̂i =
exp(γαi)∑|D|

i′=1 exp(γαi′)
(4.6)

where the inverse-temperature parameter γ controls the relative magnitude of the weights.

Notes on biological realism

So far, we have assumed that the entire dataset is fully available to the sampling/weighting

mechanism (e.g. hippocampus). By definition, having the dataset in a buffer is required for

importance sampling, since data are drawn with replacement. It is also necessary to continuously

track αi for every item, since they are all needed to re-compute the denominator in Eq. 4.6 at every

iteration.

On the other hand, in the case of loss reweighting, instead of computing the denominator as the

sum over the dataset, we can sum over the batch instead:

α̂b =
exp(γαb)∑|B|

b′=1 exp(γαb′)
(4.7)

In this case, the learner can receive batches from a stream of data, compute the weightings online

and use them only for the current update. Although this introduces a dependence on the batch size

and slightly different weightings, with a batch size of 100, we find that this approach also works

121

well on our dataset.

Alternatively, we can approximate the denominator in the expression for α̂i asZ ≈
∑|D|

i′=1 exp(γαi′)

as a running average:

Z ← (1− λ)Z + λ

|B|∑
b′=1

exp(γαb′) (4.8)

with λ = B
D

. In this case, although the denominator is not exact, this can be done in a fully streaming

fashion, receiving data one sample at a time and taking a gradient step for each sample.

4.4 Results

4.4.1 Feature-prototype transition

We begin by demonstrating the behavior of the modern Hopfield network in the imbalanced

data autoassociative learning setting described above. First, training the network naively with no

loss weighting or importance sampling leads to successfully learning the regular items, but failing

to store the exceptions (Figure 4.1, dashed curves). (Although the loss on exceptions decreases,

this is incidental due to overlapping pixels in MNIST 1’s and 0’s). On the other hand, a network

trained with ground truth knowledge of whether an item is an exception – either upweighting or

resampling exceptions – successfully learns both types of items, notably learning exceptions without

degrading performance on regulars (Figure 4.1, solid curves). This holds true for either of the

network’s operating regimes (feature or prototype) which we describe next.

Although it has a minor effect on performance (Figure 4.6), the hidden layer inverse-temperature

parameter β has a profound effect on the learned representations. Intuitively, as β → 0, the hidden

layer activity approaches a uniform distribution, with all units equally active. As β → ∞, the

population activity approaches a one-hot regime. Correspondingly, the weights transition from a

feature regime where multiple rows ξµ are linearly combined to produce a given output (Figure 4.2,

left) to a prototype regime where a single row is the output itself (Figure 4.2, right), with a smooth

transition in between. This result is analogous to increasing the degree n of a polynomial hidden layer

nonlinearity f(hµ) = [hµ]
n
+ as shown in [234], but notably generalizing to the f(h) = softmax(h)

122

Figure 4.2: Increasing the inverse-temperature parameter β induces a feature-prototype transition.
Learned weights {ξµ} in the feature (left), prototype (right) and intermediate (middle) regimes.

nonlinearity, as well as to training with imbalanced data.

Note that during training in the prototype regime, we linearly anneal the β parameter from β = 5

to β = 8 for the first 1000 iterations. This helps to avoid "dead units" which never get activated for

any of the inputs in the training set and their corresponding weight representations never get updated.

4.4.2 Automatic memorization of exceptions

The primary contribution of this work is identifying signals that can be extracted directly from

the network and used to automatically reweight or resample the training data. We identify possible

candidate exception signals si by evaluating them as learning progresses for a network that is

trained with with ground truth loss weighting, as in the previous section. We consider the following

candidates:

si =



I[xi ∈ E] ground truth: control condition/evaluation metric
ℓ(xi, g

∗
i) loss per item

−T (negative) time to converge to fixed point
−H(fi) (negative) entropy of hidden layer
max(fi) max of hidden layer
||fi|| norm of hidden layer

(4.9)

123

Figure 4.3: Signals extracted from the network can differentiate regular items from exceptions, and
used to bootstrap learning for concurrent memorization and consolidation. Top: candidate signals
for automatic loss weighting or importance sampling, measured as the network is trained using
ground truth knowledge of whether each item is an exception. Bottom: the same signals, measured
as the network is trained using negative entropy si = −H(f) as the exception signal

Note that γ = 0 reduces to the unweighted case, and si = I[xi ∈ E] with γ = ln R
E

corresponds to

the ground truth weighting in Eq. 4.3.

Several metrics can differentiate the regular items from exceptions when the network is trained

with ground truth weighting (Figure 4.3, top), suggesting that it may be possible to use them to

bootstrap the exception signal without prior knowledge of which items are exceptions. Note that

some of the signals (entropy, converge time) have the opposite sign from the ground truth signal, so

we use their negation as the signal si. Indeed, if we train the network using (negative) entropy as

the exception signal, the regulars and exceptions are again differentiated, as shown in Figure 4.3

(bottom).

Training the network with either loss weighting or importance sampling, using each of the

metrics identified above to compute the weights α̂i, we compute the evaluation loss as follows:

Leval =
1

2

(
1

R

∑
i∈R

ℓ(xi, g
∗
i) +

1

E

∑
i∈E

ℓ(xi, g
∗
i)

)
(4.10)

Note, this is equal to the ground-truth-weighted training loss (with γ = ln(R
E
)). Nevertheless,

this is an incomplete metric of successful learning, as it does not account for memorizing unusual

124

examples of the common class (i.e. correct treatment of some "regular" items as exceptions), nor

does it evaluate generalization performance for unseen items from the common category.

The evaluation loss at the end of training in each case is shown in Figure 4.4, along with the optimal

γ for each one, optimized though a linear hyperparameter search over γ ∈ {0, 1, 3, 5, 7.58, 10, 12, 15}

(note, γ = ln(R
E
) ≈ 7.58 for this dataset). Overall, we see that using β = 5, corresponding to

an intermediate regime between feature and prototype, has overall better performance. In the

feature regime (β = 2), although the network is capable of successfully learning both regular and

exceptional items using ground-truth weighting, the signals extracted from the network (with the

notable exception of loss-per-item) are not sufficient to differentiate between the two types. In the

prototype regime (β = 10), although the exception signals si are robust, the baseline unweighted

performance (black lines) is worse, and so the weighted performance is correspondingly worse as

well. This is either simply due to optimization difficulties (e.g. in Figure 4.2 we see "dead units"

which do not correspond to a prototype and do not participate in the readout), or indicates that there

may be an overall optimal level of sparsity [258] in the hidden representation for this task. Finally,

counter-intuitively, we note that even when training with ground truth weighting, the optimal γ is

not equal to ln(R
E
) ≈ 7.58 (i.e. the effective weighting used in the evaluation loss).

4.4.3 Loss weighting vs. importance sampling

Although they have comparable performance (Figure 4.4) and generate similar memory repre-

sentations {ξµ} (Figure 4.7), the learning trajectories generated by loss weighting and importance

sampling are different. Evaluation loss (Eq. 4.10), computed over the entire dataset at the end of

every epoch, decreases smoothly in both cases (Figure 4.5, top). Training loss, however, in the case

of loss weighting is much more noisy (Figure 4.5, bottom), potentially leading to instability. This

occurs because the exceptions are rarely seen by the learner, but when they are seen they generate

a large gradient update due to their high weighting in the loss. On the other hand, importance

sampling ensures that exceptions are seen in almost every batch, leading to many small updates,

rather than a few large ones.

125

Figure 4.4: Evaluation loss after 150 epochs of training, split between loss on regulars (blue) and
exceptions (red), trained with loss weighting (dark) or importance sampling (light) using exception
signals si from Eq. 4.9. Numbers at the bottom of each bar indicate the optimal γ hyperparameter
for that regime. Black lines indicate baseline performance with γ = 0 (no reweighting/resampling).
Error bars and dashed lines indicate ± 1 standard deviation across n = 3 runs.

Therefore, from the perspective of learning, importance sampling is the preferred strategy, but

as discussed in Section 4.3.3, it requires a buffer to store the entire training dataset (or to accumulate

a subset of it) for sampling – a potential difficulty requiring additional machinery in the form of

a fast learner for both biological and artificial systems. Furthermore, loss weighting is readily

amenable to gradient-based meta-learning. On the other hand, importance sampling would require

either evolutionary algorithms or techniques like the "reparameterization trick" [259] for optimizing

through a random sampler.

4.5 Discussion

In this work we have proposed a biological framework for two related methods to concurrently

memorize individual examples of rare categories and learn consolidated representations of common

ones. Critically, we consider the unsupervised learning scenario where signals of exceptional items

must be extracted from the network rather than given a priori as in the case of supervised learning

with labelled imbalanced data. For this, we proposed a number of metrics that can be used as

weights for loss reweighting or importance sampling and compared them across the feature and

126

Figure 4.5: Training using importance sampling is significantly more stable than loss reweighting.
Top: Evaluation loss trajectories with loss weighting (left) or importance sampling (right), using
negative entropy as the exception signal (γ = 5). Bottom: Training loss for the same trials.

prototype network operating regimes.

Furthermore, our model has potential applications to machine learning and artificial intelligence.

In recent years, it has been shown that large language models not only generate novel outputs but

also output memorized sequences from their training corpus, raising significant privacy concerns

[260]. Our network can be used as a simplified tractable model of this phenomenon to study

this problem, particularly given its similarities to the attention mechanism of Transformers [235],

enabling identification of memorized items in the weight matrix (Figure 4.2), and their removal or

updating as necessary.

Finally, from the perspective of fairness in AI [261], our work suggests a potential technique to

help mitigate some of the common problems arising from underrepresented classes, automatically

balancing training on biased data by downweighting overrepresented classes and enhancing rare

ones.

4.6 Supplementary figures

127

Figure 4.6: Same as Figure 4.1, shown in the feature (β = 2), prototype (β = 8) and intermediate
(β = 5) regimes

Figure 4.7: Learned weights {ξµ}, trained with loss weighting or importance sampling, using
negative entropy as the importance signal (γ = 5)

128

Chapter 5: Efficient recurrent backpropagation in modern Hopfield networks

The work presented in this chapter was done in collaboration with Dmitry Krotov. Thanks to Larry

Abbott for continued guidance, mentorship, and support.

The Hopfield network is a long-standing model of memory, storing a predetermined set of memories

according to a simple Hebbian rule, which are read out through recurrent attractor dynamics. More

generally, however, the "memories" are not individual items or episodes to be stored verbatim, but are

consolidated representations which enable generalization to new experiences. These representations

must be statistically learned from data, for example with gradient descent.

The standard algorithm for computing the gradient in recurrent networks is backpropagation

through time (BPTT), although it is considered to be biologically implausible as it requires neurons

to store their entire history of activity to perform credit assignment [236]. An alternative known

as recurrent backpropagation (RBP) was proposed by [262, 263], which relies on network activity

converging to a fixed point, allowing computation of the gradient without knowledge of the trajectory.

The calculation, however, involves a matrix inversion that is both biologically implausible and

computationally expensive.

In this work, we propose an approximation of RBP for modern Hopfield networks (MHN), a

generalization of the classical Hopfield network, which computes the gradient in a more efficient

and biologically plausible manner than either BPTT or RBP. Although our approach is applicable to

any Hopfield-like network, to demonstrate the algorithm we introduce a new special case of the

MHN from [70]. In this case, we derive an approximation of the RBP gradient through a first-order

Taylor expansion combined with a biologically motivated heuristic step. Finally, we demonstrate

empirically that our approximation performs as well as the exact gradient calculation, and analyze its

129

time and memory complexity to show that it is more computationally efficient both asymptotically

and in practice.

5.1 Introduction and related work

The classical Hopfield network [230] is a long-standing model of memory. It is a recurrent

neural network with a symmetric weight matrix Wij = Wji corresponding to synaptic strength, and

discrete states x(t)
i ∈ ±1 corresponding to active or silent neurons. For this system, we can define

an energy function E(x) = −x⊤Wx which decreases monotonically according to the dynamics

x
(t+1)
i = sign

(∑
j Wijx

(t)
j

)
. Minima of E correspond to stable fixed-points of this dynamical

system, and are controlled by the choice of weights W .

The capacity (number of unique fixed points), has been be improved through alternative choices

of E, most recently in "modern" Hopfield networks (MHNs) [234, 216, 235] which have been

shown to be a powerful storage system for practical applications requiring high memory capacity

[264]. These high-capacity energy functions, however, imply dynamics which require biologically

implausible higher-order interactions among neurons, thus limiting their utility as neurobiological

models. These issues have been partially addressed by introducing a layer of hidden neurons [70,

265] which can implement these energy functions with only pairwise neuronal interactions at the

cost of more complex circuitry.

MHNs are furthermore limited by a lack of biologically plausible general learning rules. In the

special case of storing a predetermined set of memories {ξµ}Pµ=1, classical Hopfield networks [230]

let Wij =
∑P

µ=1 ξ
µ
i ξ

µ
j , corresponding to a simple Hebbian rule, which ensures that there exist fixed

points at x = ξµ. In MHNs with hidden units [70], memories can be stored in a biological way

[239] with "three-factor" plasticity rules [266, 267]. More generally, however, the "memories" are

not individual items or episodes to be memorized, but are consolidated representations which enable

generalization to new experiences. For instance, in a classification task, the number of examples

is typically several orders of magnitude larger than the number of classes, and the capacity of the

network is not sufficient to store each one individually. Instead, the internal representations ξµ must

130

be learned, for example with gradient descent [234].

The standard algorithm for computing the gradient in recurrent networks is backpropagation

through time (BPTT). As stated, it is considered to be biologically implausible, as it requires neurons

to store their entire history of activity to perform credit assignment [236]. There have been, however,

many suggestions to create biological approximations and interpretations of this algorithm [268].

An alternative to BPTT was proposed in [262, 263], known as recurrent backpropagation (RBP).

This algorithm relies on network activity converging to a fixed point, which allows computation

of the gradient without knowledge of the trajectory. The calculation, however, involves a matrix

inversion that is both biologically implausible and computationally expensive. In the original work,

these issues were addressed by computing the inverse continuously through a secondary network

[269]. More recent approaches approximate it via the Sherman-Morrison formula [270] or the

Neumann series [271] in an efficient but non-biological manner.

In this work, we propose an implementation of RBP for modern Hopfield networks, which

computes the gradient equivalent to BPTT but in a more computationally efficient and biologically

plausible manner. Specifically, we consider a special case of a two-layer network [70] with a

softmax nonlinearity in the hidden layer and derive a first-order approximation of the RBP gradient

in the limit of a large inverse-temperature parameter. We demonstrate empirically that the heuristic

approximation performs as well as the exact gradient calculation, and analyze its time and memory

complexity in the two layer network to show that it is much more computationally efficient both

asymptotically and in practice.

5.2 Results

5.2.1 Generalized modern Hopfield network

We begin by deriving the RPB gradient formula [262, 263] for the generalized formulation of

the modern Hopfield network introduced in [255]. Consider a fully connected recurrent network

with with a symmetric synaptic weight matrix W . Let x be a vector where xi is the input current to

neuron i, and let ϕ = ϕ(x) be the corresponding vector of neuronal firing rates. Note that unlike

131

typical recurrent networks, the nonlinearity is a general vector field and is not constrained to act

element-wise on x. The network dynamics evolve according to

τ
dx

dt
= −x+Wϕ(x) (5.1)

where τ is a diagonal matrix with τii representing the membrane time constant of neuron i. If

the Jacobian of ϕ(·) is positive semi-definite, then the network has a global energy function and

therefore the dynamics are guaranteed to converge to a stable fixed point [255].

We are interested in training this network to minimize a loss function L = L(ϕ, ϕ̂) with respect

to a network parameter θ, where ϕ̂ is the network target firing rate. The parameter θ may be one of

the synaptic weights, or a parameter of the nonlinearity ϕ(·). We suppose that the network activity

has reached a fixed point, i.e. dx
dt

= 0, which implies that x = Wϕ(x). Taking the derivative of the

loss with respect to θ, we have

dL
dθ

= (∇ϕL)⊤
dϕ

dθ
(5.2)

Next, we must compute dϕ
dθ

, as

dϕ

dθ
=

∂ϕ

∂θ
+ J

dx

dθ
(5.3)

=
∂ϕ

∂θ
+ J

d(Wϕ)

dθ
(5.4)

=
∂ϕ

∂θ
+ J

(
dW

dθ
ϕ+W

dϕ

dθ

)
(5.5)

where Jij = ∂ϕi

∂xj
. Note that in Eq. 5.4 we have imposed the fixed point condition. Rearranging,

(I − JW)
dϕ

dθ
=

∂ϕ

∂θ
+ J

dW

dθ
ϕ (5.6)

132

Finally, solving for dϕ
dθ

, we can write the gradient as

dL
dθ

= (∇ϕL)⊤ (I − JW)−1

(
∂ϕ

∂θ
+ J

dW

dθ
ϕ

)
(5.7)

Note that this is equivalent to the gradient computed by backpropagation through time – the standard

algorithm for training recurrent neural networks. However, when the network activity is at a fixed

point, the gradient is independent of the network’s trajectory, thus avoiding the issue of credit

assignment through time [236], and adding a degree of biological plausibility. However, this

computation introduces a matrix inversion operation. We address this issue in the following section.

5.2.2 Two layer network: spherical memory with attention

As a concrete example, we consider a special case of the network introduced in the previous

section. Letting

ϕ =

g
f

 ,W =

0 ξ⊤

ξ 0

 ,J =

Jg 0

0 Jf

 (5.8)

the generalized network in Eq. 5.1 reduces to the two-layer network introduced in [70], with a layer

of feature neurons projecting to a hidden layer through a synaptic weight matrix ξ, and hidden

neurons projecting back to the feature neurons through symmetric weights ξ⊤. The feature neuron

and hidden neuron input currents are given by the vectors v and h and corresponding firing rates

g(v) and f(h). The dynamics of this network are given by

τh
dh

dt
= −h+ ξg(v) (5.9)

τv
dv

dt
= −v + ξ⊤f(h) (5.10)

Assuming the loss only depends on the feature neurons, L = L(g, ĝ), the gradient with respect to

the weights reduces to

133

dL
dξ

= fa⊤ + J⊤
f ξag

⊤ (5.11)

where

a⊤ = (∇gL)⊤A−1Jg (5.12)

A = I − Jgξ
⊤Jfξ (5.13)

See Section 5.3.1 for a full derivation. Specifically, extending the set of models described in

[70], we introduce a new model, where the feature layer activity is restricted to lie on a unit sphere

and the hidden layer has an attention mechanism represented by the transfer functions

g(v) =
v

||v||
, and f(h) = softmax(βh) (5.14)

The energy function for this network reduces from the general formula in [42] and is given

in Section 5.3.2. Biologically these transfer functions can be implemented, for example, through

divisive normalization [252] and recurrent inhibition [254], respectively. Their Jacobians functions

are given by

Jg =
I − gg⊤

||v||
, and Jf = β

(
diag(f)− ff⊤) (5.15)

Finally, as with the weights ξ, we can train β , with the gradient given by (Section 5.3.1)

dL
dβ

= a⊤ξ⊤
(
1

β
Jfh

)
(5.16)

134

5.2.3 Speeding up gradient computation

Although in general it takes O(M3) time to invert the M ×M matrix A = I − Jgξ
⊤Jfξ,

we consider a further special case, letting β → ∞. In this limit, we can compute the first-order

approximation of the gradient with respect to the parameter ε, the µth entry of which is given by

εµ = eβ(hµ−hµ∗) (5.17)

where µ∗ = argmax(h). The exact and approximate gradients are then given by

dL
dξ

= f(∇gL)⊤A−1Jg + J⊤
f ξJ

⊤
g (A

−1)⊤(∇gL)g⊤ (5.18)

≈ ê(∇gL)⊤(I + Jgξ
⊤J̃fξ)Jg + J̃⊤

f ξJ
⊤
g (∇gL)g⊤ (5.19)

where

J̃f = β

[
diag(ε)− εê⊤ − êε⊤ +

(∑
ν

εν

)
êê⊤

]
(5.20)

is the first-order approximation of Jf and ê is the leading-order of f (i.e. a one-hot vector with a

1 at entry µ∗ and 0 otherwise). We refer to this algorithm as "RBP-1." See Section 5.3.3 for full

derivation.

Next, as a heuristic, we can re-introduce (arbitrary) higher-order corrections by using the exact

hidden layer activity f instead of its limiting value ê, and the full Jacobian Jf instead of J̃f .

Importantly, this heuristic ("RBP-1H") is more biological than the true first-order approximation

since computing it uses the hidden layer activity directly, rather than a surrogate.

dL
dξ
≈ f(∇gL)⊤(I + Jgξ

⊤Jfξ)Jg + J⊤
f ξJ

⊤
g (∇gL)g⊤ (5.21)

This formulation makes the relationship to Hebbian learning more evident – the leading term of

135

the gradient, f(∇gL)⊤ is a local plasticity rule, where the pre-synaptic term is an error term (e.g.

in the case of MSE loss ∇gL = g − ĝ) and the post-synaptic term is the hidden layer activation f .

The other terms are cubic or quartic in g and provide higher-order corrections to this simple update.

5.2.4 Empirical validation

To validate the RBP gradient computation, as well as the first-order approximation and the

heuristic, we train this network on the MNIST dataset in three regimes:

1. Memorization. The dataset is small enough (D = 25 datapoints) relative to the network size

(N = 25 hidden units) such that it can memorize the entire dataset verbatim, and theoretically

have zero loss.

2. Small network learning. The dataset is very large (D = 50, 000) relative to the network size

(N = 25).

3. Large network learning. The dataset is large (D = 50, 000), but the network size (N = 500)

is sufficient to reliably capture the dataset statistics.

We train the networks on an autoassociative recall task with gradient descent, where we randomly

set 50% of the input pixels to zero and use the original image as the target. We initialize the

network’s feature neurons with the perturbed input image and let the dynamics evolve according to

Eq. 5.10 until they converge to a fixed point. Convergence is guaranteed due to the existence of an

energy function for these dynamics (Section 5.3.2). Using the feature layer’s state as the output, we

compute the mean-squared error (MSE) loss between the output and the target, and compute the

gradient using one of the three methods described here, as well as BPTT for comparison.

In all three regimes, the performance of RBP is identical to BPTT, by definition. Using the

first-order approximation (RBP-1) results in a lower performance, indicating that the approximation

breaks down for smaller values of β. Most importantly, the heuristic (RBP-1H) performs as well as

the exact gradient computation, and may even converge to a minimum faster than RBP or BPTT in

the memory regime (Figure 5.1). Example outputs are shown in Figure 5.2.

136

0 1000 2000 3000 4000 5000
Iterations

10
6

10
5

10
4

10
3

Lo
ss

Memory

0 10000 20000 30000 40000
Iterations

2 × 10
4

3 × 10
4

4 × 10
4

6 × 10
4

Small

BPTT
RBP
RBP-1
RBP-1H

0 5000 10000 15000 20000
Iterations

10
4

10
3

Large

Figure 5.1: Training and test loss of spherical memory with attention trained on MNIST with three
different memory loads.

Input

R
B

P

Memory Small Large

R
B

P
-1

R
B

P
-1

H

Figure 5.2: Example outputs for the three different memory loads (columns) and three training
algorithms (rows). Input examples were included in each network’s training set.

137

5.2.5 Time and memory complexity

To compare the efficiency of BPTT with our proposed training algorithms, we consider training

the two-layer network with M feature neurons and N hidden neurons, and suppose that the network

activity reaches a fixed point in T timesteps.The RBP-1 or RBP-1H algorithms are faster by a factor

of two, and use a factor of O(T) less memory than BPTT. Using RBP is only advantageous for large

T and N , as is the case in our examples. Results are summarized in Table 5.1. These results also

hold empirically, as shown in Figure 5.3. The derivation is described in Section 5.3.4

BPTT RBP RBP-1/-1H
time O(TMN) O(TMN +M3) O(TMN)
ratio 1 O(TN

M2) ≈ 2
memory O(T (M +N)) O(M3 +N) O(M +N)

ratio 1 O(TM+TN
M3+N

) O(T)

Table 5.1: Time and memory complexity for one step of the gradient update, as well as the ratio
compared to BPTT

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

50

60

Ti
m

e
(m

in
)

Memory

BPTT
RBP
RBP-1
RBP-1H

0 10000 20000 30000 40000
Iterations

0

100

200

300

400

500
Small

0 5000 10000 15000 20000
Iterations

0

100

200

300

Large

Figure 5.3: Time to complete a fixed number of training iterations for BPTT, RBP, and its two
approximations. Differences in time are most profound for larger networks and larger batch sizes.

138

5.3 Supplementary Materials

5.3.1 Two-layer network gradient derivation

Substituting the values in Eq. 5.8 into Eq. 5.7, we get

dL
dθ

= (∇gL)⊤
(
I − Jgξ

⊤Jfξ
)−1
[
Jg

(
ξ⊤
[
Jf

dξ

dθ
g +

∂f

∂θ

]
+

dξ⊤

dθ
f

)
+

∂g

∂θ

]
(5.22)

Next, considering one of the synaptic weights ξµi for the parameter θ, since ∂g
∂ξµi

= 0 and ∂f
∂ξµi

= 0

dL
dξµi

= (∇gL)⊤A−1

[
Jg

(
ξ⊤Jf

dξ

dξµi
g +

dξ⊤

dξµi
f

)]
(5.23)

= (∇gL)⊤A−1Jgξ
⊤Jf

dξ

dξµi
g + (∇gL)⊤A−1Jg

dξ⊤

dξµi
f (5.24)

= c⊤
dξ

dξµi
g + d⊤dξ

⊤

dξµi
f (5.25)

where we have introduced convenience variables c and d. In matrix notation,

dL
dξ

= cg⊤ + fd⊤ (5.26)

= J⊤
f ξJ

⊤
g (A

⊤)−1(∇gL)g⊤ + f(∇gL)⊤A−1Jg (5.27)

= J⊤
f ξag

⊤ + fa⊤ (5.28)

If f(h) = softmax(βh), we can also compute the gradient with respect to β, using dξ
dβ

=

0, dξ
⊤

dβ
= 0, ∂g

∂β
= 0:

dL
dβ

= (∇gL)⊤
(
I − Jgξ

⊤Jfξ
)−1

Jgξ
⊤∂f

∂β
(5.29)

= a⊤ξ⊤
(
1

β
Jfh

)
(5.30)

139

5.3.2 Energy function: Spherical memory with attention

Assuming that the dynamics of the hidden units are fast relative to those of the feature neurons,

we let τh → 0, so h(t) = ξg(t). In this case, the energy function is given by

E(t) = − 1

β
log

∑
µ

exp

β
∑
i

ξµi
vi√∑

j v
2
j

 (5.31)

5.3.3 Two-layer network gradient approximation

In deriving the first-order approximation of the gradient dL
dξ

, we consider the two layer network

with the hidden layer nonlinearity f(h) = softmax(βh), and an arbitrary feature layer nonlinearity

g(v).

First, we compute the first-order approximation of f(·) with respect to the parameter ε, the µth

entry of which is given by

εµ = eβ(hµ−hµ∗) (5.32)

where µ∗ = argmax(h). In the limit we have

lim
β→∞

ε = ê

which is a one-hot vector with a 1 at entry µ∗ and 0 otherwise. Considering f as a function of ε,

where fµ = εµ∑
ν εν

, we can expand f about ε = ê

f(ε) ≈ f(ê) +
∂f(ê)

∂ε
(ε− ê) (5.33)

To get the leading order term, we have

f(ê) = ê (5.34)

140

Next, entry (µ, ν) of the first-order coefficient matrix ∂f
∂ε

is given by

∂fµ
∂εν

=
∂

∂εν

(εµ∑
σ εσ

)
(5.35)

= εµ
∂

∂εν

(1∑
σ εσ

)
+

1∑
σ εσ

∂εµ
∂εν

(5.36)

= − εµ

(
∑

σ εσ)
2 +

δµν∑
σ εσ

(5.37)

(5.38)

Evaluating it at ê, we have

∂fµ(ê)

∂εν
= −δµµ∗ + δµν (5.39)

In matrix form,

∂f

∂ε
= I − Ê (5.40)

where Ê is a square matrix with 1’s in row µ∗ and 0 otherwise. Thus, the first order approximation

of f is given by

f ≈ ê+ (I − Ê)(ε− ê) (5.41)

= ê+ (I − Ê)ε (5.42)

= (1−
∑
ν

εν)ê+ ε (5.43)

≜ f̃ (5.44)

141

which we define as f̃ . Using this, we calculate the first-order approximation of the Jacobian Jf :

Jf ≈ β
(
diag(f̃)− f̃ f̃⊤) (5.45)

≈ β
[
diag(ê+ (I − Ê)ε)− êê⊤ − (I − Ê)εê⊤ − êε⊤(I − Ê)⊤

]
(5.46)

= β
[
diag((I − Ê)ε)− (I − Ê)εê⊤ − êε⊤(I − Ê)⊤

]
(5.47)

= β

[
diag(ε)− εê⊤ − êε⊤ +

(∑
ν

εν

)
êê⊤

]
(5.48)

≜ J̃f (5.49)

where we used êê⊤ = diag(ê) and dropped the O(ε2) term of f̃ f̃⊤ as follows:

f̃ f̃⊤ =
[
ê+ (I − Ê)ε

][
ê+ (I − Ê)ε

]⊤ (5.50)

= êê⊤ + (I − Ê)εê⊤ + êε⊤(I − Ê)⊤ + (I − Ê)εε⊤(I − Ê)⊤ (5.51)

≈ êê⊤ + (I − Ê)εê⊤ + êε⊤(I − Ê)⊤ (5.52)

Next, we compute the first-order approximation of the inverse of A. In general, for any invertible

matrix I −M , we have the Neumann series,

(I −M)−1 =
∞∑
n=0

Mn (5.53)

since (analogously to the geometric series)

(I −M)−1 = I +M +M 2 + · · · (5.54)

(I −M)(I −M)−1 = (I −M)(I +M +M 2 + · · ·) (5.55)

I = (I +M +M 2 + · · ·)−M (I +M +M 2 + · · ·) (5.56)

= (I +M +M 2 + · · ·)− (M +M 2 +M 3 + · · ·) (5.57)

= I (5.58)

142

Thus, we can approximate the inverse of A to first order as

A−1 = (I − Jgξ
⊤Jfξ)

−1 (5.59)

≈ I + Jgξ
⊤J̃fξ (5.60)

Finally, we compute the first-order approximation of the gradient. Starting with the exact

expression,

dL
dξ

= fa⊤ + J⊤
f ξag

⊤ (5.61)

where

fa⊤ = f(∇gL)⊤A−1Jg (5.62)

≈ f̃(∇gL)⊤(I + Jgξ
⊤J̃fξ)Jg (use first-order approx of f ,Jf ,A) (5.63)

= f̃(∇gL)⊤Jg + f̃(∇gL)⊤Jgξ
⊤J̃fξJg (5.64)

≈ ê(∇gL)⊤Jg + ê(∇gL)⊤Jgξ
⊤J̃fξJg (5.65)

(drop O(ε) terms from f̃ in first summand to retain only O(1) and O(βε)) terms)

(drop O(ε2) terms from f̃ J̃f in second summand)

= ê(∇gL)⊤(I + Jgξ
⊤J̃fξ)Jg (5.66)

and

J⊤
f ξag

⊤ = J⊤
f ξJ

⊤
g (A

−1)⊤(∇gL)g⊤ (5.67)

≈ J̃⊤
f ξJ

⊤
g (I + Jgξ

⊤J̃fξ)
⊤(∇gL)g⊤ (use first-order approx of Jf ,A) (5.68)

≈ J̃⊤
f ξJ

⊤
g (∇gL)g⊤(drop O(ε2) terms from J̃2

f in second summand) (5.69)

143

Or, more explicitly:

dL
dξ

= f(∇gL)⊤A−1Jg + J⊤
f ξJ

⊤
g (A

−1)⊤(∇gL)g⊤ (5.70)

≈ ê(∇gL)⊤(I + Jgξ
⊤J̃fξ)Jg + J̃⊤

f ξJ
⊤
g (∇gL)g⊤ (5.71)

Analogously,

dL
dβ

= (∇gL)⊤
(
I − Jgξ

⊤Jfξ
)−1

Jgξ
⊤
(
1

β
Jfh

)
(5.72)

≈ (∇gL)⊤
(
I + Jgξ

⊤J̃fξ
)
Jgξ

⊤
(
1

β
J̃fh

)
(5.73)

≈ (∇gL)⊤Jgξ
⊤
(
1

β
J̃fh

)
(5.74)

= (∇gL)⊤Jgξ
⊤

[
diag(ε)− εê⊤ − êε⊤ +

(∑
ν

εν

)
êê⊤

]
h (5.75)

Note that in this case the first-order correction is O(ε) rather than O(βε) as for dL
dξ

5.3.4 Time and memory complexity

We assume naive matrix multiplication algorithm, which uses O(MNP) time to multiply a

M ×N with an N × P matrix. Note that batching increases each computation by a factor of B

(batch size), but the ratios remain unchanged.

Backpropagation through time

One update of the dynamics takes O(MN) time to compute the hidden unit activities, and

O(NM) to compute the feature neuron activities, so the total time of the feedforward pass is

O(TMN). Similarly, the backwards pass is also O(TMN).

To compute the backwards pass, we need to store the feature and hidden activity for every

datapoint at every point in time. To store the activity for one point in time, for one datapoint

O(M +N) memory is required. To store this for all timepoints requires O(T (M +N)) memory.

144

Recurrent backpropagation

As before, the forward pass is O(TMN) time. However, instead of backpropagating errors

to compute the gradient, we evaluate the closed-form expression in Eq. 5.11. Assuming a naive

cubic-time matrix inversion algorithm, inverting the M ×M matrix A will take O(M3) time, so

the total time to compute the gradient is O(TMN +M3). Thus, comparing to BPTT, the RBP

algorithm has better time complexity if TN > M2.

Since we do not need to store the neuron activity for intermediate timepoints, the memory

required for the forward pass is O(M +N). Inverting A, however, naively requires O(M3) memory,

resulting in a total memory complexity of O(M3 +N).

If we consider RBP-1 or RBP-1H, since we do not need to invert A, evaluating the gradient is

simply a small number of matrix multiplications taking O(MN) time. Asymptotically, this is the

same time complexity as BPTT, but for large T is be faster by almost a factor of 2 since we do not

perform a full backwards pass. Similarly, the memory complexity is only O(M +N).

145

Chapter 6: Conclusion

To summarize, in this thesis we have presented several neural network models which perform

a range of memory tasks, demonstrating a variety of synaptic plasticity rules as well as memory

addressing mechanisms. Chapter 1 presents an overview of memory addressing and draws an

distinction between studies of plasticity and those of memory addressing. We emphasize that the

rules which govern the selection of synapses to update, and those that define the updates themselves

are separable, and may function together in various combinations.

In Chapter 2, we propose a neural network model of continual familiarity detection that uses

strong feedforward weights for memory addressing and anti-Hebbian plasticity for storage. In this

model, static feedforward synapses activate a set of neurons whose plastic synapses get depressed

when pre- and post-synaptic neuron are co-active. As a result, when a familiar stimulus is presented,

the neurons do not fire, resulting in the widely observed biological phenomenon of repetition

suppression. Interestingly, these mechanisms were discovered by meta-learning – an optimization

technique, rather than a priori ideas by the modeler.

In Chapter 3, we consider the problem of memory recall. Here, addressing for storage is

achieved through local third factors. These can randomly or systematically activate neurons whose

afferent synapses are updated to store a "key", and whose efferent synapses store its corresponding

"value". Third factors can be generated intrinsically by neurons, or an external gating circuit. A

plausible biological candidate for such third factors are dendritic plateau potentials – long-lasting

depolarizations in the apical dendrites of pyramidal neurons which have been shown to gate the

formation of place cells. The update rule is a "neo-Hebbian" three-factor rule which incorporates not

only pre- and post-synaptic terms but also the third factor. For readout, on the other hand, memory

addressing is achieved through content-based addressing. Given a query, the network selects the

closest matching stored key through feedforward activations and returns its corresponding stored

146

value.

In Chapter 4, we consider a more challenging question – memory consolidation. Specifically,

how it can occur in parallel with the process of memorization in a single system. Using the modern

Hopfield network as the network architecture, we train it with gradient descent for autoassociative

recall on a dataset consisting of items from a commonly-occurring class and a rare one. Common

items should be consolidated into a general representation that ignores the fine details of specific

items and rare ones should be memorized verbatim. To achieve this, we tune the learning rate or the

sampling probability based on whether an item is represented in a distributed or a localized manner.

Distributed items should be stored incrementally across many neurons and localized items should

be rapidly memorized. In this way, both storage and recall are done in a content-addressed manner,

but the synaptic update is tuned according to the statistics of the address.

Finally, Chapter 5 considers the gradient-based synaptic update process itself. In artificial

recurrent neural networks, the gradient is computed with the biologically unrealistic algorithm of

backpropagation through time. Here, we derive a version of recurrent backpropagation – originally

proposed to compute the gradient for training fully connected recurrent attractor networks – for the

modern Hopfield network, as well as a first-order approximation and a heuristic refinement, and

suggest a biologically plausible interpretation.

Overall, we hope that this work highlights the distinction between two complementary mech-

anisms of memory storage – synaptic plasticity and memory addressing – and serves to inspire

further theoretical and experimental work to further understand their mechanisms both separately

and in union.

147

References

[1] A. Friedman et al., “Analysis of complex neural circuits with nonlinear multidimensional
hidden state models,” Proceedings of the National Academy of Sciences, vol. 113, no. 23,
pp. 6538–6543, 2016.

[2] D. Tyulmankov, G. R. Yang, and L. F. Abbott, “Meta-learning synaptic plasticity and
memory addressing for continual familiarity detection,” Neuron, vol. 110, no. 3, 544–557.e8,
Feb. 2022.

[3] H. K. Titley, N. Brunel, and C. Hansel, “Toward a neurocentric view of learning,” Neuron,
vol. 95, no. 1, 19–32, Jul. 2017.

[4] N. Zucchet, S. Schug, J. von Oswald, D. Zhao, and J. Sacramento, “A contrastive rule for
meta-learning,” Advances in Neural Information Processing Systems, vol. 35, 25921–25936,
Dec. 2022.

[5] R. Chaudhuri and I. Fiete, “Computational principles of memory,” Nature Neuroscience,
vol. 19, no. 33, 394–403, Mar. 2016.

[6] L. Abbott and W. G. Regehr, “Synaptic computation,” Nature, vol. 431, no. 7010, pp. 796–
803, 2004.

[7] D. S. Roy, A. Arons, T. I. Mitchell, M. Pignatelli, T. J. Ryan, and S. Tonegawa, “Memory
retrieval by activating engram cells in mouse models of early alzheimer’s disease,” Nature,
vol. 531, no. 75957595, 508–512, Mar. 2016.

[8] A. Treves and E. T. Rolls, “What determines the capacity of autoassociative memories in
the brain?” Network: Computation in Neural Systems, vol. 2, no. 4, p. 371, 1991.

[9] S. Fusi, “Memory capacity of neural network models,” no. arXiv:2108.07839, Dec. 2021,
arXiv:2108.07839 [q-bio].

[10] D. Tarnoff, Computer Organization and Design Fundamentals. tarnoff, Jul. 2007, isbn:
978-1-4116-3690-3.

[11] J. P. Eckert, “A survey of digital computer memory systems,” Proceedings of the IRE,
vol. 41, no. 10, 1393–1406, Oct. 1953.

[12] Dynamic random access memory (dram). part 2: Read and write cycles, https://www.
youtube.com/watch?v=x3jGqOrXXc8&list=PLTd6ceoshprfg23JMtwGysCm4tlc0I1ou&
index=12, Accessed 2023-10-10, YouTube.

148

https://www.youtube.com/watch?v=x3jGqOrXXc8&list=PLTd6ceoshprfg23JMtwGysCm4tlc0I1ou&index=12
https://www.youtube.com/watch?v=x3jGqOrXXc8&list=PLTd6ceoshprfg23JMtwGysCm4tlc0I1ou&index=12
https://www.youtube.com/watch?v=x3jGqOrXXc8&list=PLTd6ceoshprfg23JMtwGysCm4tlc0I1ou&index=12

[13] A. Citri and R. C. Malenka, “Synaptic plasticity: Multiple forms, functions, and mechanisms,”
Neuropsychopharmacology, vol. 33, no. 1, pp. 18–41, 2008.

[14] G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the developing nervous
system,” Nature reviews neuroscience, vol. 5, no. 2, p. 97, 2004.

[15] A. Statman, M. Kaufman, A. Minerbi, N. E. Ziv, and N. Brenner, “Synaptic size dynamics
as an effectively stochastic process,” PLoS computational biology, vol. 10, no. 10, e1003846,
2014.

[16] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: Taming the beast,” Nature Neuroscience,
vol. 3, no. 1111, 1178–1183, Nov. 2000.

[17] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York: Wiley,
1949, vol. 65, isbn: 978-1-4106-1240-3.

[18] E. Oja, “Simplified neuron model as a principal component analyzer,” Journal of Mathemat-
ical Biology, vol. 15, no. 3, 267–273, Nov. 1982.

[19] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron
selectivity: Orientation specificity and binocular interaction in visual cortex,” Journal of
Neuroscience, vol. 2, no. 1, 32–48, Jan. 1982.

[20] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, “Eligibility traces and
plasticity on behavioral time scales: Experimental support of neohebbian three-factor
learning rules,” Frontiers in Neural Circuits, vol. 12, 2018.

[21] D. Tyulmankov, C. Fang, A. Vadaparty, and G. R. Yang, “Biological learning in key-value
memory networks,” in Advances in Neural Information Processing Systems, vol. 34, Curran
Associates, Inc., 2021, 22247–22258.

[22] S. Song and L. F. Abbott, “Cortical development and remapping through spike timing-
dependent plasticity,” Neuron, vol. 32, no. 2, 339–350, Oct. 2001.

[23] J.-P. Pfister and W. Gerstner, “Triplets of spikes in a model of spike timing-dependent
plasticity,” Journal of Neuroscience, vol. 26, no. 38, 9673–9682, Sep. 2006.

[24] M. Graupner and N. Brunel, “Calcium-based plasticity model explains sensitivity of synaptic
changes to spike pattern, rate, and dendritic location,” Proceedings of the National Academy
of Sciences, vol. 109, no. 10, 3991–3996, Mar. 2012.

[25] K. Jacquerie, “Modeling brain-state dependent memory consolidation,” Jul. 2023.

[26] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning. Springer,
2006, vol. 4.

149

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, 533–536, Oct. 1986.

[28] M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed, “Deep learning without
weight transport,” in Advances in Neural Information Processing Systems, vol. 32, Curran
Associates, Inc., 2019.

[29] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic feedback
weights support error backpropagation for deep learning,” Nature Communications, vol. 7,
p. 13 276, Nov. 2016.

[30] J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning with segregated
dendrites,” eLife, vol. 6, Dec. 2017.

[31] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, “Backpropagation and
the brain,” Nature Reviews Neuroscience, vol. 21, no. 66, 335–346, Jun. 2020.

[32] T. P. Lillicrap and A. Santoro, “Backpropagation through time and the brain,” Current
Opinion in Neurobiology, Machine Learning, Big Data, and Neuroscience, vol. 55, 82–89,
Apr. 2019.

[33] G. Bellec et al., “A solution to the learning dilemma for recurrent networks of spiking
neurons,” Nature Communications, vol. 11, no. 11, p. 3625, Jul. 2020.

[34] Y. H. Liu, S. Smith, S. Mihalas, E. Shea-Brown, and U. Sümbül, “Biologically-plausible
backpropagation through arbitrary timespans via local neuromodulators,” Advances in
Neural Information Processing Systems, vol. 35, 17528–17542, Dec. 2022.

[35] O. Marschall, K. Cho, and C. Savin, “Using local plasticity rules to train recurrent neural
networks,” no. arXiv:1905.12100, May 2019, arXiv:1905.12100 [cs, q-bio].

[36] J. M. Murray, “Local online learning in recurrent networks with random feedback,” eLife,
vol. 8, P. Latham, M. J. Frank, and B. DePasquale, Eds., e43299, May 2019.

[37] L. B. Almeida, “A learning rule for asynchronous perceptrons with feedback in a combina-
torial environment,” Proceedings of IEEE International Conference on Neural Networks,
p. 10, 1987.

[38] F. J. Pineda, “Generalization of back-propagation to recurrent neural networks,” Physical
Review Letters, vol. 59, no. 19, 2229–2232, Nov. 1987.

[39] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of neural computation.
Redwood City, Calif.: Addison-Wesley Pub. Co., 1991, isbn: 978-0-429-49966-1.

150

[40] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Advances in Neural
Information Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[41] B. Scellier and Y. Bengio, “Equivalence of equilibrium propagation and recurrent backprop-
agation,” Neural Computation, vol. 31, no. 2, 312–329, Feb. 2019.

[42] D. Krotov and J. Hopfield, “Large associative memory problem in neurobiology and machine
learning,” arXiv:2008.06996 [cond-mat, q-bio, stat], Mar. 2021, arXiv: 2008.06996.

[43] M. K. Benna and S. Fusi, “Computational principles of synaptic memory consolidation,”
Nature Neuroscience, vol. 19, no. 12, 1697–1706, Dec. 2016.

[44] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks,” Proceedings
of the National Academy of Sciences, vol. 114, no. 13, 3521–3526, Mar. 2017.

[45] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,”
arXiv:1703.04200 [cs, q-bio, stat], Mar. 2017, arXiv: 1703.04200.

[46] S. Lim et al., “Inferring learning rules from distributions of firing rates in cortical neurons,”
Nature Neuroscience, vol. 18, no. 12, 1804–1810, Dec. 2015.

[47] Y. Mehta, D. Tyulmankov, A. E. Rajagopalan, G. C. Turner, J. E. Fitzgerald, and J. Funke,
“Model-based inference of synaptic plasticity rules,” bioRxiv, Dec. 2023.

[48] S. Fusi and L. F. Abbott, “Limits on the memory storage capacity of bounded synapses,”
Nature Neuroscience, vol. 10, no. 4, 485–493, Apr. 2007.

[49] S. Fusi, P. J. Drew, and L. Abbott, “Cascade models of synaptically stored memories,”
Neuron, vol. 45, no. 4, 599–611, Feb. 2005.

[50] J. Lindsey and A. Litwin-Kumar, Theory of systems memory consolidation via recall-gated
plasticity. Dec. 2022.

[51] S. Lahiri and S. Ganguli, “A memory frontier for complex synapses,” in Advances in Neural
Information Processing Systems, vol. 26, Curran Associates, Inc., 2013.

[52] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, no. 4, 115–133, Dec. 1943.

[53] E Gardner and B Derrida, “Optimal storage properties of neural network models,” Journal
of Physics A: Mathematical and General, vol. 21, no. 1, 271–284, Jan. 1988.

[54] A. B. Barrett and M. C. W. v. Rossum, “Optimal learning rules for discrete synapses,” PLOS
Computational Biology, vol. 4, no. 11, e1000230, Nov. 2008.

151

[55] M. C. W. Van Rossum, M. Shippi, and A. B. Barrett, “Soft-bound synaptic plasticity
increases storage capacity,” PLoS Computational Biology, vol. 8, no. 12, P. E. Latham, Ed.,
e1002836, Dec. 2012.

[56] R. Bogacz and M. W. Brown, “The restricted influence of sparseness of coding on the
capacity of familiarity discrimination networks,” p. 29, 2002.

[57] L. A. Jaeckel, An alternative design for a sparse distributed memory. Jul. 1989, NTRS
Author Affiliations: Research Inst. for Advanced Computer ScienceNTRS Document ID:
19920001073NTRS Research Center: Legacy CDMS (CDMS).

[58] P. Kanerva, Sparse Distributed Memory. MIT Press, 1988, isbn: 978-0-262-51469-9.

[59] P. Kanerva, Sparse distributed memory and related models. Apr. 1992, NTRS Au-
thor Affiliations: Research Inst. for Advanced Computer ScienceNTRS Document ID:
19920021480NTRS Research Center: Legacy CDMS (CDMS).

[60] P. Kanerva, Sparse distributed memory and related models. NASA Ames Research Center,
Research Institute for Advanced Computer Science, 1992, vol. 92.

[61] L. A. Jaeckel, A class of designs for a sparse distributed memory. Jul. 1989, NTRS
Author Affiliations: Research Inst. for Advanced Computer ScienceNTRS Document ID:
19920002426NTRS Research Center: Legacy CDMS (CDMS).

[62] A. G. Hanlon, “Content-addressable and associative memory systems a survey,” IEEE
Transactions on Electronic Computers, vol. EC-15, no. 4, 509–521, Aug. 1966.

[63] R. Karam, R. Puri, S. Ghosh, and S. Bhunia, “Emerging trends in design and applications of
memory-based computing and content-addressable memories,” Proceedings of the IEEE,
vol. 103, no. 8, 1311–1330, Aug. 2015.

[64] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences, vol. 79, no. 8, 2554–2558, Apr.
1982.

[65] J. J. Hopfield, “Neurons with graded response have collective computational properties like
those of two-state neurons.,” Proceedings of the National Academy of Sciences, vol. 81,
no. 10, 3088–3092, May 1984.

[66] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 18, no. 1, 49–60, Feb. 1988.

[67] M. Demircigil, J. Heusel, M. Löwe, S. Upgang, and F. Vermet, “On a model of associative
memory with huge storage capacity,” Journal of Statistical Physics, vol. 168, no. 2, 288–299,
Jul. 2017.

152

[68] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,” arXiv:1606.01164
[cond-mat, q-bio, stat], Sep. 2016, arXiv: 1606.01164.

[69] H. Ramsauer et al., “Hopfield networks is all you need,” arXiv:2008.02217 [cs, stat], Jul.
2020, arXiv: 2008.02217.

[70] D. Krotov and J. Hopfield, “Large associative memory problem in neurobiology and machine
learning,” arXiv:2008.06996 [cond-mat, q-bio, stat], Mar. 2, 2021. arXiv: 2008.06996.

[71] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organiza-
tion in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[72] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks,”
IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, 2019.

[73] P. Kanerva, Sparse distributed memory. MIT press, 1988.

[74] R. Bogacz, M. W. Brown, and C. Giraud-Carrier, “Model of familiarity discrimination in the
perirhinal cortex,” Journal of Computational Neuroscience, vol. 10, no. 1, 5–23, Jan. 2001.

[75] J. Wang, “Analysis and design of a k-winners-take-all model with a single state variable
and the heaviside step activation function,” IEEE Transactions on Neural Networks, vol. 21,
no. 9, 1496–1506, Sep. 2010.

[76] E. Majani, R. Erlanson, and Y. Abu-Mostafa, “On the k-winners-take-all network,” in
Advances in Neural Information Processing Systems, vol. 1, Morgan-Kaufmann, 1988.

[77] K. A. Norman and R. C. O’Reilly, “Modeling hippocampal and neocortical contributions to
recognition memory: A complementary-learning-systems approach,” Psychological Review,
vol. 110, no. 4, 611–646, 2003.

[78] R. C. O’Reilly and J. L. McClelland, “Hippocampal conjunctive encoding, storage, and
recall: Avoiding a trade-off,” Hippocampus, vol. 4, no. 6, 661–682, 1994.

[79] M. A. Snow and J. Orchard, “Biological softmax: Demonstrated in modern hopfield
networks,” Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 44,
no. 44, 2022.

[80] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to
align and translate, Sep. 2014.

[81] A. Vaswani et al., “Attention is all you need,” arXiv:1706.03762 [cs], Dec. 2017, arXiv:
1706.03762.

153

https://arxiv.org/abs/2008.06996

[82] Kuśmierz, T. Isomura, and T. Toyoizumi, “Learning with three factors: Modulating hebbian
plasticity with errors,” Current Opinion in Neurobiology, Computational Neuroscience,
vol. 46, 170–177, Oct. 2017.

[83] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules,” Frontiers in Neural Circuits, vol. 9, 2016.

[84] D. Foster, R. Morris, and P. Dayan, “A model of hippocampally dependent navigation, using
the temporal difference learning rule,” Hippocampus, vol. 10, no. 1, 1–16, 2000.

[85] T. Miconi, A. Rawal, J. Clune, and K. O. Stanley, “Backpropamine: Training self-modifying
neural networks with differentiable neuromodulated plasticity,” p. 15, 2019.

[86] K. C. Bittner, A. D. Milstein, C. Grienberger, S. Romani, and J. C. Magee, “Behavioral time
scale synaptic plasticity underlies ca1 place fields,” Science, vol. 357, no. 6355, 1033–1036,
Sep. 2017.

[87] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with
memory-augmented neural networks,” in Proceedings of The 33rd International Conference
on Machine Learning, PMLR, Jun. 2016, 1842–1850.

[88] M Herrmann, J. A. Hertz, and A Prügel-Bennett, “Analysis of synfire chains,” Network:
Computation in Neural Systems, vol. 6, no. 3, 403–414, Jan. 1995.

[89] D. Tyulmankov, G. R. Yang, and L. Abbott, Meta-learning hebbian plasticity for contin-
ual familiarity detection, Poster presented at Computational and Systems Neuroscience
(COSYNE) 2020, doi:10.7916/ytpp-sw91, 2020.

[90] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
arXiv:1512.03385 [cs], Dec. 2015, arXiv: 1512.03385.

[91] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, 1735–1780, Nov. 1997.

[92] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980
[cs], Jan. 2017, arXiv: 1412.6980.

[93] B. A. Richards and T. P. Lillicrap, “Dendritic solutions to the credit assignment problem,”
Current Opinion in Neurobiology, vol. 54, 28–36, Feb. 2019.

[94] P. R. Roelfsema and A. Holtmaat, “Control of synaptic plasticity in deep cortical networks,”
Nature Reviews Neuroscience, vol. 19, no. 33, 166–180, Mar. 2018.

154

[95] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning
(still) requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3,
pp. 107–115, Feb. 22, 2021.

[96] D. Arpit et al., “A closer look at memorization in deep networks,” in Proceedings of the
34th International Conference on Machine Learning, PMLR, Jul. 2017, 233–242.

[97] C. Stephenson, S. Padhy, A. Ganesh, Y. Hui, H. Tang, and S. Chung, “On the geometry of
generalization and memorization in deep neural networks,” no. arXiv:2105.14602, May
2021, arXiv:2105.14602 [cond-mat, stat].

[98] V. Feldman and C. Zhang, “What neural networks memorize and why: Discovering the
long tail via influence estimation,” in Advances in Neural Information Processing Systems,
vol. 33, Curran Associates, Inc., 2020, 2881–2891.

[99] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, ser. CCS ’15, New York, NY, USA:
Association for Computing Machinery, Oct. 2015, 1322–1333, isbn: 978-1-4503-3832-5.

[100] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv:1312.6114 [cs,
stat], May 2014, arXiv: 1312.6114.

[101] I. J. Goodfellow et al., “Generative adversarial networks,” no. arXiv:1406.2661, Jun. 2014,
arXiv:1406.2661 [cs, stat].

[102] L. Yang et al., “Diffusion models: A comprehensive survey of methods and applications,”
ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.

[103] W. X. Zhao et al., “A survey of large language models,” arXiv preprint arXiv:2303.18223,
2023.

[104] C.-Y. Bai, H.-T. Lin, C. Raffel, and W. C.-w. Kan, “On training sample memorization: Lessons
from benchmarking generative modeling with a large-scale competition,” in Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event Singapore: ACM, Aug. 2021, 2534–2542, isbn: 978-1-4503-8332-5.

[105] S. Biderman et al., “Emergent and predictable memorization in large language models,”
no. arXiv:2304.11158, Apr. 2023, arXiv:2304.11158 [cs].

[106] G. van den Burg and C. Williams, “On memorization in probabilistic deep generative
models,” in Advances in Neural Information Processing Systems, vol. 34, Curran Associates,
Inc., 2021, 27916–27928.

155

[107] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang, “Quantifying memoriza-
tion across neural language models,” no. arXiv:2202.07646, Mar. 2023, arXiv:2202.07646
[cs].

[108] K. Tirumala, A. Markosyan, L. Zettlemoyer, and A. Aghajanyan, “Memorization without
overfitting: Analyzing the training dynamics of large language models,” Advances in Neural
Information Processing Systems, vol. 35, 38274–38290, Dec. 2022.

[109] I. Gulrajani, C. Raffel, and L. Metz, “Towards gan benchmarks which require generalization,”
no. arXiv:2001.03653, Jan. 2020, arXiv:2001.03653 [cs, stat].

[110] C. Meehan, K. Chaudhuri, and S. Dasgupta, “A non-parametric test to detect data-copying
in generative models,” no. arXiv:2004.05675, Apr. 2020, arXiv:2004.05675 [cs, stat].

[111] R. Webster, J. Rabin, L. Simon, and F. Jurie, “Detecting overfitting of deep generative
networks via latent recovery,” 2019, 11273–11282.

[112] A. Bai, C.-J. Hsieh, W. Kan, and H.-T. Lin, “Reducing training sample memorization
in gans by training with memorization rejection,” no. arXiv:2210.12231, Oct. 2022,
arXiv:2210.12231 [cs].

[113] M. Widrich et al., “Modern hopfield networks and attention for immune repertoire classifi-
cation,” arXiv:2007.13505 [cs, q-bio, stat], Jul. 2020, arXiv: 2007.13505.

[114] D. Tyulmankov, K. Stachenfeld, D. Krotov, and L. Abbott, “Memorization and consolidation
in associative memory networks,” in Associative Memory & Hopfield Networks in 2023,
2023.

[115] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus, “End-to-end memory networks,” in
Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015.

[116] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” no. arXiv:1410.3916, Nov. 2015,
arXiv:1410.3916 [cs, stat].

[117] M. Fortunato et al., “Generalization of reinforcement learners with working and episodic
memory,” in Advances in Neural Information Processing Systems, vol. 32, Curran Associates,
Inc., 2019.

[118] C.-C. Hung et al., “Optimizing agent behavior over long time scales by transporting value,”
Nature Communications, vol. 10, no. 11, p. 5223, Nov. 2019.

[119] G. Wayne et al., “Unsupervised predictive memory in a goal-directed agent,” no. arXiv:1803.10760,
Mar. 2018, arXiv:1803.10760 [cs, stat].

156

[120] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust
features with denoising autoencoders,” in Proceedings of the 25th international conference
on Machine learning, 2008, pp. 1096–1103.

[121] M. K. Benna and S. Fusi, “Place cells may simply be memory cells: Memory compression
leads to spatial tuning and history dependence,” Proceedings of the National Academy of
Sciences, vol. 118, no. 51, Dec. 2021.

[122] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[123] L. Ambrogioni, “In search of dispersed memories: Generative diffusion models are associative
memory networks,” no. arXiv:2309.17290, Sep. 2023, arXiv:2309.17290 [cs, stat].

[124] B. Hoover, H. Strobelt, D. Krotov, J. Hoffman, Z. Kira, and D. H. Chau, “Memory in plain
sight: A survey of the uncanny resemblances between diffusion models and associative
memories,” no. arXiv:2309.16750, Sep. 2023, arXiv:2309.16750 [cs, math].

[125] A. Radhakrishnan, M. Belkin, and C. Uhler, “Overparameterized neural networks implement
associative memory,” Proceedings of the National Academy of Sciences, vol. 117, no. 44,
27162–27170, Nov. 2020.

[126] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv preprint arXiv:1410.5401,
2014.

[127] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv:1410.5401 [cs],
Oct. 2014, arXiv: 1410.5401.

[128] A. Graves et al., “Hybrid computing using a neural network with dynamic external memory,”
Nature, vol. 538, no. 7626, 471–476, Oct. 2016.

[129] W. Zhang, Y. Yu, and B. Zhou, “Structured memory for neural turing machines,” arXiv:1510.03931
[cs], Oct. 2015, arXiv: 1510.03931.

[130] J. Rae et al., “Scaling memory-augmented neural networks with sparse reads and writes,” in
Advances in Neural Information Processing Systems, vol. 29, Curran Associates, Inc., 2016.

[131] J. Ba, G. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu, “Using fast weights to attend to the
recent past,” arXiv:1610.06258 [cs, stat], Oct. 2016, arXiv: 1610.06258.

[132] T. Miconi, J. Clune, and K. O. Stanley, “Differentiable plasticity: Training plastic neural
networks with backpropagation,” arXiv:1804.02464 [cs, stat], Apr. 2018, arXiv: 1804.02464.

[133] J. L. Elman, “Distributed representations, simple recurrent networks, and grammatical
structure,” Machine Learning, vol. 7, no. 2, 195–225, Sep. 1991.

157

[134] J. Collins, J. Sohl-Dickstein, and D. Sussillo, “Capacity and trainability in recurrent neural
networks,” arXiv:1611.09913 [cs, stat], Nov. 2016, arXiv: 1611.09913.

[135] K. Cho et al., “Learning phrase representations using rnn encoder-decoder for statistical
machine translation,” no. arXiv:1406.1078, Sep. 2014, arXiv:1406.1078 [cs, stat].

[136] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding recurrent networks,”
no. arXiv:1506.02078, Nov. 2015, arXiv:1506.02078 [cs].

[137] Z. Ashwood, N. A. Roy, J. H. Bak, and J. W. Pillow, “Inferring learning rules from animal
decision-making,” in Advances in Neural Information Processing Systems, vol. 33, Curran
Associates, Inc., 2020, 3442–3453.

[138] K. S. Lashley et al., The problem of serial order in behavior. Bobbs-Merrill Oxford, 1951,
vol. 21.

[139] R. W. Semon, The mneme. G. Allen & Unwin Limited, 1921.

[140] P. W. Frankland, S. A. Josselyn, and S. Köhler, “The neurobiological foundation of memory
retrieval,” Nature Neuroscience, vol. 22, no. 1010, 1576–1585, Oct. 2019.

[141] S. A. Josselyn and S. Tonegawa, “Memory engrams: Recalling the past and imagining the
future,” Science, vol. 367, no. 6473, eaaw4325, Jan. 2020.

[142] X. Liu et al., “Optogenetic stimulation of a hippocampal engram activates fear memory
recall,” Nature, vol. 484, no. 7394, pp. 381–385, 2012.

[143] C. A. Denny et al., “Hippocampal memory traces are differentially modulated by experience,
time, and adult neurogenesis,” Neuron, vol. 83, no. 1, pp. 189–201, 2014.

[144] S. A. Josselyn, S. Köhler, and P. W. Frankland, “Finding the engram,” Nature Reviews
Neuroscience, vol. 16, no. 99, 521–534, Sep. 2015.

[145] M. Kim et al., “Functional and topological conditions for explosive synchronization develop
in human brain networks with the onset of anesthetic-induced unconsciousness,” Frontiers
in Computational Neuroscience, vol. 10, Jan. 2016.

[146] T. J. Teyler and P. DiScenna, “The hippocampal memory indexing theory,” Behavioral
Neuroscience, vol. 100, no. 2, 147–154, 1986.

[147] T. J. Teyler and J. W. Rudy, “The hippocampal indexing theory and episodic memory:
Updating the index,” Hippocampus, vol. 17, no. 12, 1158–1169, 2007.

[148] D. Krotov, “Hierarchical associative memory,” arXiv:2107.06446 [cs], Jul. 2021, arXiv:
2107.06446.

158

[149] T. D. Goode, K. Z. Tanaka, A. Sahay, and T. J. McHugh, “An integrated index: Engrams,
place cells, and hippocampal memory,” Neuron, vol. 107, no. 5, 805–820, Sep. 2020.

[150] D. S. Roy et al., “Brain-wide mapping reveals that engrams for a single memory are
distributed across multiple brain regions,” Nature communications, vol. 13, no. 1, p. 1799,
2022.

[151] K. Z. Tanaka, H. He, A. Tomar, K. Niisato, A. J. Huang, and T. J. McHugh, “The hippocampal
engram maps experience but not place,” Science, vol. 361, no. 6400, pp. 392–397, 2018.

[152] S. N. Chettih, E. L. Mackevicius, S. Hale, and D. Aronov, “Barcoding of episodic memories
in the hippocampus of a food-caching bird,” bioRxiv, 2023.

[153] J. von Oswald et al., “Learning where to learn: Gradient sparsity in meta and continual
learning,” in Advances in Neural Information Processing Systems, vol. 34, Curran Associates,
Inc., 2021, 5250–5263.

[154] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 75537553,
pp. 436–444, May 2015.

[155] G. Parisi, “A memory which forgets,” Journal of Physics A: Mathematical and General,
vol. 19, no. 10, pp. L617–L620, Jul. 1986.

[156] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-dependent computation
by recurrent dynamics in prefrontal cortex,” Nature, vol. 503, no. 7474, pp. 78–84, Nov.
2013.

[157] U. Hasson, J. Chen, and C. J. Honey, “Hierarchical process memory: Memory as an
integral component of information processing,” Trends in Cognitive Sciences, vol. 19, no. 6,
pp. 304–313, Jun. 2015.

[158] S. Beaulieu et al., “Learning to continually learn,” arXiv:2002.09571 [cs, stat], Mar. 2020,
arXiv: 2002.09571.

[159] A. Graves et al., “Hybrid computing using a neural network with dynamic external memory,”
Nature, vol. 538, no. 7626, pp. 471–476, Oct. 2016.

[160] L. Standing, “Learning 10000 pictures,” Quarterly Journal of Experimental Psychology,
vol. 25, no. 2, pp. 207–222, May 1973.

[161] R. Bogacz and M. W. Brown, “Comparison of computational models of familiarity discrimi-
nation in the perirhinal cortex,” Hippocampus, vol. 13, no. 4, pp. 494–524, 2003.

159

[162] T. F. Brady, T. Konkle, G. A. Alvarez, and A. Oliva, “Visual long-term memory has
a massive storage capacity for object details,” Proceedings of the National Academy of
Sciences, vol. 105, no. 38, pp. 14 325–14 329, Sep. 2008.

[163] L. Ji-An, F. Stefanini, M. K. Benna, and S. Fusi, “Face familiarity detection with complex
synapses,” bioRxiv, p. 854 059, Nov. 2019.

[164] K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: Neural models of
stimulus-specific effects,” Trends in Cognitive Sciences, vol. 10, no. 1, pp. 14–23, Jan. 2006.

[165] T. Meyer and N. C. Rust, “Single-exposure visual memory judgments are reflected in
inferotemporal cortex,” eLife, vol. 7, Mar. 2018.

[166] E. K. Miller, L. Li, and R. Desimone, “A neural mechanism for working and recognition
memory in inferior temporal cortex,” Science, vol. 254, no. 5036, pp. 1377–1379, 1991.

[167] J. Z. Xiang and M. W. Brown, “Differential neuronal encoding of novelty, familiarity and
recency in regions of the anterior temporal lobe,” Neuropharmacology, vol. 37, no. 4,
pp. 657–676, Apr. 1998.

[168] Z. Androulidakis, A. Lulham, R. Bogacz, and M. W. Brown, “Computational models can
replicate the capacity of human recognition memory,” Network: Computation in Neural
Systems, vol. 19, no. 3, pp. 161–182, Jan. 2008.

[169] K. A. Norman and R. C. O’Reilly, “Modeling hippocampal and neocortical contributions to
recognition memory: A complementary-learning-systems approach,” Psychological Review,
vol. 110, no. 4, pp. 611–646, 2003.

[170] V. S. Sohal and M. E. Hasselmo, “A model for experience-dependent changes in the
responses of inferotemporal neurons,” Network: Computation in Neural Systems, vol. 11,
no. 3, pp. 169–190, Jan. 2000.

[171] S. Thrun and L. Pratt, Learning to Learn. Springer Science & Business Media, Dec. 2012,
Google-Books-ID: XjpBwAAQBAJ , isbn: 978-1-4615-5529-2.

[172] Y. Bengio, S. Bengio, and J. Cloutier, “Learning a synaptic learning rule,” 1991.

[173] J. Jordan, M. Schmidt, W. Senn, and M. A. Petrovici, “Evolving to learn: Discovering
interpretable plasticity rules for spiking networks,” arXiv:2005.14149 [q-bio], Jan. 2021,
arXiv: 2005.14149.

[174] J. Lindsey and A. Litwin-Kumar, “Learning to learn with feedback and local plasticity,”
arXiv:2006.09549 [cs, q-bio], Jun. 2020, arXiv: 2006.09549.

160

[175] K. Gu, S. Greydanus, L. Metz, N. Maheswaranathan, and J. Sohl-Dickstein, “Meta-learning
biologically plausible semi-supervised update rules,” bioRxiv, p. 2019.12.30.891184, Dec.
2019.

[176] B. Confavreux, E. J. Agnes, F. Zenke, T. Lillicrap, and T. P. Vogels, “A meta-learning
approach to (re)discover plasticity rules that carve a desired function into a neural network,”
bioRxiv, p. 2020.10.24.353409, Oct. 2020.

[177] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein, “Meta-learning update
rules for unsupervised representation learning,” arXiv:1804.00222 [cs, stat], Feb. 2019,
arXiv: 1804.00222.

[178] E. Najarro and S. Risi, “Meta-learning through hebbian plasticity in random networks,”
arXiv:2007.02686 [cs], Mar. 2021, arXiv: 2007.02686.

[179] B. B. Murdock, “An analysis of the strength-latency relationship,” Memory & Cognition,
vol. 13, no. 6, pp. 511–521, Nov. 1985.

[180] S. R. Lehky and K. Tanaka, “Neural representation for object recognition in inferotemporal
cortex,” Current Opinion in Neurobiology, Neurobiology of cognitive behavior, vol. 37,
pp. 23–35, Apr. 2016.

[181] A. Lueschow, E. K. Miller, and R. Desimone, “Inferior temporal mechanisms for invariant
object recognition,” Cerebral Cortex, vol. 4, no. 5, pp. 523–531, Sep. 1994.

[182] U. Rutishauser et al., “Representation of retrieval confidence by single neurons in the human
medial temporal lobe,” Nature Neuroscience, vol. 18, no. 77, pp. 1041–1050, Jul. 2015.

[183] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, Jun. 2009, pp. 248–255.

[184] M. Lundqvist, P. Herman, and E. K. Miller, “Working memory: Delay activity, yes! persistent
activity? maybe not,” Journal of Neuroscience, vol. 38, no. 32, pp. 7013–7019, Aug. 2018.

[185] N. Y. Masse, M. C. Rosen, and D. J. Freedman, “Reevaluating the role of persistent neural
activity in short-term memory,” Trends in Cognitive Sciences, vol. 24, no. 3, pp. 242–258,
Mar. 2020.

[186] A. Schulz, C. Miehl, M. J. Berry, and J. Gjorgjieva, “The generation of cortical novelty
responses through inhibitory plasticity,” bioRxiv, p. 2020.11.30.403840, Dec. 2020.

[187] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the national academy of sciences, vol. 79, no. 8, pp. 2554–2558,
1982.

161

[188] D. J. Amit, Modeling brain function: The world of attractor neural networks. Cambridge
university press, 1992.

[189] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-holographic associative
memory,” Nature, vol. 222, no. 5197, pp. 960–962, 1969.

[190] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory networks,” arXiv
preprint arXiv:1503.08895, 2015.

[191] T. Munkhdalai, A. Sordoni, T. Wang, and A. Trischler, “Metalearned neural memory,” arXiv
preprint arXiv:1907.09720, 2019.

[192] H. Le, T. Tran, and S. Venkatesh, “Neural stored-program memory,” arXiv preprint
arXiv:1906.08862, 2019.

[193] S. Bartunov, J. W. Rae, S. Osindero, and T. P. Lillicrap, “Meta-learning deep energy-based
memory models,” arXiv preprint arXiv:1910.02720, 2019.

[194] N. Rodriguez, E. Izquierdo, and Y.-Y. Ahn, “Optimal modularity and memory capacity of
neural reservoirs,” Network Neuroscience, vol. 3, no. 2, pp. 551–566, Jan. 2019.

[195] A. Graves et al., “Hybrid computing using a neural network with dynamic external memory,”
Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[196] A. Banino et al., “Memo: A deep network for flexible combination of episodic memories,”
arXiv preprint arXiv:2001.10913, 2020.

[197] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” International Conference on Learning Representations, 2015.

[198] A. Vaswani et al., “Attention is all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

[199] J. Weston et al., “Towards ai-complete question answering: A set of prerequisite toy tasks,”
arXiv preprint arXiv:1502.05698, 2015.

[200] C.-C. Hung et al., “Optimizing agent behavior over long time scales by transporting value,”
Nature communications, vol. 10, no. 1, pp. 1–12, 2019.

[201] H. Ramsauer et al., “Hopfield networks is all you need,” arXiv preprint arXiv:2008.02217,
2020.

[202] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,” arXiv
preprint arXiv:1606.01164, 2016.

162

[203] D. Krotov and J. Hopfield, “Large associative memory problem in neurobiology and machine
learning,” arXiv preprint arXiv:2008.06996, 2020.

[204] D. Krotov, “Hierarchical Associative Memory,” arXiv:2107.06446 [cs], Jul. 2021, arXiv:
2107.06446.

[205] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, “Eligibility traces and
plasticity on behavioral time scales: Experimental support of neohebbian three-factor
learning rules,” Frontiers in Neural Circuits, vol. 12, p. 53, 2018.

[206] G. J. Stuart and N. Spruston, “Dendritic integration: 60 years of progress,” Nature neuro-
science, vol. 18, no. 12, pp. 1713–1721, 2015.

[207] F. Gambino et al., “Sensory-evoked ltp driven by dendritic plateau potentials in vivo,”
Nature, vol. 515, no. 7525, pp. 116–119, 2014.

[208] D. Tyulmankov, G. R. Yang, and L. Abbott, “Meta-learning local synaptic plasticity for
continual familiarity detection,” bioRxiv, 2021.

[209] K. C. Bittner, A. D. Milstein, C. Grienberger, S. Romani, and J. C. Magee, “Behavioral
time scale synaptic plasticity underlies ca1 place fields,” Science, vol. 357, no. 6355,
pp. 1033–1036, 2017.

[210] D. D. Rasmusson, “The role of acetylcholine in cortical synaptic plasticity,” Behav Brain
Res., vol. 115, no. 2, pp. 205–218, 2000.

[211] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The
sequential learning problem,” in Psychology of learning and motivation, vol. 24, Elsevier,
1989, pp. 109–165.

[212] A. Robins and S. McCallum, “Catastrophic forgetting and the pseudorehearsal solution in
hopfield-type networks,” Connection Science, vol. 10, no. 2, pp. 121–135, 1998.

[213] D. J. Amit, H. Gutfreund, and H. Sompolinsky, “Storing infinite numbers of patterns in a
spin-glass model of neural networks,” Physical Review Letters, vol. 55, no. 14, p. 1530,
1985.

[214] T. M. Cover, “Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern Recognition,” IEEE Transactions on Electronic Computers,
vol. EC-14, no. 3, pp. 326–334, Jun. 1965, Conference Name: IEEE Transactions on
Electronic Computers.

[215] E. Gardner, “The space of interactions in neural network models,” Journal of physics A:
Mathematical and general, vol. 21, no. 1, p. 257, 1988.

163

[216] M. Demircigil, J. Heusel, M. Löwe, S. Upgang, and F. Vermet, “On a Model of Associative
Memory with Huge Storage Capacity,” Journal of Statistical Physics, vol. 168, no. 2,
pp. 288–299, Jul. 2017.

[217] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[218] G. Parisi, “A memory which forgets,” Journal of Physics A: Mathematical and General,
vol. 19, no. 10, p. L617, 1986.

[219] R. Brown and J. Kulik, “Flashbulb memories,” Cognition, vol. 5, no. 1, pp. 73–99, 1977.

[220] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems, man, and
Cybernetics, vol. 18, no. 1, pp. 49–60, 1988.

[221] D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocampal
place cells during the awake state,” Nature, vol. 440, pp. 680–683, 2006.

[222] B. E. Pfeiffer and D. J. Foster, “Hippocampal place-cell sequences depict future paths to
remembered goals,” Nature, vol. 497, pp. 74–79, 2013.

[223] M. G. Mattar and N. D. Daw, “Prioritized memory access explains planning and hippocampal
replay,” Nature Neuroscience, vol. 21, pp. 1609–1617, 2018.

[224] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are complementary
learning systems in the hippocampus and neocortex: Insights from the successes and
failures of connectionist models of learning and memory,” Psychological Review, vol. 102,
pp. 419–457, 1995, Place: US Publisher: American Psychological Association.

[225] D. Kumaran, D. Hassabis, and J. L. McClelland, “What learning systems do intelligent
agents need? complementary learning systems theory updated,” Trends in Cognitive Sciences,
vol. 20, no. 7, pp. 512–534, Jul. 1, 2016.

[226] J. M. Fulvio, C. S. Green, and P. R. Schrater, “Task-specific response strategy selection
on the basis of recent training experience,” PLOS Computational Biology, vol. 10, no. 1,
e1003425, Jan. 2, 2014, Publisher: Public Library of Science.

[227] T. Davis, B. C. Love, and A. R. Preston, “Learning the exception to the rule: Model-based
fMRI reveals specialized representations for surprising category members,” Cerebral Cortex,
vol. 22, no. 2, pp. 260–273, Feb. 2012.

[228] E. M. Heffernan, M. L. Schlichting, and M. L. Mack, “Learning exceptions to the rule in
human and model via hippocampal encoding,” Scientific Reports (Nature Publisher Group),
vol. 11, no. 1, 2021, Place: London, United States Publisher: Nature Publishing Group.

164

[229] L. M. Boyle, L. Posani, S. Irfan, S. A. Siegelbaum, and S. Fusi, Tuned geometries of
hippocampal representations meet the demands of social memory, Pages: 2022.01.24.477361
Section: New Results, Feb. 15, 2023.

[230] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554–2558,
Apr. 1, 1982.

[231] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015, Number: 7553 Publisher: Nature Publishing Group.

[232] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,”
Journal of Big Data, vol. 6, no. 1, p. 27, Mar. 19, 2019.

[233] L. Wittkuhn, S. Chien, S. Hall-McMaster, and N. W. Schuck, “Replay in minds and machines,”
Neuroscience & Biobehavioral Reviews, vol. 129, pp. 367–388, Oct. 1, 2021.

[234] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,” arXiv:1606.01164
[cond-mat, q-bio, stat], Sep. 27, 2016. arXiv: 1606.01164.

[235] H. Ramsauer et al., “Hopfield networks is all you need,” arXiv:2008.02217 [cs, stat], Jul. 16,
2020. arXiv: 2008.02217.

[236] T. P. Lillicrap and A. Santoro, “Backpropagation through time and the brain,” Current
Opinion in Neurobiology, Machine Learning, Big Data, and Neuroscience, vol. 55, pp. 82–89,
Apr. 1, 2019.

[237] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, “Backpropagation and
the brain,” Nature Reviews Neuroscience, vol. 21, no. 6, pp. 335–346, Jun. 2020, Number: 6
Publisher: Nature Publishing Group.

[238] G. Parisi, “A memory which forgets,” Journal of Physics A: Mathematical and General,
vol. 19, no. 10, pp. L617–L620, Jul. 1986.

[239] D. Tyulmankov, C. Fang, A. Vadaparty, and G. R. Yang, “Biological learning in key-value
memory networks,” in Advances in Neural Information Processing Systems, vol. 34, Curran
Associates, Inc., 2021, pp. 22 247–22 258.

[240] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly detection: A
review,” ACM Computing Surveys, vol. 54, no. 2, 38:1–38:38, Mar. 5, 2021.

[241] A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection: Methods, models, and
classification,” ACM Computing Surveys, vol. 53, no. 3, 55:1–55:37, Jun. 12, 2020.

165

https://arxiv.org/abs/1606.01164
https://arxiv.org/abs/2008.02217

[242] J. Zhang et al., “Out-of-distribution detection based on in-distribution data patterns memoriza-
tion with modern hopfield energy,” presented at the The Eleventh International Conference
on Learning Representations, Feb. 1, 2023.

[243] J. M. Murray and G. S. Escola, “Remembrance of things practiced with fast and slow
learning in cortical and subcortical pathways,” Nature Communications, vol. 11, no. 1,
p. 6441, Dec. 23, 2020, Number: 1 Publisher: Nature Publishing Group.

[244] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey
on few-shot learning,” ACM Computing Surveys, vol. 53, no. 3, 63:1–63:34, Jun. 12, 2020.

[245] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, Deep double descent:
Where bigger models and more data hurt, Dec. 4, 2019. arXiv: 1912.02292[cs,stat].

[246] C. Stephenson, S. Padhy, A. Ganesh, Y. Hui, H. Tang, and S. Chung, On the geometry of
generalization and memorization in deep neural networks, May 30, 2021. arXiv: 2105.
14602[cond-mat,stat].

[247] D. Patel and P. S. Sastry, “Memorization in deep neural networks: Does the loss function
matter?” In Advances in Knowledge Discovery and Data Mining, K. Karlapalem et al., Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2021,
pp. 131–142, isbn: 978-3-030-75765-6.

[248] M. Bahrami, “RECOGNITION OF RULES AND EXCEPTIONS BY NEURAL NET-
WORKS,” International Journal of Neural Systems, vol. 02, no. 4, pp. 341–344, Jan.
1991.

[249] M. Ruiz-Garcia, G. Zhang, S. S. Schoenholz, and A. J. Liu, “Tilting the playing field:
Dynamical loss functions for machine learning,” in Proceedings of the 38th International
Conference on Machine Learning, ISSN: 2640-3498, PMLR, Jul. 1, 2021, pp. 9157–9167.

[250] B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and A. S. Morcos, Beyond neural scaling
laws: Beating power law scaling via data pruning, Nov. 15, 2022. arXiv: 2206.14486[cs,
stat].

[251] V. Feldman and C. Zhang, “What neural networks memorize and why: Discovering the
long tail via influence estimation,” in Advances in Neural Information Processing Systems,
vol. 33, Curran Associates, Inc., 2020, pp. 2881–2891.

[252] M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nature
Reviews Neuroscience, vol. 13, no. 1, pp. 51–62, Jan. 2012, Number: 1 Publisher: Nature
Publishing Group.

166

https://arxiv.org/abs/1912.02292 [cs, stat]
https://arxiv.org/abs/2105.14602 [cond-mat, stat]
https://arxiv.org/abs/2105.14602 [cond-mat, stat]
https://arxiv.org/abs/2206.14486 [cs, stat]
https://arxiv.org/abs/2206.14486 [cs, stat]

[253] Z.-H. Mao and S. G. Massaquoi, “Dynamics of winner-take-all competition in recurrent
neural networks with lateral inhibition,” IEEE Transactions on Neural Networks, vol. 18,
no. 1, pp. 55–69, Jan. 2007, Conference Name: IEEE Transactions on Neural Networks.

[254] M. A. Snow and J. Orchard, “Biological softmax: Demonstrated in modern hopfield
networks,” Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 44,
no. 44, 2022.

[255] D. Krotov, “Hierarchical associative memory,” arXiv:2107.06446 [cs], Jul. 13, 2021. arXiv:
2107.06446.

[256] C. Lucibello and M. Mézard, “The exponential capacity of dense associative memories,”
arXiv preprint arXiv:2304.14964, 2023.

[257] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980
[cs], Jan. 29, 2017. arXiv: 1412.6980.

[258] O. Barak, M. Rigotti, and S. Fusi, “The sparseness of mixed selectivity neurons controls the
generalization–discrimination trade-off,” Journal of Neuroscience, vol. 33, no. 9, pp. 3844–
3856, Feb. 27, 2013, Publisher: Society for Neuroscience Section: Articles.

[259] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv:1312.6114 [cs,
stat], May 1, 2014. arXiv: 1312.6114.

[260] S. Biderman et al., Emergent and predictable memorization in large language models,
Apr. 21, 2023. arXiv: 2304.11158[cs].

[261] S. Bird et al., “Fairlearn: A toolkit for assessing and improving fairness in AI,” May 18,
2020.

[262] L. B. Almeida, “A learning rule for asynchronous perceptrons with feedback in a combina-
torial environment,” Proceedings of IEEE International Conference on Neural Networks,
p. 10, 1987.

[263] F. J. Pineda, “Generalization of back-propagation to recurrent neural networks,” Physical
Review Letters, vol. 59, no. 19, pp. 2229–2232, Nov. 9, 1987, Publisher: American Physical
Society.

[264] M. Widrich et al., “Modern Hopfield Networks and Attention for Immune Repertoire
Classification,” arXiv:2007.13505 [cs, q-bio, stat], Jul. 2020, arXiv: 2007.13505.

[265] R. Chaudhuri and I. Fiete, “Bipartite expander Hopfield networks as self-decoding high-
capacity error correcting codes,” in Advances in Neural Information Processing Systems,
vol. 32, Curran Associates, Inc., 2019.

167

https://arxiv.org/abs/2107.06446
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2304.11158 [cs]

[266] N. Frémaux and W. Gerstner, “Neuromodulated Spike-Timing-Dependent Plasticity, and
Theory of Three-Factor Learning Rules,” Frontiers in Neural Circuits, vol. 9, 2016.

[267] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, “Eligibility Traces and
Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor
Learning Rules,” Frontiers in Neural Circuits, vol. 12, 2018.

[268] J. C. R. Whittington and R. Bogacz, “Theories of Error Back-Propagation in the Brain,”
Trends in Cognitive Sciences, vol. 23, no. 3, pp. 235–250, Mar. 2019.

[269] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of neural computation.
Redwood City, Calif.: Addison-Wesley Pub. Co., 1991, OCLC: 645821440, isbn: 978-0-
429-49966-1.

[270] S. Bai, J. Z. Kolter, and V. Koltun, “Deep Equilibrium Models,” in Advances in Neural
Information Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[271] R. Liao et al., “Reviving and improving recurrent back-propagation,” in International
Conference on Machine Learning, PMLR, 2018, pp. 3082–3091.

168

	Acknowledgments
	Dedication
	Memory addressing in biological and artificial neural networks
	Introduction
	Memory addressing in computers
	Synaptic plasticity
	Memory addressing in neural networks
	Ideal observer models
	Strong feedforward weights
	Content-based addressing
	Content selection mechanisms
	Three-factor plasticity
	Credit assignment
	Memory addressing in artificial intelligence
	Memory addressing in biological systems

	Conclusion

	Meta-learning synaptic plasticity and memory addressing for continual familiarity detection
	Introduction
	Results
	Continual familiarity detection task
	HebbFF network architecture
	The "what" of synaptic plasticity: encoding via an outer product for generalization
	The "how" of synaptic plasticity: storage via an anti-Hebbian rule
	The "when" of synaptic plasticity: continual learning without catastrophic forgetting
	The "where" of synaptic plasticity: addressing via strong feedforward weights
	Curriculum training and empirical capacity
	Idealized model and theoretical capacity
	HebbFF recapitulates neural data from inferotemporal cortex
	Two subpopulations emerge in a classification-augmented task
	Familiarity detection of real images

	Discussion
	Methods
	HebbFF and RNN training
	Bogacz-Brown model implementation
	Training FLD and SCC decoders
	Idealized model analytic capacity derivation

	Supplementary figures

	Biological learning in key-value memory networks
	Introduction
	Simplified learning mechanism
	Reading
	Writing keys
	Writing values

	Results
	Benchmark: autoassociative recall
	Meta-learning of plasticity rules
	Continual, flashbulb, and correlated memory tasks
	Heteroassociative and sequence memory

	Discussion
	Task details
	Benchmark: autoassociative recall
	Beyond simple recall
	Beyond autoassociative memory

	TVT key-value memory mechanism
	Supplementary results

	Memorization and consolidation in associative memory networks
	Introduction
	Related work
	Methods
	Data
	Model
	Learning

	Results
	Feature-prototype transition
	Automatic memorization of exceptions
	Loss weighting vs. importance sampling

	Discussion
	Supplementary figures

	Efficient recurrent backpropagation in modern Hopfield networks
	Introduction and related work
	Results
	Generalized modern Hopfield network
	Two layer network: spherical memory with attention
	Speeding up gradient computation
	Empirical validation
	Time and memory complexity

	Supplementary Materials
	Two-layer network gradient derivation
	Energy function: Spherical memory with attention
	Two-layer network gradient approximation
	Time and memory complexity

	Conclusion
	References

