344 research outputs found

    Distributed Handler Architecture

    Get PDF
    Thesis (PhD) - Indiana University, Computer Sciences, 2007Over the last couple of decades, distributed systems have been demonstrated an architectural evolvement based on models including client/server, multi-tier, distributed objects, messaging and peer-to-peer. One recent evolutionary step is Service Oriented Architecture (SOA), whose goal is to achieve loose-coupling among the interacting software applications for scalability and interoperability. The SOA model is engendered in Web Services, which provide software platforms to build applications as services and to create seamless and loosely-coupled interactions. Web Services utilize supportive functionalities such as security, reliability, monitoring, logging and so forth. These functionalities are typically provisioned as handlers, which incrementally add new capabilities to the services by building an execution chain. Even though handlers are very important to the service, the way of utilization is very crucial to attain the potential benefits. Every attempt to support a service with an additive functionality increases the chance of having an overwhelmingly crowded chain: this makes Web Service fat. Moreover, a handler may become a bottleneck because of having a comparably higher processing time. In this dissertation, we present Distributed Handler Architecture (DHArch) to provide an efficient, scalable and modular architecture to manage the execution of the handlers. The system distributes the handlers by utilizing a Message Oriented Middleware and orchestrates their execution in an efficient fashion. We also present an empirical evaluation of the system to demonstrate the suitability of this architecture to cope with the issues that exist in the conventional Web Service handler structures

    Security enhancements for FPGA-based MPSoCs: a boot-to-runtime protection flow for an embedded Linux-based system

    No full text
    International audienceNowadays, embedded systems become more and more complex: the hardware/software codesign approach is a method to create such systems in a single chip which can be based on reconfigurable technologies such as FPGAs (Field-Programmable Gate Arrays). In such systems, data exchanges are a key point as they convey critical and confidential information and data are transmitted between several hardware modules and software layers. In case of an FPGA development life cycle, OS (Operating System) / data updates as runtime communications can be done through an insecure link: attackers can use this medium to make the system misbehave (malicious injection) or retrieve bitstream-related information (eavesdropping). Recent works propose solutions to securely boot a bitstream and the associated OS while runtime transactions are not protected. This work proposes a full boot-to-runtime protection flow of an embedded Linux kernel during boot and confidentiality/integrity protection of the external memory containing the kernel and the main application code/data. This work shows that such a solution with hardware components induces an area occupancy of 10% of a xc6vlx240t Virtex-6 FPGA while having an improved throughput for Linux booting and lowlatency security for runtime protection

    A Shared memory multiprocessor system architecture utilizing a uniform

    Get PDF
    Due to VLSI lithography problems and the limitation of additional architectural enhancements uniprocessor systems are nearing the end of their life cycle. Therefore, it is believed that Symmetric Multiprocessing (SMP) systems will be the next mainstream computer. These systems allow multiple processors, accessing the same memory image, to cooperate on a number of computational tasks as a single entity. While multiprocessor systems can offer a substantial performance increase compared to uniprocessor systems, major design considerations must be addressed to achieve desired system efficiency levels. Managing cache coherence is a significant problem in multiprocessor systems. Current implementations cope with this problem by utilizing a cache coherence protocol. This protocol puts a large amount of overhead on the system bus to ensure proper program execution, effectively decreasing overall system performance. This thesis approaches the cache coherence problem from a new angle. Instead of utilizing a cache coherence protocol, a new memory system is proposed which eliminates the need for a cache coherence protocol, by utilizing a shared level 2 data-only cache. This new architecture allows for better utilization of the system and improved performance and scalability. A data rate analysis is conducted to demonstrate the potential performance increase from the proposed architecture over conventional approaches. The data rate model clearly shows an increase in system performance and utilization when using the architecture proposed in this thesis

    DCMA: A Label-Switching MAC for efficient packet forwarding in multi-hop wireless networks

    Get PDF
    Special Issue on “Multi-Hop Wireless Mesh Networks”</p

    Exploration and Design of High Performance Variation Tolerant On-Chip Interconnects

    Get PDF
    Siirretty Doriast
    • 

    corecore