A Shared memory multiprocessor system architecture utilizing a uniform

Abstract

Due to VLSI lithography problems and the limitation of additional architectural enhancements uniprocessor systems are nearing the end of their life cycle. Therefore, it is believed that Symmetric Multiprocessing (SMP) systems will be the next mainstream computer. These systems allow multiple processors, accessing the same memory image, to cooperate on a number of computational tasks as a single entity. While multiprocessor systems can offer a substantial performance increase compared to uniprocessor systems, major design considerations must be addressed to achieve desired system efficiency levels. Managing cache coherence is a significant problem in multiprocessor systems. Current implementations cope with this problem by utilizing a cache coherence protocol. This protocol puts a large amount of overhead on the system bus to ensure proper program execution, effectively decreasing overall system performance. This thesis approaches the cache coherence problem from a new angle. Instead of utilizing a cache coherence protocol, a new memory system is proposed which eliminates the need for a cache coherence protocol, by utilizing a shared level 2 data-only cache. This new architecture allows for better utilization of the system and improved performance and scalability. A data rate analysis is conducted to demonstrate the potential performance increase from the proposed architecture over conventional approaches. The data rate model clearly shows an increase in system performance and utilization when using the architecture proposed in this thesis

    Similar works