
Automatically Accelerating Non-Numerical Programs
By Architecture-Compiler Co-Design

Simone Campanoni*

Kevin Brownell
Svilen Kanev

Timothy M. Jones+

Harvard University
Northwestern University*

University of Cambridge+

Gu-Yeon Wei
David Brooks

ABSTRACT
Because of the high cost of communication between processors,
compilers that parallelize loops automatically have been forced to
skip a large class of loops that are both critical to performance and
rich in latent parallelism. HELIX-RC is a compiler/microprocessor
co-design that opens those loops to parallelization by decoupling
communication from thread execution in conventional multicore ar-
chitecures. Simulations of HELIX-RC, applied to a processor with
16 Intel Atom-like cores, show an average of 6.85× performance
speedup for six SPEC CINT2000 benchmarks.

1. INTRODUCTION
On a multicore processor, the performance of a program depends

largely on how well it exploits parallel threads. Some computing
problems are solved by numerical programs that are either inher-
ently parallel or easy to parallelize. Historically, successful par-
allelization tools have been able to transform the sequential loops
of such programs into parallel form, boosting performance signif-
icantly. Most software, however, is still sequentially designed and
largely non-numerical, with irregular control and data flow. Be-
cause manual parallelization of such software is error-prone and
time-consuming, automatic parallelization of non-numerical pro-
grams remains an important open problem.

The last decade has seen impressive steps toward a solution, but
when targeting commodity processors, existing parallelizers still
leave much of the latent parallelism in loops unrealized [5]. The
larger loops in a program can be so hard to analyze accurately
that apparent dependences often flood communication channels be-
tween cores. Smaller loops are more amenable to accurate analysis,
and our work shows that there is a lot of parallelism between the
iterations of small loops in non-numerical programs represented by
SPECint2000 benchmarks [4]. But even after intense optimization,
small loops typically include loop-carried dependences, so their it-
erations cannot be entirely independent—they must communicate.
Because the iterations of a small loop are short (25 clock cycles on

The original paper is “HELIX-RC: An Architecture-Compiler
Co-Design for Automatic Parallelization of Irregular Programs”,
published in International Symposium on Computer Architecture
(ISCA), June 14-18, 2014, pages 217-228.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

0 25 75 107 190 260
Clock Cycles

0

50

100

P
e
rc

e
n
ta

g
e
 o

f
lo

o
p
 i
te

ra
ti

o
n
s

 Measured cache
 coherence latency

Atom
Nehalem

Sandy
Bridge

 Ivy
Bridge

Haswell

(a) Short loop iterations

Hop

6+6%

5
9%

4

12%

3 39%

2

22% 1
12%

(b) Distance

Core

6+9%

5

34%

4 12%

3

21%

2

8% 1
16%

(c) Consumers

Figure 1: Small hot loops have short iterations that send data over multiple
hops and to multiple cores.

average for SPECint2000), their communications are frequent.
On commodity processors, communication relies on the memory

system and is reactive, triggered only when one core asks for data
from another. The resulting delay is longer than the average dura-
tion of an iteration, and it is hard to overlap with computation, es-
pecially when the variance of durations is high, as in non-numerical
workloads. The benefits of automatic loop parallelization therefore
saturate at small numbers of cores for commodity processors.

Lowering the latency of inter-core communication would help,
but it can only go so far, if communication remains reactive. We
therefore propose a proactive solution, in which the compiler and
an architectural extension called ring cache cooperate to overlap
communication with computation and lower communication latency.
The compiler identifies data that must be shared between cores, and
the ring cache circulates that data as soon as it is generated.

To demonstrate this idea, we have developed HELIX-RC, a co-
design incorporating a parallelizing compiler and a simulated chip
multiprocessor extended with ring cache. The HELIX-RC com-
piler builds on the original HELIX code parallelizer for commodity
multicore processors [5]. Because it relies on invariants of the code
produced by the compiler, ring cache is a lightweight, non-invasive
extension of conventional multicore architecture. Because it facil-
itates proactive, low-latency inter-core communication, ring cache
allows HELIX-RC to outperform HELIX by a factor of 3×.

2. OPPORTUNITIES AND CHALLENGES OF
SMALL LOOPS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162913717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Opportunities. Prior loop parallelization techniques have avoided
selecting loops with small bodies because communication would
slow down execution on conventional processors [5, 20]. On av-
erage, such techniques yield only about 60% coverage by paral-
lelized loops for non-numerical programs. Excluding small loops
limits overall speedup of such programs to less than 3× no matter
how many cores are available, because by Amdahl’s law, coverage
dictates the overall speedup of a program through parallelization.

Because the intricacy of control and data flow scales down with
code size, small loops are easier than larger ones for a compiler
to analyze, which reduces the proportion of data dependences that
must be accommodated at run time because of conservative as-
sumptions about possible pointer aliases. As a result, the opti-
mized bodies of small loops yield relatively independent iteration
threads [5]. So there could be a significant increase in core utiliza-
tion, and concomitant overall speedup, if the compiler were able to
freely select small hot loops for parallelization. Realizing that po-
tential requires understanding the characteristics of such loops and
optimizing for them.

Low latency challenge. To illustrate the need for low-latency
communication, Figure 1a plots a cumulative distribution of av-
erage iteration execution times on a single Atom-like core (de-
scribed in our work [4]) for the set of hot loops from SPECint2000
chosen for parallelization by HELIX-RC. The shaded portion of
the plot shows that more than half of the loop iterations complete
within 25 clock cycles. The figure also shows the measured core-
to-core round trip communication latencies for three modern mul-
ticore processors. Even the shortest of these latencies, 75 cycles for
Ivy Bridge, is too heavy a communication penalty for the majority
of these short loops.

Broadcast challenge. Loops within non-numerical programs
generate values that are consumed by later iterations, but the com-
piler cannot know which iterations will use which values. So when
the compiler distributes the iterations of a loop to separate cores,
shared values that result from loop-carried dependences need to be
accessible to any of those cores soon after being generated.

For loops parallelized by HELIX-RC, most communication of
shared values is not between cores executing successive loop itera-
tions, which HELIX-RC assigns to adjacent cores. Figure 1b charts
the distribution of value communication distances (defined as the
undirected distance between the core that produces a value and the
first one that consumes it) on a platform with 16 cores organized in
a ring. Only 15% of those transfers are between adjacent cores.

Moreover, Figure 1c shows that most (86%) of the loop-carried
values in parallelized loops are consumed by multiple cores. Since
consumers of shared values are not known at compile time, espe-
cially for non-numerical workloads, broadcasting is the most ap-
propriate communication protocol.

It is well known that implementing low-latency broadcast is chal-
lenging for a large set of cores. HELIX-RC uses a hardware mech-
anism that achieves proactive delayed broadcast of data and signals
to all cores in the ring for a loop. Such proactive communication
is the cornerstone of the HELIX-RC approach, which allows the
communication needed for sharing data between cores to overlap
with computation that the cores carry out in parallel.

3. THE HELIX-RC SOLUTION
To run the iterations of small hot loops efficiently in parallel,

HELIX-RC replaces communication-on-demand with proactive com-
munication. It decouples value forwarding between threads from
value consumption by the receiving thread. It also decouples trans-
mission of synchronizing signals from the code that enforces se-
quential semantics. Extensions of conventional microprocessor ar-

Data and
Signals

Ring
node

 DL1
Cache

Core

Time

store 0x00A, 5

wait A

signal A

Code outside sequential segments

5

A

wait A

5

A

load 0x00A

Code within sequential segments

No delay

Figure 2: The ring cache is a ring network that connects ring nodes at-
tached to each core. It operates during sequential segments as a distributed
first-level cache that precedes the private L1 cache (left side). Ring nodes
propagate newly-generated values without involving their attached cores
(right side). In this example, data generated by the leftmost core is avail-
able at the rightmost core when needed, so wait A incurs no delay.

chitecture make this decoupling possible. Reliance on compiler-
guananteed machine code properties keeps those architectural ex-
tensions simple and efficient.

3.1 Approach
HELIX-RC is a co-design that binds its compiler (HCCv3) to

a processor architecture enhancement called ring cache. When
the compiler generates a set of parallel threads to run on separate
cores, they are rarely completely independent. While most of each
thread’s code can run concurrently with other threads, there are seg-
ments of that code that must execute in strict sequence across the
thread set. We call these sequential segments. The main role of the
ring cache is to accelerate the communication of values and syn-
chronizing signals needed to implement sequential segments cor-
rectly.

The ring cache is a ring network linking ring nodes, each of
which is attached to a core in the processor. During sequential seg-
ments, this ring serves as a distributed first-level cache preceding
the private L1 cache (Figure 2). HCCv3 marks the entry and exit
points of sequential segments using two instructions that extend the
instruction set. As a result, each core knows whether or not it is cur-
rently executing the sequential segment of a parallel thread, and it
accesses the cache hierarchy accordingly.

Compiler. HCCv3 automatically generates parallel threads from
sequential programs by distributing successive loop iterations across
adjacent cores organized as a unidirectional ring within a single
multicore processor. HCCv3 parallelizes loops that are most likely
to speed up performance when their iterations execute in parallel.
Only one loop runs in parallel at a time.

To preserve the sequential semantics of the original loop, the
code that implements a loop-carried data dependence, i.e., one span-
ning loop iterations, must run in a sequential segment whose in-
stances in parallel threads execute in iteration order. Variables and
other data structures involved in such dependences—even those
normally allocated to registers in sequential code—are mapped to
specially-allocated memory locations shared between cores. HCCv3
guarantees that accesses to those shared memory locations always
occur within sequential segments.

ISA. We introduce a pair of instructions—wait and signal—
that mark the beginning and end of a sequential segment. Each has
an integer operand that identifies the particular sequential segment.
A wait 3 instruction, for example, blocks execution of the core

wait 1;
signal 1;

...

...

 a = a+1;

wait 1;
a=load;

store a;
signal 1;

1

sequential
segment

Parallel code

Sequential chain

Sequential code

Data forwarding

(a) Parallel code
Time

signal wait

signal

wait

signal

Core 0 Core 1 Core 2

load

signal stall

data stall

(b) Coupled communication

signal wait

signal

Core 0 Core 1 Core 2

signal

load

(c) Decoupled communication

Figure 3: Example illustrating benefits of decoupling communication from computation.

that issues it until all other cores running earlier iterations have fin-
ished executing the sequential segment labeled 3, which they sig-
nify by executing signal 3. Figure 2 shows a sequential segment
with label A being executed by the core attached to the leftmost
ring node. Between wait A and signal A, a store instruction
sends the new value 5 for the shared location at address 0x00A to
the ring node for caching and circulation to its successor nodes.
The signal A instruction that ends the segment also signals sub-
sequent nodes that the value generated by segment A is ready.

A core forwards all memory accesses within sequential segments
to its local ring node. All other memory accesses (not within a
sequential segment) go through the private L1 cache.

Memory. Each ring node has a cache array that satisfies both
loads and stores received from its attached core during a sequential
segment. HELIX-RC does not require other changes to the existing
memory hierarchy because the ring cache orchestrates interactions
with it. To avoid any changes to conventional cache coherence pro-
tocols, the ring cache permanently maps each memory address to
a unique ring node. All accesses from the distributed ring cache
to the next cache level (L1) go through the associated node for a
corresponding address.

3.2 Overlapping communication with compu-
tation

Because shared values produced by a sequential segment and the
signal that marks its end are propagated through the ring node as
soon as they are generated, this communication between iterations
is decoupled from computation taking place on the cores.

Shared data communication. Once a ring node receives a store,
it records the new value and proactively forwards its address and
value to an adjacent node in the ring cache, all without interrupting
the execution of the attached core. The value then propagates from
node to node through the rest of the ring without interrupting the
computation of any core.

Synchronization. Given the difficulty of determining which it-
eration depends on which in non-numerical programs, compilers
typically make the conservative assumption that an iteration de-
pends on all of its predecessor iterations. Therefore, a core cannot
execute sequential code until it is unblocked by its predecessor [5,
20]. Moreover, an iteration unblocks its successor only if both it
and its predecessors have executed this sequential segment or if
they are not going to. This execution model leads to a chain of
signal propagation across loop iterations that includes unnecessary
synchronization: even if an iteration is not going to execute sequen-
tial code, it still needs to synchronize with its predecessor before
unblocking its successor.

HELIX-RC removes this synchronization overhead by enabling

an iteration to detect the readiness of all predecessor iterations, not
just one. Therefore, once an iteration forgoes executing the sequen-
tial segment, it immediately notifies its successor without waiting
for its predecessor. Unfortunately, while HELIX-RC removes un-
necessary synchronization, it increases the number of signals that
can be in flight simultaneously.

HELIX-RC relies on the signal instruction to handle synchro-
nization signals efficiently. Synchronization between a producer
core and a consumer includes generation of a signal by the pro-
ducer, a request for that signal by the consumer, and transmission of
the signal between the two. On a conventional multicore processor
that relies on a demand-driven memory system for communication,
signal transmission is inherently lazy, and signal request and trans-
mission become serialized. With HELIX-RC, on the other hand,
a signal instructs the ring cache to proactively forward a signal
to all other nodes in the ring without interrupting any of the cores,
thereby decoupling signal transmission from synchronization.

Code example. The code in Figure 3(a), abstracted for clar-
ity, represents a small hot loop from 175.vpr of SPEC CINT2000.
It is responsible for 55% of the total execution time of that pro-
gram. The loop body has two execution paths. The left path entails
a loop-carried data dependence because during a typical loop it-
eration, instruction 1 uses the value of variable a produced by a
previous iteration. The right path does not depend on prior data.
Owing to complex control flow, the compiler cannot predict the ex-
ecution path taken during a particular iteration, so it must assume
that instruction 1 may depend on the previous iteration.

In a conventional implementation coupling communication with
computation, the compiler would add wait 1 and signal 1 in-
structions to the right path, as shown in Figure 3(a), to synchro-
nize each iteration with its predecessor and successor iterations. If
shared values and signals were communicated on demand, the re-
sulting sequential signal chain would look like that highlighted in
red in Figure 3(b). If we assume that only iterations 0 and 2, run-
ning on cores 0 and 2, respectively, take the left path and execute
instruction 1, then the sequential signal chain in Figure 3(b) is un-
necessarily long, because iteration 1 only executes parallel code,
so the wait instruction is unnecessary in that iteration. It results
in a signal stall. Iterations 0 and 2, in order to update a, must load
its previous value first, using a regular load. So lazy forwarding of
this shared data leads to data stalls, because the transfer only begins
when demanded by a load, rather than when generated by a store.

In HELIX-RC, however, a wait A unblocks when all predeces-
sor iterations have signaled that segment A is finished. That allows
HCCv3 to omit the wait 1 on the right path through the loop body.
That optimization, combined with HELIX-RC’s proactive commu-
nication between cores, leads to the more efficient scenario shown

in Figure 3(c). The sequential chain in red now only includes the
delay required to satisfy the dependence—communication updat-
ing a shared value.

4. COMPILER
The decoupled execution model of HELIX-RC described so far

is possible given the tight co-design of the compiler and architec-
ture. In this section, we focus on compiler-guaranteed code proper-
ties that enable a lightweight ring cache design, and follow up with
code optimizations that make use of the ring cache.

Code properties.

• Only one loop can run in parallel at a time. Apart from a
dedicated core responsible for executing code outside par-
allel loops, each core is either executing an iteration of the
current loop or waiting for the start of the next one.

• Successive loop iterations are distributed to threads in a round-
robin manner. Since each thread is pinned to a predefined
core, and cores are organized in a unidirectional ring, suc-
cessive iterations form a logical ring.

• Communication between cores executing a parallelized loop
occurs only within sequential segments.

• Different sequential segments always access different shared
data. HCCv3 only generates multiple sequential segments
when there is no intersection of shared data. Consequently,
instances of distinct sequential segments may run in parallel.

• At most two signals per sequential segment emitted by a
given core can be in flight at any time. Hence, only two
signals per segment need to be tracked by the ring cache.

This last property allows the elimination of unnecessary wait in-
structions while keeping the architectural enhancement simple. Elim-
inating waits allows a core to execute a later loop iteration than
its successor (significantly boosting parallelism). Future iterations,
however, produce signals that must be buffered. The last code prop-
erty prevents a core from getting more than one “lap” ahead of its
successor. So when buffering signals, each ring cache node only
needs to recognize two types—those from the past and those from
the future.

Code optimizations. In addition to conventional optimizations
specifically tuned to extract TLP (e.g., code scheduling, method
inlining, loop unrolling), HCCv3 includes ones that are essential
for best performance of non-numerical programs on a ring-cache-
enhanced architecture: aggressive splitting of sequential segments
into smaller code blocks; identification and selection of small hot
loops; and elimination of unnecessary wait instructions.

Sizing sequential segments poses a tradeoff. Additional seg-
ments created by splitting run in parallel with others, but extra
segments entail extra synchronization, which adds communication
overhead. Thanks to decoupling, HCCv3 can split aggressively to
efficiently extract TLP. Note that segments cannot be split indefinitely—
each shared location must be accessed by only one segment.

To identify small hot loops that are most likely to speed up when
their iterations run in parallel, HCCv3 profiles the program being
compiled using representative inputs. Instrumentation code emu-
lates execution with the ring cache during profiling, which produces
an estimate of time saved by parallelization. Finally, HCCv3 uses
a loop nesting graph, annotated with the profiling results, to choose
the most promising loops.

5. ARCHITECTURE ENHANCEMENTS
Adding a ring cache to a multicore architecture enables the proac-

tive circulation of data and signals that boost parallelization. This
section describes the design of the ring cache and its constituent
ring nodes. The design is guided by the following objectives:

Low-latency communication. HELIX-RC relies on fast com-
munication between cores in a multicore processor for synchro-
nization and for data sharing between loop iterations. Since low-
latency communication is possible between physically adjacent cores
in modern processors, the ring cache implements a simple unidirec-
tional ring network.

Caching shared values. A compiler cannot easily guarantee
whether and when shared data generated by a loop iteration will
be consumed by other cores running subsequent iterations. Hence,
the ring cache must cache shared data. Keeping shared data on lo-
cal ring nodes provides quick access for the associated cores. As
with data, it is also important to buffer signals in each ring node for
immediate consumption.

Easy integration. The ring cache is a minimally-invasive exten-
sion to existing multicore systems, easy to adopt and integrate. It
does not require modifications to the existing memory hierarchy or
to cache coherence protocols.

With these objectives in mind, we now describe the internals of
the ring cache and its interaction with the rest of the architecture.

5.1 Ring Cache Architecture
The ring cache architecture relies on properties of compiled code,

which imply that the data involved in timing-critical dependences
that potentially limit overall performance are both produced and
consumed in the same order as loop iterations. Furthermore, a
ring network topology captures this data flow, as sketched in Fig-
ure 4. The following paragraphs describe the structure and purpose
of each ring cache component.

Ring node structure. The internal structure of a per-core ring
node is shown in the right half of Figure 4. Parts of this structure
resemble a simple network router. Unidirectional links connect a
node to its two neighbors to form the ring backbone. Bidirectional
connections to the core and private L1 cache allow injection of data
into and extraction of data from the ring. There are three separate
sets of data links and buffers. A primary set forwards data and
signals between cores. Two other sets manage infrequent traffic for
integration with the rest of the memory hierarchy (see Section 5.2).
Separating these three traffic types simplifies the design and avoids
deadlock. Finally, signals move in lockstep with forwarded data
to ensure that a shared memory location is not accessed before the
data arrives.

In addition to these router-like elements, a ring node also con-
tains structures more common to caches. A set associative cache
array stores all data values (and their tags) received by the ring
node, whether from a predecessor node or from its associated core.
The line size of this cache array is kept at one machine word. While
the small line is contrary to typical cache designs, it ensures there
will be no false data sharing by independent values from the same
line.

The final structural component of the ring node is the signal
buffer, which stores signals until they are consumed.

Node-to-node connection. The main purpose of the ring cache
is to proactively provide many-to-many core communication in a
scalable and low-latency manner. In the unidirectional ring formed
by the ring nodes, data propagates by value circulation. Once a
ring node receives an (address, value) pair, either from its prede-
cessor, or from its associated core, it stores a local copy in its cache
array and propagates the same pair to its successor node. The pair

Data and Signals

Cache array

Signal buffer

... Past
Future

Signal 1Signal S

ReadPort

WritePort

Credits

Data and
Signals

Link
Buffers

Data and
Signals

Credits Control

Loads
from Core

Stores/Signals
from Core

Ring
node

 DL1
Cache

Core

Remote L1
Request/Reply

L1 Cache Reads/Writes

Core

Figure 4: Ring cache architecture overview. From left to right: overall system; single core slice; ring node internal structure.

eventually propagates through the entire ring (stopping after a full
cycle) so that any core can consume the data value from its local
ring node, as needed.

This value circulation mechanism allows the ring cache to com-
municate between cores faster than reactive systems (like most co-
herent cache hierarchies). In a reactive system, data transfer begins
once the receiver requests the shared data, which adds transfer la-
tency to an already latency-critical code path. In contrast, a proac-
tive scheme overlaps transfer latencies with computation to lower
the receiver’s perceived latency.

The ring cache prioritizes the common case, where data gener-
ated within sequential segments must propagate to all other nodes
as quickly as possible. Assuming no contention over the network
and single-cycle node-to-node latency, the design shown in Fig-
ure 4 allows us to bound the latency for a full trip around the ring
to N clock cycles, where N is the number of cores. Each ring node
prioritizes data received from the ring and stalls injection from its
local core.

To eliminate delays to forward data between ring nodes, the num-
ber of write ports in each node’s cache array must match the link
bandwidth between two nodes. While this may seem like an oner-
ous design constraint for the cache array, Section 6 shows that just
one write port is sufficient to reap more than 99% of the ideal-case
benefits.

To ensure correctness under network contention, the ring cache is
sometimes forced to stall all messages (data and signals) traveling
along the ring. The only events that can cause contention and stalls
are ring cache misses and evictions, which may then need to fetch
data from a remote L1 cache. While these ring stalls are necessary
to guarantee correctness, they are infrequent.

The ring cache relies on credit-based flow control [9] and is
deadlock free. Each ring node has at least two buffers attached
to the incoming links to guarantee forward progress. The network
maintains the invariant that there is always at least one empty buffer
per set of links somewhere in the ring. That is why a node only in-
jects new data from its associated core into the ring when there is
no data from a predecessor node to forward.

Node-core integration. Ring nodes are connected to their re-
spective cores as the closest level in the cache hierarchy (Figure 4).
The core’s interface to the ring cache is through regular loads and
stores for memory accesses in sequential segments.

As previously discussed, wait and signal instructions delin-
eate code within a sequential segment. A thread that needs to en-
ter a sequential segment first executes a wait, which only returns
from the associated ring node when matching signals have been
received from all other cores executing prior loop iterations. The
signal buffer within the ring node enforces this. Specialized core
logic detects the start of the sequential segment and routes memory

operations to the ring cache. Finally, executing the corresponding
signal marks the end of the sequential segment.

The wait and signal instructions require special treatment in
out-of-order cores. Since they may have system-wide side effects,
these instructions must issue non-speculatively from the core’s store
queue and regular loads and stores cannot be reordered around
them. Our implementation reuses logic from load-store queues for
memory disambiguation and holds a lightweight local fence in the
load queue until the wait returns to the senior store queue. This is
not a concern for in-order cores.

5.2 Memory Hierarchy Integration
The ring cache is a level within the cache hierarchy and as such

must not break any consistency guarantees that the hierarchy nor-
mally provides. Consistency between the ring cache and the con-
ventional memory hierarchy results from the following invariants:
(i) shared memory can only be accessed within sequential segments
through the ring cache (compiler-enforced); (ii) only a uniquely as-
signed owner node can read or write a particular shared memory
location through the L1 cache on a ring cache miss (ring cache-
enforced); and (iii) the cache coherence protocol preserves the or-
der of stores to a memory location through a particular L1 cache.

Sequential consistency. To preserve the semantics of a paral-
lelized single-threaded program, memory operations on shared val-
ues require sequential consistency. The ring cache meets this re-
quirement by leveraging the unidirectional data flow guaranteed by
the compiler. Sequential consistency must be preserved when ring
cache values reach lower-level caches, but the consistency model
provided by conventional memory hierarchies is weaker. We re-
solve this difference by introducing a single serialization point per
memory location, namely a unique owner node responsible for all
interactions with the rest of the memory hierarchy. When a shared
value is moved between the ring cache and L1 caches (owing to
occasional ring cache load misses and evictions), only its owner
node can perform the required L1 cache accesses. This solution
preserves existing consistency models with minimal impact on per-
formance.

Cache flush. Finally, to guarantee coherence between paral-
lelized loops and serial code between loop invocations, each ring
node flushes the dirty values of memory locations it owns to L1
once a parallel loop has finished execution. This is equivalent to
executing a distributed fence at the end of loops. In a multiprogram
scenario, signal buffers must also be flushed/restored at program
context switches.

6. EVALUATION
This feature may add one multiplexer delay to the critical delay

path from the core to L1.
Most cache coherence protocols (including Intel, AMD, and ARM

implementations) provide this minimum guarantee.

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

IN
T Geo

mea
n

18
3.e

qu
ak

e

17
9.a

rt

18
8.a

mmp

17
7.m

es
a

FP
Geo

mea
n

Geo
mea

n
0

2

4

6

8

10

12

14

16
P

ro
gr

am
sp

ee
du

p

Numerical
Programs

Non-Numerical
Programs

2.2

6.9

Compiler-Only
HELIX-RC

Figure 5: HELIX-RC triples the speedup obtained by a compiler-only so-
lution for SPEC INT benchmarks. Speedups are relative to sequential pro-
gram execution.

By co-designing the compiler along with the architecture, HELIX-
RC more than triples the performance of parallelized code when
compared to a compiler-only solution. This section investigates
HELIX-RC’s performance benefits and their sensitivity to ring cache
parameters. We confirm that the majority of speedups come from
decoupling all types of communication and synchronization. We
conclude by analyzing the remaining overheads of the execution
model.

6.1 Experimental Setup
We ran experiments on two sets of architectures. The first relies

on a conventional memory hierarchy to share data among the cores.
The second relies on the ring cache.

Simulated conventional hardware. We simulate a multicore in-
order x86 processor by adding multiple-core support to the XIOSim
simulator. We also simulate out-of-order cores modeled after Intel
Nehalem.

The simulated cache hierarchy has two levels: a per-core 32KB,
8-way associative L1 cache and a shared 8MB 16-bank L2 cache.
We vary the core count from 1 to 16, but do not vary the amount of
L2 cache with the number of cores, keeping it at 8MB for all con-
figurations. Also scaling cache size would make it difficult to dis-
tinguish the benefits of parallelizing a workload from the benefits
of fitting its working set into the larger cache, causing misleading
results. Finally, we use DRAMSim2 for cycle-accurate simulation
of memory controllers and DRAM.

We extended XIOSim with a cache coherence protocol assum-
ing an optimistic cache-to-cache latency of 10 clock cycles. This
10-cycle latency is optimistically low even compared to research
prototypes of low-latency coherence [11]. We only use this low-
latency model to simulate conventional hardware, and later (Sec-
tion 6.2) show that low latency alone is not enough to compensate
for the lazy nature of its coherence protocol.

Simulated ring cache. We extended XIOSim to simulate the
ring cache as described in Section 5. We used the following config-
uration: a 1KB 8-way associative array size, one-word data band-
width, five-signal bandwidth, single-cycle adjacent core latency,
and two cycles of core-to-ring-node injection latency to minimally
impact the already delay-critical path from the core to the L1 cache.
A sensitiviy analysis of these parameters as well as the evaluation

16

4.
gz

ip

 1

75
.v

pr

 1
97

.p
ar

se
r

 3
00

.tw
ol
f

 1

81
.m

cf

 2
56

.b
zip

2

IN
T

Geo
m

ea
n

0

2

4

6

8

10

12

14

16

P
ro

g
ra

m
 s

p
e
e
d
u
p

B
e
n
e
fi
t

o
f

d
e
co

u
p
lin

g
m

e
m

o
ry

 c
o
m

m
u
n
ic

a
ti

o
n

Benefits of
decoupling
synchronization

Compiler-Only

decoupled reg. communication

decoupled reg. comm. and synch.

decoupled reg. and memory comm.

HELIX-RC (decoupled all communication)

Figure 6: Breakdown of benefits of decoupling communication
from computation.

of the ring cache in out-of-order cores can be found in [4]. We
use a simple bit mask as the hash function to distribute memory
addresses to their owner nodes. To avoid triggering the cache co-
herence protocol, all words of a cache line have the same owner.
Lastly, XIOSim simulates changes made to the core to route mem-
ory accesses either to the attached ring node or to the private L1.

Benchmarks. We use 10 out of the 15 C benchmarks from the
SPEC CPU2000 suite: 4 floating point (CFP2000) and 6 integer
benchmarks (CINT2000). For engineering reasons, the data depen-
dence analysis that HCCv3 relies on [4] requires either too much
memory or too much time to handle the rest. This limitation is
orthogonal to the results described in this paper.

Compiler. We extended the ILDJIT compilation framework [3],
version 1.1, to use LLVM 3.0 for backend machine code gener-
ation. We generated both single- and multi-threaded versions of
the benchmarks. The single-threaded programs are the unmodified
versions of benchmarks, optimized (O3) and generated by LLVM.
This code outperforms GCC 4.8.1 by 8% on average and under-
performs ICC 14.0.0 by 1.9%. The multi-threaded programs were
generated by HCCv3 and the HELIX compiler (i.e., compiler-only
solution) to run on ring-cache-enhanced and conventional architec-
tures, respectively. Both compilers produce code automatically and
do not require any human intervention. During compilation, they
use SPEC training inputs to select the loops to parallelize.

Measuring performance. We compute speedups relative to se-
quential simulation. Both single- and multi-threaded runs use ref-
erence inputs. To make simulation feasible, we simulate multiple
phases of 100M instructions as identified by SimPoint.

6.2 Speedup Analysis
In our 16-core processor evaluation system, HELIX-RC boosts

the performance of sequentially-designed programs (CINT2000),
assumed not to be amenable to parallelization. Figure 5 shows that
HELIX-RC raises the geometric mean of speedups for these bench-
marks from 2.2× for a compiler-only solution to 6.85×.

HELIX-RC not only maintains the performance of a compiler-
only solution on numerical programs (SPEC CFP2000), but also in-
creases the geometric mean of speedups for CFP2000 benchmarks
from 11.4× to almost 12×.

As an aside, automatic parallelization features of ICC led to a
geomean slowdown of 2.6% across SPEC CINT2000 benchmarks,
suggesting ICC cannot parallelize non-numerical programs.

These speedups are possible even with a cache coherence latency

We now turn our attention to understanding where the speedups
come from.

Communication. Speedups obtained by HELIX-RC come from
decoupling both synchronization and data communication from com-
putation in loop iterations, which significantly reduces communica-
tion overhead, allows the compiler to split sequential segments into
smaller blocks, and cuts down the critical path of the generated
parallel code. Figure 6 compares the speedups gained by mul-
tiple combinations of decoupling synchronization, register-, and
memory-based communication. As expected, fast register trans-
fers alone do not provide much speedup since most in-register de-
pendences can be satisfied by re-computing the shared variables
involved [4]. Instead, most of the speedups come from decoupling
communication for both synchronization and memory-carried ac-
tual dependences. To the best of our knowledge, HELIX-RC is the
only solution that accelerates all three types of transfers for actual
dependences.

Sequential segments. While more splitting offers higher TLP
(more sequential segments can run in parallel), it also requires more
synchronization at run time. Hence, the high synchronization cost
for conventional multicores discourages aggressive splitting of se-
quential segments. In contrast, the ring cache enables aggressive
splitting to maximize TLP.

To analyze the relationship between splitting and TLP, we com-
puted the number of instructions that execute concurrently for the
following two scenarios: (i) conservative splitting constrained by a
contemporary multicore processor with high synchronization penalty
(100 cycles) and (ii) aggressive splitting for HELIX-RC with low-
latency communication (<10 cycles) provided by the ring cache.
In order to compute TLP independent of both the communication
overhead and core pipeline advantages, we used a simple abstracted
model of a multicore system that has no communication cost and
is able to execute one instruction at a time. Using the same set of
loops chosen by HELIX-RC and used in Figure 5, TLP increased
from 6.4 to 14.2 instructions with aggressive splitting. Moreover,
the average number of instructions per sequential segment dropped
from 8.5 to 3.2 instructions.

Coverage. Despite all the loop-level speedups possible via de-
coupling communication and aggressively splitting of sequential
segments, Amdahl’s law states that program coverage dictates the
overall speedup of a program. Prior parallelization techniques have
avoided selecting loops with small bodies because communication
would slow down execution on conventional processors [5, 20].
Since HELIX-RC does not suffer from this problem, the compiler
can freely select small hot loops to cover almost the entirety of the
original program.

6.3 Analysis of Overhead
To understand areas for improvement, we categorize every over-

head cycle preventing ideal speedup. Figure 7 shows the results of
this categorization for HELIX-RC, again implemented on a 16-core
processor.

Most importantly, the small fraction of communication overheads
suggests that HELIX-RC successfully eliminates the core-to-core
latency for data transfer in most benchmarks. For several bench-
marks, notably 175.vpr, 300.twolf, 256.bzip2, and 179.art, the
major source of overhead is the low number of iterations per par-
allelized loop (low trip count). While many hot loops are fre-
quently invoked, low iteration count (ranging from 8 to 20) leads
to idle cores. Other benchmarks such as 164.gzip, 197.parser,
181.mcf, and 188.ammp suffer from dependence waiting due to
large sequential segments. Finally, HCCv3 must sometimes add a

of conventional processors (e.g., 75 cycles).

Actual dependences False dependences
Register HELIX-RC, Multiscalar, TRIPS, T3 HELIX-RC, Multiscalar, TRIPS, T3
Memory HELIX-RC HELIX-RC, TLS-based approaches,

Multiscalar, TRIPS, T3

Table 1: Only HELIX-RC decouples communication for all types
of dependences.

large number of wait and signal instructions (i.e., many sequen-
tial segments) to increase TLP, as seen for 164.gzip, 197.parser,
181.mcf, and 256.bzip2.

7. RELATED WORK
To compare HELIX-RC to a broad set of related work, Table 1

summarizes different parallelization schemes proposed for non-numerical
programs organized with respect to the types of communication de-
coupling implemented (register vs. memory) and the types of de-
pendences targeted (actual vs. false). HELIX-RC covers the entire
design space and is the only one to decouple memory accesses from
computation for actual dependences.

Multiscalar register file. Multiscalar processors [19] extract
both ILP and TLP from an ordinary application. While a ring
cache’s structure resembles a Multiscalar register file, there are fun-
damental differences. For the Multiscalar register file, there is a
fixed and relatively small number of shared elements that must be
known at compile time. Furthermore, the Multiscalar register file
cannot handle memory updates by simply mapping memory to a
fixed number registers without a replacement mechanism. In con-
trast, the ring cache does not require compile-time knowledge to
handle an arbitrary number of elements shared between cores (i.e.,
memory locations allocated at runtime) and can readily handle reg-
ister updates by deallocating a register to a memory location. In
other words, HELIX-RC proposes to use a distributed cache to han-
dle both register and memory updates.

Cache coherence protocols. The ring cache addresses an en-
tirely different set of communication demands. Cache coherence
protocols target relatively small amounts of data shared infrequently
between cores. Hence, cores can communicate lazily, but the re-
sulting communication almost always lies in the critical sequential
chain. In contrast, the ring cache targets frequent and time-critical
data sharing between cores.

On-chip networks. While on-chip-networks (OCNs) can take
several forms, they commonly implement reactive coherence pro-
tocols [18, 21, 24, 25] that do not fulfill the low-latency communi-
cation requirements of HELIX-RC. Scalar operand networks [22]
somewhat resemble a ring cache to enable tight coupling between
known producers and consumers of specific operands, but they suf-
fer from the same limitations as the Multiscalar register file. Hence,
HELIX-RC implements a relatively simple OCN, but supported by
compiler guarantees and additional logic to implement automatic
forwarding.

Off-chip networks. Networks that improve bandwidth between
processors have been studied extensively [17]. While they work
well for CMT parallelization techniques that require less frequent
data sharing, there is less overall parallelism. Moreover, networks
that target chip-to-chip communication do not meet the very differ-
ent low-latency core-to-core communication demands of HELIX-
RC [9]. Our results show HELIX-RC is much more sensitive to
latency than to bandwidth.

Non-commodity processors. Multiscalar [19], TRIPS [16], and
T3 [15] are polymorphous architectures that target parallelism at
different granularities. They differ from HELIX-RC in that (i) they
require a significantly larger design effort and (ii) they only decou-

HELIX-RC
Speedup

Additional
Instructions

Wait/Signal
Instructions

MemoryIteration
Imbalance

Low Trip
Count

CommunicationDependence
Waiting

177.mesa
188.ammp

179.art
183.equake

256.bzip2
181.mcf

300.twolf
197.parser

175.vpr
164.gzip

29.3% 0.9% 3.7% 58.4% 7.3% 0.0% 0.3% 15.1x
64.1% 8.0% 6.3% 7.4% 8.9% 2.2% 3.1% 12.5x
0.2% 0.0% 47.7% 24.8% 16.1% 0.0% 11.3% 10.5x
0.2% 0.0% 9.1% 1.5% 87.7% 0.0% 1.5% 10.1x
3.4% 3.4% 51.6% 0.1% 1.1% 19.7% 20.7% 12.0x
37.7% 10.4% 5.5% 1.2% 3.2% 20.9% 21.2% 8.7x
0.1% 0.2% 41.8% 1.4% 31.8% 0.0% 24.6% 7.6x
31.3% 24.3% 15.3% 5.0% 0.3% 11.6% 12.2% 7.3x
11.9% 0.4% 74.2% 12.4% 0.0% 0.5% 0.5% 6.1x
40.8% 8.1% 9.6% 4.5% 0.0% 18.1% 18.8% 3.0x

Figure 7: Breakdown of overheads that prevent achieving ideal speedup.

ple register-to-register communication and/or false memory depen-
dence communication by speculating.

An iWarp system [2] implements special-purpose arrays that ex-
ecute fine- and coarse-grained parallel numerical programs. How-
ever, without an efficient broadcast mechanism, iWarp’s fast com-
munication cannot reach the speedups offered by HELIX-RC.

Automatic parallelization of non-numerical programs. Sev-
eral automatic methods to extract TLP have demonstrated respectable
speedups on commodity multicore processors for non-numerical
programs [5, 8, 13, 23]. All of these methods transform loops into
parallel threads. Decoupled software pipelining (DSWP) [13] re-
duces sensitivity to communication latency by restructuring a loop
to create a pipeline among the extracted threads with unidirectional
communication between pipeline stages. Demonstrated both on
simulators and on real systems, DSWP performance is largely in-
sensitive to latency. However, significant restructuring of the loop
makes speedups difficult to predict and generated code can some-
times be slower than the original. Moreover, DSWP faces the chal-
lenges of selecting appropriate loops to parallelize and keeping the
pipeline balanced at runtime. While DSWP-based approaches fo-
cus more on restructuring loops to hide communication latency [8,
13], HELIX-RC proposes an architecture-compiler co-design strat-
egy that selects the most appropriate loops for parallelization.

Combining DSWP with HELIX-RC has the potential to yield
significantly better performance than either alone. DSWP cannot
easily scale beyond four cores [14] without being combined with
approaches that exploit parallelism among loop iterations (e.g., DOALL) [8].
While DSWP + DOALL can scale beyond several cores, DOALL
parallelism is not easy to find in non-numerical code. Instead,
DSWP + HELIX-RC presents an opportunity to parallelize a much
broader set of loops.

Several TLS-based techniques [7, 10, 20], including Stanford
Hydra, POSH, and STAMPede, combine hardware-assisted thread-
level speculation (TLS) with compiler optimizations to manage de-
pendences between loop iterations executing in different threads.
When the compiler identifies sources and destinations of frequent
dependences, it synchronizes using wait and signal primitives;
otherwise, it uses speculation. HELIX-RC, on the other hand, opti-
mizes code assuming all dependences are actual. While we believe
adding speculation may help HELIX-RC, Figure 5 shows decou-
pled communication already yields significant speedups without
misspeculation overheads.

8. CONCLUSION
HELIX-RC shows how to accelerate non-numerical programs

by exploiting parallelism between the iterations of their small loops.
Successfully mapping the iterations of such loops onto multiple
cores of a single chip requires a low-latency, broadcast intercon-

nect between cores. This interconnect needs to be proactive (so
that communication starts as soon as data is generated), and it must
be able to update memory locations stored in each core’s private
cache.

Accelerating non-numerical programs to catch up with hard-
ware evolution. Adding multiple cores to a single chip has been
proposed, studied, and realized in products since the 90’s [12], but
the majority of these cores are still under-utilized even after more
than 15 years’ effort in both compiler and programming language
research. Having reached the “ILP wall”, industry now relies on
these multiple cores to gain performance from each system. How-
ever, successful uses of multiple cores exist only when the goal is
maximizing throughput combined with massive data parallelism or
parallelism among multiple programs, as is available in GPU com-
puting or within data centers. On the other hand, if single program
performance is the target and there is little or no data parallelism
available (e.g., non-numerical programs running on mobile phones
or client computers), then only a few cores are actually used, leav-
ing the majority of them under-utilized [1]. Our work shows how
to actually take advantage of the cores that are available within a
single chip when running non-numerical programs, highlighting
the great potential of including hardware support for a proactive,
cache-based, low-latency core-to-core interconnect.

Transforming parallelism into performance requires low-latency
communication. Our work demonstrates the fundamental value
of having a low-latency interconnect to boost the performance of
complex, non-numerical programs. The dependence between com-
munication latency and performance of a program has already been
observed in high-performance computing domains [17]. Moreover,
prior work on on-chip networks has shown the value of a low-
latency interconnect both for programs with regular control and
data flows [22, 25] and for a novel research architecture [6, 21].
Our work is the first to demonstrate the value of a cache-based, low
latency interconnect between cores of commodity processors for
accelerating complex, non-numerical programs running on a chip.

From reactive hardware-driven to proactive software-driven
cache communication. HELIX-RC has the potential to influence
the adoption of proactive, cache-based, and one-to-many intercon-
nects in commodity processors. To quantify the need for such solu-
tions, we measured the communication latency between adjacent
cores in several generations of Intel commodity processors. As
highlighted in Figure 1a, conventional reactive solutions have la-
tencies of around 100 cycles. The figure shows that, among the
five generations of Intel processors we considered, adjacent core
latency bounces around 100 cycles without a monotonic trend over
time. This suggests that there is no reason to expect conventional
solutions (reactive hardware-driven) to improve in the future.

HELIX-RC motivates shifting inter-core communication mech-

anisms towards alternative cache-based solutions, in which a com-
piler identifies for the hardware the code that will generate shared
data. The architecture, for its part, will proactively communicate
modified values to make them locally accessible by other cores.
This allows a drastic cut in the latency of remote data access, which,
therefore, allows a parallelizing compiler to take advantage of the
substantial latent parallelism between the iterations of small loops.

9. REFERENCES
[1] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner.

Evolution of thread-level parallelism in desktop applications.
In ISCA, 2010.

[2] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T.
Kung, M. Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin,
P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp: An
integrated solution to high-speed parallel computing. In
Supercomputing, 1988.

[3] S. Campanoni, G. Agosta, S. C. Reghizzi, and A. D. Biagio.
A Highly Flexible, Parallel Virtual Machine: Design and
Experience of ILDJIT. In Software: Practice and
Experience, 2010.

[4] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y.
Wei, and D. Brooks. HELIX-RC: An architecture-compiler
co-design for automatic parallelization of irregular programs.
In ISCA, 2014.

[5] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y.
Wei, and D. Brooks. HELIX: Automatic Parallelization of
Irregular Programs for Chip Multiprocessing. In CGO, 2012.

[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk
disambiguation of speculative threads in multiprocessors. In
ISCA, 2006.

[7] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. K.
Chen, and K. Olukotun. The Stanford Hydra CMP. In IEEE
Micro, 2000.

[8] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and
D. I. August. Decoupled software pipelining creates
parallelization opportunities. In CGO, 2010.

[9] N. E. Jerger and L.-S. Peh. On-Chip Networks. Synthesis
Lectures on Computer Architecture. Morgan & Claypool,
2009.

[10] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: A TLS compiler that exploits program
structure. In PPoPP, 2006.

[11] M. M. K. Martin. Token coherence. PhD thesis, University of
Wisconsin-Madison, 2003.

[12] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor.
ASPLOS, 1996.

[13] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic
thread extraction with decoupled software pipelining. In
MICRO, 2005.

[14] R. Rangan, N. Vachharajani, G. Ottoni, and D. I. August.
Performance scalability of decoupled software pipelining. In
ACM TACO, 2008.

[15] B. Robatmil, D. Li, H. Esmaeilzadeh, S. Govindan,
A. Smith, A. Putnam, D. Burger, and S. W. Keckler. How to
Implement Effective Prediction and Forwarding for Fusable
Dynamic Multicore Architectures. In HPCA, 2013.

[16] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDonald,

and C. R. Moore. TRIPS: A polymorphous architecture for
exploiting ILP, TLP, and DLP. In ACM TACO, 2004.

[17] S. L. Scott. Synchronization and Communication in the T3E
Multiprocessor. In ASPLOS, 1996.

[18] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: a many-core x86 architecture for visual
computing. In ACM Transactions on Graphics, 2008.

[19] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In ISCA, 1995.

[20] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The
STAMPede approach to thread-level speculation. In ACM
Transactions on Computer Systems, 2005.

[21] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The RAW
microprocessor: A computational fabric for software circuits
and general-purpose programs. In IEEE Micro, 2002.

[22] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.
Scalar Operand Networks. In IEEE Transactions on Parallel
Distributed Systems, 2005.

[23] G. Tournavitis, Z. Wang, B. Franke, and M. F. P. O’Boyle.
Towards a holistic approach to auto-parallelization. In PLDI,
2009.

[24] R. F. van der Wijngaart, T. G. Mattson, and W. Haas.
Light-weight communications on Intel’s single-chip cloud
computer processor. In SIGOPS Operating Systems Review,
2011.

[25] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal. On-chip interconnection architecture of the tile
processor. In IEEE Micro, 2007.

