109 research outputs found

    Multi-port Memory Design for Advanced Computer Architectures

    Get PDF
    In this thesis, we describe and evaluate novel memory designs for multi-port on-chip and off-chip use in advanced computer architectures. We focus on combining multi-porting and evaluating the performance over a range of design parameters. Multi-porting is essential for caches and shared-data systems, especially multi-core System-on-chips (SOC). It can significantly increase the memory access throughput. We evaluate FinFET voltage-mode multi-port SRAM cells using different metrics including leakage current, static noise margin and read/write performance. Simulation results show that single-ended multi-port FinFET SRAMs with isolated read ports offer improved read stability and flexibility over classical double-ended structures at the expense of write performance. By increasing the size of the access transistors, we show that the single-ended multi-port structures can achieve equivalent write performance to the classical double-ended multi-port structure for 9% area overhead. Moreover, compared with CMOS SRAM, FinFET SRAM has better stability and standby power. We also describe new methods for the design of FinFET current-mode multi-port SRAM cells. Current-mode SRAMs avoid the full-swing of the bitline, reducing dynamic power and access time. However, that comes at the cost of voltage drop, which compromises stability. The design proposed in this thesis utilizes the feature of Independent Gate (IG) mode FinFET, which can leverage threshold voltage by controlling the back gate voltage, to merge two transistors into one through high-Vt and low-Vt transistors. This design not only reduces the voltage drop, but it also reduces the area in multi-port current-mode SRAM design. For off-chip memory, we propose a novel two-port 1-read, 1-write (1R1W) phasechange memory (PCM) cell, which significantly reduces the probability of blocking at the bank levels. Different from the traditional PCM cell, the access transistors are at the top and connected to the bitline. We use Verilog-A to model the behavior of Ge2Sb2Te5 (GST: the storage component). We evaluate the performance of the two-port cell by transistor sizing and voltage pumping. Simulation results show that pMOS transistor is more practical than nMOS transistor as the access device when both area and power are considered. The estimated area overhead is 1.7�, compared to single-port PCM cell. In brief, the contribution we make in this thesis is that we propose and evaluate three different kinds of multi-port memories that are favorable for advanced computer architectures

    Analysis and design of a subthreshold CMOS Schmitt trigger circuit

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2017.Nesta tese, o disparador Schmitt (ou Schmitt trigger) CMOS clássico (ST) operando em inversão fraca é analisado. A transferência de tensão DC completa é determinada, incluindo expressões analíticas para as tensões dos nós internos. A transferência de tensão DC resultante do ST apresenta um comportamento contínuo mesmo na presença da histerese. Nesse caso, a característica da tensão de saída entre os limites da histerese é formada por um segmento metaestável, que pode ser explicado em termos das resistências negativas dos subcircuitos NMOS e PMOS do ST. A tensão mínima para o aparecimento da histerese é determinada fazendo-se a análise de pequenos sinais. A análise de pequenos sinais também é utilizada para a estimativa da largura do laço de histerese. É mostrado que a histerese não aparece para tensões de alimentação menores que 75 mV em 300 K. A análise do ST operando como amplificador também foi feita. A razão ótima dos transistores foi determinada com o objetivo de se maximizar o ganho de tensão. A comparação do disparador Schmitt com o inversor CMOS convencional destaca as vantagens e desvantagens de cada um para aplicações de ultra-baixa tensão. Também é mostrado que o ST é teoricamente capaz de operar (com ganho de tensão absoluto ?1) com uma tensão de alimentação tão baixa quanto 31.5 mV, a qual é menor do que o conhecido limite prévio de 36 mV, para o inversor convencional. Como amplificador, o ST possui ganho de tensão absoluto consideravelmente maior que o inversor convencional na mesma tensão de alimentação. Três circuitos integrados foram projetados e fabricados para estudar o comportamento do ST com tensões de alimentação entre 50 mV e 1000 mV.Abstract : In this thesis, the classical CMOS Schmitt trigger (ST) operating in weak inversion is analyzed. The complete DC voltage transfer characteristic is determined, including analytical expressions for the internal node voltage. The resulting voltage transfer characteristic of the ST presents a continuous output behavior even when hysteresis is present. In this case, the output voltage characteristic between the hysteresis limits is formed by a metastable segment, which can be explained in terms of the negative resistance of the NMOS and PMOS subcircuits of the ST. The minimum supply voltage at which hysteresis appears is determined carrying out small-signal analysis, which is also used to estimate the hysteresis width. It is shown that hysteresis does not appear for supply voltages lower than 75 mV at 300 K. The analysis of the ST operating as a voltage amplifier was also carried out. Optimum transistor ratios were determined aiming at voltage gain maximization. The comparison of the ST with the standard CMOS inverter highlights the relative benefits and drawbacks of each one in ULV applications. It is also shown that the ST is theoretically capable of operating (voltage gain ?1) at a supply voltage as low as 31.5 mV, which is lower than the well-known limit of 36 mV, for the standard CMOS inverter. As an amplifier, the ST shows considerable higher absolute voltage gains than those showed by the conventional inverter at the same supply voltages. Three test chips were designed and fabricated to study the operation of the ST at supply voltages between 50 mV and 1000 mV

    A sub-threshold differential cmos schmitt trigger with adjustable hysteresis based on body bias technique

    Get PDF
    This paper presents a sub-threshold differential CMOS Schmitt trigger with tunable hysteresis, which can be used to enhance the noise immunity of low-power electronic systems. By exploiting the body bias technique to the positive feedback transistors, the hysteresis of the proposed Schmitt trigger is generated, and it can be adjusted by the applied bias voltage to the bulk terminal of the utilized PMOS transistors. The principle of operation and the main formulas of the proposed circuit are discussed. The circuit is designed in a 0.18-μm standard CMOS process with a 0.6 V power supply. Post-layout simulation results show that the hysteresis width of the Schmitt trigger can be adjusted from 45.5 mV to 162 mV where the ratio of the hysteresis width variation to supply voltage is 19.4%. This circuit consumes 10.52 × 7.91 μm2 of silicon area, and its power consumption is only 1.38 μW, which makes it a suitable candidate for low-power applications such as portable electronic, biomedical, and bio-implantable systems

    A Sub-kT/q Voltage Reference Operating at 150 mV

    Get PDF
    We propose a subthreshold CMOS voltage reference operating with a minimum supply voltage of only 150 mV, which is three times lower than the minimum value presently reported in the literature. The generated reference voltage is only 17.69 mV. This result has been achieved by introducing a temperature compensation technique that does not require the drain-source voltage of each MOSFET to be larger than 4kT/q. The implemented solution consists in two transistors voltage reference with two MOSFETs of the same threshold-type and exploits the dependence of the threshold voltage on transistor size. Measurements performed over a large sample population of 60 chips from two separate batches show a standard deviation of only 0.29 mV. The mean variation of the reference voltage for VDD ranging from 0.15 to 1.8 V is 359.5 μV/V, whereas the mean variation of VREF in the temperature range from 0°C to 120°C is 26.74 μV/°C. The mean power consumption at 25 °C for VDD = 0.15 V is 26.1 pW. The occupied area is 1200 μm2

    Survey of cryogenic semiconductor devices

    Full text link

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Circuit Modules for CMOS High-Power Short Pulse Generators

    Get PDF
    High-power short electrical pulses are important for high-performance functionality integration, such as the development of microelectromechanical/nanoelectromechanical systems (MEMS/NEMS), system on chip (SoC) and lab on chip (LoC). Many of these applications need high-power (low impedance load) short electrical pulses, in addition to CMOS digital intelligence. Therefore, it is of great interest to develop new circuit techniques to generate high-power high-voltage short electrical pulses on-chip. Results on pulse forming line (PFL) based CMOS pulse generator studies are reported. Through simulations, the effects of PFL length, switch speed and switch resistance on the output pulses are clarified. CMOS pulse generators are modeled and analyzed with on-chip transmission lines (TLs) as PFLs and CMOS transistors as switches. In the 0.13 um CMOS process with a 500 um long PFL, post layout simulations show that pulses of 10.4 ps width can be obtained. High-voltage and high-power outputs can be generated with other pulsed power circuits, such as Blumlein PFLs with stacked MOSFET switches. Thus, the PFL circuit significantly extends short and high-power pulse generation capabilities of CMOS technologies. A CMOS circuit with a 4 mm long PFL is implemented in the commercial 0.13 um technology. Pulses of ~ 160 ps duration and 110-200 mV amplitude on a 50 Ohms load are obtained when the power supply is tuned from 1.2 V to 2.0 V. Measurement Instruments limitations are probably the main reasons for the discrepancies among measurement and simulation results. A four-stage charge pump is presented as high voltage bias of the Blumlein PFLs pulse generator. Since Schottky diode has low forward drop voltage (~ 0.3V), using it as charge transfer cell can have high charge pumping gain and avoid additional control circuit for switch. A four-stage charge pump with Schottky diode as charge transfer cell is implemented in a commercial 0.13 um technology. Charge pump output and efficiency under different power supply voltages, load currents and clock frequencies are measured and presented. The maximum output voltage is ~ 6 V and the maximum efficiency is ~ 50%

    Development of a Sensor Readout Integrated Circuit Towards a Contact Lens for Wireless Intraocular Pressure Monitoring

    Get PDF
    This design covers the design of an integrated circuit (IC) in support of the active contact lens project at Cal Poly. The project aims to monitor intraocular eye pressure (IOP) to help diagnose and treat glaucoma, which is expected affect 6.3 million Americans by 2050. The IC is designed using IBM’s 130 nm 8RF process, is powered by an on-lens thin film 3.8 V rechargeable battery, and will be fabricated at no cost through MOSIS. The IC features a low-power linear regulator that powers a current-starved voltage-controlled oscillator (CSVCO) used for establishing a backscatter communication link. Additional circuitry is included to regulate power to and from the battery. An undervoltage lockout circuit protects the battery from deep discharge damage. When recharging, a rectifier and a voltage regulator provides overvoltage protection. These circuit blocks are biased primarily using a 696 mV subthreshold voltage reference that consumes 110.5 nA

    An Ultra-Low-Power 75mV 64-Bit Current-Mode Majority-Function Adder

    Get PDF
    Ultra-low-power circuits are becoming more desirable due to growing portable device markets and they are also becoming more interesting and applicable today in biomedical, pharmacy and sensor networking applications because of the nano-metric scaling and CMOS reliability improvements. In this thesis, three main achievements are presented in ultra-low-power adders. First, a new majority function algorithm for carry and the sum generation is presented. Then with this algorithm and implied new architecture, we achieved a circuit with 75mV supply voltage operation. Last but not least, a 64 bit current-mode majority-function adder based on the new architecture and algorithm is successfully tested at 75mV supply voltage. The circuit consumed 4.5nW or 3.8pJ in one of the worst conditions

    Design, Modeling and Analysis of Non-classical Field Effect Transistors

    Get PDF
    Transistor scaling following per Moore\u27s Law slows down its pace when entering into nanometer regime where short channel effects (SCEs), including threshold voltage fluctuation, increased leakage current and mobility degradation, become pronounced in the traditional planar silicon MOSFET. In addition, as the demand of diversified functionalities rises, conventional silicon technologies cannot satisfy all non-digital applications requirements because of restrictions that stem from the fundamental material properties. Therefore, novel device materials and structures are desirable to fuel further evolution of semiconductor technologies. In this dissertation, I have proposed innovative device structures and addressed design considerations of those non-classical field effect transistors for digital, analog/RF and power applications with projected benefits. Considering device process difficulties and the dramatic fabrication cost, application-oriented device design and optimization are performed through device physics analysis and TCAD modeling methodology to develop design guidelines utilizing transistor\u27s improved characteristics toward application-specific circuit performance enhancement. Results support proposed device design methodologies that will allow development of novel transistors capable of overcoming limitation of planar nanoscale MOSFETs. In this work, both silicon and III-V compound devices are designed, optimized and characterized for digital and non-digital applications through calibrated 2-D and 3-D TCAD simulation. For digital functionalities, silicon and InGaAs MOSFETs have been investigated. Optimized 3-D silicon-on-insulator (SOI) and body-on-insulator (BOI) FinFETs are simulated to demonstrate their impact on the performance of volatile memory SRAM module with consideration of self-heating effects. Comprehensive simulation results suggest that the current drivability degradation due to increased device temperature is modest for both devices and corresponding digital circuits. However, SOI FinFET is recommended for the design of low voltage operation digital modules because of its faster AC response and better SCEs management than the BOI structure. The FinFET concept is also applied to the non-volatile memory cell at 22 nm technology node for low voltage operation with suppressed SCEs. In addition to the silicon technology, our TCAD estimation based on upper projections show that the InGaAs FinFET, with superior mobility and improved interface conditions, achieve tremendous drive current boost and aggressively suppressed SCEs and thereby a strong contender for low-power high-performance applications over the silicon counterpart. For non-digital functionalities, multi-fin FETs and GaN HEMT have been studied. Mixed-mode simulations along with developed optimization guidelines establish the realistic application potential of underlap design of silicon multi-Fin FETs for analog/RF operation. The device with underlap design shows compromised current drivability but improve analog intrinsic gain and high frequency performance. To investigate the potential of the novel N-polar GaN material, for the first time, I have provided calibrated TCAD modeling of E-mode N-polar GaN single-channel HEMT. In this work, I have also proposed a novel E-mode dual-channel hybrid MIS-HEMT showing greatly enhanced current carrying capability. The impact of GaN layer scaling has been investigated through extensive TCAD simulations and demonstrated techniques for device optimization
    • …
    corecore