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MULTI-PORT MEMORY DESIGN FOR ADVANCED COMPUTER

ARCHITECTURES

Yirong Zhao, M.S.

University of Pittsburgh, 2013

In this thesis, we describe and evaluate novel memory designs for multi-port on-chip and

off-chip use in advanced computer architectures. We focus on combining multi-porting and

evaluating the performance over a range of design parameters. Multi-porting is essential

for caches and shared-data systems, especially multi-core System-on-chips (SOC). It can

significantly increase the memory access throughput. We evaluate FinFET voltage-mode

multi-port SRAM cells using different metrics including leakage current, static noise margin

and read/write performance. Simulation results show that single-ended multi-port FinFET

SRAMs with isolated read ports offer improved read stability and flexibility over classical

double-ended structures at the expense of write performance. By increasing the size of the

access transistors, we show that the single-ended multi-port structures can achieve equivalent

write performance to the classical double-ended multi-port structure for 9% area overhead.

Moreover, compared with CMOS SRAM, FinFET SRAM has better stability and standby

power. We also describe new methods for the design of FinFET current-mode multi-port

SRAM cells. Current-mode SRAMs avoid the full-swing of the bitline, reducing dynamic

power and access time. However, that comes at the cost of voltage drop, which compromises

stability. The design proposed in this thesis utilizes the feature of Independent Gate (IG)

mode FinFET, which can leverage threshold voltage by controlling the back gate voltage, to

merge two transistors into one through high-Vt and low-Vt transistors. This design not only

reduces the voltage drop, but it also reduces the area in multi-port current-mode SRAM

design. For off-chip memory, we propose a novel two-port 1-read, 1-write (1R1W) phase-
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change memory (PCM) cell, which significantly reduces the probability of blocking at the

bank levels. Different from the traditional PCM cell, the access transistors are at the top

and connected to the bitline. We use Verilog-A to model the behavior of Ge2Sb2Te5 (GST:

the storage component). We evaluate the performance of the two-port cell by transistor

sizing and voltage pumping. Simulation results show that pMOS transistor is more practical

than nMOS transistor as the access device when both area and power are considered. The

estimated area overhead is 1.7×, compared to single-port PCM cell. In brief, the contribution

we make in this thesis is that we propose and evaluate three different kinds of multi-port

memories that are favorable for advanced computer architectures.
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1.0 INTRODUCTION

1.1 INTRODUCTION

The goal of this thesis is to describe and evaluate novel memory structures based on

multi-porting, new device, technologies used to implement on-chip and off-chip memories,

improving their performance through tradeoffs between speed, power, data retention, and

stability.

1.2 BACKGROUND, CHALLENGES AND MOTIVATION

The memory system of a computer includes many levels of memories. They can be

divided into two groups, on-chip memories and off-chip memories. On-chip memories include

the instruction cache and the data cache, which are mostly realized in SRAM. Off-chip

memories are the main memory, which are mostly realized with DRAM, and sometimes L3

caches due to their larger capacity and size. However, traditional CMOS SRAM and DRAM

have their limitations as technology scales below 22nm and more requirements are placed on

design for the next generation [5].

1.2.1 Challenges

In next generation, there are three major concerns for memories, which are low cost,

transistor scaling and non-volatility. The cost of a chip is related to many factors: the power

consumption, the area, the yield in fabrication process and the speed to read and write
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data. In traditional CMOS SRAM, there should be a trade-off between the first two factors.

Scaling down of transistors can reduce the cost because it increases transistor density, reduces

power consumption and improves performance by reducing the gate delay. However, it also

brings a severe problem of short channel effects (SCE). Punch through between drain and

source and drain-induced barrier lowering (DIBL), surface scattering and velocity saturation

are all examples of SCE. These problems reduce the on-current, increase the sub-threshold

current and decrease the threshold voltage, which degrade the cell stability to create errors

and increase leakage power [6]. In addition, the yield can be reduced because the effect of

process variation is more prominent since variation becomes a larger percentage of the full

length or width of the device [7]. For the main memory, volatility is the most critical problem

for traditional DRAM because it only relies on the capacitor in its cell structure to store

the value. The system should refresh every several microseconds to maintain data integrity.

Besides the storage capacitor, the sub-threshold charge leakage should also be mitigated for

the access transistor. As a result, new technology and new memory structures are being

actively investigated to meet the requirements for the next generation of memories.

1.2.2 State-of-the-art

There are several modern technologies that are being investigated. For example, spin-

transfer torque RAM (STT-RAM) and phase change memory (PCM) are novel non-volatile

off-chip memories. They both use new materials as the storage component in the cell. For

on-chip memories, FinFET SRAM and SRAM with Si tunnel transistor [8] are designed to

replace the traditional CMOS transistor used in the SRAM, with enhanced cell stability

and lower power consumption. Furthermore, several SRAMs with different cell structures

have been also designed to meet some of the requirements of the next generation [5]. Some

SRAMs are developed based on the conventional 4T loadless SRAM cell, wherein the two

upper pMOS transistors are directly tied to the bitlines instead of the supply voltage as

the access transistors. Inheriting the advantages of reduced area and power consumption

of 4T, the proposed 5T [9] and 7T [10] SRAM cells both have enhanced read stability.

Another novel structure is the Schmitt trigger SRAM [11]. This SRAM utilizes the principle
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of Schmitt Trigger, which has different threshold voltages between the falling edge and the

rising edge of input. Therefore, the disturbance of one internal node in that SRAM should

be larger than that in the classical 6T SRAM to make the other internal node to toggle its

value. That makes the SRAM achieve 1.56× higher read static noise margin. Some of those

novel structures are already implemented with IG mode FinFET in the literature [12, 11]

to reduce the area and improve the stability.

1.2.3 Multi-porting: Background and motivation

These works we have introduced are all single-port memories. But with the emerging

popularity of the multi-core processors for commodity computing, since every core has to

communicate with the memory and meanwhile the correctness of data store and read of the

memory should be ensured, multi-porting is considered an efficient way to reduce the wait

time for different cores for the same memory so as to reduce the throughput of the access

time of each core. A quad-port shared memory based on FPGAs was proposed [13], which

increases the speed of write and read by almost 66.7%, compared to a single-port memory.

Multi-port register files were implemented in the AMD K7 processor [14] and the Itanium

Microprocessor [15]. However, the technology of multi-porting and those new technologies

and cell structures have not been investigated extensively in the literature. Those modern

techniques such as PCM and STT-RAM are known for their data retention, endurance,

stability and scalability or cell density, but they could not bring large improvement on their

data access time. For example, to write to a PCM cell, we must change the supply voltage

and the driver voltage to a suitable value, and then maintain those voltages to heat the GST

(the storage component) until it changes its status. Usually it takes 100ns to 1000ns [16]

for write operation and 10ns to 100ns for read operation. It is smaller in read operation

because the bitline and wordline does not need to be pumped to a higher voltage. This time

is much greater than the traditional 6T SRAM and DRAM which are both around 10ns.

Even for the SRAM, the change of structure, such as Schmitt Trigger SRAM, substantially

contributes to the stability of SRAM, does not do favor to the read/write acceleration. To

address these issues, multi-porting is a potential solution. Multi-porting enables several
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read/write requests served at different memory addresses in different memory cells almost

simultaneously, which is unlike that only one request can be served at one address in one

cell of the single-port memories. Therefore, read/write speed or throughput will have a

considerable increase for those modern cell structures. For PCM, it is more convenient

to divide write from read because their bitline voltages and the driver voltages are totally

different. The most common multi-porting is two-porting, i.e. one write port and one read

port in a cell.

1.3 CONTRIBUTIONS

This thesis makes the following contributions. First, we perform the study of multi-

port FinFET SRAM cells. To the best of our knowledge, this is the first work evaluating

read/write acceleration through multi-porting in FinFET SRAMs. Since multi-port SRAMs

can be fundamentally classified into two types, double-ended multi-port SRAMs and single-

ended multi-port SRAMs, we include one double-ended structure and three single-ended

structures with two isolated read ports in our thesis. We evaluate those cells and the classical

6T SRAM as a baseline using different metrics, such as leakage current, static noise margin,

read/write time with the predictive technology model (PTM), and compare them with each

other. Based on simulation results, we can conclude that single-ended multi-port FinFET

SRAM with isolated read ports has the advantage over the double-ended multi-port FinFET

SRAM in the read operation, such as robust read access and high flexibility in read port

configuration. However, its drawback is that its write performance is worse than the double-

ended structure, due to its weakness in breaking the feedback loop in write operations.

Finally, we show that the write performance of single-ended structures with one read port

can be improved to the same level of the classical double-ended structure for 9% area overhead

by sizing the access transistors appropriately.

Second, we propose novel structures of multi-port current-mode SRAM using the tech-

nique of FinFET to deal with the voltage drop issue in the traditional multi-port current-

mode SRAM without any area overhead. Due to the ability of controlling its back gate
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voltage, which can create feedback, and merging transistors, FinFET can reduce cell size

and improve performance in the multi-port SRAM design. Our results show that the voltage

drop can be reduced by around 20% of the full CMOS voltage supply when the transistors

are sized normally i.e., W=40nm for nMOS and W=80nm for pMOS. Further, by merg-

ing transistors using IG mode FinFET in the two-port current-mode structure, area can be

substantially reduced.

Finally we propose a new two-port phase change memory cell as an off-chip main memory

cell substituting traditional DRAM cell structure, which significantly reduces the probability

of blocking at the bank and architecture levels. The blocking is caused by the asymmetry

in read/write access latency, which leads to the low throughput performance, and impedes

non-volatile memory to be integrated into high-performance computing systems. We design

a model of the GST and we come up with a series of suitable bitline and wordline voltages

in its write and read operations. The innovation is that the access transistors are on the

top instead of on the bottom to better construct a two-port cell. Result shows that pMOS

transistors are more practical than nMOS transistors as the access device when both area

and power are considered. The innovation can reduce the expected read delay by 12-40×

over conventional single-port PCM for 1.7× overhead. This thesis is organized as follows.

1.4 THESIS ORGANIZATION

In Chapter 2, we will introduce the background of FinFET SRAM design and present

our work on multi-port voltage-mode FinFET SRAM design. We will present in detail the

metrics we use to evaluate and compare the performance of single-ended and double-ended

multi-port SRAM cells. In Chapter 3, we will introduce the techniques of IG mode FinFET

and its use in the proposed multi-port current-mode SRAM cell to solve the problem of

voltage drop. In chapter 4, we will propose and evaluate the 1R/1W two-port PCM cell.

Chapter 5 is the conclusion.
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2.0 FINFET MULTI-PORT VOLTAGE-MODE SRAM EVALUATION

In this chapter, we are going to focus on the evaluation of two kinds of multi-port

FinFET voltage-mode SRAMs: single-ended and double-ended using different metrics. We

will analyze the result of the read and write acceleration by multi-porting compared with

the classical 6T SRAM. We will also compare the result of those FinFET SRAMs with

corresponding CMOS SRAMs.

2.1 INTRODUCTION OF FINFET

FinFET, a double-gate device has emerged as an alternative of traditional CMOS. Dif-

ferent from CMOS, it has two gates to control the channel, front gate and back gate. They

are electrically coupled to better control the short channel effect, which substantially lower

the DIBL and increase the subthreshold slope, i.e. the on/off current ratio. Therefore, it is

a better choice for its application in low power SRAM circuits. In addition, it has a body

called ’fin’ which is perpendicular to the substrate and is generally enclosed by oxide. It

is thin and lightly doped, enabling FinFET to further suppress the SCEs and control the

process variation of the threshold voltage, which is a serious problem in bulk Si CMOS.

Basically, high on/off current ratio is the most advantage of FinFET over CMOS, due to the

better control over SCE, which provides opportunities to reduce standby power [17]. With

this advantage, in FinFET SRAM and other FinFET circuit design, people usually use back

gate control method to further improve the performance. It is a unique method for FinFET

because CMOS only has one gate. In FinFET device, the front gate and back gate can be

tied or untied. They correspond to two working mode of FinFET, Shorted Gate (SG) mode
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and Independent gate (IG) mode. SG mode enables a much larger on current of FinFET

than IG mode. However, IG mode has more flexibility. In IG mode, we are able to control

the back gate voltage. Higher back gate voltage produces higher threshold voltage and lower

back gate voltage produces lower threshold voltage. The back gate voltage can be as low

as -0.26V. If we want the circuit have high stability and low leakage current, we can set a

high threshold voltage. And if we want the circuit to have short access time, we cab set a

low threshold voltage. These properties cannot be found in CMOS. Many current creative

works in FinFET SRAM design involves back gate control. In [13], the upper front FinFET

transistor works in IG mode and its back gate voltage is set to zero to provide a high thresh-

old voltage so that the circuit has a large retention and read static noise margin.In [18], a

footer is also designed using IG mode FinFET transistor to control the standby power of

the SRAM cell in read, write and retention state. In [12] and [19], IG mode FinFET is

also implemented in novel 4T and 7T SRAM structure. In Schmitt Trigger SRAM, FinFET

in IG mode also has its application [11]. The saving of two transistors is the benefit of this

method. Thus FinFET is an ideal alternative to planar CMOS in SRAM design.

2.2 INTRODUCTION OF MULTIPORT VOLTAGE-MODE SRAM

There are generally two types of cell structure in voltage-mode multi-port SRAMs: the

double-ended structure and the single-ended structure. Double-ended structures have two

bit lines on each port and single-ended structures have only one. Figure 1 is the most

common double-ended two-port SRAM. Figure 2 is three single-ended SRAMs with two

isolated read ports. The double-ended structure can easily break the feedback loop in the

write operation using its two bit lines. Meanwhile, the single-ended structure has a short wire

delay and a small cell area, due to its single-ended bit line and word line [1]. As SRAM cells

are scaled down, single-ended multi-port SRAMs and register files with isolated read ports

become more attractive. For instance, a single-ended multi-port register file was built in the

Itanium Microprocessor [15], and a single-ended 34 bit × 64 bit 10R/6W register file was

proposed [20]. However, to avoid the longer write latency in the single-ended structure [1],
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the double-ended structure is preferred in multi-port SRAM design to provide faster access,

e.g., the register file in the AMD K7 processor [14] and the 8T double-ended two-port SRAM

cell [21]. In this paper, single-ended cells with isolated read ports are referred to as single-

ended structures. Note that the double-ended structure with isolated read ports in not

considered due to its large area overhead.

To accelerate read operations in a double-ended structure SRAM cell, we can duplicate

access transistors to compose more ports. Thus, we can read the value in one cell from mul-

tiple ports simultaneously when they are enabled. The total access time of two simultaneous

reads in the same row but not in the same cell can be reduced largely when two word lines

are enabled at the same time. However, the challenge is that the total access time of two

simultaneous reads in the double-ended structure is longer than one single read in the single-

port cell. This is because adding one read port brings another bit line to the cell, making

it more difficult to pull down the pre-charged bit lines, due to the larger capacitance.As the

number of ports increases, the read access time for simultaneous read grows. Single-ended

structures, however, do not suffer from such a problem. Due to isolated read ports, the

cell provides gate voltage to read port transistors while read port transistors do not affect

the cell. The bit line is only driven by the read port transistors instead of the cell. Since

read ports are isolated with each other, they only need to drive their own bit line, providing

equivalent driving ability for simultaneous multiple reads to one single read. As a result,

increasing ports does not increase the simultaneous read time. Furthermore, the destructive

read problem gets worse in simultaneous read operations in double-ended structures. Adding

access transistors in double-ended structures makes the internal node affected seriously by

the supply voltage of every bit line. Therefore, the single-ended structure is better than the

double-ended structure in terms of read acceleration.

For write acceleration in the double-ended structure, duplicating access transistors is

the preferred approach. However, the time of one write slightly increases in multi-port cells

because the extra access transistor adds extra capacitance to the internal node. The simul-

taneous write can occur in the same row, but not in the same cell, because it is impossible

to write multiple values into one cell in one cycle. Thus, the total write time for two si-

multaneous writes in the same row but different cells is close to the time needed for one
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single write in the single-port structure, while the total write time for two writes in the same

cell still remains the same as the total time for two writes in the single-port structure. For

the single-ended structure, the critical issue in write acceleration is the need of write-assist

structures to reduce the write access time, because the feedback loop in the single-ended

structure is strong.

A common challenge in both read and write multi-porting is the half-select problem: for a

cell in retention, the word line voltage may be high, when other cells in the same row are being

read or written to, which enables the bit line supply voltage to affect the internal node [22].

As the number of ports increases, the cell is more vulnerable to the half-selected problem. To

address the issue, a divided word line configuration was introduced to completely eliminate

the condition of disturbed access in the unselected cell using hierarchical blocks of word line

selection logics [23], to mitigate power and area overhead.

2.3 CLASSICAL 6T FINFET SRAM CELL

(a) (b)

Figure 1: (a) 6T classical SRAM cell [1]. (b) leakage current model for 6T SRAM cell [1].

To begin with the evaluation of above FinFET multi-port SRAM cells, we evaluate the

classical single-port 6T FinFET SRAM cell as a baseline. For the FinFET technology, there

are two popular models: UFDG model [24] and PTM [25]. We use the double-gate PTM

9
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Figure 2: (a) Retention and read SNM of the 6T SRAM cell. (b) Leakage current of the 6T

SRAM cell.(c) Write time of the 6T SRAM cell. (d) Critical pulse width of the 6T SRAM

cell. (e) Read time of the 6T SRAM cell. (The red curve and the blue curve fully overlap).
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22nm technology model and HSPICE as the platform in our FinFET SRAM simulations. In

our simulations, based on the equation Weff = (2×hfin+Wfin)×Nfin, where the fin height

hfin and fin width Wfin is fixed, we can change the number of fins Nfin to get a reasonable

effective channel width W .

Figure 1(a) illustrates the classical FinFET SRAM cell. Generally, cell stability, power,

and read/write performance are common metrics in evaluating an SRAM cell. Cell stability

is evaluated in terms of static noise margin (SNM) [1], measuring the DC disturbance in the

unselected condition and the read condition. It is obtained by measuring the two squares

in butterfly curves [1]. There are mainly two types of SNM that should be considered in

SRAM designs: retention SNM and read SNM. The SNM in half selected condition (half-

selected SNM) is the same as read SNM in classical FinFET SRAM. The static power, in

terms of leakage current, is mainly sub-threshold current and gate tunneling current, as

shown in Figure 1(b). In FinFET, the gate tunneling current is negligible, compared to

the sub-threshold one. Read performance is evaluated in terms of read time, which is the

time between the rise of word line and the time the sense amplifier can detect the voltage

difference of the two bit lines [26]. We evaluate the write performance using two metrics:

write time and critical pulse width. Write time is the time between half the rise of word line

and half the rise of node ‘qb’ when writing a ‘0’ [18]. Critical pulse width [27] is the smallest

word line pulse width to successfully write a ‘0’ or a ‘1’ to the cell.

Cell stability: Figure 2(a) shows the result of retention SNM and read SNM of the classical

FinFET SRAM with different cell ratios, which is the ratio of the size of the pull-down

transistor to the size of the access transistor [1]. As the cell ratio grows, the read SNM also

increases. Figure 2(a) also shows the pull-up transistors have limited impact on read SNM.

For retention SNM, it is almost independent to the cell ratio.

Power: Figure 2(b) shows the sum of two types of leakage current in this FinFET SRAM

cell, in which the sub-threshold is dominant. The sub-threshold current is proportional to

its conductance, which is proportional to the transistor width. Thus, the leakage current is

proportional to the width of the transistors.

Read time: In the simulation setup, the bit line capacitance is set based on the estimation

of a standard 128×128 SRAM array. Figure 2(c) shows the read time when we change the
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size of access transistors. We observe that read time decreases when we increase the width

of pull-down transistors (MN1 and MN2), and it increases when we decrease the width of

access transistors.

Write performance: As shown in Figure 2(c) and Figure 2(d), when we increase both the

widths of pull-down transistors, the write time and the critical write pulse becomes wider,

which is contrary to the case of read time. However, when we increase the size of access

transistors, both read and write time decreases. When the cell ratio is too small, such as

Nfin ≥ 3 for MN1/2 and Nfin ≤ 2 for MN3/4, the values of write time and the critical pulse

width are almost infinite, which means the write operation fails. Note that when evaluating

the read/write performance, we just change the size of pull-down transistors, instead of

changing cell ratio, which is not directly related to the read/write performance. Changing

the size of pull-up transistors (MP1 and MP2) has similar impact to sizing the pull-down

transistors and is not reported here.

2.4 MULTI-PORT FINFET SRAM CELLS

In this section, we present a comparison of the double-ended and single-ended FinFET

multi-port SRAM structures to the classical 6T SRAM.

2.4.1 Double-ended multi-port FinFET SRAM

In a double-ended multi-port SRAM, two extra access transistors are added to the clas-

sical FinFET SRAM cell to compose an extra port in the double-ended multi-port FinFET

SRAM cell. In this sub-section, we present simulation results of this structure comparing

this structure to the 6T cell.

Cell stability: Figure 4(a) shows the result of the retention SNM, the one-read SNM and

the two-read SNM when the width of the pull-up transistors is fixed. One-read SNM of a cell

is the SNM when there is only one read access served in the column. It may cause the half

selected condition if the read is served in another cell. Two-read SNM of a cell is the SNM

12



Figure 3: Double-ended multi-port SRAM cell with two sets of access transistors.

when there are a read access is served in this cell while there is another read/write access

is served in another port of the same cell or in another cell of the same row. In this case,

if there is a read and a write served in the same row, it is a severer half selected condition,

because the cell is disturbed simultaneously by the read word line and the write word line.

In Figure 4(a), the two-read SNM is much worse than the one-read SNM. Therefore, when

we continuously increase the number of access transistors without any additional structures

to avoid the half-selected condition, the cell becomes fragile.

Leakage current: Figure 4(b) shows that increasing the width of pull-down transistors

or access transistors leads to the growth of the leakage current. Also, the extra two access

transistors in the 8T cell compared the 6T cell contribute in higher leakage current.

Write performance and read time: In Figure 4(c) and (d), write time and CPW is

slightly larger than that of the 6T FinFET SRAM, because the two extra access transistors

brings extra capacitance to the cell, which increases the charging time. The read time of one

read in either of the ports is not included in the graph, because it is the same to the read

time in the classical 6T FinFET SRAM. However, we include the results of the read time in

simultaneous reads scenario in Figure 4(e), compared with the read time in the 6T FinFET

SRAM, which shows that the read time gets worse in the double-ended multi-port FinFET

SRAM when we simultaneously read in multiple ports.
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Figure 4: (a) SNM, (b) leakage current, (c) write time, (d) critical pulse width, and (e)

simultaneous read time of the double-ended FinFET SRAM cell with one and two sets of

access transistors; (f) retention and two read SNM and (g) simultaneous read time of three

single-ended structures;

14



(a) (b)

(c) (d)

Figure 5: (a) Single-ended multi-port FinFET SRAM cell structure 1 [1]. (b) Single-ended

multi-port SRAM cell structure 2 [1, 2]. (c) Single-ended multi-port SRAM cell structure

3 [1]. (d) Layout of structure 2 based on [3].
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2.4.2 Single-ended multi-port FinFET SRAM

In this sub-section, we introduce three different single-ended multi-port SRAM struc-

tures, as shown in Figure 5. Write-assist techniques are implemented in all these three

structures to enhance the write performance. There are four combinations for at most two

write ports and two read ports: 1R/1W, 1R/2W, 2R/1W, and 2R/2W. We compare the

simulation results of 2R/1W and 2R/2W structures, since the performance of structures

with one or two read ports is almost the same, except for leakage current, which linearly

increases as read ports increase in our simulation.

In Figure 5(a), a transmission gate is used to replace the classical nMOS access transistor,

which can write a strong ‘0’ and ‘1’ to the cell. In Figure 5(b), we use MN4 and MN5,

two nMOS transistors, to create a pseudo-double-ended structure when writing a ‘1’. In

Figure 5(c), an extra write assist transistor MN4 is added as a switch, which turns off the

feedback loop when writing ‘1’. The extra transistor is shared through a whole row, reducing

the area [2].

Cell stability: Since read ports are isolated, the retention SNM and the two-read SNM

are the same, regardless of the change in Nfin of the other transistors other than the read

port transistors. The only parameter that influences the retention SNM and the two-read

SNM is the ratio of the size of pull-up transistors to the pull-down transistors. And for these

SNMs, three structures have the same performance because they have the identical internal

structure. Figure 4(f) shows that the SNM has a peak value, which locates at the ratio range

between 1 and 1.5. This is the point that the resistance of the pull-down transistor and the

pull-up transistor is almost the same. Half-selected condition can happen in single-ended

structures when the write word line is enabled in a whole row, affecting unselected cells.

When the voltage of ‘qb’ is changing from ‘0’ to ‘1’, node ‘q’ cannot be pulled down to

ground due to the impact of the high voltage of the bit line. However, this condition rarely

happens, because of no bit line on the side of ‘qb’ causing the DC disturbance. Therefore,

we do not include the half-selected SNM of single-ended structures in this paper.

Read time: Based on simulation results, the only parameter that significantly affect the

simultaneous read time is the size of read port transistors. However, the lower transistor
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Figure 6: (a) Leakage current versus the access transistors of the three single-ended struc-

tures. (b) Leakage current versus the read port transistors of single-ended structure 1.

and the upper transistor in the read port also have minor effects as reported in Figure 4(g).

Leakage current: It is measured in the scenarios when ‘0’ or ‘1’ is stored, since the cell

is asymmetric. We only evaluate the result of changing the size of read port transistors

and access transistors in 2R/1W structures, because increasing the write port transistors

linearly increases the leakage current. In Figure 6(a) and Figure 6(b), the result shows that

when ‘0’ is stored, increasing either the size of the upper read port transistor or the access

transistors causes high leakage current. The impact of two internal inverters on leakage

current in single-ended structures is similar to that of the double-ended structure. When we

add a write port, the leakage current increases by a certain amount when ‘0’ is stored. In the

case when ‘1’ is stored, extra write ports do not impact the leakage current, since write port

transistors, which have no voltage difference between their two terminals, do not contribute

to leakage current.

Critical pulse width (CPW) and write time: They are also evaluated in the scenarios

of writing ‘0’ or ‘1’. The feedback inverter and the forward inverter have different influences

in the write performance. For each inverter, we set the size of pMOS transistor to twice the

size of the nMOS transistor. In Figure 7(a) and (e), feedback transistors seriously affect the

write time and the CPW of structure 2 and 3 when writing ‘0’. They rapidly increase to

infinity as the size of inverter increase. That is because when the feedback inverter is too

strong, the access transistor cannot pass ‘0’ to the internal node. Comparatively, the effect

when writing ‘1’ is not obvious for structure 2 and 3, because the feedback inverter is off in
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structure 3 and pseudo double-ended structure is enabled in structure 2 when writing ‘1’. In

structure 1, the transmission gate can pass either strong ‘0’ or strong ‘1’ at the cost of leakage

current. Meanwhile, for the forward inverter, when we change the size of transistors, the

change in write performance is less significant than that of the feedback inverter, because

there is no conflicts between the effect of the access transistors and the forward inverter.

However, as shown in Figure 7(b) and (f), the effect of changing the size of access transistors

is opposite to that of feedback inverters on CPW and write time. Finally, in Figure 7(c) and

(g), increasing the size of the lower transistor in the read port increases the write time and

the CPW, because the gate capacitance is increased. Compared to forward inverters, it has

a larger impact on write performance. In addition, if we add an extra write port, the write

performance is different between writing ‘0’ and writing ‘1’. It is better when writing ‘1’ and

worse when writing ‘0’. Figure 7(d) and (h) shows the write time and the CPW of the first

two single-ended structures.

2.4.3 Multi-port vs. single-port FinFET SRAMs

In this sub-section, based on comprehensive comparisons, we show that the single-ended

multi-port FinFET SRAM provides the best tradeoffs between read acceleration and the

read cell stability. Further, for less than 10% area overhead in sizing the access transistors,

it can deliver equivalent write time to all other cells.

Leakage current: As double-ended and single-ended multi-port structures have more tran-

sistors than the 6T FinFET SRAM cell, they generate more leakage current with the same

transistor size. Single-ended structure is a little worse than the double-ended one. However,

there is a method for single-ended structure to reduce the leakage current, while maintaining

the read time and write time at a reasonable level. That is to decrease the size of feedback

inverters to its minimum value. In contrast, for the double-ended FinFET SRAM structure

or the classical 6T FinFET SRAM, this approach is not feasible, because the read time and

the write time change in opposite directions when we change the internal inverters size, and

reducing the size of access transistors increases both the read time and the write time.

Read time: The read time of FinFET SRAM cells is in the order of 10−11 s. Single-ended
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Figure 7: (a) CPW of single-ended structures for feedback inverter sizing; (b) CPW of single-

ended structures for access transistor sizing; (c) CPW of structure 2 for read port transistor

sizing; (d) CPW of structures 1 and 2 (1–2 write ports) for access transistor sizing; (e) Write

time of single-ended structures for feedback inverter sizing; (f) Write time of single-ended

structures for access transistor sizing; (g) Write time of structure 2 for read port transistor

sizing; (h) Write time of structures 1 and 2 (1–2 write ports) for access transistor sizing.19



multi-port FinFET SRAM is the best candidate in multi-port FinFET SRAM structures for

getting the similar read time of classical 6T FinFET SRAM cell. There are two advantages

of single-ended structures regarding to read operations. The first one is that, regardless

of the number of read ports added, the simultaneous read time is identical to that of the

single-ended structure with only one read port. The other advantage is that we only need

to select proper sizes of transistors for read ports to ensure the reasonable read time in

single-ended structure while maintaining leakage current and cell stability. In double-ended

structures, the read time is related to internal transistors and access transistors. In order

to make the simultaneous read time close to the read time in classical 6T FinFET SRAM

cell in the double-ended structure, we should increase the size of access transistor, which

seriously increases power and decreases cell stability.

Cell stability: For retention SNM, the result of the multi-port structures is similar to

that of 6T FinFET SRAM. The difference is in read SNM. In the single-ended multi-port

structures, we can easily achieve the same read SNM as retention SNM, because of the

isolated read ports. In the double-ended structure, the simultaneous read SNM is worse,

compared to the single-ended structure, due to the isolated read port in the single-ended

structure. Meanwhile, in the single-ended structures, the half selected condition decreases

its cell stability and make it worse than that of the double-ended structure, because there

is almost no DC disturbance on ‘qb’ node while in the double-ended structure. The half

selected SNM is much worse as the number of ports increases in single-ended structures.

Write performance: Both CPW and write time is in the order of 10−11 to 10−12 s in all

the structures simulated with the FinFET models. We observe that in Figure 4(c) and (d),

increasing the ports of write and read does not have a significant impact on the write time

in both double-ended and single-ended multi-port structures. And we should set the size of

access transistors in single-ended structures to 2 to 3 times that of double-ended structures,

or make the feedback inverter of single-ended structures even smaller, in order to achieve

the same write performance of the double-ended structure. For example, consider the layout

of structure 2 with one isolated read based on the classical 6T cell [3] in Figure 5(d), where

sizing the access transistors three times adds 9% area overhead.
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2.4.4 Comparison with corresponding CMOS SRAM cell

Last but not least, we also did the simulation of the classical 6T SRAM, the double-

ended structure and one of the single-ended structure in planar CMOS to obtain the visual

result of the improvement of performance that FinFET provides. To make the result more

comparable, the model we use is the PTM 22nm high power CMOS model compared with

the 20nm length PTM double-gate model used in FinFET multi-port SRAM design. The

voltage supply for CMOS model is 0.9V, which is equal to the supply voltage in FinFET

multi-port SRAM. The channel width we choose is 66nm, because according to the equation

W=(2*Wfin+Tfin)*Nfin and the model data, the channel width of FinFET with a single

’fin’ is 70nm.

Table 1: Comparison of the performance of single-port and multi-port SRAMs by using

FinFET and CMOS

CMOS FinFET

Retention SNM 0.244V 0.283V

classical 6T SRAM Read SNM 0.072V 0.097V

leakage current 6.76× 10−8A 2.58× 10−8A

double-ended multi-port SRAM two read SNM 0.010V 0.068V

single-ended multi-port SRAM 1 leakage current(’0’ stored) 2.56× 10−7A 9× 10−8A

leakage current(’1’ stored) 5.49× 10−8A 2.06× 10−8A

single-ended multi-port SRAM 2 leakage current(’0’ stored) 1.52× 10−7A 6.51× 10−8A

leakage current(’1’ stored) 5.49× 10−8A 2.06× 10−8A

Result shows that the read and write performance are not improved a lot, because the

total parasitic capacitance of a FinFET transistor is of the same order of magnitude. There-
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fore, we do not put it in table 1. However, as table 1 shows, the cell stability (represented

by retention and read static noise margin) and the leakage current are improved. That re-

sult proves that FinFET can to some degree suppress short channel effect and increase the

subthreshold slope.

2.5 SUMMARY

Our evaluations of read and write acceleration in different multi-port FinFET SRAM

structures illustrate the impact on read/write performance, leakage current, and cell stability.

Based on simulation results with the PTM FinFET model, single-ended multi-port FinFET

SRAM with isolated read ports is a good choice for multi-port design, since for similar leakage

current, write time, and 9% area overhead, it performs better in read operation, offers higher

flexibility in the configuration of read acceleration, and provides better cell stability than

double-ended multi-port FinFET SRAM. In addition, we also can conclude that FinFET is a

good alternative to CMOS in designing SRAM due to its better stability and lower standby

power consumption.
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3.0 FINFET MULTI-PORT CURRENT-MODE SRAM

Current-mode SRAMs are advantageous over conventional voltage-mode SRAMs since

they avoid the full-swing of the bitlines, improving performance and reducing power. How-

ever, this comes at the cost of bitline voltage drop, which compromises cell stability. We

propose two methods implemented by IG mode FinFET to solve this problem without adding

area overhead. One method is to create a feedback between the bitlines and the access tran-

sistors with a structure of NAND function using high-Vt and low-Vt FinFET transistors. The

other method is to substitute the SG mode access transistors with IG mode transistors and

tie the back gate to the ground. We then evaluate the performance of them and use one of

them in the multi-port current-mode SRAM design.

3.1 INTRODUCTION OF CURRENT-MODE SRAM

Using only FinFET in multi-port voltage-mode SRAM design is not enough to reduce

the read and write access time of each port within the cell because it cannot reduce the total

parasitic capacitance of the cell. The current-mode SRAM rather than traditional voltage-

mode SRAM can solve this problem [28]. The most critical factor that influences the access

time is the time for the bitline value to be charged and discharged. In writing, one of the

bitlines should be charged to ’1’ and in reading, both of the bitlines should be charged to ’1’

and then one of the bitlines should be discharged. Fully charging and discharging the large

bitline load requires a good amount of time. Using a large driver helps to some extent, but

the problem is shifted to the driver. Therefore, current-mode SRAM, which does not need

full swing of the bitline, can provide an alternative to achieve these objectives.
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(a) (b)

Figure 8: (a) SRAM with current-mode write. (b) SRAM with current-mode read.
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Figure 8(a) is an SRAMwith current-mode write and voltage-mode read. A current-mode

write circuit generally consists of two back-to-back inverters as the voltage-mode SRAM does,

a write driver circuit and a bitline load cicuit. The function of the bitline load circuit is to

clamp the bitline voltage close to VDD, avoiding voltage drop on it. One column of the

memory array only has one load circuit and one write driver circuit. A more complicated

write driver circuit is proposed in [29]. It contains a current conveyor that can create

equivalent voltage on the two terminals of the cell so that current difference on the bitline

can be injected into the back-to-back inverters. The basic idea of the current-mode SRAM is

to initially bias the back-to-back CMOS inverters of the memory cell in the transient region

to increase their voltage gain. Then the write driver creates a small voltage difference on the

bitlines. The voltage difference causes different currents to be injected into the cell, which

will be amplified to the full CMOS voltage due to the back-to-back inverters in their transient

region. The voltage difference can be as low as a few milivolts when the supply voltage is

1.2V or 0.9V. For the same load capacitance, the charging or discharging time of the current-

mode SRAM can be less than 1/10 of that of the traditional voltage-mode SRAM. Therefore,

current-mode SRAM will certainly decrease the write dynamic power consumption of the

memory at the cost of larger area in its write driver and bitline load circuit. There are also

methods for current sensing in read circuits as shown in Figure 8(b). The sensing scheme is

similar to that in write circuit, which is to convert the voltage difference of the internal node

into different current on the bitline. The sense amplifier, which contains two back-to-back

inverters, injects different currents and the internal two nodes are amplified to full CMOS

voltage.

3.2 THE WORKING PRINCIPLE AND THE CHALLENGES OF

CURRENT-MODE SRAM

Figure 9 shows the write circuit of the original current-mode SRAM we use in our design,

i.e., connecting the bottom right red box to the cell [28], since the challenges and the innova-

tions are both on the write circuit. It is the fundamental part of the multi-port current-mode
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Figure 9: The proposed write circuit

SRAM [4]. The write operation can be performed within two phases: equalization and eval-

uation. In equalization, two storage nodes are equalized to an intermediate voltage and a

current difference is generated on the two bitlines by switching either M9 or M10 on. Then,

in evaluation, one of the storage nodes is set to ‘0’ while the other is set to ‘1’ by using

the current difference on bitlines. One of the issues in this design is that the voltage of the

bitline WBL is pulled down to a certain point when W9 is on, and other cells in the same

column may be unstable if this voltage drop is greater than the threshold voltage of M2 in

those cells, due to the sharing bitline.

3.3 OUR NOVEL FINFET CURRENT-MODE MULTIPORT SRAM

One novel method we propose aiming to address the challenge is shown in Figure 9.

The top red box is the feedback circuit in planar CMOS, which is similar to a NAND gate.
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The difference between them is that its supply voltage is provided by the bitline. The idea

behind this design is to use the bitline voltage to control the gate voltage of the write access

transistor, M9. If voltage drops at the bitline, the gate voltage of M9 drops and results in

a large resistance that prevents the bitline voltage from further dropping. To reduce the

number of transistors, we use the transistor merging technique, which is a unique feature

of FinFET. M17 and M18 can be replaced by a low-Vt transistor (M19) with back gate

control; M15 and M16 can be replaced by another high-Vt transistor (M20) [30]. That

can be done because high-Vt transistor will have low resistance if and only if both of the

gates are activated and low-Vt transistor will have low resistance if either of the gates is

activated.Those are similar to an AND function and an OR function, and therefore, a low-Vt

FinFET transistor can replace two transistors in parallel and a high-Vt transistor can replace

two transistors in series. Thus, this FinFET design not only adds no extra transistors, but

also avoids using large transistors for the PMOS load transistors (M6, M7, and M8). [30]

proposes a method to build high-Vt and low-Vt FinFET transistors. The threshold voltage

of a FinFET threshold voltage is approximated by

Vt = −ϕms +
QD

Cox

+ Vinv + V QM − V SCE (3.1)

V SCE models the short channel effect, and ϕms is the potential difference between electrode

and silicon. A high threshold voltage can be achieved only by manipulating the ϕms and

V SCE terms. V SCE is mainly governed by the thickness of silicon. Therefore, decreasing

work function and tsi can increase the threshold voltage. Our simulation is based on the

range of those two parameters given in this paper and hence it is convincible.

Another method that we propose to avoid voltage drop on the bitline is to directly

increase the on resistance of the bitline. This method is impossible in CMOS because the

size of the transistor is in its minimum. However, in FinFET, we can use back-gate control

to satisfy this requirement by decreasing the back gate voltage to increase the threshold

voltage of the transistor. Figure 10(a) shows the method.

In fact, this method often performs better than the previous method because the bitline

voltage of the former can be higher than that of the latter when all of the transistors are

of normal size as shown in Figure 10 and the parameters of FinFETs in IG mode including
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(a)

(b)

Figure 10: (a) The proposed current-mode SRAM with feedback in the write driver circuit.

(b) The proposed current-mode SRAM with IG mode access transistors.
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M9, M10 in Figure 10(a) and M11, M12, M13, M14 in Figure 10(b) are in the permitted

range [30]. That is because in Figure 10(a), when the back gate of M9, M10 is tied to

ground, the on resistance of that transistor is much bigger than a SG mode transistor, thus

occupying more voltage drop. However, that case causes the decrease of bitline current,

which reduces the speed of discharging one of the bitlines to create the difference of bitline

voltage. However, in simulations we found that the magnitude of the voltage difference does

not affect the speed of settling down of the voltage of the internal two nodes in evaluation

stage when the lower one of the two bitline voltages is less than 1.1V for a supply voltage

of 1.2V. If the evaluation stage starts when one of the bitline voltages discharges to above

1.1V, method 1 is a better choice.

Furthermore, in simulation of both the structures in Figure 10(a) and 10(b), the internal

node that should settle down to 1.2V cannot reach this voltage unless the write enable signal

is disabled because the voltage of the bitline on this side is somewhat less than 1.2V, and

the transistor M8 in both structure equalizes the bitline voltage. That stops the use of the

voltage of the internal node. Therefore, we eliminate M8 to de-equalize the bitline voltage.

Although that will decrease one of the bitline voltages, we can use the two methods described

in Figure 10 to compensate in practice.

For multi-port current-mode SRAM design, we choose the second structure as an ex-

ample. Figure 11 shows the two-port current-mode SRAM. M9 and M10 are two IG-mode

transistors, which combine two access transistors together in order to save area. The more

ports there are, the more area can be saved. The performance of this two-port current-mode

SRAM is like the structure in Figure 10(b) because when one port is disabled, the corre-

sponding gate should be tied to ground. In [4], there is another method that has been

proposed for multi-port design. This design also can save area because three ports share one

access transistor. However, the number of ports tied to one transistor cannot be too large

because the bottom enabled transistor should discharge all the nMOS transistors above it to

make the gate voltage of the access transistor return to ground level, causing long latency of

write. For our viewpoint, we can combine this method and the method in Figure 11 to design

multi-port current-mode SRAM. In addition, as Figure 12 shows, the IG mode transistor

can be implemented in this fashion to save area.
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Figure 11: Proposed two-port current-mode SRAM.
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Figure 12: Using the merging transistors technique of FinFET to save area in the current-

mode multi-port register file [4].

3.4 RESULT

Table 2 shows the result of the bitline that is pulled down by the corresponding open

access transistor for the original circuit, method 1 and method 2. In simulation, transistor

M8 is open to raise the voltage of the other bitline so that the internal node that should

settle to ‘1’ can quickly reach the final voltage after the write-enable signal is disabled. For

example, for the condition of 40nm width for load transistors, using Method 1 with M8

closed, before when write-enable signal is enabled, the internal node with high voltage will

be settled to 1.03V while without M8 closed, this node will be settled to 1.10V. Therefore,

the time for the latter structure to settle down to 1.2V is much shorter than that of the

former one. However, as table 2 shows, the voltage drop is bigger when M8 is open. That

drop can be larger than the threshold voltage to cause the serious problem as mentioned

when the bitline is below 0.89V with 1.2V as the supply voltage since the threshold voltage

for UFDG transistors is 0.31V. Method 1 and Method 2 can prevent this phenomenon from

happening when the width of load transistors of Method 1 is greater than 80nm and that

of Method 2 is greater than 40nm. In Method 2, we use different thickness of silicon in

the access transistors (Tsi) to simulate since it directly affects the threshold voltage of those
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Table 2: voltage drop on the bitline using original circuit, Method 1 and Method 2 when the

width of load circuit is 40nm, 80nm and 200nm

40nm 80nm 120nm

M8 is closed Original structure 0.72V 0.92V 1.1V

Method 1 0.92V 1.02V 1.12V

Original structure 0.488V 0.85V 1.06V

M8 is open Method 1 0.857V 0.974V 1.108V

Method 2(Tsi=0.014µm) 0.963V 1.084V 1.129V

Method 2(Tsi=0.005µm) 1.1V 1.12V 1.14V

transistors. Results in the table shows even if we choose the thickest one, the performance of

that is better than Method 1. We also simulate the corresponding multi-port current-mode

SRAM with two ports using the methods in Figure 11 and 12 (left circuit) respectively.

The time for their bitline voltages to settle down in equalization stage is almost the same

as the time of Method 2 used in single-port current-mode SRAM design. When using the

right circuit in Figure 12 to mix transistors, the settled bitline voltages will be higher than

the previous two methods, but that does not affect the settling down of the internal nodes

in the following evaluation stage. As a result, we must choose a better structure, suitable

parameters and sizes of the transistors to both avoid the bitline voltage to decrease by more

than the threshold voltage of the top transistor and maintain the speed of equalization and

evaluation stage.
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3.5 SUMMARY

This chapter gives two methods with FinFET to relieve the voltage drop problem on

bitlines of current-mode SRAM. One method is to create a feedback loop to prevent the

voltage from further dropping. The other is to tie the back gate voltage to ground to

directly increase the resistance of the access transistors to control the voltage drop. The first

one has the advantage of flexibility, and the second one mostly have less voltage drop than

the first one but with less flexibility.
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4.0 1R/1W TWO-PORT PCM CELL

In this section, we will talk about the one read and one write two-port PCM cell that we

designed. This two-port PCM cell is a novel structure because its two access transistors are

tied to the bitlines instead of the ground. The advantage of this cell is to reduce the read

conflicts with write request at the bank level in the network memory.

4.1 INTRODUCTION OF PHASE-CHANGE MEMORY

Phase-change memory (PCM), an emerging non-volatile memory, simply consists of two

components, an access transistor and the chalcogenide material as the storage unit (GST).

Generally, both CMOS transistor and PN diode can be used as the access transistor. Diode

is sometimes a better choice because of its high effective current flow [31]. We need high

current in write operation, and to produce such high current, CMOS transistor is not always

stable. The GST can be programmed into two states: crystalline and amorphous.These

two states are characterized by remarkably different resistance levels, where the amorphous

chalcogenide material has the high resistance, usually in the MΩ range, and the crystalline

state chalcogenide material has the low resistance, usually in the kΩ range [32].

There are three primary operations integral to the use of PCM in a modern memory

system: read, SET, and RESET. The read operation loads the data from the memory to

the processor or the cache hierarchy. The SET operation writes the bit ‘1’ to the memory

cell, i.e., the SET operation changes the state of the chalcogenide material in the cell to

amorphous. In contrast, the RESET operation writes the bit ‘0’ to the memory cell by

changing the state of the chalcogenide material in the cell to polycrystalline.
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A PCM cell can be read by simply sensing the current flow. Due to the large gap between

the two resistance levels of the chalcogenide material, the sensing current flows of these two

states differ by 3 or more orders of magnitude. The latency of the read operation in PCM

cells is typically tens of nanoseconds.

In the write operation, the programming circuit of PCM applies different heat-time pro-

files to switch cells from one state to another. To RESET a PCM cell, a strong programming

current pulse of short duration is required. The temperature of the chalcogenide material is

raised by this programming pulse. After the chalcogenide material reaches the melting point,

typically higher than 600◦C, the programming pulse is quickly terminated. Subsequently,

the small region of melted material cools quickly, resulting in the chalcogenide material pro-

grammed into the amorphous state. Since the region of the melted chalcogenide material

is smaller, the required duration of the RESET programming pulse is short, about tens of

nanoseconds. Thus, the RESET latency is typically similar to the read latency [33].

In contrast, to SET a PCM device, a long programming current pulse, which is weaker

than the RESET programming current, is applied to program the cell from the amorphous

state to the polycrystalline state. In the SET operation, the temperature of chalcogenide

material should be raised above its crystallization temperature but below the melting point

for a sufficient amount of time. As the crystallization rate is a function of temperature, given

the variability of PCM cells within an array, reliable crystallization of PCM cells requires a

programming pulse of hundreds of nanoseconds in duration [33]. Therefore, the SET latency

is much larger than both the RESET latency and the read latency.

Phase-change memory has its priorities. As a non-volatile memory, the data retention

time can be several months to even several years according to the capacity, the memory

architecture and the number of write launched for PCM. Furthermore, scaling is not a big

problem in PCM because the phase change materials (GST) undergoes excellent intrinsic

scaling properties. Ultra-thin (up to 3 nm thick) phase change materials have also been

shown to exhibit excellent data retention and cycling characteristics.
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4.2 PCM METHODOLOGY AND ITS CHALLENGES FOR NETWORK

PROCESSING

Modern network devices such as Internet routers have become highly dependent on scal-

able memory architectures. A large amount of data needs to be moved and managed in such

devices, requiring significant memory capacity and bandwidth that increases with the line

rate [34]. Therefore, memory systems in network devices must be capable of supporting fast

read and write accesses at line rates, while also offering a large memory space necessary to

maintain large data structures. DRAM has played a major role in supporting the demands

on memory capacity and performance for network processing, largely in the form of hybrid

SRAM/DRAM packet buffer [35, 36] and virtually pipelined memory architectures [37, 34].

However, scaling DRAM below 22nm is currently unknown [38], which makes DRAM less

suitable for network processing in the “big data” era.

PCM, which has shown its scaling advantage, offers read latency close to that of DRAM

and is a promising candidate to fill this scalability gap. Unfortunately, PCM is an asym-

metrical read-write technology with a write latency is much longer than that of DRAM.

The long write latency, usually 5–10× the read latency [39, 40], significantly increases bank

conflicts over DRAM. To make things worse, read requests are latency critical in networking

applications and cannot be scheduled with buffers like write requests. When PCM is used

to implement virtually pipelined network memory, the long write latency of PCM requires

longer fixed pipeline delay for both reads and writes. Simply put, the fixed pipeline delay is

a linear function of PCM write latency (at least 10× equivalent DRAM pipelined memory).

Thus, the asymmetrical write/read latency inherent to PCM remains the biggest challenge

that has to be overcome in order to realize scalable PCM network memory.

4.3 TWO-PORT PCM CELL: MOTIVATION AND DESIGN

To solve the problem of asymmetrical write/read latency inherent to PCM for the net-

work processing applications, we separate the write and read port. The two-port PCM cell
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significantly reduces the probability of blocking at the bank and architecture levels and ac-

celerate the read and write operation at the cell level because it bears the ability of serving

simultaneous read and write at the cost of total area overhead. we will present necessary

methods, such as voltage pumping and transistor size selection, to maintain the program-

ming/sensing current requirement in dual- porting. We will also estimate the area overhead

of the proposed cell design, and discuss the tradeoffs between area overhead and voltage

pumping.

Our basic two-port PCM memory cell, which is illustrated in Fig. 13(b), consists of

two access transistors and a GST storage material. Two bitlines and two wordlines are

connected to two access transistors to compose a two-port (1R1W) design. One of these

two ports supports only reads, while the other supports only writes. The two transistors are

located at the crosspoints of bitlines and wordlines. Note that the figure illustrates our high

performance cell with pMOS access transistors in the read and write ports; the use of nMOS

access transistors as well tradeoffs to reduce cell area and lower power are discussed later in

this section.

We have used SPICE simulations to validate the two-port PCM cell with the Predictive

Technology Model (PTM) model for the access transistors [41]. In order to evaluate the

PCM cell, we model the I-V curve of the GST in Verilog-A with the data from [39, 42]. The

I-V curve is implemented in a lookup table approach. We set the Ovonic threshold switching

(OTS) point as IOTS = 10µA, VOTS = 1.14V . We use a quadratic function to represent the

curve when I < IOTS, and a linear function when I > IOTS, as illustrated in Fig. 13(c).

The quadratic function represents the amorphous state and the linear function represents

the crystalline state. The OTS point means if the current rises up to this point, the GST

will change its state from amorphous to crystalline.

Since we place access transistors on the top of the GST, we expect that the voltage of

bitlines needs to be increased in order to get the equivalent current when the cell is accessed.

As voltage pumping for write access is common in PCM [39, 43], increasing the voltage

in the write port is a practical approach for the two-port PCM cell. We summarize our

results in Table 3, which indicates that the two-port PCM cell can achieve equivalent write

performance to a conventional single-port PCM cell — 700µA set current and 1000µA reset
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Figure 13: (a) The conventional single-port PCM cell, (b) the proposed two-port PCM cell,

and (c) I-V curve of the GST model (d) PCM cell layout
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Table 3: Voltage pumping for the write port

90nm 65nm 45nm 32nm

Classical 4.06V 4.41V 4.75V 4.94V

VWBL pMOS 5.63V 5.52V 5.41V 5.16V

nMOS 4.39V 4.39V 4.39V 4.4V

Classical 2.56V 2.91V 3.25V 3.44V

VWWL pMOS 1.5V 1.5V 1.5V 1.5V

nMOS 2.87V 2.87V 2.87V 2.9V

current [39] — by boosting VWBL in the write port from 4.06V to 5.63V in 90nm technology.

Note that we use the 90nm PTM model as the reference to enable a fair comparison, since

it is the closest model in PTM to the 100nm technology in [39]. We also set the W/L ratio

of both pMOS and nMOS in our two-port cell to 4, while the nMOS in the classical PCM

has the W/L ratio of 5. The advantage of W/L=4 for nMOS/pMOS is reduced cell size

(60F2 versus 72F2). The tradeoff is an increase in VDD (by 3.8%) to provide sufficient

programming/sensing current using voltage pumping. We will discuss the tradeoff between

the size of access transistors and the required voltage pumping in details later. Higher VWBL

is needed in pMOS to provide required set/reset programming current than that of nMOS,

which can be achieved by voltage pumping. We also observe that the VWBL necessary for

the pMOS write access transistor decreases as the technology scales down, while the VWBL

for nMOS write access transistor increases. Moreover, in the write operation, both VWBL

and VWWL of the nMOS access transistor need to pump to a certain level. Note however

that after the write operation, the punch-through effect may occur if VWWL drops before

VWBL. Thus, when using nMOS write access transistors, a voltage pumping control circuit

is necessary to avoid the punch-through phenomenon. For this reason, we believe that using

pMOS write access transistors is more practical than using nMOS write access transistors.

Meanwhile, in the PCM read operation, the read current should simultaneously be large

enough to enable detection and small enough to avoid disturbance. Thus, in the conventional
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single-port PCM cell, the VRBL of bitline is set to 0.6V in the read operation. We investigate

the extra voltage needed for the read port of our two-port PCM cell to obtain equivalent

performance to [39], which is 5µA read current in amorphous state. We also summarize

the results in Table 4, showing that the necessary VRBL is 0.92V, compared to 0.9V in

conventional cell, and pMOS transistor needs lower VRBL and VRWL than that of nMOS to

ensure required read current. Since pMOS requires lower VRBL than nMOS in read port, we

select pMOS as the access transistor for the read port. It is worth mentioning that since the

required VWBL of nMOS in the write port is significantly lower than that of pMOS, nMOS

can be used to design a low power two-port PCM cell.

Table 4: Voltage pumping for the read port

90nm 65nm 45nm 32nm

Classical 0.9V 0.9V 0.9V 0.91V

VRBL pMOS 0.92V 0.93V 0.95V 0.97V

nMOS 1.5V 1.51V 1.52V 1.52V

Classical 0.6V 0.6V 0.6V 0.61V

VRWL pMOS 0.3V 0.3V 0.3V 0.3V

nMOS 1.2V 1.21V 1.22V 1.22V

Finally, we estimate the cell size of our two-port PCM cell by following the cell area

model [44, 45]. The actual size of the pMOS is 2F ×(W/L)F. Including the isolation area,

the memory cell size in the two-port PCM cell configuration is 6 × 2(W/L + 1) = 60F2

(0.486µm2) in 90nm technology, shown in Fig. 13(d). For a fair comparison, we estimate the

cell size of the design in [39] with the cell area model in [44]. The estimated cell size is 18F2

(0.18µm2). Thus, the area overhead of our proposed two-port PCM cell is 1.7×, compared

the single-port PCM cell in [39]. We also compare the tradeoff between voltage pumping and

the size of pMOS access transistors, as illustrated in Table 5. When access transistors have

the W/L ratio of 3, which means the cell size is 48F 2 , the required VDD is 5.97V/0.93V for

the write/read port, compared to 5.63V/0.92V with access transistor of W/L = 4. Thus, if

scalability is more important than power consumption, smaller access transistors should be

selected; otherwise, larger access transistors can reduce power consumption.
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Table 5: Voltage pumping and access transistors size

W/L 90nm 65nm 45nm 32nm

Write 4 5.63 5.52V 5.41V 5.16V

VDD 3 5.97V 5.79V 5.55V 5.33V

Read 4 0.92V 0.93V 0.95V 0.97V

VDD 3 0.93V 0.94V 0.97V 0.99V

4.4 TWO-PORT PCM CELL FOR NETWORK MEMORY

After talking about the detailed design of the two-port PCM cell, we finally go to the

architecture level and describe how the cell reduces the read delay of the memory banks [46].

Based on our proposed two-port PCM cell, we further two-port the PCM bank, as illus-

trated in Figure 14(c), which organizes two-port PCM cell arrays in blocks. The separate

read/write port of the bank can significantly reduce the delay of a read/write request, due

to reduction in the number of bank conflicts.The two-port PCM cell arrays, as shown in

Figure 14(b), are organized in banks such that a block consist of four cell arrays. The write

current driver circuits with charge pumps are connected only to the write port bitlines, while

the read sense amplifier circuits only serve the read ports Figure 14(c). At the bank level, we

use a write buffer to queue write accesses. When a read access is issued to a PCM bank, the

memory controller of this bank first checks the write buffer to see if there is a pending write

to the same row in the write buffer, or if a write has been issued to the write port. In either

case, data forwarding is implemented and the read access is serviced without accessing the

cell array. Thus, as long as the write buffer does not overflow, write requests can be buffered

and retired without blocking any read request. Meanwhile, when a write request is blocked

by an ongoing read access to the same page, the write request remains in the write buffer

until the read is completed. Since the read latency of PCM is 5−10× smaller than the write

latency of PCM, this blocking is insignificant to the performance of network memory.
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Figure 14: Proposed two-port PCM-based network memory: (a) cell schematic, (b) cell

array, (c) two-port PCM bank, and (d) virtually pipelined memory architecture.
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At the highest level, the virtually pipelined PCM memory is implemented as illustrated

in Figure 14(d). It consists of a random address remapping function, a pair of reservation

tables, the read/write request buffers, and the read/write tracking lookup table. The random

address remapping function is realized to increase the bank parallelism. The dual-reservation

table is to ensure there are no read request penalized. The write reservation table has 5−10×

entries that of the read one.We use buffers to queue the requests to each PCM bank. A write

request buffer and a read request buffer, which are realized by SRAM, are associated to the

corresponding ports of each PCM bank, to provide the fast network processing throughput.

We also implement the write and the read tracking lookup table by using content addressable

memory (CAM) for tracking the latest data update of a given memory address.

Our simulation framework considers three different applications: IP Security Protocol

(IPSec), Flow Classification (flow class), and a IPV4 packet forwarding applications (IPV4-

radix) from PacketBench [47]. These three applications represent various network processing

applications: IPSec reads and modifies the packet payload, flow class is a classic network

monitoring application, and IPV4-radix represents the most common applications in network

processing: packet forwarding.

We simulate the network processor on the SimpleScalar simulator configured for an ARM

core at 667MHz [48] and a 256-bank memory. The write/read latency of DRAM and the

read latency of PCM are set to 40ns, and the write latency of PCM is set to 200ns. We

use the traces collected from CAIDA’s Equinix-Chicago monitor in 2003, 2008, and 2011.

In our simulation, we compare the performance of three pipelined memory architectures:

single-port DRAM, single-port PCM and our proposed two-port PCM, by evaluating four

different metrics: memory access rate, port utilization, average number of waiting request,

and the average delay.

Simulation results show that this memory architecture can reduce the expected read

(write) delay by 12–40× (up to 14%) over conventional single-port PCM for 1.1–1.7× over-

head. And the sum of the number of waiting requests in the write/read ports is only 33.1%

to 49.8% as many as that of the single port PCM.
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4.5 SUMMARY

We proposed and comprehensively evaluated the two-port PCM cell design in terms of

programming current, necessary voltage pumping for access transistors, and area overhead.

We conclude that both pMOS and nMOS on top is suitable for two-port design in the normal

working situation of the access transistor. pMOS on top is better than nMOS on top due to

its less pumping voltage when other parameters are the same. Analysis done in architecture

level shows that this 1R1W PCM substrate can significantly reduce the expected delay of a

read access for networking applications. Furthermore, it also reduces the number of waiting

requests at the bank level, leading to a smaller buffer size.

44



5.0 CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

In recent years, scaling down of transistors and the higher requirements on the perfor-

mance such as power, area and speed pose great challenges on the design of memories. In this

thesis, we describe and evaluate novel memory designs for multi-port on-chip and off-chip use

in advanced computer architectures. Multi-porting is essential for caches and shared-data

systems. It can significantly increase the memory access throughput.

For on-chip memories, several FinFET multi-port SRAMs are proposed. Our evaluations

of read and write acceleration in those different structures illustrate the impact on read/write

performance, leakage current, and cell stability. Based on simulation results with the PTM

FinFET model, single-ended multi-port FinFET SRAM with isolated read ports is a good

choice for multi-port design, since for similar leakage current, write time, and 9% area

overhead, it performs better in read operation, offers higher flexibility in the configuration

of read acceleration, and provides better cell stability than double-ended multi-port FinFET

SRAM. Compared with corresponding CMOS SRAMs, FinFET SRAMs displays a better

performance in stability and standby power due to its advantage of suppressing short channel

effect.

Besides using FinFET in voltage-mode multi-port SRAM design, we also propose two

novel structures in current-mode multi-port SRAM and IG mode FinFET is also applied by

merging parallel transistors to save area and improve the performance. The problem of the

voltage drop on the bitline is substantially improved. When the width of load transistors

is 40nm, Method 1 produces 41.67% reduce on the voltage drop with transistor M8 on

and 51.8% reduce with M8 off. Method 2 usually even performs better than Method 1.
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Furthermore, multi-porting by merging IG mode transistors to reduce area does not affect

much on the speed of write access.

For off-chip memories, a two-port non-volatile PCM is proposed. Instead of the tradi-

tional structure with the access nMOS transistor at the bottom, we put the access transistor

on the top and compare the performance of both nMOS and pMOS transistor as the access

transistor. We comprehensively evaluated the two-port cell design in terms of programming

current, necessary voltage pumping for access transistors, and area overhead. We come to

the conclusion that the pMOS access transistor on the top is more favorable because it re-

quires less supply voltage and write driver voltage in most technologies we use. Compared

with the single-port cell, the two-port cell only has an 1.7× increase on the area overhead.

Analysis done in architecture level shows that this 1R1W PCM substrate can significantly

reduce the delay of a read access for networking applications. Furthermore, it also reduces

the number of waiting requests at the bank level, leading to a smaller buffer size.

5.2 FUTURE WORK

Spin-transfer torque random access memory (STT-RAM) is another off-chip non-volatile

memory as PCM. Although extensive research has been performed on this memory, multi-

port STT-RAM has not been proposed yet. Multi-porting the STT-RAM can relieve its

shortcoming of long write access latency overhead. Correct modeling MTJ (the storage

component) is challenging because the state of the MTJ will change if the density of current

reaches the critical values. PCM and STT-RAM has similar cell structures. Therefore, we

also can design multi-port STT-RAM using the design approach similar to that described in

this thesis.

Another direction for further research is the use of FinFETs to improve the design of

multi-port Schmitt-Trigger SRAM. Schmitt-Trigger SRAM has an outstanding advantage

over traditional 6T SRAM by its cell stability, but the cost is its large area. The key idea is

to reduce the area by mixing two SG FinFET transistors into one IG mode transistor, and

by extending this to every port.
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