252 research outputs found

    STUDY OF FULLY-INTEGRATED LOW-DROPOUT REGULATORS

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the introduction of fully-integrated low-dropout regulators (LDOs). Recently, for the mobile and internet-of-things applications, the level of integration is getting higher. LDOs get popular in integrated circuit design including functions such as reducing switching ripples from high-efficiency regulators, cancelling spurs from other loads, and giving different supply voltages to loads. In accordance with load applications, choosing proper LDOs is important. LDOs can be classified by the types of power MOSEFT, the topologies of error amplifier, and the locations of dominant pole. Analog loads such as voltage-controlled oscillators and analog-to-digital converters need LDOs that have high power-supply-rejection-ratio (PSRR), high accuracy, and low noise. Digital loads such as DRAM and CPU need fast transient response, a wide range of load current providable LDOs. As an example, we present the design procedure of a fully-integrated LDO that obtains the desired PSRR. In analog LDOs, we discuss advanced techniques such as local positive feedback loop and zero path that can improve stability and PSRR performance. In digital LDOs, the techniques to improve transient response are introduced. In analog-digital hybrid LDOs, to achieve both fast transient and high PSRR performance in a fully-integrated chip, how to optimally combine analog and digital LDOs is considered based on the characteristics of each LDO type. The future work is extracted from the considerations and limitations of conventional techniques.clos

    A Silicon Germanium CMOS Linear Voltage Regulator for Wireless Agricultural Applications

    Get PDF
    This thesis presents the design, simulation and test results of a silicon germanium (SiGe) complementary metal-oxide-semiconductor (CMOS) linear regulator. The objective of the circuit is to power other analog devices regardless of the load current and input voltage changes. The application of this regulator is to be part of a project developing a miniaturized semiconductor platform that can be inserted into stems of crops in order to measure data inside the plant and then send it wirelessly to the user. The linear regulator was designed on a BiCMOS SiGe 0.13µm which is a GlobalFoundries process. It has been tested at room temperature and at 85 ºC with a supply voltage of 2.5 V and it holds an output of 1.2 V. The device demonstrates line regulation of 5 % and load regulation of 0.19 % as well as rejection of the power supply satisfying the specifications proposed

    FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

    Get PDF
    A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of 433.80 μV/mA and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of 1 μs. The total current consumption is 17.88 μA (for a 0.9 V supply voltage).Ministerio de Economía y Competitividad TEC2015-71072-C3-3-RConsejería de Economía, Innovación y Ciencia. Junta de Andalucía P12-TIC-186

    Full On-chip low dropout voltage regulator with an enhanced transient response for low power systems

    Get PDF
    A full on chip low Dropout Voltage Regulator (LDO) with fast transient response and small capacitor compensation circuit is proposed. The novel technique is implemented to detect the variation voltage at the output of LDO and enable the proposed fast detector amplifier (FDA) to improve load transient response of 50mA load step. The large external capacitor used in Conventional LDO Regulators is removed allowing for greater power system integration for system-on-chip (SoC) applications. The 1.6-V Full On-Chip LDO voltage regulator with a power supply of 1.8 V was designed and simulated in the 0.18µm CMOS technology, consuming only 14 µA of ground current with a fast settling-time LNR(Line Regulation) and LOR(Load regulation) of 928ns and 883ns respectively while the rise and fall times in LNR and LOR is 500ns

    Design of a Low Power External Capacitor-Less Low-Dropout Regulator with Gain-Compensated Error Amplifier

    Get PDF
    This thesis introduces a gain-compensated external capacitor-less low-dropout voltage regulator with total 5.7 uA quiescent current at all load conditions. The two-stage gain-compensated error amplifier is implemented with a cross-couple pair negative resistor to make the LDO achieve higher gain (> 50 dB) with very low bias current (< 1.3 uA). The LDO can achieve 52 dB loop gain at no load condition, 64 dB at 1 mA and 54 dB at 100 mA load. During transients (0 A to 100 mA) the undershoot is optimized to 98.6 mV with 100 ns rising and falling time through a differentiator circuit to boost the LDO’s transient response. The phase margin of the proposed LDO is 55◦ at 1 mA and 79.27◦ at max load (100 mA). Figure of merit (FOM) of this work is 2.79 fs which is very small

    A 0.21-ps FOM Capacitor-Less Analog LDO with Dual-Range Load Current for Biomedical Applications

    Full text link
    This paper presents an output capacitor-less low-dropout regulator (LDO) with a bias switching scheme for biomedical applications with dual-range load currents. Power optimization is crucial for systems with multiple activation modes such as neural interfaces, IoT and edge devices with varying load currents. To enable rapid switching between low and high current states, a flipped voltage follower (FVF) configuration is utilized, along with a super source follower buffer to drive the power transistor. Two feedback loops and an on-chip compensation capacitor Cc maintain the stability of the regulator under various load conditions. The LDO was implemented in a 65nm CMOS process with 1.5V input and 1.2V output voltages. The measured quiescent current is as low as 3uA and 50uA for the 0-500uA and 5-15mA load current ranges, respectively. An undershoot voltage of 100mV is observed when the load current switches from 0 to 15mA within 80ns, with a maximum current efficiency of 99.98%. Our design achieved a low Figure-of-Merit of 0.21ps, outperforming state-of-the-art analog LDOs

    0.6-V-VIN 7.0-nA-IQ 0.75-mA-IL CMOS Capacitor-Less LDO for Low-Voltage Micro-Energy-Harvested Supplies

    Get PDF
    A capacitor-less (CL) low-dropout (LDO) regulator suitable to be incorporated in an on-chip system with low-voltage micro-energy-harvested supply, is proposed in this contribution. The differential input stage of the error amplifier includes bulk-driven MOS transistors, thus providing the LDO with an output voltage range that extends from the negative rail up to a level very close to the input voltage without the need of using a resistive feedback network. The circuit parameters relying on the feedback factor, , are maximized thanks to the use of a unitary value for this parameter. The CL-LDO has been designed and fabricated in standard 180-nm CMOS technology and optimized to operate with an input voltage equal to 0.6 V and a reference level of 0.5 V. The experimental characterization of the fabricated prototypes shows that, under these operating conditions, the LDO is able to deliver a load current above 0.75 mA with a total quiescent current of only 7.0 nA. Furthermore, the proposed voltage regulator is able to operate from input voltages as low as 0.4 V, delivering in this case a maximum load current of 30 μA.RTI2018- 095994-B-I00 ED431G-2019/04 GRC2021/48 IB18079S
    corecore