332 research outputs found

    Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling

    Get PDF
    In earlier work we have shown that good phoneme recognition is possible with a so-called reservoir, a special type of recurrent neural network. In this paper, different architectures based on Reservoir Computing (RC) for large vocabulary continuous speech recognition are investigated. Besides experiments with HMM hybrids, it is shown that a RC-HMM tandem can achieve the same recognition accuracy as a classical HMM, which is a promising result for such a fairly new paradigm. It is also demonstrated that a state-level combination of the scores of the tandem and the baseline HMM leads to a significant improvement over the baseline. A word error rate reduction of the order of 20\% relative is possible

    Recent advances in LVCSR : A benchmark comparison of performances

    Get PDF
    Large Vocabulary Continuous Speech Recognition (LVCSR), which is characterized by a high variability of the speech, is the most challenging task in automatic speech recognition (ASR). Believing that the evaluation of ASR systems on relevant and common speech corpora is one of the key factors that help accelerating research, we present, in this paper, a benchmark comparison of the performances of the current state-of-the-art LVCSR systems over different speech recognition tasks. Furthermore, we put objectively into evidence the best performing technologies and the best accuracy achieved so far in each task. The benchmarks have shown that the Deep Neural Networks and Convolutional Neural Networks have proven their efficiency on several LVCSR tasks by outperforming the traditional Hidden Markov Models and Guaussian Mixture Models. They have also shown that despite the satisfying performances in some LVCSR tasks, the problem of large-vocabulary speech recognition is far from being solved in some others, where more research efforts are still needed

    Current trends in multilingual speech processing

    Get PDF
    In this paper, we describe recent work at Idiap Research Institute in the domain of multilingual speech processing and provide some insights into emerging challenges for the research community. Multilingual speech processing has been a topic of ongoing interest to the research community for many years and the field is now receiving renewed interest owing to two strong driving forces. Firstly, technical advances in speech recognition and synthesis are posing new challenges and opportunities to researchers. For example, discriminative features are seeing wide application by the speech recognition community, but additional issues arise when using such features in a multilingual setting. Another example is the apparent convergence of speech recognition and speech synthesis technologies in the form of statistical parametric methodologies. This convergence enables the investigation of new approaches to unified modelling for automatic speech recognition and text-to-speech synthesis (TTS) as well as cross-lingual speaker adaptation for TTS. The second driving force is the impetus being provided by both government and industry for technologies to help break down domestic and international language barriers, these also being barriers to the expansion of policy and commerce. Speech-to-speech and speech-to-text translation are thus emerging as key technologies at the heart of which lies multilingual speech processin

    A Fast Learning Method for Multilayer Perceptrons in Automatic Speech Recognition Systems

    Get PDF
    We propose a fast learning method for multilayer perceptrons (MLPs) on large vocabulary continuous speech recognition (LVCSR) tasks. A preadjusting strategy based on separation of training data and dynamic learning-rate with a cosine function is used to increase the accuracy of a stochastic initial MLP. Weight matrices of the preadjusted MLP are restructured by a method based on singular value decomposition (SVD), reducing the dimensionality of the MLP. A back propagation (BP) algorithm that fits the unfolded weight matrices is used to train the restructured MLP, reducing the time complexity of the learning process. Experimental results indicate that on LVCSR tasks, in comparison with the conventional learning method, this fast learning method can achieve a speedup of around 2.0 times with improvement on both the cross entropy loss and the frame accuracy. Moreover, it can achieve a speedup of approximately 3.5 times with only a little loss of the cross entropy loss and the frame accuracy. Since this method consumes less time and space than the conventional method, it is more suitable for robots which have limitations on hardware

    Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model

    Full text link
    Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states. Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data

    Very Deep Convolutional Neural Networks for Robust Speech Recognition

    Full text link
    This paper describes the extension and optimization of our previous work on very deep convolutional neural networks (CNNs) for effective recognition of noisy speech in the Aurora 4 task. The appropriate number of convolutional layers, the sizes of the filters, pooling operations and input feature maps are all modified: the filter and pooling sizes are reduced and dimensions of input feature maps are extended to allow adding more convolutional layers. Furthermore appropriate input padding and input feature map selection strategies are developed. In addition, an adaptation framework using joint training of very deep CNN with auxiliary features i-vector and fMLLR features is developed. These modifications give substantial word error rate reductions over the standard CNN used as baseline. Finally the very deep CNN is combined with an LSTM-RNN acoustic model and it is shown that state-level weighted log likelihood score combination in a joint acoustic model decoding scheme is very effective. On the Aurora 4 task, the very deep CNN achieves a WER of 8.81%, further 7.99% with auxiliary feature joint training, and 7.09% with LSTM-RNN joint decoding.Comment: accepted by SLT 201
    corecore