Multilingual models for Automatic Speech Recognition (ASR) are attractive as
they have been shown to benefit from more training data, and better lend
themselves to adaptation to under-resourced languages. However, initialisation
from monolingual context-dependent models leads to an explosion of
context-dependent states. Connectionist Temporal Classification (CTC) is a
potential solution to this as it performs well with monophone labels.
We investigate multilingual CTC in the context of adaptation and
regularisation techniques that have been shown to be beneficial in more
conventional contexts. The multilingual model is trained to model a universal
International Phonetic Alphabet (IPA)-based phone set using the CTC loss
function. Learning Hidden Unit Contribution (LHUC) is investigated to perform
language adaptive training. In addition, dropout during cross-lingual
adaptation is also studied and tested in order to mitigate the overfitting
problem.
Experiments show that the performance of the universal phoneme-based CTC
system can be improved by applying LHUC and it is extensible to new phonemes
during cross-lingual adaptation. Updating all the parameters shows consistent
improvement on limited data. Applying dropout during adaptation can further
improve the system and achieve competitive performance with Deep Neural Network
/ Hidden Markov Model (DNN/HMM) systems on limited data