CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Investigation of multilingual deep neural networks for spoken term detection
Authors
MJF Gales
KM Knill
+4 more
SP Rath
PC Woodland
C Zhang
SX Zhang
Publication date
1 January 2013
Publisher
2013 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2013 - Proceedings
Doi
Cite
Abstract
The development of high-performance speech processing systems for low-resource languages is a challenging area. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to use bottleneck features, or hybrid systems, trained on multilingual data for speech-to-text (STT) systems. This paper presents an investigation into the application of these multilingual approaches to spoken term detection. Experiments were run using the IARPA Babel limited language pack corpora (∼10 hours/language) with 4 languages for initial multilingual system development and an additional held-out target language. STT gains achieved through using multilingual bottleneck features in a Tandem configuration are shown to also apply to keyword search (KWS). Further improvements in both STT and KWS were observed by incorporating language questions into the Tandem GMM-HMM decision trees for the training set languages. Adapted hybrid systems performed slightly worse on average than the adapted Tandem systems. A language independent acoustic model test on the target language showed that retraining or adapting of the acoustic models to the target language is currently minimally needed to achieve reasonable performance. © 2013 IEEE
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Apollo (Cambridge)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repository.cam.ac.uk:1...
Last time updated on 12/01/2019