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ABSTRACT

In earlier work we have shown that good phoneme recogni-
tion is possible with a so-called reservoir, a special type of
recurrent neural network. In this paper, different architec-
tures based on Reservoir Computing (RC) for large vocabu-
lary continuous speech recognition are investigated. Besides
experiments with HMM hybrids, it is shown that a RC-HMM
tandem can achieve the same recognition accuracy as a clas-
sical HMM, which is a promising result for such a fairly new
paradigm. It is also demonstrated that a state-level combina-
tion of the scores of the tandem and the baseline HMM leads
to a significant improvement over the baseline. A word error
rate reduction of the order of 20% relative is possible.

Index Terms— continuous speech recognition, reservoir
computing, tandem acoustic modeling

1. INTRODUCTION

The idea of using an artificial neural network (ANN) for
continuous speech recognition has already been discussed
in many publications [1, 2, 3, 4, 5] and good results were
obtained with various network types, including feed-forward
neural networks (multi-layer perceptrons), recurrent neu-
ral networks and Restricted Boltzmann Machines which are
stacked on top of each other to form so-called deep belief net-
works [6, 7, 8]. The posterior probabilities computed by such
networks can either be used in an HMM hybrid [1] where the
scaled network outputs constitute the state likelihoods, or in a
ANN-HMM tandem [2], where the network outputs are used
as input features of an otherwise conventional HMM system.
The hybrid approach can either work with a restricted set of
acoustic classes representing monophones or with a much
larger set of acoustic classes representing triphones.

Here we will examine a special kind of neural networks,
called reservoirs, and computation with such networks is gen-
erally called Reservoir Computing [9]. A reservoir is a pool of
non-trained recurrently connected non-linear computational
nodes. The reservoir is combined with a set of linear nodes
that “read out” the reservoir state, defined as the values at the

outputs of the reservoir nodes. The linear nodes are there-
fore often referred to as readout nodes and they are trained
to represent acoustic classes, monophones in our case [10].
Reservoir Computing combines the capacity of a recurrent
neural network to model long-term signal dynamics with the
advantage of just having to solve a set of linear equations to
find the optimal weights. In other words, it circumvents the
critical back-propagation-through-time (BPTT) training pro-
cedure that is normally needed for training conventional re-
current neural networks [11].

RC has already been applied successfully to speech recog-
nition, reaching fairly good results for phoneme recognition
[10, 12] and continuous digit recognition in a noisy environ-
ment [13]. In what follows we briefly review the concepts
of RC, we introduce different RC-HMM system architectures
for large vocabulary continuous speech recognition (LVCSR)
and we present experimental results showing that by means
of model combination a significant improvement over a state-
of-the-art HMM baseline can be attained.

2. RESERVOIR COMPUTING

The reservoirs in our systems are Echo State Networks [9]
with a linear readout layer (see Figure 1). The reservoir input
weights and the weights of the recurrent connections are first
drawn from a normalized random distribution and then prop-
erly rescaled to assert a stable dynamical system with a good
balance between excitability by new inputs and by past inputs,
represented in the reservoir state (for details see [9, 10]). The
reservoir computes the state vector x[t] at time t from the pre-
vious state vector and the current input u[t] as

x[t] = fres(Wresx[t− 1] + Winu[t]) (1)

The weight matrices Wres and Win represent the weights
of the interconnections and fres represents the non-linearity
applied to the node activation. In the present work this non-
linearity is a tanh(). The reservoir state is supplied to a layer
of linear units, called the readout nodes, or even more briefly,
the readouts. The weights of the connections from the reser-
voir nodes to the readouts are trained to constitute the best
linear regression of the monophone classes.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55827655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


input layer 
reservoir 

readout layer 

random input connections 

random recurrent connections 

trained output connections 

u y 

x 

Win Wout 

u 

Win 

x 

Wout 

y readout vector 

output weight matrix 

input weight matrix 

reservoir state vector 

input feature vector 

Wres 

Wres recurrent weight matrix 
linear readout node 

non-linear readout node 

or 

Fig. 1. Reservoir Computing network with randomly-fixed input weights Win, randomly-fixed recurrent connections Wres,
and trainable readout weights Wout.

The optimal weight matrix Wout is found by minimizing
the mean-squared error (MSE). If the reservoir states of the
training data form the Nt rows of a matrix X and if the cor-
responding desired training targets form the rows of a matrix
D, then Wout is given by

Wout = arg min
W

(
1

Nt

(
||XW −D||2

)
+ ε ||W||2

)
(2)

with ε being a regularization term. The closed-form solution
of the minimization problem is given by

Wout = (XTX + ε I)−1(XTD) (3)

with I being the unity matrix. Note that replacing the linear
readout units by sigmoidal units can be helpful to improve
the performance [12], but it is not considered in the present
work because it calls for a more time-consuming stochastic
gradient-descent training method. Such a GD-based training
does become interesting however in the case of a very big
reservoir because in that case the inversion of a very large
matrix XTX becomes problematic.

3. RESERVOIR-BASED SYSTEMS

In this section we introduce our HMM baseline system and we
propose the different reservoir-based architectures that will be
experimentally evaluated later.

3.1. The HMM baseline

The HMM baseline is developed using the SPRAAK toolkit1.
It comprises triphone states that emerged from a decision
tree based clustering, and each state is modeled by a GMM.
All GMMs select elements from a global pool of Gaussians.
By definition, such an approach implies extensive parameter
tying. All triphones are modeled by a 3-state left-to-right
HMM. The model complexity (number of Gaussians, states,

1SPRAAK: Speech Processing, Recognition and Automatic Annotation
Kit [http://www.spraak.org]

mixtures) is controlled by the training process and therefore
dependents on the properties of the available training data.

3.2. The RC-HMM hybrid

In a previous publication [10] we already elaborated a RC-
HMM hybrid according to the principles outlined in [1]: the
context-independent readouts are converted to acoustic state
likelihoods by Bayes’ law and a Viterbi-search is used to find
the most likely path through an HMM which models the ut-
terance structure. However, the hybrid in [10] was designed
for phoneme recognition with a bigram phonotactic utterance
model. In the present work, a word-level language model
and a pronunciation dictionary are introduced to construct
a hybrid for large vocabulary continuous speech recognition
(LVCSR).

There are reasons to believe though that the sketched
approach to LVCSR is sub-optimal. In fact, for phoneme
recognition it suffices that the pronounced phoneme is – in
the right time interval – the winning hypothesis generated
by the reservoir. For LVCSR on the other hand, there is a
realistic chance that the pronunciation of the correct word
sequence, as it emerges from the pronunciation dictionary,
differs from the actually spoken phoneme sequence. The
desired word sequence can only pop up as the solution then
if the likelihoods of its constituent phonemes are sufficiently
high. This implies that the likelihoods of competing hy-
potheses are of great importance, too. A classical solution
for handling such pronunciation mismatches is to introduce
context-dependent phonemes. If a phoneme is frequently ar-
ticulated as another sound in a specific phonemic context then
the training examples of that context-dependent phoneme will
mainly consist of utterances of this other sound. As such, the
phoneme emerging from the phonetic dictionary will get a
sufficiently large likelihood, even though strictly speaking,
it has not been pronounced. Consequently, we expect that
a hybrid with monophone classes may not yield the best
LVCSR performance. This assumption is actually supported
by recently published work on deep neural networks where



systems employing monophone classes were outperformed
by similar systems employing context-dependent (CD) pho-
netic classes [5, 4]. Building CD-RC-HMM hybrids will
not be investigated here because we first want to establish
how well CI-RC-HMM hybrids perform. However, we ex-
pect that moving to context-dependent systems constitutes an
important direction for future work.

3.3. The RC-HMM tandem

An RC-HMM tandem is a standard context-dependent HMM
comprising GMM modeling in terms of the reservoir readouts
as the acoustic features. Figure 2 shows the complete tan-
dem architecture. The upper part of the figure represents the
reservoir-based feature extractor. The bottom part shows the
conventional GMM-based context-dependent HMM system
architecture, including two pre-processing steps that normal-
ize and decorrelate the readouts of the reservoir respectively.

As in other published ANN-HMM tandems we introduce
a first pre-processing step which consists of a non-linear
transformation. The aim is to reduce the skewness of the
feature distributions so as to make them more suitable for
Gaussian modeling. In the case of an MLP one either takes
the logarithm of each output or select the so-called activa-
tion of the output nodes [2, 14]. In the case of RC with
linear regression we argue that there is no need to do this
because the readouts are linear functions of the reservoir
state variables and therefore they should not exhibit a skewed
distribution. This argumentation was in fact confirmed by
experimental evidence. The pre-processing step only needs
to be applied when logistic regression was used to train the
readout weights.

The second pre-processing step decorrelates the features
in order to facilitate their modeling by GMMs with diagonal
covariance matrices [2]. It is achieved by means of a linear
feature transformation that can also be utilized to reduce the
dimensionality of the vector [14] at the same time. In the
literature different methods for accomplishing this have been
proposed. In the present work we apply Mutual Information
Discriminative Analysis (MIDA) [15], a technique that can
be viewed as a special form of Linear Discriminant Analysis
(LDA).

We conjecture that dimensionality reduction will be in-
evitable in case we create an RC-HMM tandem that, in anal-
ogy with [16], supplies both the original MFCC vectors and
the reservoir readouts to the HMM.

3.4. Taking phonetic confusions into account

Analyzing the readouts of a trained reservoir system revealed
that the frame-wise winner not always corresponds to the de-
sired target, defined as the target that would emerge from an
alignment of the speech with its transcription, derived from
the orthography of the speech and the pronunciation dictio-
nary of the recognizer. These mismatches can be captured in a

phonetic confusion matrix which is retrieved from alignments
of the reservoir readouts and the dictionary-based transcrip-
tions of a sufficiently large set of development utterances. We
will use this confusion matrix to manipulate the readouts be-
fore supplying them to our hybrid and tandem systems.

3.5. Model combination

Having two different acoustic models based on different
paradigms at our disposal, it is possible to investigate whether
these two systems make the same or different errors. As we
observed some complementarity between the two models,
we have also investigated the combination of a RC-HMM-
tandem and a conventional CD-HMM.

Both individual systems employ the same acoustic units
(triphones) with the same topology, but different methods to
assess the state likelihoods. Consequently, a simple way to
combine the two is to combine their acoustic likelihoods at
the state level. Where a (weighted) linear combination of
likelihoods is ideal for reducing modeling noise, a (weighted)
log-linear combination is preferred for combining comple-
mentary information streams because it complies better with
the log-linear combination of likelihoods across frames. For
simplicity, we only worked with a single (state-independent)
weight that is determined from a recognition experiment
on the development data. Such a state-based combination
scheme assumes that the composing acoustic models are time
synchronous, i.e. state transitions in each model occur si-
multaneous. This simplifies the decoding and is a reasonable
assumption given that all acoustic models in our experiments
were bootstrapped from the same initial state-level segmenta-
tion of the training data.

There are of course practical issues to attend. For in-
stance, if decision tree clustering of triphone states is applied
in the individual systems, the emerging decision trees will
almost certainly differ. This calls for the composition of a
larger (deeper) decision tree with leaf nodes corresponding
to unique combinations of states from the individual systems.
The emission log-likelihoods of the combined states are cal-
culated as a weighted sum of the log-likelihoods emerging
from the emission distributions of the composing states. For
the transition probabilities, a weighted average of the transi-
tion probabilities of the composing states is used (i.e. a lin-
ear instead of log-linear combination). The state-dependent
weights used for this averaging are chosen proportional to the
cumulative state posteriors as recorded in the last training pass
of the individual systems.

4. EXPERIMENTAL RESULTS

4.1. Experimental conditions

In what follows we perform LVCSR experiments on TIMIT
[17] and WSJ0 [18]. The TIMIT database is normally de-
signed to perform phoneme recognition experiments but it has
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Fig. 2. The reservoir-HMM tandem architecture: (1) the feature extractor, the Reservoir Computing component, the post-
processing of the readouts and the GMM-based CD-HMM decoder.

also been used for continuous speech recognition experiments
(see [19] for details). In all experiments the raw acoustic
features are the log energy, c1 . . . c12 (MFCCs) and the ∆’s
and ∆∆’s thereof. Since we did already observe good phone
recognition accuracy using these features [10], there was no
reason for not using them for LVCSR as well. The prepro-
cessing of the HMM systems also embeds utterance-based
mean-normalization of the static features before computing
the dynamic features.

For experiments on TIMIT we employ a lexicon contain-
ing all 6100 words appearing in the TIMIT sentences (SX and
SI sentences only). The word pronunciations as derived from
the CMU pronunciation dictionary2. The language model is a
back-off bigram derived from all TIMIT utterances. It has a
perplexity of 89.3 (see [19]). We held out 48 training speak-
ers to compose a development set and we report word error
rates (WERs) on the complete test set, comprising 9454 word
tokens.

For experiments on WSJ0 we employ the 5K lexicon dis-
tributed with the corpus. The pronunciations were also taken
from the CMU dictionary. For the speech data, we discern
between the standard training set (84 speakers), the dev92 de-
velopment set (10 speakers) and the nov92 evaluation set (8
speakers). For development and testing we only use the utter-
ances without verbal punctuation. The language model is the
trigram LM for the 5k closed vocabulary task (delivered with
the corpus). We report WERs on the evaluation set.

The reservoirs involved in our experiments are con-
structed as outlined in [10]. Since we formerly achieved
good phoneme recognition on TIMIT with a reservoir of
20K nodes, we sticked to that reservoir size for the LVCSR
experiments on TIMIT as well. The reservoir is combined
with a readout layer representing 40 phonetic classes used
in the CMU dictionary (excluding stress information). For
WSJ0 we noticed no significant differences between the pho-
netic classification on the training and development data for
a reservoir of that size, suggesting that larger reservoirs can

2The Carnegie Mellon University Pronouncing Dictionary
[http://www.speech.cs.cmu.edu/cgi-bin/cmudict]

be used here. For the time being, we have worked with a
reservoir of 30K because this is the largest size for which we
can compute the closed-form solution on a normal worksta-
tion. The reservoir is again combined with a readout layer
that represents 40 phonetic classes.

4.2. Baseline HMM-systems

The acoustic models of the TIMIT baseline share a pool of
5500 Gaussians, they comprise 500 tied states and 1200 cross-
word triphones. On average, the GMMs are composed of 139
elements selected from the pool of Gaussians. The acoustic
models of the WSJ0 baseline share a pool of 17500 Gaus-
sians, they comprise 1000 tied states and 4400 cross-word
triphones. On average, the GMMs are composed of 172 el-
ements selected from the pool of Gaussians. The number of
Gaussians, states, triphones and mixtures are determined au-
tomatically from the size and the statistics of the training data,
so as to keep the risk of over-fitting low. The performances
of our baseline systems are listed in Table 1. It can be veri-
fied that we have an excellent baseline: compare to [19] for
TIMIT and to [3] for WSJ0.

4.3. The RC-HMM hybrids

We only constructed the RC-HMM hybrid for TIMIT. The
reservoir training was performed using state-wise targets that
were retrieved from a segmentation created with our base-
line HMM. A first system, relying on the assumption that
zero-clipped readouts can be linearly transformed to poste-
rior probabilities, achieved a WER as large as 8.5%. By ap-
plying a trained non-parametric mapping of readouts to pos-
terior probabilities (as shown in [13]), we could reduce this
WER to 7.0%. By introducing a confusion matrix learned on
the development data, we could further reduce the WER to
6.1%. However, this WER is still far above the 3.7% that we
achieved with our HMM baseline.

Although the results of the context-independent RC-
HMM hybrid were not satisfying, we wanted to establish
whether this is due to the fact that context-independent pho-



Table 1. WER (in %) on TIMIT and WSJ0 test sets.

architecture TIMIT WSJ0
BASELINE

CD-HMM 3.7 3.8
RESERVOIR-TANDEMS

Tandem A (only readouts) 3.8 4.8
Tandem B (readouts + MFCCs) 3.4 4.0

LIKELIHOOD MERGING
Tandem A + CD-HMM 2.8 3.3
Tandem B + CD-HMM 2.7 3.4

netic classes were used, or to the fact that the reservoir read-
outs do not carry all the necessary information about the
speech anymore. To that end, we investigated RC-HMM
tandems where the readouts are simply treated as acoustic
observations. If competitive results could be obtained in this
way, this would then be interpreted as proof that that the
readouts are sufficiently informative but that the method of
exploiting this information in the RC-HMM hybrid is sub-
optimal.

4.4. The RC-HMM tandems

We investigated two tandem configurations: Tandem A em-
ploys the 40 reservoir readouts as the acoustic observations
while Tandem B employs them in combination with the orig-
inal 39 MFCCs. In the latter tandem, the dimensionality of
the feature vector is reduced to 39 by means of MIDA. In
both cases, the phonetic confusion matrix was applied to the
readouts. The results listed in Table 1 show that Tandem A
closely approaches the baseline results on TIMIT, but not on
WSJ0. We conjecture that the data show that the reservoir
readouts are sufficiently informative, provided that the reser-
voir is large enough. We believe that experiments with even
larger reservoirs will eventually confirm this for the WSJ0
case too.

The figures clearly show that Tandem B outperforms Tan-
dem A. However, since Tandem B (MFCCs + readouts) does
not significantly outperform the HMM baseline (MFCCs
alone) one might come to the conclusion that the temporal
processing that gave rise to the reservoir readouts does not
add valuable information complementary to the information
retrieved directly from the MFCCs.

4.5. The combinations of models

As opposed to the previous conclusion, we observed that the
decision trees of the HMM baseline and Tandem A do show
a lot of overlap, but nevertheless, they are different to some
extend and they result in different tied states. This observa-
tion suggests that the reservoir features and the MFCCs are
somewhat complementary in their phonetic specializations.

In order to investigate this complementarity in more detail
we compared the recognition outputs of the two systems on
the development data. This comparison revealed that in 160
of the 794 processed sentences, these outputs were different.
We also observed that in situations where only minor errors
occur (e.g. a single word deletion/insertion/substitution), usu-
ally one of the two systems finds the correct hypotheses (110
cases). Even though we could not identify any systematic pat-
tern in the recognition differences, we contemplate that the
above analysis provides sufficient support for the hypothesis
that the readouts and the MFCC features do carry comple-
mentary information, but that their early fusion in the fea-
ture stream is not capable of exploiting that information ade-
quately. That is why we investigated late fusion at the level
of the states as an alternative. This late fusion boils down to
combining the state likelihoods of the individual tandems as
explained before.

The merging results listed in Table 1 clearly show that
the combination of Tandem A with the baseline CD-HMM
leads to a significant improvement for both tasks. The relative
improvements are no less than 24% for TIMIT and 13% for
WSJ0. For the sake of completeness, and because Tandem B
outperformed Tandem A, we also tested the merging the CD-
HMM baseline and Tandem B. This merging of models with
partly overlapping inputs did not outperform the merging with
independent inputs (CD-HMM and Tandem A).

Obviously, adding the RC component needed for the tan-
dem adds complexity to the system. However, measurements
on the TIMIT system showed that the total recognition time is
only increased by a factor 1.3, which is acceptable given the
significant improvement being obtained, and given the fact
this factor could be further reduced by a more rigorous ex-
ploitation of connection sparsity and weight sharing inside the
reservoir. Remarkable is that the combined system has more
tied states but that this does not result in a higher computa-
tional load because the better acoustic models enable a more
efficient pruning of hypotheses.

5. CONCLUSIONS & FUTURE WORK

In this paper we showed that combining a Reservoir Com-
puting based HMM tandem with a conventional GMM-HMM
system leads to improvements of large vocabulary continuous
speech recognition. Substantial gains were observed on both
TIMIT (24% relative) and WSJ0 (13% relative), and there are
reasons to believe that the gain on WSJ can be further raised
by employing a larger reservoir. The reason why we did not
do this yet is because for these larger sizes, we either have
to use a gradient-descent training of he reservoir, or we have
to stack reservoirs on top of each other (as we did in [10] for
phoneme recognition).

We believe to have demonstrated that the fairly new
paradigm of Reservoir Computing has potential to further
improve state-of-the-art speech recognition in the near future.



The temporal processing in the reservoir seems capable of
producing information at time t that is not available in the
MFCC vector at time t and that is not retrievable by a sim-
ple Markov modeling approach. This also motivates us to
continue our efforts to narrow the performance gap between
a RC-HMM hybrid and a state-of-the-art HMM, e.g. by ex-
ploring approaches to handle pronunciation mismatches and
by exploring reservoirs with readouts that represent context-
dependent phonetic classes.
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