728 research outputs found

    Analysis and Design of 3-Phase Unfolding Based AC-DC Battery Chargers

    Get PDF
    This thesis presents the analysis and design of high-efficiency battery chargers for heavy duty EV applications. The rise in popularity of the electric vehicles (EVs) due to their increased efficiency over conventional internal combustion engines, has driven the need for more battery charging infrastructure. Furthermore, heavy duty vehicles are also being converted to electric to fill needs such as public transportation via bus fleets as well as cargo delivery via semi-trucks. Such heavy duty vehicles require more energy than personal transportation vehicles and thus require larger battery packs. To charge heavy duty battery packs in the same amount of time as the typical EV, higher power chargers are required. Energy is distributed through the grid network, and a battery charger is converts the grid power into a regulated output for battery charging. The novel battery charging designs investigated in this thesis are classified differently than traditional designs because they have fewer switching stages to convert the power. The unique approach taken allows these designs to have higher efficiency overall than a traditional battery charger design. The new converter designs are refereed to as the three-level (3L) asymmetrical full bridge (3LAFB)and 3L asymmetrical dual active bridge (3LADAB). The operation of each converter is briefly discussed to help develop context for the hardware and controller designs. The controller design for the 3LAFB topology is developed to explain the control objectives of the 3-port dc-dc converter. Hardware results prototype designs are presented to validate proposed chargers and controller designs. A high power extreme fast charger (XFC) structure is proposed using multiple lower power modules. The high-efficiency design of a single module is presented and hardware results are given

    Isolated and Bidirectional DC-DC Converter for Electric Vehicles

    Get PDF
    O estado da arte iniciou com a análise na literatura de topologias de conversores DC-DC. Técnicas de modulação são estudadas com vista a melhorar a eficiência de conversão, realçando as vantagens e limitações inerentes das mesmas. Após a análise da literatura, o foco projeto passou a ser a topologias de dupla ponte com dispositivos ativos e com isolamento galvânico intermédio entre as duas pontes (conhecido em inglês por dual active bridge). Algumas técnicas de modulação que permitem o funcionamento do conversor são analisadas no documento e suportadas com resultados obtidos em ambiente de simulação. O dimensionamento do transformador de potência é realizado assim como a descrição dos passos. É relizado uma análise de mercado de dispositivos de comutação com a tecnologia "Silicon Carbide" e são apresentados estimativas de perdas e eficiência de operação na utilização de transistores com a techonoloa SiC no conversor analisado. Os resultados são obtidos com recurso a simulações computacionais que através de modelos de aproximação permitem aproximar o conversor a uma situação mais proxima da real. Em termos de implementação, é esperado a implementação um circuito de comando para dois MOSFETS com tecnologia SiC com a configuração em meia ponte ligada a uma carga

    Modeling and control of a high power soft-switched bi-directional DC/DC converter for fuel cell applications

    Get PDF
    This work presents a new high power, bi-directional, isolated dc-dc converter for a fuel cell energy management system that will be fitted into a test vehicle being built by Ford Motor Company. The work includes two parts. The first part is to propose a new topology and analyze the principles of the circuits operation. Design guidelines with detailed circuit simulations are presented to verify the feasibility of the new circuit topology. Based on the conceptual understanding of the converter, the mathematical model is also derived to design a control system that achieves soft start up and meets the performance requirements. The second part is to fabricate a 1.6 kW prototype converter in the laboratory. Using the prototype, the steady state performance of the open loop system was tested to verify the analysis and simulation results. A dual half-bridge topology is presented to implement the required power rating using the minimum number of devices. Unified zero-voltage-switching (ZVS) is achieved in either direction of power flow to eliminate switching losses for all devices, increase the efficiency of the system and reduce the electromagnetic interference (EMI). Compared to the other soft-switched dc-dc converters, neither a voltage-clamping circuit nor extra switching devices and resonant components are required in the proposed circuit for soft-switching implementation. All these new features allow efficient power conversion and compact packaging. Different start-up schemes are proposed to successfully limit the in-rush current when the converter is started in the boost mode of operation. The full control system including the start-up scheme is developed and verified using simulation results based upon the average model. A 1.6 kW prototype of the converter has been built and successfully tested under full power. The experimental results of the converter\u27s steady-state operation confirm the simulation analysis

    Soft-switching current-fed power converters for low voltage high current applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    New Topologies and Advanced Control of Power Electronic Converters for Renewable Energy based Microgrids

    Get PDF
    Solar energy-based microgrids are increasingly promising due to their many features, such as being environmentally friendly and having low operating costs. Power electronic converters, filters, and transformers are the key components to integrate the solar photovoltaic (PV) systems with the microgrids. The power electronic converters play an important role to reduce the size of the filter circuit and eliminate the use of the bulky and heavy traditional power frequency step-up transformer. These power converters also play a vital role to integrate the energy storage systems such as batteries and the superconducting magnetic energy storage (SMES) unit in a solar PV power-based microgrid. However, the performance of these power converters depends upon the switching technique and the power converter configuration. The switching techniques can improve the power quality, i.e. lower total harmonic distortion at the converter output waveform, reduce the converter power loss, and can effectively utilize the dc bus voltage, which helps to improve the power conversion efficiency of the power electronic converter. The power converter configuration can reduce the size of the power converter and make the power conversion system more efficient. In addition to the advanced switching technique, a supervisory control can also be integrated with these power converters to ensure the optimal power flow within the microgrid. First, this thesis reviews different existing power converter topologies with their switching techniques and control strategies for the grid integration of solar PV systems. To eliminate the use of the bulky and heavy line frequency step-up transformer to integrate solar PV systems to medium voltage grids, the high frequency magnetic linkbased medium voltage power converter topologies are discussed and compared based on their performance parameters. Moreover, switching and conduction losses are calculated to compare the performance of the switching techniques for the magnetic-linked power converter topologies. In this thesis, a new pulse width modulation technique has been proposed to integrate the SMES system with the solar PV system-based microgrid. The pulse width modulation technique is designed to provide reactive power into the network in an effective way. The modulation technique ensures lower total harmonic distortion (THD), lower switching loss, and better utilization of dc-bus voltage. The simulation and experimental results show the effectiveness of the proposed pulse width modulation technique. In this thesis, an improved version of the previously proposed switching technique has been designed for a transformer-less PV inverter. The improved switching technique can ensure effective active power flow into the network. A new switching scheme has been proposed for reactive power control to avoid unnecessary switching faced by the traditional switching technique in a transformer-less PV inverter. The proposed switching technique is based on the peak point value of the grid current and ensures lower switching loss compared to other switching techniques. In this thesis, a new magnetic-linked multilevel inverter has been designed to overcome the issues faced by the two-level inverters and traditional multilevel inverters. The proposed multilevel inverter utilizes the same number of electronic switches but fewer capacitors compared to the traditional multilevel inverters. The proposed multilevel inverter solves the capacitor voltage balancing and utilizes 25% more of the dc bus voltage compared to the traditional multilevel inverter, which reduces the power rating of the dc power source components and also extends the input voltage operating range of the inverter. An improved version magnetic-linked multilevel inverter is proposed in this thesis with a model predictive control technique. This multilevel inverter reduces both the number of switches and capacitors compared to the traditional multilevel inverter. This multilevel inverter also solves the capacitor voltage balancing issue and utilizes 50% more of the dc bus voltage compared to the traditional multilevel inverter. Finally, an energy management system has been designed for the developed power converter and control to achieve energy resiliency and minimum operating cost of the microgrid. The model predictive control-based energy management system utilizes the predicted load data, PV insolation data from web service, electricity price data, and battery state of charge data to select the battery charging and discharging pattern over the day. This model predictive control-based supervisory control with the advanced power electronic converter and control makes the PV energy-based microgrid more efficient and reliable

    Three-Phase Unfolding Based Soft DC-Link Converter Topologies for AC to DC Applications

    Get PDF
    Battery electric vehicles (BEVs) and plugin hybrid electric vehicles (PHEVs) are more efficient than internal combustion-based vehicles. Adaption of EVs will help reduce the carbon emissions produced by the transportation sector. The charging infrastructure has to grow at a rapid pace to encourage EV adaption. Installing higher capacity fast chargers will help alleviate the range anxiety of battery electric vehicle customers. More public charging stations are required for the full adaption of EVs. Utility power is distributed as ‘alternating current.’ A battery requires ‘direct current’ (DC) source to charge it. Hence a power converter that converts AC source to DC source is required to charge an electric vehicle battery. Public transportation is another sector that is adapting electric vehicles at a fast pace. These vehicles require more power to operate and hence have huge battery packs. These vehicles require ultra-high-power charger to keep the charging time reasonable. A 60 Hz stepdown transformer is required at the facility to use the power. The cost and time to install this heavy transformer will inhibit the setting up a charging station. Power converters than can connect to medium voltage directly will eliminate the need for the step-down transformer saving space and cost. Commercially available state-of-the-art fast charging converters are adapted from general purpose commercial and industrial application rectifiers. The efficiencies of these converters tend to be lower (around 94%) due to the two-stage power conversion architecture. All the power that flows from the AC utility grid to charge the battery will be processed and filtered through two power conversion stages. Due to the anticipated increase in demand, there is a renewed interest in developing power converter topologies specific to battery charging applications. The objective here is to develop cheaper and compact power converters for battery charging. This dissertation proposes an innovative quasi-single stage power converter topologies for battery charging applications and direct medium voltage connected converters. The proposed topology fundamentally can achieve higher efficiency and power density than the conventional two-stage based converters. Only one stage requires filtering and incurs power conversion losses. Control burden is usually higher for single stage topologies. Innovative control approaches are presented to simplify the control complexity

    Design and Control of an Inverter for Photovoltaic Applications

    Get PDF

    Conversor de alta tensão e alta frequência para carga resistiva com variação imprevisível

    Get PDF
    Orientador: José Antenor PomilioDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Transformadores de alta tensão possuem algumas características específicas, uma vez que o efeito de elementos parasitas é amplificado, devido ao elevado número espiras, necessário para se atingir os níveis de tensão desejados. A operação em alta frequência reduz o volume de dispositivos magnéticos, tornando os sistemas mais compactos, o que pode, no entanto, dar margem a outros problemas, como ruídos de alta frequência, interferência eletromagnética e manifestação de ressonâncias. Nesta dissertação foi desenvolvido um conversor de alta tensão, com operação em alta frequência para transferência de potência para uma carga resistiva com variação imprevisível, desde uma situação de curto-circuito até a de circuito aberto, levando em consideração as particularidades do transformador de alta tensão operando em alta frequência. Simulações e cálculos teóricos foram realizados para caracterização do comportamento do sistema. Sistemas de proteção, controle e supervisão foram desenvolvidos para minimizar os efeitos de elementos parasitas e ressonâncias, bem como para garantir a operação segura do conversor. Um protótipo conceitual foi construído para validação das simulações e cálculos realizadosAbstract: High voltage transformers have specific characteristics, since the effect of some parasitic elements is highlighted, due to its high number of turns, in order to reach the desired voltage levels. High frequency operation reduces the volume of magnetic devices, making the systems more versatile, however it can give rise to other problems such as switching noise, electromagnetic interference and resonances. In this dissertation a high voltage converter, with high frequency operation was developed for power transferring to resistive loads with unpredictable variation, from the short circuit to the open circuit condition, taking in account the High Voltage High Frequency Transformer¿s particularities. Simulations and theoretical calculations were made to characterize the system¿s behavior. Protection, control and supervision systems were developed to minimize the effects of parasitic elements and resonances, as well as to ensure the safe and correct converter¿s operation. A conceptual prototype was built to validate the simulations and calculations performedMestradoEnergia EletricaMestre em Engenharia Elétric

    Commutation Technique for High Frequency Link Inverter without Operational Limitations and Dead Time

    Get PDF
    An improved commutation technique for the ac-ac output converter circuit of a pulse width modulated high frequency link (HF-link) inverter has been investigated. The high frequency link inverter converts a DC input voltage into line frequency AC output voltage using a high-frequency transformer for voltage step-up and galvanic isolation, without an intermediate rectification and DC bus. In this topology, there is a direct ac-ac converter, which processes the HF-link square-wave voltage into the desired sinusoidal ac output voltage. To do this requires a commutation method to prevent shoot-through when output current changes direction or commutates from one switch to the next. Conventionally, dead time is used but this adds distortion to the output waveform. Previously a commutation technique without dead time was introduced, but it required a number of assumptions on the inverter load impedance and link voltage characteristics that made it useful for a stand-alone R-L load but not practical for grid connection. The commutation method in this paper does not require dead time and does not impose any limitation on the output inductance and link voltage magnitude and frequency. Simulations, results experimental results and detailed analysis of output current THD values are presented
    corecore