8,671 research outputs found

    Multimodal decision-level fusion for person authentication

    Get PDF
    In this paper, the use of clustering algorithms for decision-level data fusion is proposed. Person authentication results coming from several modalities (e.g., still image, speech), are combined by using fuzzy k-means (FKM), fuzzy vector quantization (FVQ) algorithms, and median radial basis function (MRBF) network. The quality measure of the modalities data is used for fuzzification. Two modifications of the FKM and FVQ algorithms, based on a novel fuzzy vector distance definition, are proposed to handle the fuzzy data and utilize the quality measure. Simulations show that fuzzy clustering algorithms have better performance compared to the classical clustering algorithms and other known fusion algorithms. MRBF has better performance especially when two modalities are combined. Moreover, the use of the quality via the proposed modified algorithms increases the performance of the fusion system

    A Novel Scheme for Intelligent Recognition of Pornographic Images

    Full text link
    Harmful contents are rising in internet day by day and this motivates the essence of more research in fast and reliable obscene and immoral material filtering. Pornographic image recognition is an important component in each filtering system. In this paper, a new approach for detecting pornographic images is introduced. In this approach, two new features are suggested. These two features in combination with other simple traditional features provide decent difference between porn and non-porn images. In addition, we applied fuzzy integral based information fusion to combine MLP (Multi-Layer Perceptron) and NF (Neuro-Fuzzy) outputs. To test the proposed method, performance of system was evaluated over 18354 download images from internet. The attained precision was 93% in TP and 8% in FP on training dataset, and 87% and 5.5% on test dataset. Achieved results verify the performance of proposed system versus other related works

    Biometric liveness checking using multimodal fuzzy fusion

    Get PDF

    Applying the Upper Integral to the Biometric Score Fusion Problem in the Identification Model

    Get PDF
    This paper presents a new biometric score fusion approach in an identification system using the upper integral with respect to Sugeno's fuzzy measure. First, the proposed method considers each individual matcher as a fuzzy set in order to handle uncertainty and imperfection in matching scores. Then, the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Next, the fuzzy densities are generated based on rank information and training accuracy. Finally, the results are aggregated using the upper fuzzy integral. Experimental results compared with other fusion methods demonstrate the good performance of the proposed approach

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicle’s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicle’s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac

    Multi-classifier ensemble based on dynamic weights

    Get PDF
    In this study, a novel multi-classifier ensemble method based on dynamic weights is proposed to reduce the interference of unreliable decision information and improve the accuracy of fusion decision. The algorithm defines decision credibility to describe the real-time importance of the classifier to the current target, combines this credibility with the reliability calculated by the classifier on the training data set and dynamically assigns the fusion weight to the classifier. Compared with other methods, the contribution of different classifiers to fusion decision in acquiring weights is fully evaluated in consideration of the capability of the classifier to not only identify different sample regions but also output decision information when identifying specific targets. Experimental results on public face databases show that the proposed method can obtain higher classification accuracy than that of single classifier and some popular fusion algorithms. The feasibility and effectiveness of the proposed method are verified

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore