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of the four problems with a perfect classification record for all bit

strings of finite lengths.

Induction is seen here as the process of deriving a stable metric

space to separate the training groups. A stable metric space is

one containing well-separated, compact clusters. From the perspec-

tives of clustering and statistical discriminant analysis, the proposed

theory provides the most meaningful and methodological cluster-

ing/separation criterion because it goes beyond the limitations of the

Euclidean space to the metric space, and beyond the limitations of the

fixed space to a dynamic selection from an infinite family of spaces.

The proposed model is based upon a modified version of the

model in [8]. The modifications are deceptively subtle but the

consequences are profound because now an elegant, computational

(discrete), analytical (continuous) and systematic method is being

offered for the difficult unsupervised pattern learning problem.
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Multimodal Decision-Level

Fusion for Person Authentication

Vassilios Chatzis, Adrian G. Borş, and Ioannis Pitas

Abstract—In this paper, the use of clustering algorithms for decision-

level data fusion is proposed. Person authentication results coming from
several modalities (e.g., still image, speech), are combined by using fuzzy

kkk-means (FKM) and fuzzy vector quantization (FVQ) algorithms, and
median radial basis function (MRBF) network. The quality measure
of the modalities data is used for fuzzification. Two modifications of

the FKM and FVQ algorithms, based on a novel fuzzy vector distance
definition, are proposed to handle the fuzzy data and utilize the quality

measure. Simulations show that fuzzy clustering algorithms have better
performance compared to the classical clustering algorithms and other

known fusion algorithms. MRBF has better performance especially when
two modalities are combined. Moreover, the use of the quality via the

proposed modified algorithms increases the performance of the fusion
system.

Index Terms—Data fusion, fuzzy clustering, fuzzy logic, median RBF,
person authentication.

I. INTRODUCTION

The acquisition, processing, and combination of information pro-

vided by different knowledge sources is usually referred as multi-

sensor data fusion. Several methods have been proposed for data

fusion using neural networks, clustering algorithms, pattern recog-

nition techniques, syntactic models, fuzzy logic, etc., and they are

generally categorized to centralized, autonomous, or hybrid fusion.

Decision-level fusion involves fusion of sensor information that

is preliminary determinated by the sensors. Examples of decision-

level fusion methods include weighted decision methods, classical

inference, Bayesian inference, and Dempster–Shafer method [1].

Clustering methods refer to a wide variety of methods that attempt

to subdivide a data set into subsets (clusters). Fuzzy clustering

algorithms consider each cluster as a fuzzy set, while a membership

function measures the possibility that each training vector belongs to

this set. The fuzzy k-means (FKM) algorithm also known as fuzzy

ISODATA proposed by Dunn [2] and extended by Bezdek [3], and the

fuzzy vector quantization (FVQ) algorithm proposed by Karayiannis

[4] will be used for decision-level fusion. The fuzzy clustering

algorithms will be used to combine results coming from various

single modality person authentication algorithms (e.g., from speech,

video, still images). The methods provide results accompanied with

a degree of quality. The quality measure will be used to fuzzify the

data. Two modifications of the FKM and FVQ algorithms, based on

a novel fuzzy vector distance definition and named fuzzy data K-

means (FDKM) and fuzzy data vector quantization (FDVQ), will be

proposed to handle the fuzzy data and utilize the quality measure.

Radial basis function (RBF) network is a two-layer feed-forward

neural network in which various clusters are grouped together in

order to describe classes [5]. RBF network has very good functional

modeling capabilities. The algorithm employed for training the RBF

network is based on robust statistics and is called median RBF

(MRBF) [6].
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The paper has the following structure. In Section II the problem

is described. First, the person authentication problem is described

and the methods used are presented in brief. Then, the person

authentication fusion system is described and the way that the

clustering algorithms are applied as fusion managers is explained.

In Section III the clustering methods FKM, FVQ, and MRBF are

briefly presented and the proposed FDKM and FDVQ modifications

are described. Experimental results are presented in Section IV and

conclusions are drawn in Section V.

II. PROBLEM DESCRIPTION

A. The Person Authentication Problem

The person authentication problem can be considered as a special

case of the person identification problem. An identification system

compares biometric or other features of a person with the features

of persons that belong to a client database. The identity of the

client whose feature set is closer to the candidate feature set is

assigned to the candidate. Such a system does not deal with the

imposture problem. In an authentication system the candidate (client

or impostor) claims an identity and his feature set is compared only to

the feature set of the claimed client identity. Thus, an authentication

system is much faster than an identification system and moreover

deals with the imposture problem.

The problem of person authentication is a detection problem. Such

a problem can be analyzed by means of a binary hypothesis test

[7]. The first hypothesis H1 accepts a certain candidate claim for a

client identity and the second hypothesis H0 rejects this claim. A

hypothesis test can be seen as a partition of the sample space of the

observations into disjoint subsets. These subsets are separated by a

set of decision functions.

In this study, five different unimodal methods for person authen-

tication are used, based on grey-level and shape information of a

persons face and voice features. These methods were developed

within ACTS M2VTS project. The first face recognition technique

used was “morphological dynamic link architecture” (MDLA) [8],

[9], that employs both grey-level and shape information. Two more

methods for person authentication which employ shape and grey

level information coming from the profile of a person are used: the

“profile shape matching” (PSM) that uses the shape of the profile

and the “grey level matching” (GLM) that uses its grey-level values

[10], [11]. The fourth method employed was based on the use of

Gabor filters responses to create a feature vector and implement

the dynamic link architecture (GDLA) [12], [13]. Finally a speech

authentication algorithm based on hidden Markov models (MSP)

was used [14]. All of the above mentioned methods were applied

on the M2VTS database which consists of four shots of 37 persons’

video data that include speech and image sequences of rotated heads

[15]. Experiments were performed by considering repeatedly each

person as an impostor and the remaining 36 persons as clients for

every shot, thus resulting in 5328 authentication and 5328 imposture

tests.

Let M be the number of authentication algorithms (to be called

modalities). Each authentication algorithm uses a different source

of information provided in the database (e.g., profile views, frontal

views, or speech) and provide authentication results rj and their

quality qj normalized in the range [0; 1]

frj ; qjg: rj 2 [0; 1]; qj 2 [0; 1]; j = 1; 2; � � � ; M:

(1)

The values rj near zero show that the candidate is totally different

TABLE I
FALSE REJECTION (FR) AND FALSE ACCEPTANCE (FA)

RATES, WHEN MDLA, GDLA, PSM, GLM, AND MSP
METHODS ARE APPLIED FOR PERSON AUTHENTICATION

from the client and values near one stress that the candidate and

the client are similar. The individual performances of the five

modalities tested on M2VTS database are presented in Table I. The

result quality is a measure of its reliability. For example, when an

authentication method uses frontal views to authenticate persons,

special characteristics existing on a persons face could produce

reliable decisions regarding both imposture and authentication tests.

On the contrary, a common face without special characteristics would

probably cause less reliable decisions. Qualities near zero mean that

the result is unreliable, and the values near one that the result can

be considered reliable. The qualities can easily be transformed to

provide measures of fuzziness, through the rough qualitative relation

“fuzziness = 1 � quality.”

In the following, when both authentication and quality results

are taken into account, the results coming from all the modalities

(methods) for each authentication test will be considered as a fuzzy

vector u defined by the pair of the authentication and the quality

results

uj = frj ; qjg j = 1; 2; � � � ; M: (2)

The person authentication system structure is shown in Fig. 1.

B. Clustering Algorithms Used for Decision-Level Fusion

A person authentication fusion system has to decide whether a

person is a client (decision H1) or an impostor (decision H0) based

on the results uj , j = 1; 2; � � � ; M of the individual modalities.

In this paper, we consider person authentication fusion as a pattern

recognition problem. The multidimensional data uj provided by each

modality, is proposed to be grouped through classification algorithms

in two classes, one close to 0 (where the authentication test fails) and

one close to 1 (where the test succeeds).

The data to be fused by the fusion system of Fig. 1 consist

of authentication and quality results uj provided by the various

unimodal algorithms. A fusion system has to decide which of the

two hypotheses is the most likely, using a decision function f . If the

decision function value is one, then the H1 hypothesis is chosen and

if it is zero then H0 is chosen

f(uj) =
1; H1 adopted-person accepted

0; H0 adopted-person rejected.
(3)

When classification algorithms are used the decision function f is

associated with a cost minimization function J . The data samples

sharing a similar cost minimization function with respect to one of

the two hypotheses are grouped in a cluster.
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Fig. 1. Person authentication system using a parallel fusion algorithm.

The fusion system is evaluated by using the false acceptance rate

(FAr), the false rejection rate (FRr), and the receiver operating char-

acteristic (ROC) curve. False acceptances happen when an imposture

is accepted as a client. False rejections happen when a client is

rejected by the system. FAr is the rate of the false acceptances over

the total number of imposture tests and FRr is the rate of the false

rejections over the total number of authentication tests. By changing

the fusion system parameters several pairs of FAr and FRr can be

found, which correspond to different operating points of the fusion

system. Accordingly, a plot of FRr versus FAr defines the ROC curve.

Several competing classification techniques will be used to define

the decision function f and handle the fusion problem. One of them

is the classical k-means, one is based on robust training (MRBF), two

are fuzzy pattern recognition techniques (FKM, FVQ), and two are

novel fuzzy pattern recognition algorithms for fuzzy data (FDKM,

FDVQ).

III. DESCRIPTION OF THE DECISION-LEVEL FUSION ALGORITHMS

A. The OR and AND Logical Operators

The OR and AND logical operators can be considered as the

simplest fusion technique. Let us consider a threshold t, t 2 [0; 1].
The modalities provide results of authentication tests in the range

[0; 1]. If the result is less than t means the authentication test fails

and the candidate is not accepted as a client. If it is greater than t that

the test succeeds and the candidate is accepted as a client. Then, the

fusion is performed by using the OR and AND operators as follows.

OR: A candidate is accepted as a client if at least one modality

produces result greater than the corresponding threshold.

AND: A candidate is accepted as a client if all the modalities

produce results greater than the corresponding thresholds.

B. k-Means Algorithm

The well known classical k-means algorithm [16] classifies each

training vector to a certain cluster in order to minimize a distance

measure. The algorithm is derived from the constrained minimization

of the following objective function:

J =

k

j=1

M

i=1

kxi � yjk
2

(4)

where xi are the training vectors and yj are the codebook vectors,

referred also as the cluster centers. The performance of the algorithm

strongly depends on the initialization of the codebook vectors and on

the presence of outliers. Once the codebook is designed, any data is

classified into a cluster based on a classical distance criterion.

C. Fuzzy k-Means Algorithm

The FKM algorithm [2] classifies each vector to all clusters with

different values of membership between 0 and 1. This membership

value indicates the association of a vector to each of the k clusters.

Notice that the FKM algorithm does not classify fuzzy data, but

crisp data into fuzzy clusters.

The algorithm is derived from the constrained minimization of the

following objective function:

Jm =

k

j=1

M

i=1

uj(xi)
mkxi � yjk

2 1 < m <1 (5)

where xi are the training vectors, yj are the codebook vectors, and

uj(x) are the membership functions of the clusters. This minimiza-

tion, under the constraints that uj(xi) 2 [0; 1], 8 i; j, that 0 <
M
i=1 uj(xi) < M and that

k
j=1 uj(xi) = 1, 8 i = 1; 2; � � � ; M

results in a membership function of the form

uj(xi) =
1

k

l=1

kxi � yjk
2

kxi � ylk2

1=(m�1)
: (6)

The fuzziness of the clustering procedure is controlled by the

parameter m, which is always greater than one. When m tends to one,

the clustering tends to the one provided by the crisp procedure. When

a vector xi is an outlier, which means that it is far from all cluster

centers, their membership functions (6) take very small values and

that vector does not practically modify the cluster centers. Thus, the

fuzzy clustering algorithms are not seriously affected by the presence

of outliers.

D. Fuzzy Vector Quantization Algorithm

The FVQ [4] is a clustering algorithm based on soft decisions, that

leads to crisp decision at the end of the codebook design process.

In the initial stages of the algorithm, any training vector may be

assigned to the codebook vectors that are included in a hypersphere

centered at the vector. The possibility that a training vector belongs to

a cluster is measured by a membership function uj(xi). This function

should approach unity as the distance kxi � yjk
2 approaches zero,

and should decrease monotonically to zero as the distance increases

from 0 to the maximum distance dmax(xi), for all codebook vectors.
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(a) (b)

Fig. 2. (a) Two 1-D fuzzy numbers X� ; Y � , coming from 2-D fuzzy vectors X; Y when the direction � = (�1) is determined and (b) the upper

x
� �
r ; y

� �
r , and lower x

� �
l ; y

� �
l limits of two ��-cuts X��; Y ��, the centers of the fuzzy vectors xc; yc, and the distance between them.

Such a membership function can be of the form

uj(xi) = 1�
kxi � yjk

2

dmax(xi)

�

(7)

where � is a positive integer. The existence of overlapping hyper-

spheres guarantees the participation of all the training vectors in the

formation of the codebook. Thus, the effect of the initial codebook

selection on the quality of clustering is eliminated. The hyperspheres

are shrunk during the training procedure. Thus, it is not necessary

to define the fuzziness level. Finally, each of the training vectors is

assigned to one cluster. Notice that, similarly to the fuzzy k-means

algorithm, the fuzzy vector quantization algorithm does not classify

fuzzy data.

E. Fuzzy Clustering of Fuzzy Data

The fuzzy k-means and fuzzy vector quantization algorithms are

applied on crisp data. A crisp codebook vector is designed through

a soft decision process, where each vector is assigned to all clusters

with a degree of membership. In the following, we shall propose two

modifications of the fuzzy k-means and fuzzy vector quantization

algorithms, the FDKM and the FDVQ, that will provide us a way

to handle fuzziness and classify fuzzy data, based on a fuzzy vector

distance measure. During the training procedure, these methods take

into account not only the presence of outliers, but also the reliability

of the result.

The outputs of the modalities uj will be considered in the following

as fuzzy vectors consisted of the authentication results rj and the

quality results qj . A fuzzy vector is defined as an extension of the

notion of a fuzzy number to n dimensions [17]. A fuzzy vector X

can be symbolized as

X =
� �

� x��l ; x
��
r (8)

where x��l and x��r are the lower and upper points that limit the �-

cuts of the corresponding 1-D X� fuzzy numbers defined on a certain

direction �. An example of two two-dimensional (2-D) fuzzy vectors

X; Y , and the corresponding one-dimensional (1-D) fuzzy numbers

X� and Y � defined on the direction �1 are shown in Fig. 2(a) and

(b). The union of all 1-D fuzzy numbers for all the n � 1 angles

� = (�1; �2; � � � ; �n�1), which is symbolized by
�
, reconstructs

the n-dimensional fuzzy vector. Then, a distance norm Dn[X; Y]

between fuzzy vectors X , Y is defined as [17]

Dn[X; Y] =
1

2(n� 1)�

�

� =0

� � �
�

� =0

1

�=0

� kx��l ; y
��
l k+ kx��r ; y

��
r k d� d�n�1 � � � d�1

(9)

where k:; :k denotes a distance norm between classical vectors. When

the Euclidean norm is chosen, the Euclidean fuzzy distance is defined.

When the fuzzy vectors are described by using �-cuts, for a given

� and a vector of angles � = (�1; �2; � � � ; �n�1), two points x��l
and x��r are defined, which are the lower and the upper limits of

the corresponding ��-cut. The proposed Euclidean fuzzy distance is

the normalized integral of all the distances d2e(x
��
l ; y��l ) between

the lower limits, and the distances d2e(x
��
r ; y��r ) between the upper

limits, for every � 2 [0; 1], and �i 2 [0; �), i = 1; 2; � � � ; n� 1.

Let us symbolize as d��lx the Euclidean distance between the lower

limit x��l of the ��-cut and the center xc of a fuzzy vector X, as d��rx
the Euclidean distance between the upper limit, x��r of the ��-cut

and the center xc, and as dxy the distance between the centers of

two fuzzy vectors X; Y.

It is easy to prove that the distance between two lower limits of

two fuzzy vectors �-cuts is equal to

d
2

e(x
��
l ; y

��
l )

= (d��lx � d
��
ly )2 + 2(d��lx � d

��
ly )dxy

n�1

i=1

cos(�i) + d
2

xy (10)

where �i, i = 1; 2; � � � ; n � 1 are known angles �i 2 [0; �). The

distance between two upper limits of two fuzzy vectors �-cuts is

equal to

d
2

e(x
��
r ; y

��
r )

= d
��
rx � d

��
ry

2

� 2(d��rx � d
��
ry )dxy

n�1

i=1

cos(�i) + d
2

xy: (11)

By using (9)–(11), the Euclidean fuzzy distance between two fuzzy

vectors X; Y is given by

De [X; Y] = d
2

xy + d
2

f (12)
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TABLE II
FR AND FA RATES, BY USING THE RESULTS FROM MDLA, GDLA, PSM, GLM, AND MSP

MODALITIES COMBINED BY TWO, PROVIDED BY USING KM, FKM, FDKM, FVQ, FDVQ, AND MRBF

TABLE III
FR AND FA RATES, BY USING THE RESULTS FROM MDLA, GDLA, PSM, GLM, AND MSP MODALITIES

COMBINED BY THREE, PROVIDED BY USING KM, FKM, FDKM, FVQ, FDVQ, AND MRBF

TABLE IV
FR AND FA RATES, BY USING THE RESULTS FROM MDLA, GDLA, PSM, GLM, AND MSP

MODALITIES COMBINED BY FOUR, PROVIDED BY USING KM, FKM, FDKM, FVQ, FDVQ, AND MRBF

where

d
2

f

=
1

2(n� 1)�

�

� =0

� � �

�

� =0

1

�=0

� (d��lx � d
��
ly )

2 + (d��rx � d
��
ry )

2 + 2dxy

n�1

i=1

� cos(�i)(d
��
lx � d

��
ly � d

��
rx + d

��
ry ) d� d�n�1 � � � d�1:

(13)

The above equation shows that the Euclidean fuzzy distance is

the classical Euclidean distance between the centers of two fuzzy

vectors X; Y, modified by a factor that depends on the fuzziness

that every fuzzy vector holds. The Euclidean fuzzy distance can be

considered as a generalized Euclidean distance since (13) equals to 0

when the vectors are crisp (d��lx = d��ly = d��rx = d��ry = 0, 8 �i; �).

The Euclidean fuzzy distance is also equal to the classical Euclidean

distance of the fuzzy vectors centers when the fuzziness of the fuzzy

vector X is equal to the fuzziness of the fuzzy vector Y for every

angle and �-cut (d��lx = d��ly , d��rx = d��ry , 8 �i; �). Generally, the

Euclidean fuzzy distance can be equal to, greater or less than the

classical distance of the fuzzy vectors centers, depending on their

membership functions.

The fuzzy classification algorithms FKM and FVQ, that were

briefly described in the previous sections, can now be modified to

incorporate the Euclidean fuzzy distance and classify fuzzy data.

The modified algorithms, FDKM and FDVQ, use (6) and (7) to

evaluate the membership values of a vector in a cluster, modified



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999 679

Fig. 3. FR and FA rates, using OR, AND, KM, FKM, FDKM, FVQ, FDVQ,
and MRBF methods for fusing the results of GLM and MSP methods.

by substituting the classical Euclidean distance kxi � yjk
2 with the

Euclidean fuzzy distance calculated by (12) and (13). The need for

crisp decisions at the end of the training procedures, forces us to

chose crisp codebook vectors. Thus, the centers of the fuzzy vectors

should be used for all arithmetic operations.

F. Median Radial Basis Function Network

An RBF network is a two-layer neural network used for classifi-

cation or functional approximation purposes [7]. The inputs of the

RBF network consist of the results provided by various modalities

employed. Each hidden unit implements a Gaussian function which

models a cluster

�j(x) = exp �(x� yj)
T
S
�1

j (x� yj) (14)

where x is the entry vector, yj is the mean vector, Sj is the

covariance matrix, and j = 1; � � � ; L, where L is the total number

of hidden units. Each hidden unit models the location and the spread

of a cluster.

The output unit consists of a weighted sum of hidden unit outputs

which are fed into a sigmoidal function

 (x) =
1

1 + exp �

L

j=1

�j�j(x)

(15)

where �j are the output weights associated with the hidden units.

The output consists of a decision function  (x) 2 (0; 1).
A very common approach for estimating the parameters of an

RBF network consists of an adaptive implementation of the k-means

clustering algorithm [16]. For the covariance matrix estimation, a

2-D extension of this algorithm is employed. In [6] a robust statistics

algorithm (MRBF) was proposed for estimating parameters of RBF

networks. It was proved that this algorithm provides better parameter

estimates when the clusters are overlapping or in the presence of

outliers [6]. MRBF assigns an incoming data vector to a cluster which

has the smallest Euclidean distance

kxi � yj =
L

min
k=1

xi � ykk: (16)

After assigning a set of vectors to the same cluster, we calculate

the center of the cluster using the marginal median algorithm

yj = Medfxj; 0; xj; 1; � � � ; xj; ng (17)

Fig. 4. The FR and FA rates, using OR, AND, KM, FKM, FDKM, FVQ,
FDVQ, and MRBF methods for fusing the results of PSM, MDLA, and MSP
methods.

where xj; i for i = 0; � � � ; n are the data samples assigned to the

hidden unit j. In order to limit the computational complexity we

consider only a limited set of data samples and the formula (17)

is calculated from a running window. For the dispersion estimation

we employ the median of the absolute deviations from the median

algorithm

Sj =
Medfjxj; 0 � yj j; � � � ; jxj; n � yj jg

0:6745
(18)

where the covariance matrix Sj is considered diagonal. The output

weights are calculated from the back-propagation algorithm

�j =

n

i=0

[F (xi)�  (xi)] (xi)[1�  (xi)]�j(xi) (19)

where F (xi) is the decision function associated with each data

sample in the training set.

MRBF networks use the second order statistics. Furthermore, the

radial functions modeling the clusters are not influenced by the

presence of outliers in the MRBF training algorithm, due to the use

of the median operators. Therefore MRBF networks are expected to

have good performance.

IV. EXPERIMENTAL RESULTS

The algorithms that are described in Section III are used to fuse

results coming from the five different modalities that were developed

for person authentication in the framework of M2VTS project. The

fusion methods are applied by using the results coming from the

five modalities, in groups of two, three, and four. The results are

presented in Tables II–IV, respectively.

When the results of two modalities were combined, the best

fusion was succeeded by using the results coming from GLM and

MSP algorithms, fused by MRBF algorithm. A 0% false rejection

rate and 0.53% false acceptance rate was obtained. The best result

is also shown in Fig. 3 where the clustering methods are also

compared with the known OR and AND fusion techniques. The fuzzy

clustering algorithms, especially the FKM, have better performance

than classical k-means. Moreover, the quality of the results, used by

the proposed fuzzy clustering algorithms for fuzzy data FDKM and

FDVQ, improves the performance in cases where the results are not

good enough, and preserves the performance of the fuzzy clustering

techniques when the results are good.
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Fig. 5. The FR and FA rates, using OR, AND, KM, FKM, FDKM, FVQ,
FDVQ, and MRBF methods for fusing the results of PSM, GDLA, MDLA,
and MSP methods.

When the results of three modalities were combined, the best fusion

was succeeded by using the results coming from MDLA, PSM, and

MSP algorithms, fused by FDKM algorithm. A 0% false rejection

rate and 0.39% false acceptance rate was obtained. The best result is

also shown in Fig. 4 together with the results from the OR and AND

fusion techniques. The FKM algorithm provides better performance

in all cases in comparison to the classical KM. The use of the

quality improves again the performance when the results are not good

enough, and preserves the performance when the results are good.

When the results of four modalities were combined, the best

fusion was succeeded by using the results coming from MDLA,

GDLA, PSM, and MSP algorithms, fused by classical KM algorithm.

A 0.68% false rejection rate and 0.39% false acceptance rate was

obtained. The results from the fusion of the four modalities are also

shown in Fig. 5. The FKM algorithm improves the performance in

cases of poor results. The use of the quality seems to be improper

in such cases where there is a lot of information coming from the

data itself.

V. CONCLUSION

The use of fuzzy clustering algorithms for decision-level data

fusion in a person authentication system was proposed. Results

coming from five person authentication algorithms were combined

by using fuzzy k-means and fuzzy vector quantization. The quality

measure that is also provided with the results was used to fuzzify the

data. Two modifications of the FKM and FVQ algorithms, based on

a novel fuzzy vector distance definition were proposed to utilize the

quality of the results. Simulation results showed that fuzzy clustering

algorithms have better performance compared with classical k-mean

and other known fusion algorithms. It was also shown that the use of

median radial basis function network provides a reliable technique for

data fusion. Moreover, the proposed fuzzy clustering algorithms for

fuzzy data which utilize the quality of the results, provide improved

fusion performance.

REFERENCES

[1] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proc. IEEE, vol. 85, pp. 6–23, Jan. 1997.

[2] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use
in detecting compact well-separated clusters,” J. Cybern., vol. 3, pp.
32–57, Mar. 1973.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-

rithms. New York: Plenum, 1981.
[4] N. B. Karayiannis, “Fuzzy vector quantization algorithms and their

application in image compression,” IEEE Trans. Image Processing, vol.
4, pp. 1193–1201, Sept. 1995.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation. Engle-
wood Cliffs, NJ: Prentice-Hall, 1994.
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