567 research outputs found

    Improvement of strength and water absorption of Interlocking Compressed Earth Bricks (ICEB) with addition of Ureolytic Bacteria (UB)

    Get PDF
    Interlocking Compressed Earth Brick (ICEB) are cement stabilized soil bricks that allow for dry stacked construction. This characteristic resulted to faster the process of building walls and requires less skilled labour as the bricks are laid dry and lock into place. However there is plenty room for improving the interlocking bricks by increase its durability. Many studies have been conducted in order to improve the durability of bricks by using environmentally method. One of the methods is by introducing bacteria into bricks. Bacteria in brick induced calcite precipitation (calcite crystals) to cover the voids continuously. Ureolytic Bacteria (UB) was used in this study as a partial replacement of limestone water with percentage of 1%, 3% and 5%. Enrichment process was done in soil condition to ensure the survivability of UB in ICEB environment. This paper evaluates the effect of UB in improving the strength and water absorption properties of ICEB and microstructure analysis. The results show that addition of 5% UB in ICEB indicated positive results in improving the ICEB properties by 15.25% in strength, 14.72% in initial water absorption and 14.68% reduction in water absorption. Precipitation of calcium carbonate (CaCo3) in form of calcite can be distinguish clearly in microstructure analysis

    Experimental impulse radio IEEE 802.15.4a UWB based wireless sensor localization technology: Characterization, reliability and ranging

    Get PDF
    Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns

    An efficient ultra-wideband digital transceiver for wireless applications on the field-programmable gate array platform

    Get PDF
    The ultra-wideband (UWB) technology is a promising short-range communication technology for most wireless applications. The UWB works at higher frequencies and is affected by interferences with the same frequency standards. This manuscript has designed an efficient and low-cost implementation of IEEE 802.15.4a-based UWB-digital transceiver (DTR). The design module contains UWB transmitter (TX), channel, and UWB-receiver (RX) units. Convolutional encoding and modulation units like burst position modulation and binary phase-shift keying modulation are used to construct the UWB-TX. The synchronization and Viterbi decoder units are used to recover the original data bits and are affected by noise in UWB-RX. The UWB-DTR is synthesized using Xilinx ISE® environment with Verilog hardware description language (HDL) and implemented on Artix-7 field-programmable gate array (FPGA). The UWB-DTR utilizes less than 2% (slices and look-up table/LUTs), operates at 268 MHz, and consumes 91 mW of total power on FPGA. The transceiver achieves a 6.86 Mbps data rate, which meets the IEEE 802.15.4a standard. The UWB-DTR module obtains the bit error rate (BER) of 2×10-4 by transmitting 105 data bits. The UWB-DTR module is compared with similar physical layer (PHY) transceivers with improvements in chip area (slices), power, data rate, and BER. 

    Experimental Characterization of System Parameters for Ranging in IEEE 802.15.4a using Energy Detectors

    Get PDF
    The IEEE 802.15.4a standard for impulse radio ultrawide band (IR-UWB) communication systems defines a ranging scheme which relies on the measurement of the round-trip propagation time of electromagnetic pulses. Accuracy is strongly dependent on the estimation of the timeof-arrival (TOA) of the pulse that is spread in time due to multipath propagation. The major concern therefore is the proper detection of the leading edge. In this work, the ranging capabilities of the standard are analyzed for an energy detector receiver. Emphasis is put on the influence of transmitter and receiver parameters, which are evaluated for a set of measured scenarios. It is shown that sub-meter ranging accuracy can be achieved with fixed parameter settings

    Optimization of positioning capabilities in wireless sensor networks : from power efficiency to medium access

    Get PDF
    In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime of WSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the physical layer, power control and resource optimization may play an important role, as well as at higher layers through network topology and MAC protocols. The objective of this Thesis is to study the optimization of resources in WSN that are employed for positioning purposes, with the ultimate goal being the minimization of power consumption. We focus on anchor-based positioning, where a subset of the WSN nodes know their location (anchors) and send ranging signals to nodes with unknown position (targets) to assist them in estimating it through distance-related measurements. Two well known of such measurements are received signal strength (RSS) and time of arrival (TOA), in which this Thesis focuses. In order to minimize power consumption while providing a certain quality of positioning service, in this dissertation we research on the problems of power control and node selection. Aiming at a distributed implementation of the proposed techniques, we resort to the tools of non-cooperative game theory. First, transmit power allocation is addressed for RSS based ranging. Using game theory formulation, we develop a potential game leading to an iterated best response algorithm with sure convergence. As a performance metric, we introduce the geometric dilution of precision (GDOP), which is shown to help achieving a suitable geometry of the selected anchor nodes. The proposed scheme and relative distributed algorithms provide good equilibrium performance in both static and dynamic scenarios. Moreover, we present a distributed, low complexity implementation and analyze it in terms of computational complexity. Results show that performance close to that of exhaustive search is possible. We then address the transmit power allocation problem for TOA based ranging, also resorting to a game theoretic formulation. In this setup, and also considering GDOP as performance metric, a supermodular game formulation is proposed, along with a distributed algorithm with guaranteed convergence to a unique solution, based on iterated best response. We analyze the proposed algorithm in terms of the price of anarchy (PoA), that is, compared to a centralized optimum solution, and shown to have a moderate performance loss. Finally, this dissertation addresses the effect of different MAC protocols and topologies in the positioning performance. In this direction, we study the performance of mesh and cluster-tree topologies defined in WSN standards. Different topologies place different constraints in network connectivity, having a substantial impact on the performance of positioning algorithms. While mesh topology allows high connectivity with large energy consumption, cluster-tree topologies are more energy efficient but suffer from reduced connectivity and poor positioning performance. In order to improve the performance of cluster-tree topologies, we propose a cluster formation algorithm. It significantly improves connectivity with anchor nodes, achieving vastly improved positioning performance.En les xarxes de sensors sense fils (WSN), l'habilitat dels nodes sensors per conèixer la seva posició facilita una gran varietat d'aplicacions per la monitorització, el control i l'automatització. Així, les dades que proporciona un sensor tenen sentit només si la posició pot ésser determinada. Moltes WSN són desplegades en interiors o en àrees on la senyal de sistemes globals de navegació per satèl.lit (GNSS) no té prou cobertura, i per tant, el posicionament basat en GNSS no pot ésser garantitzat. En aquests escenaris, les WSN poden proporcionar una bona precisió en posicionament. Normalment, en WSN els nodes són alimentats amb bateries. Aquestes bateries són difícils de reemplaçar. Per tant, el consum de potència és un aspecte important i és crucial dissenyar estratègies efectives per maximitzar el temps de vida de la bateria. L'optimització del consum de potència pot ser fet a diferents capes del protocol. Per exemple, en la capa física, el control de potència i l'optimització dels recursos juguen un rol important, igualment que la topologia de xarxa i els protocols MAC en les capes més altes. L'objectiu d'aquesta tesi és estudiar l¿optimització de recursos en WSN que s'utilitzen per fer posicionament, amb el propòsit de minimitzar el consum de potència. Ens focalitzem en el posicionament basat en àncora, en el qual un conjunt de nodes coneixen la seva localització (nodes àncora) i envien missatges als nodes que no saben la seva posició per ajudar-los a estimar les seves coordenades amb mesures de distància. Dues classes de mesures són la potència de la senyal rebuda (RSS) i el temps d'arribada (TOA) en les quals aquesta tesi està focalitzada. Per minimitzar el consum de potència mentre que es proporciona suficient qualitat en el posicionament, en aquesta tesi estudiem els problemes de control de potència i selecció de nodes. Tenint en compte una implementació distribuïda de les tècniques proposades, utilitzem eïnes de teoria de jocs no cooperatius. Primer, l'assignació de potència transmesa és abordada pel càlcul de la distància amb RSS. Utilitzant la teoria de jocs, desenvolupem un joc potencial que convergeix amb un algoritme iteratiu basat en millor resposta (best response). Com a mètrica d'error, introduïm la dilució de la precisió geomètrica (GDOP) que mostra quant d'apropiada és la geometria dels nodes àncora seleccionats. L'esquema proposat i els algoritmes distribuïts proporcionen una bona resolució de l'equilibri en l'escenari estàtic i dinàmic. Altrament, presentem una implementació distribuïda i analitzem la seva complexitat computacional. Els resultats obtinguts són similars als obtinguts amb un algoritme de cerca exhaustiva. El problema d'assignació de la potència transmesa en el càlcul de la distància basat en TOA, també és tractat amb teoria de jocs. En aquest cas, considerant el GDOP com a mètrica d'error, proposem un joc supermodular juntament amb un algoritme distribuït basat en millor resposta amb convergència garantida cap a una única solució. Analitzem la solució proposada amb el preu de l'anarquia (PoA), és a dir, es compara la nostra solució amb una solució òptima centralitzada mostrant que les pèrdues són moderades. Finalment, aquesta tesi tracta l'efecte que causen diferents protocols MAC i topologies en el posicionament. En aquesta direcció, estudiem les topologies de malla i arbre formant clusters (cluster-tree) que estan definides als estàndards de les WSN. La diferència entre les topologies crea diferents restriccions en la connectivitat de la xarxa, afectant els resultats de posicionament. La topologia de malla permet una elevada connectivitat entre els nodes amb gran consum d'energia, mentre que les topologies d'arbre són més energèticament eficients però amb baixa connectivitat entre els nodes i baix rendiment pel posicionament. Per millorar la qualitat del posicionament en les topologies d'arbre, proposem un algoritme de formació de clústers.Postprint (published version
    corecore