26 research outputs found

    An automatic building extraction and regularisation technique using LiDAR point cloud data and orthoimage

    Get PDF
    The development of robust and accurate methods for automatic building detection and regularisation using multisource data continues to be a challenge due to point cloud sparsity, high spectral variability, urban objects differences, surrounding complexity, and data misalignment. To address these challenges, constraints on object's size, height, area, and orientation are generally benefited which adversely affect the detection performance. Often the buildings either small in size, under shadows or partly occluded are ousted during elimination of superfluous objects. To overcome the limitations, a methodology is developed to extract and regularise the buildings using features from point cloud and orthoimagery. The building delineation process is carried out by identifying the candidate building regions and segmenting them into grids. Vegetation elimination, building detection and extraction of their partially occluded parts are achieved by synthesising the point cloud and image data. Finally, the detected buildings are regularised by exploiting the image lines in the building regularisation process. Detection and regularisation processes have been evaluated using the ISPRS benchmark and four Australian data sets which differ in point density (1 to 29 points/m2), building sizes, shadows, terrain, and vegetation. Results indicate that there is 83% to 93% per-area completeness with the correctness of above 95%, demonstrating the robustness of the approach. The absence of over- and many-to-many segmentation errors in the ISPRS data set indicate that the technique has higher per-object accuracy. While compared with six existing similar methods, the proposed detection and regularisation approach performs significantly better on more complex data sets (Australian) in contrast to the ISPRS benchmark, where it does better or equal to the counterparts. © 2016 by the authors

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Merging digital surface models sourced from multi-satellite imagery and their consequent application in automating 3D building modelling

    Get PDF
    Recently, especially within the last two decades, the demand for DSMs (Digital Surface Models) and 3D city models has increased dramatically. This has arisen due to the emergence of new applications beyond construction or analysis and consequently to a focus on accuracy and the cost. This thesis addresses two linked subjects: first improving the quality of the DSM by merging different source DSMs using a Bayesian approach; and second, extracting building footprints using approaches, including Bayesian approaches, and producing 3D models. Regarding the first topic, a probabilistic model has been generated based on the Bayesian approach in order to merge different source DSMs from different sensors. The Bayesian approach is specified to be ideal in the case when the data is limited and this can consequently be compensated by introducing the a priori. The implemented prior is based on the hypothesis that the building roof outlines are specified to be smooth, for that reason local entropy has been implemented in order to infer the a priori data. In addition to the a priori estimation, the quality of the DSMs is obtained by using field checkpoints from differential GNSS. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the Maximum Likelihood model which showed similar quantitative statistical results and better qualitative results. Perhaps it is worth mentioning that, although the DSMs used in the merging have been produced using satellite images, the model can be applied on any type of DSM. The second topic is building footprint extraction based on using satellite imagery. An efficient flow-line for automatic building footprint extraction and 3D model construction, from both stereo panchromatic and multispectral satellite imagery was developed. This flow-line has been applied in an area of different building types, with both hipped and sloped roofs. The flow line consisted of multi stages. First, data preparation, digital orthoimagery and DSMs are created from WorldView-1. Pleiades imagery is used to create a vegetation mask. The orthoimagery then undergoes binary classification into ‘foreground’ (including buildings, shadows, open-water, roads and trees) and ‘background’ (including grass, bare soil, and clay). From the foreground class, shadows and open water are removed after creating a shadow mask by thresholding the same orthoimagery. Likewise roads have been removed, for the time being, after interactively creating a mask using the orthoimagery. NDVI processing of the Pleiades imagery has been used to create a mask for removing the trees. An ‘edge map’ is produced using Canny edge detection to define the exact building boundary outlines, from enhanced orthoimagery. A normalised digital surface model (nDSM) is produced from the original DSM using smoothing and subtracting techniques. Second, start Building Detection and Extraction. Buildings can be detected, in part, in the nDSM as isolated relatively elevated ‘blobs’. These nDSM ‘blobs’ are uniquely labelled to identify rudimentary buildings. Each ‘blob’ is paired with its corresponding ‘foreground’ area from the orthoimagery. Each ‘foreground’ area is used as an initial building boundary, which is then vectorised and simplified. Some unnecessary details in the ‘edge map’, particularly on the roofs of the buildings can be removed using mathematical morphology. Some building edges are not detected in the ‘edge map’ due to low contrast in some parts of the orthoimagery. The ‘edge map’ is subsequently further improved also using mathematical morphology, leading to the ‘modified edge map’. Finally, A Bayesian approach is used to find the most probable coordinates of the building footprints, based on the ‘modified edge map’. The proposal that is made for the footprint a priori data is based on the creating a PDF which assumes that the probable footprint angle at the corner is 90o and along the edge is 180o, with a less probable value given to the other angles such as 45o and 135o. The 3D model is constructed by extracting the elevation of the buildings from the DSM and combining it with the regularized building boundary. Validation, both quantitatively and qualitatively has shown that the developed process and associated algorithms have successfully been able to extract building footprints and create 3D models

    Tackling Uncertainties and Errors in the Satellite Monitoring of Forest Cover Change

    Get PDF
    This study aims at improving the reliability of automatic forest change detection. Forest change detection is of vital importance for understanding global land cover as well as the carbon cycle. Remote sensing and machine learning have been widely adopted for such studies with increasing degrees of success. However, contemporary global studies still suffer from lower-than-satisfactory accuracies and robustness problems whose causes were largely unknown. Global geographical observations are complex, as a result of the hidden interweaving geographical processes. Is it possible that some geographical complexities were not expected in contemporary machine learning? Could they cause uncertainties and errors when contemporary machine learning theories are applied for remote sensing? This dissertation adopts the philosophy of error elimination. We start by explaining the mathematical origins of possible geographic uncertainties and errors in chapter two. Uncertainties are unavoidable but might be mitigated. Errors are hidden but might be found and corrected. Then in chapter three, experiments are specifically designed to assess whether or not the contemporary machine learning theories can handle these geographic uncertainties and errors. In chapter four, we identify an unreported systemic error source: the proportion distribution of classes in the training set. A subsequent Bayesian Optimal solution is designed to combine Support Vector Machine and Maximum Likelihood. Finally, in chapter five, we demonstrate how this type of error is widespread not just in classification algorithms, but also embedded in the conceptual definition of geographic classes before the classification. In chapter six, the sources of errors and uncertainties and their solutions are summarized, with theoretical implications for future studies. The most important finding is that, how we design a classification largely pre-determines what we eventually get out of it. This applies for many contemporary popular classifiers including various types of neural nets, decision tree, and support vector machine. This is a cause of the so-called overfitting problem in contemporary machine learning. Therefore, we propose that the emphasis of classification work be shifted to the planning stage before the actual classification. Geography should not just be the analysis of collected observations, but also about the planning of observation collection. This is where geography, machine learning, and survey statistics meet

    Forest attributes mapping with SAR data in the romanian South-Eastern Carpathians requirements and outcomes

    Get PDF
    Esta tesis doctoral se centra en la estimación de variables forestales en la zona Sureste de los Cárpatos Rumanos a partir de imágenes de radar de apertura sintética. La investigación abarca parte del preprocesado de las imágenes, métodos de generación de mosaicos y la extracción de la cobertura de bosque, sus subtipos o su biomasa. La tesis se desarrolló en el Instituto Nacional de Investigación y Desarrollo Forestal Marín Dracea (INCDS) y la Universidad de Alcalá (UAH) gracias a varios proyectos: el proyecto EO-ROFORMON del INCDS (Prototyping an Earth-Observation based monitoring and forecasting system for the Romanian forests), y el proyecto EMAFOR de la UAH (Synthetic Aperture Radar (SAR) enabled Analysis Ready Data (ARD) cubes for efficient monitoring of agricultural and forested landscapes). El proyecto EO-ROFORMON fue financiado por la Autoridad Nacional para la Investigación Científica de Rumania y el Fondo Europeo de Desarrollo Regional. El proyecto EMAFOR fue financiado por la Comunidad Autónoma de Madrid (España). El objetivo de esta tesis es el desarrollo de algoritmos para la extracción de variables forestales de uso general como la cobertura, el tipo o la biomasa del bosque a partir de imagen de radar de apertura sintética. Para alcanzar dicho propósito se analizaron posibles fuentes de sesgo sistemático que podrían aparecer en zonas de montaña (ej., normalización topográfica, generación de mosaicos), y se aplicaron técnicas de aprendizaje de máquina para tareas de clasificación y regresión. La tesis contiene ocho secciones: una introducción, cinco publicaciones en revistas o actas de congresos indexados, una pendiente de publicación (quinto capítulo) y las conclusiones. La introducción contextualiza la importancia del bosque, cómo se recoge la información sobre su estado (ej., inventario forestal) y las iniciativas o marcos legislativos que requieren dicha información. A continuación, se describe cómo la teledetección puede complementar la información de inventario forestal, detallando el contexto histórico de las distintas tecnologías, su funcionamiento, y cómo pueden ser aplicadas para la extracción de información forestal. Por último, se describe la problemática y el monitoreo del bosque en Rumanía, detallando el objetivo de la tesis y su estructura. El primer capítulo analiza la influencia del modelo digital de elevaciones (MDE) en la calidad de la normalización topográfica, analizando tres MDE globales (SRTM, AW3D y TanDEM-X DEM) y uno nacional (PNOA-LiDAR). Los experimentos se basan en la comparación entre órbitas, con un MDE de referencia, y la variación del acierto en la clasificación dependiendo del MDE empleado para la normalización. Los resultados muestran una menor diferencia ente órbitas al utilizar un MDE con una mejor resolución (ej. TanDEM-X, PNOA-LIDAR), especialmente en el caso de zonas con fuertes pendientes o formas del terreno complejas, como pueden ser los valles. En zonas de alta montaña las imágenes de radar de apertura sintética (SAR) sufren frecuentes distorsiones. Estas distorsiones dependen de la geometría de adquisición, por lo que es posible combinar imágenes adquiridas desde varias órbitas para que la cobertura sea lo más completa posible. El segundo capítulo evalúa dos metodologías para la clasificación de usos del suelo utilizando datos de Sentinel-1 adquiridos desde varias órbitas. El primer método crea clasificaciones por órbita y las combina, mientras que el segundo genera un mosaico con datos de múltiples órbitas y lo clasifica. El acierto obtenido mediante combinación de clasificaciones es ligeramente mayor, mientras que la clasificación de mosaicos tiene importantes omisiones de las zonas boscosas debido a problemas en la normalización topográfica y a los efectos direccionales. El tercer capítulo se enfoca en separar la cobertura forestal de otras coberturas del suelo (urbano, vegetación baja, agua) analizando la utilidad de las variables basadas en la coherencia interferométrica. En él se realizan tres clasificaciones de máquina vector-soporte basadas en un conjunto concreto de variables. El primer conjunto contiene las estadísticas anuales de la retrodispersión (media y desviación típica anual), el segundo añade la coherencia a largo plazo (separación temporal mayor a un año), el tercero incluye las estadísticas de la coherencia a corto plazo (mínima separación temporal). Utilizar variables basadas en la coherencia aumenta el acierto de la clasificación hasta un 5% y reduce los errores de omisión de la cobertura forestal. El cuarto capítulo evalúa la posibilidad de detectar talas selectivas utilizando datos de Sentinel-1 y Sentinel-2. Sus resultados muestran que la detección resulta muy difícil debido a la saturación de los sensores y la confusión introducida por el efecto de la fenología. El quinto capítulo se centra en la clasificación de tipos de bosque basado en una serie temporal de datos Sentinel-1. Se basa en la creación de un conjunto de modelos que describen la relación entre la retrodispersión y el ángulo local de incidencia para un determinado tipo de bosque y fecha concreta. Para cada píxel se calcula el residuo respecto al modelo de cada uno de los tipos de bosque, acumulando dichos residuos a lo largo de la serie temporal. Hecho esto, cada píxel es asignado al tipo de bosque que acumula un menor residuo. Los resultados son prometedores, mostrando que frondosas y coníferas tienen un comportamiento distintivo, y que es posible separar ambos tipos de bosque con un alto grado de acierto. El sexto capítulo está dedicado a la estimación de biomasa utilizando datos Sentinel-1, ALOS PALSAR y regresión Random Forest. Se obtiene un error similar para ambos sensores a pesar de utilizar una banda diferente (band-C vs. -L), con poca reducción en el error cuando ambas bandas se utilizan conjuntamente. Sin embargo, el ajuste de un estimador adaptado a las condiciones locales de Rumanía sí ofreció una reducción de del error al ser comparado con las estimaciones globales de biomasa

    Integrative Assessment and Modelling of the Non Timber Forest Products Potential in Nuba Mountains of Sudan by Field Methods, Remote Sensing and GIS

    Get PDF
    Pressure imposed at any one place or point in time results in a complexity of spatial and temporal interactions within topographical ecosystems. It can be propagated through the system and may have implications for future ecosystem functions over a wide array of various spatial and temporal scales. Under conditions of wars and other socio-economic conflicts, these processes are most forceful in developing countries amidst declining economic growth, lack of awareness, deterioration of ecosystem services, loss of existing traditional knowledge bases and weak governance structures. Forests are an essential part of ecosystem services, not only as a resource but as a contributor to biological systems as well. They represent one of the most important sectors in the context of Environmental Change (EC), both from the point of mitigation as well as adaptation. While forests are projected to be adversely impacted under EC, they are also providing opportunities to mitigate these changes. Yet this is one of the least understood sectors, especially at the regional level - many of its fundamental metrics such as mitigation potential, vulnerability and the likely impacts of EC are still not well understood until now. Thus, there is a need for research and field investigations into the synergy of mitigation and adaptation so that the cost of addressing EC impacts can be reduced and the co-benefits can be increased. The aim of this study is to focus particularly on forest-based ecosystem services and to use forests as a strategy for inducing environmental change within the Nuba Mountains in Sudan, specifically for systems in poor condition under EC, and furthermore to explore forests as an entry point for investigating the relationship between urban and rural development and ecosystem services. In addition, the aim is also to raise understanding of the relations between patterns of local-level economic and demographic changes, the nature and value of local ecosystem services, and the role of such services in increasingly interlinked urban and rural livelihood systems. The methodology applied in the current research is three-pronged: a formal literature review, a socio–economic survey (based on semi-structured interviews of household heads via Rapid Rural Appraisal (RRA), with a focus on group discussions, informal meetings, free listening and key informant techniques), and multitemporal optical satellite data analysis (i.e. Landsat and RapidEye). Landsat imagery was utilized to gather the spatial characteristics of the region and to study the Land Use/Land Cover (LU/LC) changes during the period from 1984 to 2014. Meanwhile, RapidEye imagery was used to generate the tree species distribution map. Qualitative and quantitative techniques were applied to analyze socio-economic data. Moreover, Food Consumption Score (FCS) was used to gauge both diversity and frequency of food consumption in surveyed areas. Geographic object-based image analysis (i.e. K-Nearest Neighbour classifier and knowledge-based classifiers) based on a developed model of integrated features (such as vegetation indices, DEM, thematic layers and meteorological information) was applied. Post Classification Analysis (PCA) as well as Post Change Detection (PCD) techniques were used. Hotspot analysis was conducted to detect the areas affected by deforestation. Furthermore, Ordinary Least Squares regression (OLS), Autocorrelation (Moran's) analysis, and Geographically Weighted Regression analyses (GWR) were applied to address the interaction of the different socioeconomic/ecological factors on Non Timber Forest Products (NTFPs) collection and to simulate the dependency scenarios of NTFPs along with their impact on poverty alleviation. Additionally, simulation was performed to estimate the future forest density and predict the dependency on forest services. An increasing impact of intensive interactions between the rural and urban areas has long been acknowledged. However, recent changes in the global political economy and environmental systems, as well as local dynamics of the study area driven by war, drought and deforestation, have led to an increasing rapidity and depth in rural transformation, as well as to a significant impact on urban areas. Like most environmental problems, the effects of these drivers are complex and are stressed diversely across different geographic regions by the socio-political processes that underlie recent economic and cultural globalization. These interactions and processes have increasingly brought rapid changes in land cover, social, institutional and livelihood transformation across broad areas of South Kordofan. Moreover, the study unveils new dynamics such as high rates of migration and mobility by the indigenous population and the increasing domination of market-centric livelihoods in many villages that were once dominated by rural agricultural and natural resourcesbased socio-economic systems. Furthermore, the research highlights the significant roles of NTFPs and trees in contributing to Nuba Mountains’ economic development, food security and environmental health, indicating which requirements need to be addressed in order to improve these potentials. The study proves that drawing on a wide range of these products for livelihood strengthens rural people’s ability to deal with and adapt to both EC and extreme events. Moreover, the results underline the importance of participatory approaches of rural women and their impact on NTFPs management with recommendations of more emphasis on potential roles and the ability of women to participate in public fora. Furthermore, the study shows that the use of high-resolution satellite imagery, integrated with model-based terrestrial information, provides a precise knowledge about the magnitude and distribution of LU/LC patterns. These methods can make an important contribution towards a better understanding of EC dynamics over time. The study reveals that more information exchange is needed to inform actors and decision makers regarding specific experiences, capacity gaps and knowledge to address EC. Subsequently, new policies and strategies are required to much more specifically focus on how to deal with consequences of longer-term EC rather than with the impacts of sudden natural disasters

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore