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Resumen 

Esta tesis doctoral se centra en la estimación de variables forestales en la zona Sureste 

de los Cárpatos Rumanos a partir de imágenes de radar de apertura sintética. La inves-

tigación abarca parte del preprocesado de las imágenes, métodos de generación de mo-

saicos y la extracción de la cobertura de bosque, sus subtipos o su biomasa. La tesis se 

desarrolló en el Instituto Nacional de Investigación y Desarrollo Forestal Marín Dracea 

(INCDS) y la Universidad de Alcalá (UAH) gracias a varios proyectos: el proyecto EO-RO-

FORMON del INCDS (Prototyping an Earth-Observation based monitoring and forecast-

ing system for the Romanian forests), y el proyecto EMAFOR de la UAH (Synthetic Aper-

ture Radar (SAR) enabled Analysis Ready Data (ARD) cubes for efficient monitoring of 

agricultural and forested landscapes). El proyecto EO-ROFORMON fue financiado por la 

Autoridad Nacional para la Investigación Científica de Rumania y el Fondo Europeo de 

Desarrollo Regional. El proyecto EMAFOR fue financiado por la Comunidad Autónoma 

de Madrid (España). 

El objetivo de esta tesis es el desarrollo de algoritmos para la extracción de variables 

forestales de uso general como la cobertura, el tipo o la biomasa del bosque a partir de 

imagen de radar de apertura sintética. Para alcanzar dicho propósito se analizaron posi-

bles fuentes de sesgo sistemático que podrían aparecer en zonas de montaña (ej., nor-

malización topográfica, generación de mosaicos), y se aplicaron técnicas de aprendizaje 

de máquina para tareas de clasificación y regresión. La tesis contiene ocho secciones: 

una introducción, cinco publicaciones en revistas o actas de congresos indexados, una 

pendiente de publicación (quinto capítulo) y las conclusiones. 

La introducción contextualiza la importancia del bosque, cómo se recoge la información 

sobre su estado (ej., inventario forestal) y las iniciativas o marcos legislativos que requie-

ren dicha información. A continuación, se describe cómo la teledetección puede com-

plementar la información de inventario forestal, detallando el contexto histórico de las 

distintas tecnologías, su funcionamiento, y cómo pueden ser aplicadas para la extracción 

de información forestal. Por último, se describe la problemática y el monitoreo del bos-

que en Rumanía, detallando el objetivo de la tesis y su estructura. 

El primer capítulo analiza la influencia del modelo digital de elevaciones (MDE) en la 

calidad de la normalización topográfica, analizando tres MDE globales (SRTM, AW3D y 

TanDEM-X DEM) y uno nacional (PNOA-LiDAR). Los experimentos se basan en la compa-

ración entre órbitas, con un MDE de referencia, y la variación del acierto en la clasifica-

ción dependiendo del MDE empleado para la normalización. Los resultados muestran 
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una menor diferencia ente órbitas al utilizar un MDE con una mejor resolución (ej. Tan-

DEM-X, PNOA-LIDAR), especialmente en el caso de zonas con fuertes pendientes o for-

mas del terreno complejas, como pueden ser los valles.  

En zonas de alta montaña las imágenes de radar de apertura sintética (SAR) sufren fre-

cuentes distorsiones. Estas distorsiones dependen de la geometría de adquisición, por 

lo que es posible combinar imágenes adquiridas desde varias órbitas para que la cober-

tura sea lo más completa posible. El segundo capítulo evalúa dos metodologías para la 

clasificación de usos del suelo utilizando datos de Sentinel-1 adquiridos desde varias ór-

bitas. El primer método crea clasificaciones por órbita y las combina, mientras que el 

segundo genera un mosaico con datos de múltiples órbitas y lo clasifica. El acierto obte-

nido mediante combinación de clasificaciones es ligeramente mayor, mientras que la 

clasificación de mosaicos tiene importantes omisiones de las zonas boscosas debido a 

problemas en la normalización topográfica y a los efectos direccionales. 

El tercer capítulo se enfoca en separar la cobertura forestal de otras coberturas del suelo 

(urbano, vegetación baja, agua) analizando la utilidad de las variables basadas en la 

coherencia interferométrica. En él se realizan tres clasificaciones de máquina vector-

soporte basadas en un conjunto concreto de variables. El primer conjunto contiene las 

estadísticas anuales de la retrodispersión (media y desviación típica anual), el segundo 

añade la coherencia a largo plazo (separación temporal mayor a un año), el tercero in-

cluye las estadísticas de la coherencia a corto plazo (mínima separación temporal). Uti-

lizar variables basadas en la coherencia aumenta el acierto de la clasificación hasta un 

5% y reduce los errores de omisión de la cobertura forestal. El cuarto capítulo evalúa la 

posibilidad de detectar talas selectivas utilizando datos de Sentinel-1 y Sentinel-2. Sus 

resultados muestran que la detección resulta muy difícil debido a la saturación de los 

sensores y la confusión introducida por el efecto de la fenología. 

El quinto capítulo se centra en la clasificación de tipos de bosque basado en una serie 

temporal de datos Sentinel-1. Se basa en la creación de un conjunto de modelos que 

describen la relación entre la retrodispersión y el ángulo local de incidencia para un de-

terminado tipo de bosque y fecha concreta. Para cada píxel se calcula el residuo respecto 

al modelo de cada uno de los tipos de bosque, acumulando dichos residuos a lo largo de 

la serie temporal. Hecho esto, cada píxel es asignado al tipo de bosque que acumula un 

menor residuo. Los resultados son prometedores, mostrando que frondosas y coníferas 

tienen un comportamiento distintivo, y que es posible separar ambos tipos de bosque 

con un alto grado de acierto. 

El sexto capítulo está dedicado a la estimación de biomasa utilizando datos Sentinel-1, 

ALOS PALSAR y regresión Random Forest. Se obtiene un error similar para ambos senso-

res a pesar de utilizar una banda diferente (band-C vs. -L), con poca reducción en el error 
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cuando ambas bandas se utilizan conjuntamente. Sin embargo, el ajuste de un estima-

dor adaptado a las condiciones locales de Rumanía sí ofreció una reducción de del error 

al ser comparado con las estimaciones globales de biomasa.
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Abstract 

This doctoral thesis focuses on the estimation of forest variables in the Southeast area 

of the Romanian Carpathians using synthetic aperture radar images. The research covers 

image pre-processing and mosaicking methods as well as the extraction of the forest 

variables such as cover, type and above ground biomass. Research activities have been 

hosted by the Marin Dracea National Institute for Research and Development in Forestry 

(INCDS) and the university of Alcalá (UAH) thanks to several projects: the EO-ROFOR-

MON project in the INCDS (Prototyping an Earth-Observation based monitoring and 

fore-casting system for the Romanian forests), and the EMAFOR project in the UAH (Syn-

thetic Aperture Radar (SAR) enabled Analysis Ready Data (ARD) cubes for efficient mon-

itoring of agricultural and forested landscapes). The EO-ROFORMON project was funded 

by the National Authority for Scientific Research of Romania and the European Regional 

Development Fund. The EMAFOR project was funded by the Autonomous Community 

of Madrid (Spain). 

The objective of this thesis is the development of algorithms for the extraction of forest 

variables from synthetic aperture radar images. To this end, possible sources of system-

atic bias often encountered in mountain areas (e.g., topographic normalization, mosaic 

generation), were analyzed, and machine learning techniques were applied for classifi-

cation and variable estimation tasks. The thesis contains eight sections: an introduction, 

six research chapters (five published and one pending publication) and the conclusions. 

The introduction contextualizes the importance of the forest, how information on its 

status is collected (e.g., forest inventory) and the initiatives or legislative frameworks 

that require such information. Next, it is described how remote sensing can complement 

forest inventory information, detailing the historical context of the different technolo-

gies, their operation, and how they can be applied to extract forest information. Finally, 

forest monitoring activities in Romania are described, detailing the objective of the the-

sis and its structure. 

The first chapter analyzes the influence of the digital elevation model (DEM) on the qual-

ity of topographic normalization, analyzing three global (SRTM, AW3D and TanDEM-X 

DEM) and one national (PNOA-LiDAR) DEMs. The experiments are based on the inter-

orbit comparisons against a reference DEM and the classification accuracy depending 

on the DEM used for image normalization. The results show a smaller difference be-

tween orbits when using a DEM with a higher spatial resolution (e.g., TanDEM-X, PNOA-

LIDAR), especially in areas with steep slopes or complex terrain forms, such as valleys. 
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In mountainous areas, synthetic aperture radar (SAR) images are frequently distorted. 

Distortions depend on the acquisition geometry, and thus, it is possible to combine im-

ages from several orbits so that the resulting spatial coverage is as complete as possible. 

To this end, the second chapter evaluates two methods for the classification of land uses 

using Sentinel-1 data acquired from different orbits. The first method creates by-orbit 

classifications and combines them, whereas the second generates a mosaic with data 

from different obits and classifies it. The accuracy obtained by combination of classifica-

tions is slightly higher, while the mosaic classification has important omissions of for-

ested areas due to problems in topographic normalization and directional effects. 

The third chapter focuses on separating forest cover from other land covers (urban, low 

vegetation, water) analyzing the usefulness of variables based on interferometric coher-

ence. Three support vector machine classifications are compared each based on a spe-

cific set of variables. The first set contains the annual backscatter statistics (annual mean 

and standard deviation), the second adds the long-term coherence (time separation 

greater than one year), the third includes the short-term coherence statistics (minimum 

temporary separation). Using variables based on coherence increases the accuracy of 

the classification up to 5% and reduces errors of omission of forest cover. The fourth 

chapter evaluates the possibility of detecting selective logging using data from Sentinel-

1 and Sentinel-2. The results show detection is very difficult due to the saturation of the 

sensors and the confusion introduced by the effect of phenology. 

The fifth chapter focuses on the classification of forest types based on a time series of 

Sentinel-1 data. It creates a set of models, each of them describing the relationship be-

tween backscattering and the local angle of incidence for a given type of forest and a 

specific date. For each pixel, the residual is calculated with respect to the model of each 

of the forest types. By accumulating residuals throughout the time series each pixel is 

assigned to the type of forest with the least accumulated residuals. The results are prom-

ising, showing that broadleaf and needleleaf forest have a distinct behavior, and that it 

is possible to separate both forest types with a high degree of accuracy. 

The sixth chapter is dedicated to biomass estimation using Sentinel-1 data, ALOS PALSAR 

and Random Forest regression. A similar error is obtained for both sensors despite using 

a different band (band-C vs. -L), with little reduction in error when both bands were used 

together. The adjustment of an estimator adapted to the local conditions of Romania 

offers a reduction in the estimation error when compared with estimates of biomass 

generated at global level.
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Introduction 

The importance of forests 

The Food and Agriculture Organization (FAO) of the United Nations (UN) defines forests 

as areas occupied by trees taller than 5 meters covering over 10% of the ground, exclud-

ing agricultural or urban uses and small patches (< 0.5 hectares; Garzuglia et al., 2018). 

Forests occupy 25-31% of the world land area (Watson et al., 2018; FAO and UNEP, 2020) 

and host around 80% of the terrestrial biodiversity (FAO and UNEP, 2020). They play an 

essential role on the regulation of the water and carbon cycles: forest contribute ~50% 

of the terrestrial primary production (carbon sequestration), and they store ~40% of 

terrestrial carbon (Bonan, 2008). Besides their role in the Earth system, forests are an 

essential source of resources, such as food of timber. More than one billion people rely 

on forest for their livelihood, and hold a great cultural and emotional value for many 

communities (FAO and UNEP, 2020). In short, they provide all kinds of ecosystem ser-

vices (regulation, supporting, provisioning, cultural) (Millennium Ecosystem Assess-

ment, 2003). 

Assessing forest resources: forest inventory 

Ecosystem services are everlasting when management maintain the natural processes 

and biological diversity (United Nations, 1992a; Grumbine, 1994). In the case of forest 

this requires a careful assessment to avoid over-use: 

“Forest inventory is the systematic collection of data on the forestry resources 

within a given area. It allows assessment of the current status and lays the ground 

for analysis and planning, constituting the basis for sustainable forest manage-

ment.” 

(FAO, 2011) 

Forest inventories were outlined in the last two centuries, with a very large influence of 

the German classical school of forestry (Morgenstern, 2007; Hölzl, 2010; Gschwantner 

et al., 2022) which introduced the concept of management units. The forest estates 

were divided in compartments which in turn were divided in forest stands, i.e., tree 

patches with uniform and distinct characteristics (Morgenstern, 2007; DIABOLO, 2021; 

Gschwantner et al., 2022). Initially, stand level assessments were based on visual esti-

mates, transitioning to plot sampling of the tree measurements, using the advances in 

statistics (Tomppo et al., 2010; Gschwantner et al., 2022). 
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Some of the countries influenced by the German teachings were Norway, Finland and 

Sweden (Michelsen, 1995; Enander, 2007; Tomter, 2019). However, stand-based sam-

pling was not a viable solution to survey their vast expanses of boreal forest (Gschwant-

ner et al., 2022). This led to the development of large-area forest inventories by taking 

systematic samples of the target variables (COST action E43, 2009). After initial tests, 

Norway, Finland and Sweden started using such approaches for their national forest in-

ventories, or NFIs (Norway, 1919; Finland, 1921; Sweden, 1923), making tree measure-

ments along parallel belts (Korhonen, 2016; Gschwantner et al., 2022). The Finnish and 

German experience influenced the NFI of United States, started in 1928, which was 

based on a systematic grid of sampling plots (Lewis, 1999; LaBau et al., 2007; Shaw, 

2008). 

Many European countries stablished sample-based NFIs in the 1950-1980 decades, rec-

ognizing the need for periodic and representative information about forest resources 

(Vidal et al., 2016b). Both, these new NFIs and the preexisting ones (Northern European 

countries) employed plot sampling to take measurements of the tree population. At the 

same time re-measured permanent sampling plots were introduced as well, easing the 

observation of changes like tree felling and growth (Gschwantner et al., 2022). Currently 

many countries rely on permanent plots, sometimes in combination with temporary 

sampling plots (Alberdi et al., 2016; Gschwantner et al., 2016; Fridman and Westerlund, 

2016; Lanz et al., 2016; Riedel et al., 2016; Tomter, 2016; Gschwantner et al., 2022). 

During the 1990s the scope of the NFIs broadened from wood production to ecosystem 

monitoring for sustainable management and international reporting, increasing the 

workload required from the NFIs (Vidal et al., 2016a).  

International reporting at global level: United Nations programs  

At global level the Organization of the United Nations (UN) is the main actor requesting 

information from NFIs. Several programs make use of forest information: the Food and 

Agriculture Organization (FAO), the UN Educational, Scientific and Cultural Organization 

(UNESCO) or the Intergovernmental Panel on Climate Change (IPCC). A timeline with 

their establishment is depicted in Figure 0.1. 

Global Forest Resources Assessment (FRA) was started by the FAO just after the Second 

World War. It produces periodic reports about the status of the world forests based on 

the questionnaires filled by participating countries. This made necessary a harmonized 

definition for all kinds of forests, agreed upon and used within the 2000 FRA report. The 

reporting progressed as well, incorporating more sources of information (i.e., remote 

sensing), and broadening its scope from timber resources to forests environmental func-

tions, especially after the UN convention on Environment and Development (UNCED) in 

year 1992 (Garzuglia et al., 2018).  

Further, other international programs focused on combating anthropogenic climate 

change effects require forest related information. For example, the Villach Conference 
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(1985) sparked international action by founding several institutions with a pivotal role 

in the fight against climate change (Agrawala, 1998; Zillman, 2009; ICSU, 2018). The In-

tergovernmental Panel on Climate Change (IPCC), established in 1988 by the WHO and 

UNEP, has the task of preparing reports on climate change science (Zillman, 2009; IPCC, 

2019). The Global Climate Observing System (GCOS) would follow in 1992 to support the 

IPCC and the upcoming legislation (i.e., UN Framework Convention on Climate Change, 

UNFCCC). GCOS provides recommendations for in-situ and space-based observations of 

the climate system components (Zillman, 2009; Bojinski et al., 2014). Both the IPCC and 

the GCOS underlined the importance of forests in Earth climate system since their first 

reports (IPCC et al., 1990; WMO et al., 1995, 1998). 

 

Figure 0.1 Timeline of the United Nations and its agencies, programs and agreements 
related to forest, or climate change. Acronyms: UN, United Nations; FAO, Food and ag-
riculture Organization; FRA, Forest Resources Assessment; UNESCO, UN Educational, Sci-
entific and Cultural Organization; WMO, World Meteorological Organization; UNEP, UN 
Environmental Program; IPCC, Intergovernmental Panel on Climate Change; GCOS, 
Global Climate Observing System; UNCED, UN Conference on Environment and Develop-
ment. The green notches represent the FRA reports, the red notches mark the IPCC re-
ports. 

The UNCED, also known as the Rio de Janeiro “Earth Summit” laid down the foundations 

of our current understanding of sustainable development. It was outlined in three non-

binding documents: the Rio Declaration on Environment and Development, Agenda 21 

and the Forest Principles (United Nations, 1992b; Vidal et al., 2016b). Their ideas would 

be solidified in two legally binding agreements open for signature. One of them was the 

convention on biological diversity (CBD), which recognized forests as essential for main-

taining economic development and biodiversity (United Nations, 1992a). The other was 

the UNFCCC, that laid out the basis to set binding limits on greenhouse gases (GHG) 

emissions (United Nations, 1992c). 

The emission limits contemplated by UNFCCC were set through the Kyoto Protocol 

(United Nations, 1997). Kyoto protocol required the countries to monitor GHG emissions 

and removal based on IPCC guidelines (IPCC et al., 1996; United Nations, 1997). Forest 

management is one of the possible sink activities (IPCC, 2003, 2008; Vidal et al., 2016b). 
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In fact, IPCC assessments recognize deforestation reduction as the best short-term strat-

egy to reduce carbon emissions (Metz and IPCC, 2007; Tomppo et al., 2010). This led to 

the approval of the program “Reducing emissions from deforestation and forest degra-

dation” (REDD), with the objective of GHG emissions through sustainable forest man-

agement and conservation in developing countries (Tomppo et al., 2010). In 2015 the 

Kyoto protocol was succeeded by the Paris agreement, once again, underlining forest 

importance (United Nations, 2015a) 

The role of the European Union in forest monitoring 

European union does not have a legally binding forest policy, delegating such rules to 

member states (Baycheva et al., 2015; Elomina and Pülzl, 2021) but several sectorial 

policies affect forests such as the Habitat Directive or the Common Agricultural Policy 

(European Council, 1992; European Parliament and European Council, 2000, 2013, 

2018). In this context, several initiatives focused on harmonizing forest information 

across Europe. The first pan-European forest monitoring initiative was the International 

Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests 

(ICP-Forests), started in 1985 in the context of the forest decline caused by air pollution 

(Lorenz, 1995; Tomppo et al., 2010; Breidenbach et al., 2020). The ICP-Forests program 

was followed by regular Ministerial Conferences on Protection of Forest in Europe 

(MCPFE, renamed to “FOREST EUROPE” in 2009; Figure 0.2).  

 

Figure 0.2. Ministerial Conferences on Protection of Forest in Europe (MCPFE/FOREST 
EUROPE) dates and locations (lines), European National Forest Inventory Network (EN-
FIN) re-search activities. Blue notches represent the Status of European forest reports. 

The first MCPFE (Strasbourg, 1990), had the objective of tackling forest decline, and 

cross-border forest protection. The second MCPFE (Helsinki, 1993) was heavily influ-

enced by the UNCED. Its outcomes were two sets of guidelines, one for sustainable for-

est management and another for biodiversity conservation (Linser, 2005; Vidal et al., 

2016b). These guidelines called for a series of criteria and indicators (C&I) for assessing 

forest status, that would be set in 1998 (Lisbon), and refined until 2015 (Madrid), when 

the final C&I list was accepted (Linser, 2005; Vidal et al., 2016b; MCPFE, 2015). Since 

1998 these indicators have been reflected in the EU forest strategy and are employed 
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to report forest status (European Commission, 1998, 2013, 2021),.There are six groups 

of such criteria related to 1) resources and global carbon cycles, encompassing forest 

area, growth and carbon stock; 2) health and vitality, concerned with forest damage or 

defoliation; 3) production of woods and other products, considering the proportion of 

forests with a management plan; 4) conservation, regeneration, forest landscape pat-

terns and protection; 5) protective functions for soil, and water; 6) socioeconomic func-

tions, such as the forestry sector importance or occupational safety and forest cultural 

values (MCPFE, 2002, 2015). 

It should be noted the activities of these ministerial conferences have been supported 

by European National Forest Inventory Network (ENFIN). Founded in 2003, it has the 

objective of enhancing comparability of forest information (Vidal et al., 2016b; 

Gschwantner et al., 2022). The network has pursued these objectives through several 

EU-funded projects, such as the COST actions E43 and FP1001 (Tomppo and Schadauer, 

2004; Schadauer and Barreiro, 2010), the DIABOLO project (DIABOLO, 2019) or a series 

of contracts with the Joint Research Center (JRC). Some of the outcomes of these pro-

jects are tools for harmonization (i.e., reference definitions; COST action E43, 2009; DI-

ABOLO, 2021) or improved knowledge of techniques that can reduce the cost of forest 

inventories, such as remote sensing (McRoberts and Tomppo, 2007; Barrett et al., 2016). 

Remote sensing in forest inventories 

Execution of forest inventories is time-consuming and expensive. There are many varia-

bles to retrieve and large expanses of land to survey, which may be difficult to traverse 

(i.e., mountains). NFIs seek low-cost solutions to produce timely information at afforda-

ble costs (McRoberts and Tomppo, 2007). One of them is remote sensing, techniques 

focused on obtaining information about physical targets with sensors mounted in satel-

lites or aircrafts (Chuvieco, 2015; Gómez et al., 2019; NOAA 2021; NASA 2022; USGS 

2022). This section briefly discusses some of the most used remote sensing technologies 

in the context of forest inventory, preceded by a short section describing their historical 

context. 

Historical context of remote sensing 

Remote sensing, developed largely during the XX century, as one of the many techno-

logical advancements made during military conflicts. An example is the first aerial cam-

era, developed during World War I for aerial reconnaissance (Moore, 1979; Wakefield, 

2014; Chuvieco, 2015, p. 21). Other examples is radar (radio detection and ranging), first 

employed for plane detection (chain home, the array of detectors built by England), and 

later to aid plane navigation (Woodhouse, 2006, pp. 14–18; Henderson and Lewis, 1998, 

pp. 3–5). After the war, there was some early research on the interpretation and mod-

elling of ground return (i.e., Clapp, 1946). During the 1950s system design improved with 

Side-Looking airborne Radar (SLAR, real aperture or RAR), capable to take very fine res-

olution imagery. The same decade also brought forth processing techniques, such as 
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synthetic aperture radar (SAR), opening way for high-resolution spaceborne radar re-

mote sensing (Henderson and Lewis, 1998; Ulaby and Long, 2014). Applications would 

start to emerge in the 1960s (i.e. Morain and Simonett, 1967), with imagery declassifi-

cation (Henderson and Lewis, 1998; Ulaby and Long, 2014) and extensive RAR acquisi-

tion campaigns (Dellwig and Burchell, 1972; Woodhouse, 2006, p. 21). 

The space race was another driver in the evolution of remote sensing, by developing the 

necessary capabilities for spaceflight. The U.S. National Aeronautics and Space Admin-

istration (NASA) was founded in this context (1958), as a response to the launch of Sput-

nik-1 by the Soviet Union. Many other countries founded space agencies over the fol-

lowing decades, for example France (Centre national d'études spatiales, CNES, in 1961), 

Germany (Deutsches Zentrum für Luft- und Raumfahrt, DLR, in 1969) or Japan (National 

Space Development Agency, NASDA, 1969, absorbed by Japan Aerospace Exploration 

Agency, JAXA in 2003). Joint European initiatives also grew during the 1960s, leading to 

the foundation of the European Space Agency (ESA) in 1975 (Krige et al., 2000), which 

became a major actor driving the development of remote sensing technologies. Since 

1984 the work of these agencies has been coordinated and complimented by the Com-

mittee on Earth Observation Satellites (CEOS). CEOS was founded to facilitate the uptake 

of remote sensing data, with a strong focus in interoperability. Some tasks involved are 

an accurate inter-calibration of the sensors, common data formats or standardized pro-

cessing and validation procedures (Lewis et al., 2018; CEOS, 2022). 

The crew of the first NASA spaceflights took many photographs that picked the interest 

of the scientific community. This led the U.S. administration to plan a multi-spectral sat-

ellite mission to monitor earth resources. These plans came to fruition with the launch 

of the first member of the Landsat program in 1972 (Moore, 1979). However, multispec-

tral sensors were limited by clouds. The SEASAT, demonstrated the all-weather capabil-

ities of the spaceborne SAR technology. Experiments would continue during the 1980s 

with the Shuttle Imaging Radar (SIR). In 1990s many satellites carrying SAR systems were 

launched, such as ERS, JERS, or RADARSAT-1 (Henderson and Lewis, 1998, p. 5). Finally, 

LiDAR technology (light detection and ranging) appeared in the 1980s (laser profilers) 

and 1990s (aerial laser scanning, ALS; Beland et al., 2019), with its first spaceborne sen-

sors launched in the 2003 (IceSAT GLAS), 2006 (IceSAT-2 ATLAS) and 2018 (Global Eco-

system Dynamics Investigation lidar, GEDI; Dubayah et al., 2020). 

In 1995 GCOS recognized the possibilities of different remote sensing earth observation 

technologies to monitor essential climate variables, such as forest biomass (WMO et al., 

1995). The 2000s were marked by the release of Landsat data under a free license in 

2008 (Zhu et al., 2019), and the development of the Copernicus program by ESA. The 

program launched its first sensors in 2014 (Sentinel-1, SAR) and 2015 (Sentinel-2, multi-

spectral), showing a huge promise for forest applications. Data generated by the Coper-

nicus program is released under a free license (European Parliament and European 

Council, 2021), making Sentinel-1 the first SAR sensor whose data is distributed with 
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such a permissive license. ESA example led other agencies to reconsider their policies, 

and ease the access to data from older satellites (RADARSAT-1; Canadian Space Agency, 

2019; ALOS PALSAR 1; JAXA and NASA, 2020). Alongside the launch of the successive 

Sentinel missions the European Space Agency has been developing the Climate Change 

initiative (ESA CCI), aimed to use remote sensing data to provide evidence necessary to 

tackle climate change (ESA, 2010; Bojinski and Fellous, 2013; Bojinski et al., 2014). Fi-

nally, CEOS Analysis Ready Data for Land (CARD4L) is another note-worthy initiative. 

CARD4L aims to make available data more accessible to non-expert users through a se-

ries of standards on the preparation of “analysis ready data” products (ARD products) 

with a suitable preprocessing for many land applications (Lewis et al., 2018). 

Multi-spectral remote sensing 

Optical remote sensing, a passive technology, recovers the sunlight reflected by the tar-

gets and records it on film (i.e., first aerial cameras), or an electronic media (i.e., recent 

aerial cameras, spaceborne sensors). Multispectral sensors record the amount of energy 

received for a specific section of the electromagnetic spectrum or “band”, enabling anal-

ysis of phenomenon related to these sections (Figure 0.3 shows the bands of some 

widely used sensors). To make full use of multispectral images it is necessary to normal-

ize the data recorded considering sun emission, atmospheric scattering, and interaction 

with the terrain. Part of the images may be masked if correction cannot be performed 

(i.e., cloud cover, terrain shadows). Once the normalization process has been completed 

the imagen can be considered “analysis ready” (ARD, Lewis et al., 2018). However, it 

should be noted some artifacts may remain (i.e., undetected cloud or cloud shadow), as 

multispectral data pre-processing remains an area of active research (Doxani et al., 

2018; Skakun et al., 2022). 

The uptake of optical data in forestry was fast, starting with the first aerial photographs. 

FAO FRA assessed the technology soon after World War II, stressing its usefulness for 

field sampling design (Spurr, 1948). The U.S. Forest survey would be the first incorporat-

ing the technology during the 1940s and 1950s. Aerial photography is frequently em-

ployed for sampling design and to describe forest attributes, such as forest presence, 

composition, canopy cover or development stage (Barrett et al., 2016). Satellite multi-

spectral data only started to be used by NFIs with the launch of sensors with improved 

spatial resolution (i.e., Landsat Thematic mapper sensor, 30 m resolution). The Finnish 

NFI would be the first to make operational use of Landsat data (Barrett et al., 2016). 

Optical images are usually employed to generalize field data to a wall-to-wall coverage 

(Barrett et al., 2016; McRoberts and Tomppo, 2007). 

Forest canopy reflectance largely depends on leaf chemical properties and structure, 

alongside with the shape and height of tree canopy, the disposition of the trees, and the 

total canopy cover (Jacquemoud et al., 2009; Ollinger, 2010; Homolová et al., 2013; Fass-

nacht et al., 2016). In this context optical data can provide information about forest area 

(Bartholomé and Belward, 2005), its layout (Newton et al., 2009; Sexton et al., 2013), its 
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losses and gains (Hansen et al., 2013; Viana-Soto et al., 2020), composition (Fassnacht 

et al., 2016), and health status (Hall et al., 2006; Torres et al., 2021). However, optical 

remote sensing has limitations related to changes in sun angle, atmospheric conditions, 

and cloud cover. Furthermore, optical sensibility to structural parameters saturates with 

increasing canopy closure (Nilson and Peterson, 1994; Puhr and Donoghue, 2000; Dun-

canson et al., 2010). 

 

Figure 0.3 Atmospheric transmission (gray curve) and effect of some of the atmospheric 
gases (red, oxygen, green, carbon dioxide, blue, water vapor). Data simulated with Mid-
latitude summer atmosphere template using NASA planetary spectrum generator (Vil-
lanueva et al., 2018). The bands of several sensors are depicted under the gray line (Land-
sat 1-5 Multispectral Scanner, MSS; Landsat 4-5 Thematic Mapper, TM; Landsat 7 En-
hanced Thematic Mapper Plus, ETM+; Landsat 8-9 Operational Land Imager, OLI; Senti-
nel-2 Multispectral Instrument, MSI). 

LiDAR 

Light detection and ranging systems (LiDAR) generate laser pulses (active system) and 

record how long they take to bounce back to the sensor. This information is used along-

side sensor motion data to determine the 3D position of surfaces. When pulses return, 

the instrument can register the complete profile (full waveform), or just the position of 

steep rises in the energy received (discrete return; Lefsky et al., 2002). The pulse record-

ing employed varies depending on the platform. Spaceborne LiDAR sensors record the 

full waveform, whereas data from aerial laser scanners (ALS) usually is distributed as 

discrete-returns for data storage reasons. LiDAR system represent a powerful tool for 
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describing forest biomass and forest canopy structure (e.g., vertical distribution, frac-

tional canopy cover, etc.; Lefsky et al., 2002). However, ALS discrete return systems have 

the disadvantage of needing costly scanning flight campaigns (Barrett et al., 2016; 

Beland et al., 2019), whereas spaceborne full-waveform systems have the disadvantages 

of having sparse sampling, and being sensitive to cloud coverage (Simard et al., 2011; 

Dubayah et al., 2020). 

Synthetic Aperture Radar, SAR 

Radar sensors use microwave pulse emission and echo reception to ascertain the posi-

tion and characteristics of the objects. Most forestry applications use the specific sub-

group of imaging radars. They emit coherent pulses (same wavelength and phase) at 

microwave wavelengths (Table 0.1), allowing day-and-night, and nearly all weather ca-

pabilities (heavy rain may alter the return; Doblas et al., 2020). Interaction with targets 

is conditioned by the wavelength and polarization of the wave (orientation of the elec-

trical field with respect to direction of propagation). Shorter wavelengths interact more 

with smaller elements (leaves, twigs), whereas longer wavelengths interact more with 

larger elements (branches, trunks; Woodhouse, 2006; Brolly and Woodhouse, 2013). 

The wavelengths are regulated by a standard naming convention (Table 0.1; Flores et 

al., 2019; IEEE Radar Systems Panel, 2020). 

Table 0.1. IEEE Standard Letter Designations for Radar-Frequency Bands. UHF also is 
commonly called P-band (Flores et al., 2019; IEEE Radar Systems Panel, 2020) 

Band X C S L UHF (P) 
Wavelength (cm) 8 – 12 4 – 8 2 – 4 1 – 2 0.3 – 1 
Frequency (GHz) 3.8 – 2.4 7.5 – 3.8 15 – 7.5 30 – 15 100 – 30 

Pulses interact more with targets with the same orientation, for example, horizontally 

polarized waves interact more with horizontally oriented targets. Echoes may return 

with the same polarization of the generating pulse (co-polarized backscatter), or with a 

polarization perpendicular to the original one (cross-polarized backscatter). For exam-

ple, Sentinel-1 sends pulses with vertical polarization, and can recover echoes with ver-

tical (VV, co-polarized) or horizontal polarization (VH, cross-polarized, V sent, H re-

ceived). Loss of polarization is frequently associated with multiple bounces within an 

array of scatterers, such as forest canopy (volume scattering). 

Once the sensor receives the echoes it records their amplitude, phase, and return time 

for each polarization. This data is organized as a “echo table” and requires digital signal 

processing to become an image. Image generation (focusing) from the echo table is 

linked to sensor operation and works differently in the pointing direction of the sensor 

(range) and the sensor movement direction (azimuth). Position in range direction is de-

termined based on echo return timing. This is the reason why both real and synthetic 

aperture radars have a side looking configuration. Looking from the nadir would cause 

similar return times at both sides of the beam, creating an ambiguity (Ulaby and Long, 
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2014). Side-looking solves this issue increasing the distance differences within the illu-

minated area. However, side-looking has the trade-off of increasing beam occlusion in 

mountainous areas, an effect called shadowing (Woodhouse, 2006). In range direction 

resolution depends on how well pulses can be separated. In this context shortening 

pulse length can increase resolution, albeit there is a limit imposed by power con-

straints. Another possible solution is to modulate the frequency of the outgoing pulses 

(“chirped” pulses), making them easier to identify, shortening effective pulse length 

(Woodhouse, 2006, pp. 217–231; Tanase, 2010, p. 9). 

Position in azimuth direction (along-track) is based on sensor movement. In the case of 

real aperture radars (RAR) imaging in azimuth direction works by imaging ‘slices’ as thick 

as the beam width: two objects only can appear separately if the distance between them 

is larger than the beam width. Beam width depends on the wavelength employed, the 

distance to targets and the antenna size. Instruments with larger antennas have thinner 

beams and can generate images with a higher resolution. However, increasing distance 

to targets requires a proportional increase in antennas size to maintain high resolution. 

Thus, a spaceborne high-resolution RAR system would need an impossibly large an-

tenna. Synthetic aperture radar systems (SAR) use a different approach. Instead of rely-

ing on thin ‘slices’ SAR systems use a wide beam and determine object azimuth position 

using the doppler shift caused by sensor movement. Successive pulses reaching a spe-

cific point will generate echoes with a different phase shift, information that can be used 

during focusing to improve azimuth resolution. 

 

Real Aperture Radar (RAR) 

 

Synthetic aperture radar (SAR) 

Figure 0.4. Sketch diagrams illustrating the operation of side-looking radar systems 
(Modified from Henderson and Lewis, 1998). 
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Image properties are linked to the acquisition and formation process which introduce 

some shortcomings, such as geometric distortions or a noise-like effect called speckle. 

Geometric distortions are caused by alterations in echo spacing caused by topography. 

Echoes return closer for slopes facing toward the sensor, causing these areas to appear 

compressed in the image, a distortion called foreshortening. In extreme cases echoes 

from the top of the mountains can be received earlier than those from the mountain-

side, causing an extreme displacement called layover. Conversely, echo distancing in-

creases for slopes facing away from the sensor, making them appear dilated in the fo-

cused images. These distortions need to be corrected using a detailed description of 

Earth surface, a digital elevation model, DEM. In the case of amplitude, correction also 

involves reducing radiometric distortions using a precise estimate of the scattering area 

(Small, 2011; Frey et al., 2013; Shiroma et al., 2022). 

 

Figure 0.5. Distortions appearing in SAR images (Woodhouse, 2006, p. 283) 

Speckle is a phenomenon caused by coherent illumination. Each interaction of the 

pulses with the scattering elements (physical objects within the illuminated area) gen-

erates its own echo. The sensor registers the coherent sum of the individual echoes, 

introducing a random component in both amplitude and phase. In the case of amplitude 

constructive or destructive interference result in very large or very low values, a noise-
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like effect that hinders interpretation. Speckle amplitude is reduced by sample aggrega-

tion (i.e., multi-looking) or the use of sliding window methods (speckle filters). In the 

case of phase, speckle introduces a random component that can be removed by using 

several observations (images) acquired with some spatial separation (spatial baseline). 

These observations can be made simultaneously (single pass, i.e., Shuttle radar Topog-

raphy Mission, SRTM; Farr et al., 2007; TanDEM-X, Rizzoli et al., 2017), or over time 

(multi-pass), the most common case for spaceborne SAR sensors. The result is an inter-

ferogram, a type of image containing 3D information about earth surface. 

Focused images can include both amplitude and phase data for each polarization (the 

latter is not retained by some focusing procedures). Amplitude depends on target ge-

ometry and dielectric constant. In the case of forest, the geometry is affected by the 

spatial distribution of the trees (Lucas et al., 2006; Shimada et al., 2014a), their canopy 

architecture (shape, Dobson et al., 1996; height, Siqueira, 2019) and leaf dynamics 

(Ahern et al., 1993; Frison et al., 2018). Dielectric properties depend mainly on canopy 

water content and its status (liquid, ice), with temperature and salinity having some in-

fluence (Steele-Dunne et al., 2017; Pfeil et al., 2020). Forests tend to depolarize the in-

coming waves as they bounce several times within the canopy, making cross-polarized 

channels especially useful to identify forest cover (Shimada et al., 2014a; Ulaby and 

Long, 2014) 

The phase describes the position of the wave vector within a cycle and is mainly related 

to the distance between the target and the sensor. An interferogram can be used to 

determine forest height, albeit errors usually are large due the degradation of phase 

information, a process called decorrelation. Decorrelation is caused, among other fac-

tors, by image misregistration between (spatial decorrelation) or changes in target prop-

erties between acquisitions (temporal decorrelation) (Martone et al., 2018). Decorrela-

tion itself can be a source of information useful to estimate forest height or biomass 

using an estimator called interferometric coherence (Siqueira, 2019). In fact, forest pro-

duce volume decorrelation, a phase information loss due multiple bounces within the 

canopy. In the absence of other decorrelation factors the interferometric coherence has 

been employed to identify forest cover (Martone et al., 2018). 

Albeit SAR data is not routinely employed by NFIs, it was proven to be useful in several 

large area studies (Barrett et al., 2016). Global forest maps of forest presence/absence 

have been generated using amplitude (Shimada et al., 2014a) and single-pass interfero-

metric coherence (Martone et al., 2018). Relationship of radar return with forest above-

ground biomass was determined early on (Attema and Ulaby, 1978) and has been em-

ployed by several large-area biomass mapping projects (Wagner, 2003; Reiche et al., 

2010; Santoro et al., 2010; Schmullius et al., 2010). Recently, the CCI biomass initiative 

was launched with the objective of creating a global map of aboveground biomass (San-

toro and Cartus, 2021). Regarding experimental applications, SAR data has been found 

to be sensitive to canopy closure (Lucas et al., 2006), structure (Dostalova et al., 2016), 



Forest attributes mapping with SAR data in the Romanian South-Eastern Carpathians 

Ignacio Borlaf-Mena  2022 Page 33 

forest loss and recovery (Tanase et al., 2011; Belenguer-Plomer et al., 2019) or forest 

health (Tanase et al., 2018). 

Forest status and monitoring in Romania 

The kingdom of Romania proclaimed its independence in 1877 (Encyclopedia Britannica, 

2022), publishing its first forest code shortly after, in 1881 (Catrina and Giurgiu, 1983; 

Giurgiu, 2011; Lawrence, 2009). To meet the need of forestry professionals a specialized 

faculty opened in Bucharest (1883), staffed by French scholars (Stanescu and Negrutiu, 

1983; Turnock, 1988). The forest code also stimulated scientific activity, with the first 

run of the Revista pădurilor (journal of forests) in 1882, and the foundation of the group 

Progresul silvic (silvicultural progress) in 1886, that would continue publishing the jour-

nal to this day (Turnock, 1988; Giurgiu, 2011). 

The forest code was reformed in 1910 to prevent forest loss and 1923 to reflect the 

incorporation of Transylvania in greater Romania (Turnock, 1988; Lawrence, 2009; 

Roşculeţ, 2011). However, forest cover continued to decrease during the First World 

War due the high demand for timber (Munteanu et al., 2016; Turnock, 1988). In 1930 

Romania set up the Autonomous House of State Forests (Casa Autonoma a Padurilor 

Statului, CAPS) to regulate forest exploitation (Catrina and Giurgiu, 1983). Said institu-

tion was directed by Marin Drăcea, an accomplished scholar influenced by the German 

and the American schools of forestry. Three years later he setup the Institute of forestry 

research and experimentation (Institutul de Cercetari si Experimentari forestiere, ICEF) 

(Catrina and Giurgiu, 1983; Turnock, 1988). 

Clear-cutting continued during the Second World War, pressing the Romanian govern-

ment to pass a law to reduce deforestation and enforce replanting (Turnock, 1988). Af-

ter the war the country remained under the occupation of the red army, and the Roma-

nian communist party seized power in 1947 (Encyclopedia Britannica, 2022). In 1948 all 

forest properties were nationalized; all forest were managed through central planning 

based on decadal management plans (Munteanu et al., 2016). After the war, the Soviet 

Union demanded large reparations for the participation of Romania on the German side. 

Part of said reparations were paid with timber, whose extraction cleared large areas of 

forest (Nita et al., 2018). Albeit reparations were paid in full in 1956, deforestation in-

creased again in the period 1983-1985 to pay off loans from the International Monetary 

Fund (Ban, 2012; Munteanu et al., 2016). The communist regime imposed harsh auster-

ity measures to pay said debts, impoverishing the population (Deletant and Ionescu, 

2004; Ban, 2012). 

After the fall of the communist regime in 1989 a series of laws were passed to restitute 

forest lands to their original owners. After each restitution law (passed in 1991, 2000 

and 2005) a surge in deforestation has been observed (Griffiths et al., 2012). The reason 

for said increase can be attributed to several factors, such as the slow and chaotic way 

restitution was performed, uncertainty about its legal persistence, economic hardships 
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and lack of knowledge or attachment (Mantescu and Vasile, 2009; Griffiths et al., 2012). 

Tree felling decreased after a period of reforms, such as the implementation of private 

forest management structures or the legislative changes associated with the admission 

into the European Union (Griffiths et al., 2012) 

Romania Forest Monitoring system started in 1990, when the country participated in 

the first MPFCE and became a member of the ICP – Forests network. Level I network 

implementation started the same year, whereas the Level II was implemented in 1994. 

Level I network (European grid) is a 16 x 16 km grid of permanent plots focused on gen-

eral information about forest status. Level II network is non-systematic, and more fo-

cused on research, with intensive research plots placed in representative forest ecosys-

tems (Badea et al., 2013) 

Under communism, the forest inventory was based on aggregation of data recorded at 

stand level during management planning activities. Such inventories were completed at 

national level in 1965, 1973, 1980 and 1984 (Turnock, 1988; Marin et al., 2010). The 

large-scale national forest inventory of the Romanian forests started in 2006 and is man-

aged by the successor of the ICEF, the Forest Research and Management Institute (Insti-

tutului de Cercetări şi Amenajări Silvice, ICAS; currently Institutul Național de Cercetare-

Dezvoltare în Silvicultură "Marin Drăcea", INCDS). The NFI is based on repeated meas-

urements of a grid of permanent and temporary plots with a 5-year inventory cycle 

(Marin et al., 2010). It assesses the forest based on both national and FAO definitions, 

retrieving the necessary information for carbon emission reporting, FAO FRA and FOR-

EST EUROPE (Marin et al., 2016). The first cycle took place in the period 2008-2012, and 

the second in the period 2013-2018 (Marin et al., 2016; Ciceu et al., 2019). 

Despite the hardships of its history, Romania is one of the European countries with the 

most diverse tree growing conditions (Veen et al., 2010), and the largest remnants of 

primary forests in Europe (Ioras et al., 2009; Veen et al., 2010; Knorn et al., 2012). These 

areas host large populations of brown bear, gray wolf, and lynx (Ioras et al., 2009; Knorn 

et al., 2012). Since the admission in the EU a large portion of these areas have been 

protected by the implementation of the Birds and Habitat EU directives (Iojă et al., 2010; 

Knorn et al., 2012). Currently, the Romanian forest management faces several chal-

lenges including risks associated wind-throws, snow breaks, drought associated stress, 

and insect outbreaks due the widespread presence of artificial spruce monocultures 

(Knorn et al., 2012; Griffiths et al., 2014; Nita et al., 2018). In many cases spruce was 

planted in areas formerly occupied by beech forests, where spruces have more difficul-

ties growing, making trees vulnerable to windfall or diseases (Turnock, 1988; Anfodillo 

et al., 2008; Knorn et al., 2012; Griffiths et al., 2014). Furthermore, altering disturbance 

regimes associated with the climate change may increases the areas affected by natural 

hazards, (United Nations, 1992c). Apart of natural hazards, residual illegal logging af-

fected the Romanian forests (Klawitter, 2015; Peter, 2015; Ilie, 2016; Walker, 2020). 

Such activities are difficult to track down due understaffing, the vast areas occupied by 
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forest and the location in difficult mountainous terrain (Anfodillo et al., 2008; Knorn et 

al., 2012). 

Motivation, objectives, and content 

Remote sensing data offers a cost-effective complement to field surveys, providing reg-

ular and systematic data over large areas. It can be employed to determine forest cover, 

its status, and to generalize forest variable measurements such as biomass. However, 

each remote sensing technique faces unique challenges over the Romanian territory. 

Optical and spaceborne LiDAR sensors are limited by the frequent cloud cover, affecting 

over 60% of observations and as high as 70 or 80% over specific regions (Figure 0.6). 

Furthermore, high-resolution sensors with frequent coverage had important limitations 

(Sentinel-2 Geolocation error; Clerc and MPC Team, 2018; limited performance of cloud 

masks; Skakun et al., 2022), reason why the thesis focuses on the use of SAR sensors. 

Therefore, the objective of this thesis was to retrieve widely exploited forest variables 

such as cover, type and biomass by taking advantage of active remote sensing sensors. 

 

Figure 0.6 Simplified isolines of average cloud cover over the main forested areas of Ro-
mania with a 10% step. Cloud cover dataset was generated by Wilson and Jetz (2016) 
using 15 years of MODIS observations. Background imagery courtesy of Bing maps. 

In the Southern Carpathians SAR sensors are limited by the ruggedness of the terrain, 

which results in image geometric and radiometric distortions. The first part of the thesis 

is, therefore, devoted to data preprocessing to ensure distortions are reduced and spa-

tial coverage is maximized. Chapter 1 analyzes the influence of the elevation model for 
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radiometric normalization and interferometric processing. As many slopes were dis-

torted, masking large areas was a necessity. Reducing masked (no data) area through 

mosaicking was therefore crucial for wall-to-wall mapping, an aspect treated in Chapter 

2 where several methods for combining images acquired from different orbital tracks 

are tested together with their impact on the retrieval accuracy forest/non-forest classi-

fication. 

The second part of the thesis is dedicated to the detection and mapping of forest pres-

ence. The third chapter assesses whether features based on interferometric coherence 

may improve the quality of forest cover classification. The fourth chapter assesses the 

possibility of monitoring selective logging using Sentinel-1 and -2 time series. 

The third part is focused on forest variable extraction as in the fifth chapter a novel 

method that leverages backscatter coefficient directional effects is proposed for forest 

type classification while the sixth chapter focuses on above ground biomass estimation 

using synergies between Sentinel-1 and ALOS PALSAR.
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Chapter 1:  Investigating the impact of Digital Elevation 
Models on Sentinel-1 backscatter and coherence 
observations 

Borlaf-Mena, I., Santoro, M., Villard, L., Badea, O., Tanase, M.A., 2020. Investigating the 

Impact of Digital Elevation Models on Sentinel-1 Backscatter and Coherence Observa-

tions. Remote Sensing 12, 3016. https://doi.org/10.3390/rs12183016 

Abstract 

Spaceborne remote sensing can track ecosystems changes thanks to continuous and 

systematic coverage at short revisit intervals. Active remote sensing from synthetic ap-

erture radar (SAR) sensors allows day and night imaging as they are not affected by cloud 

cover and solar illumination and can capture unique information about its targets. How-

ever, SAR observations are affected by the coupled effect of viewing geometry and ter-

rain topography. The study aims to assess the impact of global digital elevation models 

(DEMs) on the normalization of Sentinel-1 backscattered intensity and interferometric 

coherence. For each DEM, we analyzed the difference between orbit tracks, the differ-

ence with results obtained with a high-resolution local DEM, and the impact on land 

cover classification. Tests were carried out at two sites located in mountainous regions 

in Romania and Spain using the SRTM (Shuttle Radar Topography Mission, 30 m), AW3D 

(ALOS (Advanced Land Observation Satellite) World 3D, 30 m), TanDEM-X (12.5, 30, 90 

m), and Spain national ALS (aerial laser scanning) based DEM (5 m resolution). The Tan-

DEM-X DEM was the global DEM most suitable for topographic normalization, since it 

provided the smallest differences between orbital tracks, up to 3.5 dB smaller than with 

other DEMs for peak landform, and 1.4–1.9 dB for pit and valley landforms. 

 Introduction 

Synthetic aperture radar (SAR) is an active imaging system with several advantages over 

optic sensors, such as Landsat OLI (Operational Land Imager) or Sentinel-2 MSI (Multi-

Spectral Imager). SARs are independent of solar illumination and use wavelengths that 

can penetrate cloud cover and have unique interactions with ground targets. Further-

more, the capability to transmit and receive signals enables the use of both phase and 

polarization information, to monitor, among others, landslides, avalanches, snowmelt, 

and forests (Ouchi, 2013). Terrain orientation affects the intensity of the backscattered 

signal based on lambert cosine law. The signal is further affected by the terrain scatter-

ing area. The SAR technique uses the return time to convert a table of recorded echoes 

into an image (focusing). These times are shortened in sensor-facing steep slopes, caus-

https://doi.org/10.3390/rs12183016
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ing echoes to overlap and slopes to appear shortened in the focused image (a pixel rep-

resents more area). Both effects can be compensated for by using the acquisition geom-

etry parameters and a digital elevation model (DEM). We refer to this compensation as 

topographic normalization. The backscattered intensity is normalized by accounting for 

the scattering area and the local incidence angle (Frey et al., 2013; Small, 2011). The 

coherence normalization is based on removing the topographic phase component from 

the interferogram before estimation (Askne et al., 1997). Normalization results are heav-

ily dependent on the DEM characteristics and quality (Small, 2011; Frey et al., 2013) as 

they can be generated using different data sources, including remote sensing (optic, 

SAR, airborne laser scanning—ALS), and processing techniques (ALS point cloud, stere-

ography, interferometry, and radargrammetry). 

ALS uses the delay between emission and reception of light pulses to determine the 3D 

position of objects. When the pulses return, the instrument registers an intensity profile, 

which can be completely (full-waveform) or partially recorded (discrete return, i.e., the 

position of the leading edge before the peak) (Lefsky et al., 2002). Airborne discrete re-

turn systems have become the source of national elevation datasets for many countries 

(CNIG, Centro Nacional de Información Geográfica, 2014; ODP, 2019). Spaceborne full-

waveform Light Detection and Ranging (space LiDAR, such as the ICESat, Ice, Cloud, and 

land Elevation Satellite) data have also been employed in the context of topographic 

mapping as a primary source for calibration or validation of global elevation datasets 

derived from other sensors (Shuman et al., 2006; Tadono et al., 2014). However, global 

topographic mapping from space based on LiDAR is difficult, due to the sparse sampling, 

and the sensitivity to cloud cover. 

Stereoscopic techniques are based on differences in the line of sight to objects (parallax) 

for common points (tie-points) in an overlapping set of images. Results are dependent 

on tie-point quantity, image contrast, noise, and features (such as shadows and homo-

geneous surfaces), which may pose problems (Felicísimo, 1994; Aber et al., 2010; Pu-

rinton and Bookhagen, 2017). These techniques have been applied over aerial (Aber et 

al., 2010; CNIG, Centro Nacional de Información Geográfica, 2014) and satellite optical 

images (Tachikawa et al., 2011; Tadono et al., 2014), as well as SAR imagery (i.e., radar-

grammetry) (Felicísimo, 1994; Woodhouse, 2006). Stereoscopic processing of optical im-

ages was used to generate the ASTER global DEM (ASTER GDEM) and the ALOS (Ad-

vanced Land Observation Satellite) World 3D Digital Surface Model (ALOS AW3D DSM). 

The ASTER GDEM was created using imagery from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) onboard the Terra satellite. ASTER stereo 

pairs were formed from two near-infrared images (nadir, backward) with 15m resolu-

tion. The AW3D DEM was based on data from the Panchromatic Remote-sensing Instru-

ment for Stereo Mapping (PRISM) onboard the ALOS. PRISM stereo acquisitions were 

formed with three panchromatic images (forward, nadir, backward) with 2.5 m resolu-

tion. In both cases, the most challenging task was masking clouds, snow, ice, or water 
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on every acquisition (Tadono et al., 2014) to avoid the introduction of outliers. After-

wards, images from each individual acquisition were matched, and elevation was calcu-

lated. All height estimates from individual acquisitions were stacked to ensure continu-

ity and reduce noise (Tachikawa et al., 2011; Tadono et al., 2014). The AW3D was cor-

rected for biases using preexisting data, such as ICESat shots and the preexisting Shuttle 

Radar Topography Mission (SRTM) DEM (see next paragraphs) (Tadono et al., 2014). 

Even though the processing chains for ASTER GDEM and AW3D were similar, their accu-

racies are different. Studies comparing global DEMs based on ground control points 

(GCP) report that the ASTER GDEM has larger uncertainties and is affected by striping, 

hummock-like artifacts, and outliers (Purinton and Bookhagen, 2017; Hirt et al., 2010; 

Florinsky et al., 2018; Grohmann, 2018). These artifacts may stem from the tie point 

generation, the choice of band (NIR), its relatively low spatial resolution (Florinsky et al., 

2018; Grohmann, 2018), or unremoved cloud patterns (Hirt et al., 2010). AW3D per-

formed better, although hillslope and step-like artifacts (scene mismatch) have been 

found (Purinton and Bookhagen, 2017; Florinsky et al., 2018; Grohmann, 2018; Santillan 

and Makinano-Santillan, 2016; Courty et al., 2019). 

SAR interferometry uses two co-registered SAR images acquired from close orbits. The 

interferogram (i.e., the phase difference between the two SAR images) relates to the 3D 

position of each target on the ground. Thereof, an interferogram reproduces the topo-

graphic information, which appears in the form of fringes as phase is measured between 

0 and 2π. To obtain absolute phase values, from which elevation can be estimated, the 

interferogram is unwrapped. Unwrapping may be hindered in areas of steep topography 

or areas affected by the lack of coherence between images in consequence of changes 

between acquisitions (wind-induced motion, precipitation, etc.) (Ouchi, 2013; Wood-

house, 2006). SAR interferometry was used to generate two global DEMs, the SRTM 

DEM, and the TanDEM-X DEM. 

The SRTM acquired data over 80% of the Earth’s land surface (60°N–56°S) on an 11-day 

orbital flight in February 2000. SRTM operated two antennas physically separated in 

space by 60 m at C-band, as well as X-band. At C-band, a gap-free coverage was obtained 

with single-pass interferograms. The interferometric height was reconstructed (unwrap-

ping) and re-gridded into map coordinates with variable-resolution smoothing. Data 

takes were combined using coincident tie points (Farr et al., 2007). The main artifacts of 

the SRTM dataset were related to striping from uncompensated movements of the 

mast, voids in correspondence of steep slopes or for low coherence areas, or coarser 

than nominal spatial detail from the re-gridding step (Grohmann, 2018; Farr et al., 2007; 

Smith, 2003; Guth, 2006). The global TanDEM-X DEM was generated using SAR data ac-

quired during 2010–2015 by the TanDEM-X and TerraSAR-X satellites flying in formation. 

Individual scenes were focused, multi-looked (sample averaging) to 10–12 m pixel spac-

ing and unwrapped. The DEM was generated in an iterative process with the first global 

coverage using data acquisition parameters (baseline) adequate for moderate terrain. 
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The second global coverage was shifted half a swath, and its unwrapping was aided by 

the data from the first coverage. Over some areas, further coverages were acquired 

from a different viewing geometry to avoid errors caused by topographic distortions or 

volumetric scattering (e.g., forest, desert) (Wessel, 2016; Rizzoli et al., 2017). Areas with 

height ambiguities were infilled using radargrammetric processing of the scenes. Tan-

DEM-X DEM data are distributed with 12.5 m (0.4 arcsec, original), 30 m (1 arcsec), and 

90 m resolution (3 arcsec). The latter was generated by the unweighted average of the 

overlapping 12.5 m pixels (Grohmann, 2018). 

All DEMs are affected by contributions from elements covering the terrain, such as cities 

or vegetation, thus reporting elevations higher than those recorded for the ground con-

trol points (Hirt et al., 2010; Santillan and Makinano-Santillan, 2016). For this reason, 

elevation refers to surface elevation rather than terrain elevation. For the specific case 

of vegetation, the main reason for this is the different penetration of each wavelength. 

On the one hand, the nanometric-scale wavelengths employed for generating photo-

grammetric DEMs have limited penetration, and thus the tie points and the generated 

surface tend to reflect canopy surface height. On the other hand, the centimetric wave-

lengths employed by SAR sensors are able to penetrate further, albeit the scattering 

center height depends on the frequency employed and the vegetation structure (Farr et 

al., 2007; Izzawati et al., 2006; Santoro et al., 2005; Thirion-Lefevre and Colin-Koeniguer, 

2007). Furthermore, the quality of InSAR-based DEM also depends on the spatial and 

temporal baselines, or unaccounted sensor movements. 

Despite the rather large range of DEMs available, their effect on terrain normalization is 

poorly understood. Hoekman and Reiche (2015) suggested that the SRTM 90 m spacing 

may not be adequate for the radiometric normalization of the SAR backscatter in com-

plex terrains. Recently Truckenbrodt et al. (2019) compared and tested the SRTM (30 

and 90 m), AW3D (30 m), and TanDEM-X (90 m) DEMs in the context of radiometric 

terrain normalization of Sentinel-1 data. They analyzed the deviation of each DEM from 

the pixel-wise median of all DEMs and performed a regression analysis between terrain 

flattened γ0 and the local incidence. The deviation analysis showed that the SRTM DEMs 

have the smallest difference from the median values, but the 30 m SRTM version had 

high deviation artifacts at one test site. The same errors were found for SRTM and 

AW3D, as the latter has been infilled with data from the former due persistent cloud 

cover. Both AW3D and TanDEM-X DEM contained outliers or noise over water areas. 

The 90 m TanDEM-X DEM was found to contain several large artifacts in mountainous 

areas. Regression analysis showed that all the analyzed DEMs largely removed the ter-

rain influence, with complete removal (i.e., slope of 0) being observed in some experi-

ments using higher resolution DEMs (SRTM 1 arcsec, AW3D) (Truckenbrodt et al., 2019). 

The objective of this study was to investigate the impact of global DEMs on the normal-

ization of SAR backscatter and coherence observations by Sentinel-1 at two sites char-

acterized by complex topography. To build on previous literature (Truckenbrodt et al., 
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2019), we analyzed the performance of 12.5 (resampled to 20 m, see Section 1.3), 30, 

and 90 m pixel Tandem-X DEMs, along with AW3D (30 m), SRTM (30 m). A very high-

resolution (5m) ALS DEM was used to benchmark results. The impact of terrain normal-

ization was assessed by investigating the inter-orbit variability of the observations by 

land cover and landforms. Then, we evaluated a land cover classification scheme based 

on the observations normalized for topography. 

 Study area and satellite data 

The study area consisted of an N-S transect over the Romanian Carpathians (11,700 km2) 

and the National Park of Sierra Nevada in Spain (2,360 km2) (Figure 1.1). We could not 

add additional sites, due to TanDEM-X scientific proposal area limitations (DLR, 2020). 

The sites were selected to account for the different vegetation types and structures en-

countered in the temperate and Mediterranean climates. Due to the more humid cli-

matic conditions, the vegetation in the Carpathians is characterized by denser, taller, 

and more diverse forest types (broadleaf, needleleaf, mixed) when compared to the 

sparser and shorter forests dominated by pine species encountered in Sierra Nevada. 

 

Figure 1.1 Extent of the study areas (a, Romania, Ro; c, Spain, Sp) and digital elevation 
models (DEMs) used for synthetic aperture radar (SAR) data processing. The yellow box 
indicates the location of the area covered by the Sentinel-1 dataset used for the analysis. 
The red box indicates the extent of the subset shown in the right-hand side panels (b, 
Romania; d, Spain). 
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Histograms of natural land covers for each site have been plotted to show their frequen-

cies relative to the slopes they occupy (Figure 1.2). Needleleaf and mixed forests occupy 

steep slopes, whereas grasslands and broadleaf forests occupy moderate slopes at the 

Romanian site. At the Spanish site, bare and needleleaf forests occupy moderate slopes, 

although for the former, a significant fraction of the pixels occupy steep or very steep 

slopes. 

 

Figure 1.2 Distribution of the slopes for grassland, bare soils, and forest land. The latter 
has been separated according to leaf type. 

For each site, we assembled the SRTM 1-arcsecond, i.e., 30 m, DEM (EROS, 2017) from 

the United States Geological Service (USGS) Earth Explorer (USGS, 2019), the AW3D 30 

m DEM from the Japan Aerospace Exploration Agency (JAXA) Earth Observation Re-

search Center (EORC) (JAXA, 2019) and the TanDEM-X DEM (©DLR 2019) with a pixel 

spacing of 12.5 m (original resolution), 30 m and 90 m (resampled) from the German 

Aerospace Agency (DLR, 2019). In addition, for the Spanish site, we used an ALS-based 

DEM to benchmark the results obtained from three global DEMs. The ALS DEM was 

available through the Spanish national plan of orthophotography (PNOA) from the Na-

tional Center of Geographic Information of Spain (CNIG, Centro Nacional de Información 

Geográfica, 2019a, 2019b). The ALS DEM was created from ALS point clouds with a den-

sity of 0.5 returns/m2. The ALS scan over our study area was performed in 2014 with the 

LEICA ALS60 sensor. The points were translated from ellipsoidal to ortho-metric heights, 

assigned color (RGB and near-infrared) from PNOA orthophotographs, and classified au-

tomatically using TerraScan (Lorite Martínez et al., 2019; Soininen, 2004). Classification 

eliminates returns considered noise and filters point to avoid oversampling due to flight 

strip overlap. Ground points classification is based on slope, rugosity, and return count. 

Vegetation and Buildings are classified based on height, separating both based on NDVI 

values. The DEM is generated by calculating the mean value of all ground returns within 

a 5m pixel (Lorite Martínez et al., 2017). The reported accuracies of the DEM products 

are presented in Table 1.1. 

The SAR dataset consisted of a time series of Sentinel-1 dual-polarized (VV and VH) im-

ages acquired in the Interferometric Wide Swath (IWS) mode. The images were obtained 

in Single Look Complex format (SLC) with a pixel spacing of 14.1 m in azimuth and 2.3 m 

in range. All SAR images were resampled to a pixel size matching the different DEMs 

used (see Section 1.3.2). For the Romanian site, 21 images acquired between 

2016/12/30 and 2017/02/06 from three relative orbits (7, 29, 131) were used. For the 
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Spanish site, 18 images acquired between 2018/08/21 and 2018/10/08 from relative 

orbits 1 and 81 were used. 

Table 1.1. Reported accuracies of the DEM used in this study. 

DEM 
Product 

Pixel 
spacing 

Accuracy Relative vertical 
Accuracy 

Coverage Reference 
horizontal vertical 

SRTM 
DEM ~30 m ≤ 12.6 m ≤ 9 m ≤ 9.8 m 

Near-global 
(60°N–56°S) 

(Rodríguez et 
al., 2006) 

AW3D 
DSM ~30 m - < 7 m 

> 3 m (slope ≤ 20%) 
> 5m (slope > 20%) 

Global 
(Takaku et al., 
2016) 

TanDEM-X 
DEM ~12.5 m <10 m <10 m 

2 m (slope ≤ 20%) 
4 m (slope > 20%) 

Global (Wessel, 2016) 

PNOA 
LiDAR DEM 

~5 m ≤ 0.5m ≤ 0.5 m - Spain (IGN, 2016) 

 Methods 

The following analyses and processes where carried away using the software GDAL/OGR 

(GDAL/OGR contributors, 2020), GAMMA software (Wegnüller et al., 2016), GRASS (Ge-

ographic Resources Analysis Support System) (GRASS Development Team, 2017), Python 

(Python Software Foundation, 2020), Rasterio (Gillies and others, 2013), Pandas (Pandas 

contributors, 2020), Geopandas (GeoPandas contributors, 2020), Numpy (van der Walt 

et al., 2011), Scipy (Jones et al., 2014), and Matplotlib (Hunter, 2007). 

 DEM assembly 

The global DEMs were provided in equiangular geographic coordinates. The SRTM and 

the AW3D DEMs height reference had to be shifted from geoidal to ellipsoidal heights 

without resampling. The TanDEM-X (TDX) DEMs were provided as height above the el-

lipsoid. The Tandem-X DEM at 30 m (TDX30) was used as provided. The Tandem-X 12.5 

m DEM was resampled (bilinear interpolation) to 20 m pixel spacing (TDX20) to reduce 

pixel size difference with respect to the multi-looked Sentinel-1 image. The 90 m reso-

lution Tandem-X DEM (TDX90) was resampled to 30 m (bilinear interpolation). The ALS 

DEM, originally projected to ETRS89 UTM zone 30N coordinate system, was translated 

to a height above the ellipsoid and resampled to a 20 m pixel size (bilinear interpolation). 

As the ALS DEM has not been re-projected, all products geocoded with it (i.e., geocoded 

Sentinel-1 backscatter) share the same projection. 

 SAR data preparation 

For each SAR image, the SLC sub-swathes were mosaicked, and the resulting image was 

multi-looked by a factor of 7 in range and 2 in azimuth. The objective was to reduce 

noise and obtain the SAR backscattered intensity at a pixel spacing close to the target 

20 m used for the analysis. For a given orbit, the first acquired image was used as a 

master. All remaining SAR images from the same orbit were co-registered to the master 

image using an iterative process based on intensity matching and spectral diversity aided 

by each DEM (Wegmüller et al., 2002a). For each orbit, the master image was used to 

generate a lookup table (LUT) relating map and range doppler coordinates. The LUT was 
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used to orthorectify the master and the co-registered images (interferograms and SAR 

backscatter) from the same orbit.  

Interferograms were generated for each consecutive image pair (a-b, b-c, c-d, etc.), and 

the DEM-estimated topographic phase was subtracted from each. The interferometric 

coherence was estimated in a two-step adaptive approach (Wegmüller and Werner, 

1996; Werner et al., 2000). The first estimate of coherence was obtained with a 3-by-3 

window. To reduce the estimation bias due to the small window size (Touzi et al., 1999), 

the coherence was then recomputed using a window size inversely proportional to the 

initial estimate of the coherence. As a trade-off between preserving spatial resolution 

and reducing the bias, the largest window size was set to 9-by-9 pixels. In addition, when 

the estimation window included scatterers with a coherence level different than the co-

herence of the target in the center of the window, the estimator masked out such fea-

tures to preserve the true coherence of the latter target. 

The backscatter coefficient was calibrated to terrain flattened 𝛾0, considering the scat-

tering area on the ellipsoid and on DEM surfaces (𝐴𝑓𝑙𝑎𝑡 and 𝐴𝑠𝑙𝑜𝑝𝑒) (Frey et al., 2013) 

and the incidence angle on the ellipsoid and on DEM surfaces (𝜃𝑟𝑒𝑓 and 𝜃𝑙𝑜𝑐), as re-

ported in equation 1 (Castel et al., 2001). The parameter 𝑛 can be employed to account 

for volume effects (Castel et al., 2001). The parameter was set to 1, an adequate value 

for most land cover types, as dealing with volumetric effects was not the objective of 

this study. The backscatter intensity and coherence images were orthorectified using 

the LUT and an inverse distance resampling. LUT coordinates located more than two 

pixels (range) apart to its counterpart on the SAR image were masked as no data. To 

reduce speckle, the multi-temporal backscatter images were averaged, by polarization, 

in time. Seven images were averaged for each orbit for the Romanian site, while nine 

images were averaged for each orbit for the Spanish site. Similarly, the six and eight 

coherence images were averaged in time for each orbit and polarization for the Roma-

nian and the Spanish site, respectively. 

𝛾0 = 𝜎0
𝐴𝑓𝑙𝑎𝑡

𝐴𝑠𝑙𝑜𝑝𝑒

(
cos 𝜃𝑟𝑒𝑓

cos 𝜃𝑙𝑜𝑐

)
𝑛

 (1) 

 Auxiliary datasets 

In support of the analysis, a land cover dataset was created for each site, based on the 

agreement between the ESA CCI land cover map (2015) (Kirches et al., 2017), the DLR`s 

global urban footprint (GUF) (2016) (Esch et al., 2011, 2017, 2018), the ALOS PALSAR 

forest map (ALOS FNF) (2017) (Shimada et al., 2014b), and either Corine land cover map 

2012 (CLC) (Feranec et al., 2016) (Romanian Site) or Spanish information system on soil 

occupation (SIOSE, 2014) (Del Bosque González et al., 2005) (Spanish site, more detailed 

and recent) (Table 1.2). ESA CCI land cover maps are generated at 300 m resolution using 

optical imagery time series from AVHRR, MERIS, SPOT-VGT, and PROBA-V imagery, as 

well as GlobCover unsupervised classification chain and machine learning (Kirches et al., 
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2017). GUF is generated from TanDEM-X imagery at 12 m resolution based on amplitude 

and texture (Esch et al., 2011, 2017, 2018). ALOS forest map is generated based on local 

thresholding of annual composites of ALOS PALSAR 1/2 amplitude images (25 m pixel 

side) (Shimada et al., 2014b). Both CLC and SIOSE are based on photointerpretation of 

satellite and aerial imagery, with minimum polygon surface of 25 Ha (Feranec et al., 

2016) and 1 Ha (SIOSE, Sistema de Ocupación del Suelo de España, n.d.), respectively. 

The ALOS FNF disagreed with the remaining data sets as part of the cities were classified 

as forest, and part of the water was classified as “other” (not water, nor forest). For 

cities, no ALOS FNF condition was applied, whereas the rest of the non-forest classes on 

other datasets were considered compatible with non-forest classes from ALOS FNF (non-

forest, water). The polygons with the agreement were dissolved by the land cover to 

eliminate internal borders, and a negative buffer of 40 m was applied to avoid edge ef-

fects. 

Table 1.2. Composition of the analyzed land covers based on preexisting datasets. When 
a higher level of Corine Land Cover or SIOSE has been employed (CLC (Corine land cover 
map) Lvl.1), the rest have been filled as “x”. CCI LC forest types are further disaggregated 
by the fractional cover and were therefore aggregated. GUF, global urban footprint; 
ALOS FNF, Advanced Land Observation Satellite Forest map; SIOSE, Spanish information 
system on soil occupation; CODIIGE, Board of directors of the geographic information 
infrastructure of Spain. 

 CLC 2012 
SIOSE 2014 
(CODIIGE) 

CCI LC 2015 GUF 2016 
ALOS FNF 

2017 

 
(Feranec et al., 

2016) 
(Del Bosque Gonzá-

lez et al., 2005) 
(Li et al., 2018) 

(Esch et 
al., 2017) 

(Shimada et 
al., 2014b) 

Urban 
1xx: Artificial 
surfaces 

1xx: Artificial 
surfaces 

190: Urban areas Urban - 

Crops 
21x: Arable 
land 

210: Crops 
(herbaceous) 

10, 20: Cropland, 
11: Herbaceous cover 

Other Other 

Pasture 23x: Pastures 320: Pastures 
11: Herbaceous 
130: Grassland 

Other Other 

Grassland 
321: 
Grassland 

320: Pastures 
11: Herbaceous 
130: Grassland 

Other Other 

Bare 
33x: Open 
spaces 

354: Bare 200: Bare areas Other Other 

Broadleaf 
forest 

311: Forest 
(broadleaf) 

311: Forest 
(broadleaf) 

50–62: Tree cover, 
broadleaved 

Other Forest 

Needleleaf 
forest 

312: Forest 
(needleleaf) 

312: Forest 
(needleleaf) 

70–82: Tree cover, 
needle leaved 

Other Forest 

Mixed 
forest 

313: Forest 
(mixed) 

313: Forest 
(mixed) 

90: Tree cover, 
mixed leaf type 

Other Forest 

Water 
5xx: Water 
bodies 

5xx: Water 
bodies 

210: Water Other Other 

The analyses were undertaken in this study are also related to landforms (Figure 1.3), 

i.e., features of the terrain surface with a distinct and identifiable shape (MacMillan and 

Shary, 2009). Landforms were labeled using the GRASS GIS add-on “r.geomorphon” 

(Jasiewicz and Stepinski, 2013), with a search window of 25 pixels and a “flatness” 

threshold of 5 degrees applied to the highest spatial resolution DEMs available for each 

site, i.e., the TanDEM-X DEM at 30 m for the Romanian site and the PNOA DEM aggre-

gated to 30 m for the Spanish site. 
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(a) (b) 

Figure 1.3. Landform classification. The general shape of the landforms (a), modified 
from GRASS documentation, based on (Jasiewicz and Stepinski, 2013) and landforms 
over the shaded relief for a subset of the Spanish study area (b). 

 Inter-orbital data analysis 

The topographic normalization (radiometric terrain normalization, topographic phase 

removal) and distortion masking (e.g., foreshortening, layover, shadows) of each SAR-

derived variable (backscatter coefficients and coherence) were assessed using the inter-

orbit range (IOR). IOR was calculated pixelwise for each SAR variable by subtracting the 

maximum and the minimum values available from all orbits. For example, for a pixel 

with data available from orbits a, b, and c, the IOR would be 𝑚𝑎𝑥(𝑎, 𝑏, 𝑐) –  𝑚𝑖𝑛(𝑎, 𝑏, 𝑐). 

The inter-orbit range was plotted by land cover class (boxplots). The analysis was re-

peated by landforms for the needleleaf forest, the only common forest type between 

both sites, and classes appearing near the mountain tops (grassland, bare). Because the 

only difference in image processing is the DEM employed, low IOR values reflect im-

proved topographic effects removal. 

In addition, the scattering area estimates, backscatter coefficient, and the interferomet-

ric coherence obtained using the ALS DEM (the most detailed) were employed as a ref-

erence to assess the performance of the global DEMs at the Spanish site. Said assess-

ment was based on the root mean square deviation (RMSD, eq. 2), relative RMSD (RMS-

Drel, eq. 3), mean absolute deviation (MAD, eq. 4), and Offset (eq. 5) for the products 

obtained from the global DEMs. 

𝑅𝑀𝑆𝐷 = √
1

𝑃
∑ (𝑣𝑝 − 𝑟𝑝)

2
𝑃

𝑝=1
 (2) 

𝑅𝑀𝑆𝐷𝑟𝑒𝑙 =
𝑅𝑀𝑆𝐷

𝑟̅
 (3) 
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𝑀𝐴𝐷 =
1

𝑃
∑ |𝑣𝑝 − 𝑟𝑝|

𝑃

𝑝=1
 (4) 

𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑣̅ − 𝑟̅ (5) 

where 𝑃 is the total number of pixels, 𝑝 is a specific pixel and 𝑣𝑛 and 𝑟𝑛 are the variable 

values (i.e., backscatter) obtained for said pixel using a global DEM (𝑣) and the reference 

DEM (𝑟), whereas 𝑣̅ and 𝑟̅ are the mean value for said variables. 

 Land cover classification  

A Linear support vector machine (LinearSVM) classifier was selected for its robustness 

and short execution times. We employed the Scikit-Learn implementation (Buitinck et 

al., 2013) with default options with a regularization parameter of 1, primal problem op-

timization, 0.001 tolerance for stopping criteria, and 10.000 iterations maximum. The 

classifier was trained per orbit/DEM pair using 96,000 samples, using VV- and VH-polar-

ized backscatter and co-pol coherence as features. 

For each orbit and land cover class, 70% of the valid sample (foreshortened and shad-

owed pixels were masked during SAR processing) was used to calculate the median and 

the median absolute deviation (MAD) of each SAR variable. Median and MAD values 

were then employed to calculate the z-score for each predictor (VV- and VH-polarized 

backscatter and coherence) by land cover class. Only samples with an absolute z-score 

below three were retained. Depending on the land cover class, the number of pixels 

retained varied from several millions (forest and low vegetation) down to tens of thou-

sands (urban and water). For each class, 12,000 pixels (the number of pixels available 

for the less extended class, i.e., water) were randomly selected and used for training (n). 

As low vegetation and forest classes were further split into three sub-classes each 

(crops, pastures, grasslands, and broadleaf, needleleaf, and mixed forests), the total 

numbers of training samples selected were thrice as much (3n) as for urban and water 

land cover classes. 

The validation sample, formed by the remaining pixels (30%) of each class, was used to 

compute the confusion matrix and associated error metrics (i.e., user and producer ac-

curacies, Cohen’s Kappa, as described below). Error metrics for valleys were calculated 

after resampling (nearest neighbor) the landform layer to match the spatial resolution 

of the DEMs. 

The confusion matrix C (equation 6) represents the occurrences of the predicted (rows) 

against the actual land cover class (columns) (𝑟 ∙ 𝑟 dimensions, where 𝑟 is the number 

of classes). Diagonal cells (𝑐𝑖𝑖) count pixels with the same class in the classification and 

the reference dataset (True Positive, TP). Cells over the diagonal count pixels of class 𝑖 

that have received other class (False Negative, FN), whereas cells under the diagonal 

count pixels that have been classified as 𝑖, when they have other class in the reference 

dataset (False Positive, FP). Accuracies for a specific class 𝑖 are the count of correctly 

classified pixels for the class (𝑐𝑖𝑖) divided by the number of pixels classified as 𝑖 (count 
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across columns, 𝑐𝑖+), in the case of user accuracy (𝑈𝐴𝑖, also called ‘precision’ in machine 

learning literature, formula 7), or by the number actual 𝑖 pixels (count across columns, 

𝑐+𝑖), in the case of producer accuracy (𝑃𝐴𝑖, also called ‘recall’ in machine learning liter-

ature, formula 8). 

𝐶 = [

𝑐1,1 𝑐1,𝑗 𝑐1,𝑟

𝑐𝑖,1 𝑐𝑖,𝑗 𝑐𝑖,𝑟

𝑐𝑟,1 𝑐𝑟,𝑗 𝑐𝑟,𝑟

] (6) 

𝑈𝐴𝑖 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = ∑
𝑐𝑖𝑖

𝑐𝑖+

𝑟

𝑖=1
 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑃𝐴𝑖 = 𝑟𝑒𝑐𝑎𝑙𝑙𝑖 = ∑
𝑐𝑖𝑖

𝑐+𝑖

𝑟

𝑖=1
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

Cohen’s Kappa (Cohen, 1960) is a measure of agreement between the predicted cover 

and the one appearing on the reference dataset. 

𝐾 =
𝑁 ∑ 𝑐𝑖𝑖

𝑟
𝑖=1 − ∑ (𝑐𝑖+ ∙ 𝑐+𝑖)

𝑟
𝑖=1

𝑁2 − ∑ (𝑐𝑖+ ∙ 𝑐+𝑖)
𝑟
𝑖=1

 (9) 

where 𝑟 is the number of rows, 𝑐𝑖𝑖 is the number of pixels where there is agreement 

between the classification and the reference dataset (cells on the diagonal, with row 𝑖 

and column 𝑖), 𝑐𝑖+ and 𝑐+𝑖 are the totals for row 𝑖 (count of pixels classified as 𝑖) and 

column 𝑖 (count of reference pixels with class 𝑖), and finally, 𝑁 is the total number of 

observations (Congalton, 1991). A Kappa value of 1 represents the complete agreement 

between both, 0 represents a classifier performance similar to random guessing, and 

values under 0 indicate results worse than random guessing. 

 Results 

In Sections 1.4.1 and 1.4.2, we show results of the IOR analysis by land cover and land-

form, respectively, Section 1.4.3 contains the ALS reference-based analysis, and Section 

1.4.4 describes the results of the classification comparison. Through sections 1.4.1 to 

1.4.3, coherence showed very small differences based on the DEM employed, under 

0.01 for the IOR based analyses, and under 0.02 for ALS reference-based analysis. For 

this reason, these tables have been omitted, as they carried little to no information. 

 Inter-orbital range by land cover 

The inter-orbit range (IOR, Table 1.3) was analyzed as an indicator of the residual terrain 

influence on the normalized SAR metrics (higher IOR, higher influence). The mean IOR 

for urban cover varied very little between DEMs, except for TDX90. Crops and broadleaf 

forests presented little difference (up to 0.3 dB) depending on the DEM employed, but 

increased for mixed forests (0.5 dB, Carpathians), and classes appearing near mountain 

peaks, such as grassland (0.6 dB) and bare soil (1 dB). Needleleaf forests had similarly 

high differences at the Romanian site (0.7 dB), whereas they were lower at the Spanish 

site (0.4 dB). TDX20/30 was the global DEM with the lowest IOR, whereas the highest 

IOR values were observed for the TDX90 DEM, followed by SRTM DEM. Results with 
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AW3D over natural covers (bare, grasslands, forest) varied depending on the site: At the 

Romanian site, its IOR was close to SRTM or TDX90 values; whereas at the Spanish site, 

it was closer to the values obtained with TDX20/30 DEMs. ALS-based PNOA DEM had 

the lowest IOR, with a large improvement over results with SRTM or TDX90 (up to 1.2 

dB for bare areas, up to 0.5 for needleleaf forest), and a slight improvement over TDX20 

results (0.2 dB for bare areas, and 0.1 dB for needleleaf forest). IOR values for PNOA and 

TDX20/30 DEMs showed less spread (Figure 1.4), concentrating around lower values, 

whereas the spread was larger for SRTM and TDX90. The main differences between sites 

were the lower spread of IOR at the Spanish site, and the behavior of AW3D IOR, which 

was closer to the TDX20/30 values at the Spanish site, but closer to SRTM/TDX90 values 

at the Romanian site. 

Table 1.3. Backscatter Inter-orbit range (IOR) by polarization and land cover class at each 
study site (GL, grassland; BLF, NLF, and MLF, are broadleaf, needleleaf, and mixed for-
est). Cell color shows the gradient between the lowest (green) and the highest value (yel-
low). “M.D.” column represents the maximum difference between global DEMs for each 
specific land cover. 

 Romania   Spain  

 AW SR TDX TDX TDX M.  AW SR TDX TDX TDX 
ALS 

M. 
3D TM 20 30 90 D. 3D TM 20 30 90 D. 

Urban 5.4 5.4 5.3 5.4 6.9 1.6         

Crops 2.3 2.3 2.2 2.2 2.3 0.1  1.3 1.4 1.3 1.3 1.5 1.2 0.2 
GL 3.4 3.4 2.9 3.1 3.5 0.6         

Bare        3.1 3.5 2.9 3.1 3.9 2.7 1.0 
BLF 2.0 2.0 1.7 1.8 2.0 0.3         

NLF 2.5 2.5 1.8 1.9 2.5 0.7  1.2 1.5 1.1 1.2 1.5 1.0 0.4 
MLF 2.4 2.4 1.9 2.0 2.4 0.5         

 

Figure 1.4. Boxplot representing the VV backscatter IOR for grassland, bare areas, and 
needleleaf forests at both sites: Mean and median values (green triangle, orange line) 
and inter quantile-ranges (whiskers) for 5–95%. 
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 Inter-orbital ranges by landform 

Analyzing IOR values by land cover may have dampened potential differences as all pix-

els, regardless of landform, were averaged by class. A more detailed analysis was con-

ducted by disaggregating mean IOR values by landforms for the grassland, bare land, 

and needleleaf forests (Table 1.4 and Table 1.5). These classes were selected as they 

often occur on steep slopes (Figure 1.2). Only landforms with more than 1,000 pixels 

have been analyzed to limit spurious results, due to small sample size. 

Table 1.4. IOR values disaggregated by landform for classes on mountain tops (grass-
lands, Romania; bare, Spain). Cell color shows the gradient between the lowest (green) 
and the highest value (yellow) for each row, which represents the IOR value for a specific 
landform when a certain was DEM employed. “M.D.” column represents the maximum 
difference between global DEMs for each specific landform. 

 Romania (grasslands)   Spain (bare)  

 AW SR TDX TDX TDX M.  AW SR TDX TDX TDX 
ALS 

M. 
3D TM 20 30 90 D. 3D TM 20 30 90 D.. 

peak 3.1 3.0 2.5 2.6 3.5 1.0  2.9 3.3 2.6 2.7 6.1 2.2 3.5 
ridge 3.0 2.9 2.5 2.7 3.0 0.5  2.7 3.1 2.5 2.7 3.6 2.3 1.1 
spur 3.2 3.2 2.7 2.9 3.1 0.5  3.1 3.4 2.9 3.0 3.9 2.7 1.0 
slope 3.6 3.6 3.0 3.3 3.6 0.6  3.3 3.7 3.1 3.3 3.8 2.9 0.7 
hollow 4.2 4.3 3.6 3.9 4.6 1.0  3.2 3.8 3.1 3.2 3.9 2.8 0.8 
valley 4.5 4.7 4.1 4.4 5.5 1.4  3.0 3.4 2.9 3.1 4.7 2.6 1.8 

Both grasslands and bare areas presented large differences between DEMs. In the case 

of grasslands, the landforms valley, hollow, and peak showed the largest differences be-

tween DEMs (1.0–1.4 dB). In the case of bare areas, peak and valley showed the largest 

differences (3.5 dB and 1.8 dB, respectively), followed by ridge and spur (1.1 and 1.0 dB). 

For needleleaf forest, the largest differences between DEMs were observed for concave 

landforms (Table 1.5): Hollow (0.8–0.9 dB at either site), valleys (up to 0.8 dB at the 

Spanish site, and up to 1.4 dB at the Romanian site) and pits (up to 1.9 dB at the Roma-

nian site). 

Table 1.5. IOR values disaggregated by landform for needleleaf forests. Cell color shows 
the gradient between the lowest (green) and the highest value (yellow) for each row, 
which represents the IOR value for a specific landform when a certain was DEM em-
ployed. “M.D.” column represents the maximum difference between global DEMs for 
each specific landform. 

 Romania   Spain   

 AW SR TDX TDX TDX M.  AW SR TDX TDX TDX 
ALS 

M. 

3D TM 20 30 90 D. 3D TM 20 30 90 D. 

peak 2.3 2.2 2.0 2.1 2.3 0.3         

ridge 2.2 2.2 1.9 2.0 2.2 0.4  1.2 1.3 1.1 1.1 1.3 1.0 0.2 
spur 2.2 2.2 1.7 1.8 2.2 0.5  1.2 1.3 1.1 1.1 1.4 1.0 0.3 
slope 2.3 2.3 1.7 1.8 2.4 0.7  1.2 1.5 1.1 1.2 1.5 1.0 0.4 
hollow 2.8 2.8 1.9 2.0 2.9 0.9  1.4 1.9 1.3 1.4 2.1 1.1 0.8 
valley 3.7 3.5 2.4 2.5 3.8 1.4  1.6 2.1 1.5 1.6 2.3 1.2 0.8 
pit 4.5 3.9 2.6 2.7 4.0 1.9         

Using the TDX20/30 generally yielded the lowest IOR among global DEMs, whereas using 

TDX90 yielded the highest. The absolute minimum was always observed when using the 
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ALS DEM (0.1–0.4 dB lower when compared to TDX20/30). IOR values obtained with the 

ALS DEM for bare areas were up to 3.9 dB lower when compared to the TDX90 DEM and 

up to 1.1 dB lower when compared with SRTM. For needleleaf forest, IOR values for 

valleys using ALS DEM were up to 1.1 dB lower than those obtained with TDX90. 

 Differences with and ALS-derived DEM  

The PNOA ALS-derived DEM provided the lowest IOR in all previous analyses at the Span-

ish site and was used as a reference for quantitative analysis of the global DEMs (Table 

1.6). For the scattering area, the highest deviation (RMSD) was observed for the TDX90, 

followed by the SRTM DEMs. The relative RMSD obtained with these DEMs was at least 

10% higher when compared to the remaining DEMs (TDX20, TDX30, and AW3D). The 

lowest RMSD were observed for AW3D (orbit 1) and TDX20 (orbit81), followed by 

TDX30. The MAD for the scattering area was higher when using the SRTM or the TDX90 

DEMs when compared to AW3D, TDX30, and TDX20. For both orbits, the SRTM-derived 

scattering area was the least biased when compared to the ALS DEM (–4 m2 for orbit 1 

and 0.4 m2 for orbit 81), followed by TDX20 (–11 m2 for orbit 1 and –12 m2 for orbit 81). 

Table 1.6. Quality assessment for needleleaf forests using PNOA as a reference. Cell color 
shows the gradient between the lowest (green) and the highest value (yellow). 

  O001  O081 

 Statistic 
AW SR TDX TDX TDX  AW SR TDX TDX TDX 

3D TM 20 30 90 3D TM 20 30 90 

Sc
. a

re
a 

(m
2 ) 

Abs. RMSD  97 188 102 109 213  115 214 113 123 245 

Rel. RMSD 11% 21% 11% 12% 24%  12% 22% 11% 12% 25% 

MAD 38 81 32 36 87  47 96 38 43 104 

Offset 18 –4 –11 14 –21  25 0.4 –12 20 –18 
              

V
V

 (
d

B
) Abs. RMSD  0.54 0.96 0.63 0.54 2.89  0.56 0.96 0.64 0.55 3.35 

Rel. RMSD 5% 10% 6% 5% 29%  6% 10% 7% 6% 34% 

MAD 0.38 0.64 0.41 0.36 0.74  0.38 0.63 0.41 0.35 0.75 

Offset –0.19 –0.27 –0.27 –0.17 –0.35  –0.24 –0.30 –0.35 –0.23 –0.41 

For both orbits (1 and 81), the use of AW3D, TDX30, and TDX20 DEMs resulted in 

backscatter coefficient (VV) values closest to those obtained using the ALS DEM, with 

relative RMSD under 8%. For both orbits, the smallest offset with respect to the ALS 

DEM was obtained using TDX30, followed by AW3D. In all cases, backscattering coeffi-

cient was underestimated when compared with ALS DEM results. 

 Land cover classification 

The DEM used for radiometric terrain normalization and topographic phase removal 

showed little effect on the overall quality of the classification, regardless of the Sentinel-

1 relative orbit (Annex 1-1). The Cohen’s Kappa was between 0.94 and 0.96. Analyzing 

the confusion matrices and the associated error metrics (i.e., user accuracy, UE, pro-

ducer accuracy, PE) showed that classes with a larger spatial extent (low vegetation or 

forest) had very high accuracies (>95%). However, most pixels misclassified as low veg-

etation (>85%) were, in fact, forest pixels according to the reference data. Water had a 
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reasonable accuracy (>80%). Depending on the DEM, the “source class” of pixels mis-

classified water pixels varied. When using TDX20 for normalization, 21–27% of misclas-

sified water pixels were recorded as forest pixels on the validation dataset, 20–33% with 

TDX30, 33–50% with SRTM or AW3D, and 36–58% with TDX90. The urban class had rel-

atively small omission errors (10–15%), but the commission error was high (around 40% 

for orbit 7, around 60% for orbit 29, and around 50% for obit 31), mostly due to the 

misclassification of forests (52–78% of the pixels misclassified as urban were forest pix-

els in the validation dataset). 

 
Color composite: R, coherence; G, VH channel; B, VV channel 

 

Land cover:   Urban  Low vegetation  Forest  Water 
 

Figure 1.5. A small subset of the data around Leaota Peak. The first row shows the impact 
of terrain normalization on the imagery (a, b). The dotted box is the area shown for clas-
sification maps. The second row represents classified maps (b, c). White pixels indicate 
no data. 

Classification results were also analyzed by landform (Annex 1-2), and in particular, for 

valleys. Valleys were selected as they showed the largest differences between DEMs in 

previous tests, and a reasonable number of samples were available (10 times more 
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when compared to the number of samples available for pit landform). When only valley 

pixels were considered, Cohen Kappa was low (0.57–0.70). Using the TDX20 DEM allows 

for a marginal increase of the Cohen Kappa values over the value obtained using the rest 

of the DEMs (0.05 for orbits 7, 0.03 for orbit 131, and 0.02 for orbit 29). For valleys, user 

accuracy for low vegetation class dropped. In this context, the use of the TDX20 DEM 

reduced commission errors up to 11% for low vegetation and up to 21.9% for water 

when compared to the remaining DEMs (Figure 1.5). Using the TDX20 DEM also reduced 

the number of forest pixels misclassified as water, representing a smaller percentage of 

the pixels misclassified as such (17–27% less, depending on the orbit). Commission er-

rors for urban cover increased for valley landform, especially when terrain normalization 

is performed with any of the TDX DEMs. 

The backscatter coefficient (VV) for forests located on valleys was examined to better 

understand the results obtained with the TDX DEMs (Figure 1.6). The boxplot showed 

that products normalized using lower resolution DEMs (AW3D, SRTM, TDX90) had an 

increased frequency of low values on the valley when compared to TDX20/30. 

 

Figure 1.6. Boxplot representing the VV backscatter coefficient for forests located on val-
leys by Sentinel-1 relative orbit: Mean value (triangle) median value (orange) and inter 
quantile-ranges (whiskers) for 5–95%. 

 Discussion 

The influence of the DEM employed for terrain normalization of backscatter and coher-

ence data variability was analyzed in three ways: (a) Comparing several orbital tracks 

(inter-orbit range, IOR); (b) using the results obtained with an ALS-derived DEM as a 

reference; and (c) assessing land cover classification results after a specific DEM is em-

ployed for normalization. Coherence varied very little with the DEM employed, whereas 

the effect was larger on the backscatter coefficient. 

Terrain normalization was better served by high-resolution DEMs (i.e., TDX20, ALS DEM, 

AW3D at Spanish site), in agreement with prior research (SRTM-1arcsec and AW3D out-

performed SRTM-3arcsec and TanDEM-X 90m; Grohmann, 2018; Truckenbrodt et al., 
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2019). Higher resolution DEMs have reduced vertical uncertainties (under 5 m over slop-

ing terrain for TDX12.5 and AW3D) when compared to the SRTM DEM (Table 1.1), which 

may have contributed to reducing IOR values. Some DEMs (TDX20, TDX90, ALS) needed 

resampling prior, which may have impacted their performance. TDX20 and ALS DEMs, 

were down-sampled, which may have reduced the DEM detail with an associated in-

crease of IOR values. 

However, the IOR values obtained after resampling was still smaller than those observed 

for the lower resolution DEMs, underlining the importance of the vertical uncertainty of 

the original DEM. TDX90 was resampled to a finer resolution. However, as resampling is 

a destructive operation, the only expected impact was the smooth interpolation of the 

original data to a denser grid, which does not provide additional information over the 

original DEM. The advantage provided by high-resolution DEMs was dependent on the 

specific land cover, and the landform it occupies. For instance, IOR for urban and crops 

showed little difference, as they occupy near-flat areas. 

Land cover classes occupying steeper slopes (i.e., forests, grasslands) received the larg-

est benefits of using a more detailed DEM (minimum IOR). At the Romanian site, broad-

leaf forests showed smaller differences than mixed and needleleaf forest, as the latter 

grew on steeper slopes. Variability for needleleaf forests was smaller at the Spanish site, 

as it occupied milder slopes (Figure 1.2). Results were disaggregated by landform, as the 

“typical” slope of each land cover might obscure landform related effects. Peak, hollow, 

valley, and pit landforms showed the largest differences between the analyzed DEMs. 

Such differences can be attributed to the sensitivity of SAR to remote sensing artifacts, 

such as shadowing and foreshortening appearing with increasing slope. This affects DEM 

accuracy in sloped terrain, as shown in Table 1.4 and Table 1.5, propagating into any 

analysis based on pixel neighborhood, such as slope, orientation (Purinton and Bookha-

gen, 2017), or terrain normalization. On these landforms, TDX20/30 clearly outper-

formed the rest of the DEMs, as it provided an improved characterization of smaller 

terrain forms supporting results reported by Grohmann et al. (2018). 

The use of an ALS-derived DEM resulted in the smallest IOR, pointing it as a suitable 

candidate to benchmark global DEMs at the Spanish site. Taking the ALS DEM as a ref-

erence, the lowest deviation and bias of the SAR metrics were observed for the AW3D 

and TDX20/30 DEMs. The results obtained by AW3D were explained by the combined 

effect of the resolution employed for its generation (5 m) and the low cover and height 

of Mediterranean forests. These factors may have eased the detection of vegetation-

free pixels, “pushing” the reported data nearer to the true terrain surface once 

resampled to 30 m, as described by References (Grohmann, 2018; Santillan and 

Makinano-Santillan, 2016). TDX20/30 provided similar results thanks to the high spatial 

resolution of the X-band sensor employed for its creation. In addition, shorter wave-

lengths (X- as opposed to C-band) can capture finer spatial details (Ouchi, 2013; Wood-

house, 2006; Moreira et al., 2013). In some cases, better results were observed for the 
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TDX30 DEM when compared to the TDX20 DEM, pointing to a trade-off between the 

spatial detail and the effect of the DEM noise, with some improvement for slightly 

coarser resolutions (30 m instead of 20), but a high dispersion when resolution becomes 

too coarse (TDX 90). TDX90 and SRTM DEMs showed similar dispersion when compared 

to the ALS PNOA DEM reference values, possibly due to the variable-resolution smooth-

ing (Farr et al., 2007) employed during the reprojection of SRTM to map coordinates, 

which may have decreased its detail, as shown in References (Grohmann, 2018; Smith, 

2003; Guth, 2006). 

DEM performance also varied across sites, with a larger inter-track variability being ob-

served for needleleaf forests at the Romanian site. Such differences were explained by 

the steeper slopes this land cover class occupied in the Carpathians, as well as its char-

acteristics (height and structure), which may have complicated DEM generation, due to 

volume decorrelation, as reported by References (Farr et al., 2007; Rizzoli et al., 2017): 

The Carpathians are covered by dense temperate forests, whereas Sierra Nevada is pop-

ulated by Mediterranean forests with lower tree height and canopy density. Among all 

DEMs, AW3D IOR had a distinct behavior. While at the Romanian site, the AW3D results 

were close to those observed to the SRTM DEM, at the Spanish, the results were closer 

to those observed when using the TDX20/30 DEMs. The quality mask layer showed that, 

at the Romanian site, the AW3D DEM has a large strip where missing data (due persis-

tent cloud cover) have been infilled with SRTM data, a problem mentioned by 

Truckenbrodt et al. (2019). For this reason, it is not possible to draw conclusions on the 

influence of canopy characteristics on the performance of AW3D. 

The characteristics of each DEM propagated into the land cover classification results. 

Overall classification accuracy was similar regardless of the DEM, with reasonable accu-

racies for all classes except urban. The low accuracy of urban surfaces was attributed to 

(i) the prevalence of steep slopes, which difficult terrain normalization (not fully ac-

counted scattering area) (Truckenbrodt et al., 2019) and may introduce DEM artifacts 

(mischaracterizing terrain surface) (Moreira et al., 2013; Purinton and Bookhagen, 2017; 

Woodhouse, 2006), and (ii) the prevalence of discontinuous urban fabric at the Roma-

nian site, which may cause confusion with ornamental and fruit tree cover present 

around residential areas, and genuine forested lands. 

When analyzing classification results for specific landforms (i.e., valleys), the AW3D, 

SRTM and TDX90 showed larger commission errors (CE), due to the misclassification of 

the forest as low vegetation or water. Such errors can be explained by the mischarac-

terization of the thin crevices of the drainage network on the DEMs (Purinton and 

Bookhagen, 2017). This is propagated to the lookup table and impacts both, the distor-

tion masking process and the terrain normalization. Distortion masking is affected be-

cause the distance between the pixels in the range is altered. Therefore, such pixels are 

not marked as distorted or shadowed. Terrain normalization is affected as it uses the 

LUT, orientation, and slope layers to estimate the scattering area. In turn, the scattering 
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area is overestimated, under-compensating the radiometric effects, keeping a pseudo-

shadow with lowered values (as opposed to true shadow, caused by occlusion, which 

cannot be compensated). Therefore, forests are misclassified due to the apparently low 

backscatter. 

Using the TDX20 reduced commission error for low vegetation (11%) and water (12–

22%) on valleys, as well as the percentage of forest pixels among all pixels misclassified 

as water (decrease of 17–27%). This was explained by reduced pseudo-shadows when 

using the TDX20/30 DEMs. However, the improvement came at the cost of a 3–6% in-

crease of commission error for urban cover located on valleys, which was caused by a 

slight increase in backscatter values over forests (overcompensation), and the large size 

difference between the validation sample for urban and forest (<103 vs. 7.5·104 at val-

leys), as misclassification of a small subset of the latter would be much larger when com-

pared with the sample size for the former. Even with this trade-off, classification results 

using TDX20 were marginally better (0.01–0.05 higher Cohen’s Kappa). Furthermore, in-

creased CE for urban cover on valleys did not affect the overall CE for the urban class, 

which was reduced by 2–3% when using the TDX20 DEM. 

 Conclusions 

SAR observations are heavily affected by sensor-terrain geometry, which can be cor-

rected using a DEM. Choosing a DEM for SAR data terrain normalization is not a trivial 

choice, as it affects backscattering coefficient variability, and mapping products gener-

ated downstream. High-resolution TanDEM-X DEM (20 or 30 m resolution) was the 

global DEM providing the largest reduction of terrain induced variability, followed by 

AW3D in sparse vegetation areas. Natural land covers (i.e., forest, bare areas, grass-

lands) occupying steeper slopes and complex landforms (i.e., peaks, pits, valleys) re-

ceived the largest benefits. These benefits were felt on classification, where more forest 

pixels were classified correctly due to a better compensation of low values (valley 

pseudo-shadow). An ALS-based DEM was able to provide slightly better results (i.e., mar-

ginally reduced IOR) when compared to AW3D and TDX20/30 DEMs. However, AW3D 

and TDX20/30 DEMs seem suitable candidates to replace ALS-based local DEMs. How-

ever, AW3D should be checked for data infilling from older datasets (i.e., SRTM) as over 

such areas, its performance may be degraded. 

This study showed the effect of several global DEMs on terrain normalization, highlight-

ing their advantages and shortcomings when normalizing Sentinel-1 imagery. Further 

research should expand this analysis by including the recent NASADEM dataset (from 

re-processed SRTM) (NASA, USGS, 2020), using a reference ALS-based DEM for temper-

ate forests, and studying the DEM-dependent normalization effects on SAR imagery ac-

quired at different wavelengths. Finally, the effect of terrain normalization could be 

tested on downstream quantitative products, such as biomass estimates or canopy 

cover.
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 Annexes 

Annex 1-1. Confusion matrices by DEM and orbit (Reference>columns; Classified>Rows) at overall level. (Ur, urban; LV, low vegetation; Fo, forest; 
Wa, water. UA, user accuracy, PA, producer accuracy). 

  O007  O029  O131 
  Ur LV Fo Wa UA  Ur LV Fo Wa UA  Ur LV Fo Wa UA 

A
W

3
D

 

Ur 19147 6602 7310 43 57.84  18698 6465 19317 24 42.01  18749 5044 12423 44 51.71 

LV 2206 1548500 19344 271 98.61  2063 1544334 20493 321 98.54  2366 1545097 24852 358 98.25 

Fo 250 10075 811265 380 98.70  759 13244 787900 395 98.21  357 9861 739556 389 98.59 

Wa 0 506 506 5054 83.32  0 611 355 5007 83.83  0 688 468 4956 81.09 

PA 88.63 98.90 96.76 87.93   86.89 98.70 95.15 87.12   87.32 99.00 95.14 86.24  
                   

SR
TM

 

Ur 18868 6245 7204 40 58.31  18439 6055 19377 24 42.01  18725 5048 12952 48 50.92 

LV 2278 1540604 19090 262 98.62  2108 1537069 20272 318 98.54  2283 1538477 23950 340 98.30 

Fo 265 9900 806632 379 98.71  774 12931 782981 386 98.23  285 9564 735257 371 98.63 

Wa 0 546 549 4944 81.87  0 566 283 4895 85.22  0 618 358 4861 83.28 

PA 88.12 98.93 96.78 87.89   86.48 98.74 95.15 87.05   87.94 99.02 95.18 86.49  
                   

TD
X

2
0

 

Ur 29990 9446 11850 73 58.39  28857 8597 30849 36 42.23  29327 7184 18985 73 52.78 

LV 3168 2411865 22525 363 98.93  3440 2410056 31421 475 98.55  3426 2407209 39924 475 98.21 

Fo 364 16915 1270072 619 98.61  1088 17561 1188573 552 98.41  439 12460 1060469 540 98.75 

Wa 1 1112 419 7772 83.53  0 960 251 7535 86.15  0 1063 311 7085 83.76 

PA 89.46 98.87 97.33 88.05   86.44 98.89 95.00 87.64   88.36 99.15 94.71 86.69  
                   

TD
X

3
0

 

Ur 19156 6430 8530 42 56.08  18677 6280 21653 24 40.05  18793 4847 13386 46 50.69 

LV 2034 1540695 16591 239 98.79  2010 1538410 20705 301 98.53  2205 1539752 27089 303 98.11 

Fo 221 9505 808033 390 98.76  642 11234 773058 350 98.44  276 8255 712706 356 98.77 

Wa 0 665 321 4954 83.40  0 718 220 4867 83.84  0 680 171 4678 84.61 

PA 89.47 98.93 96.95 88.07   87.57 98.83 94.78 87.82   88.34 99.11 94.60 86.90  
                   

TD
X

9
0

 

Ur 19027 6599 7449 46 57.45  18439 5990 18774 26 42.65  18727 5161 13647 53 49.82 

LV 2179 1542343 18571 245 98.66  2138 1538972 19112 309 98.62  2294 1540926 23537 344 98.33 

Fo 240 9780 808189 396 98.73  794 13421 789226 382 98.18  309 9608 743312 370 98.63 

Wa 9 666 921 4937 75.57  0 567 343 4905 84.35  0 641 357 4854 82.95 

PA 88.68 98.91 96.77 87.78   86.28 98.72 95.38 87.25   87.80 99.01 95.19 86.35  
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Annex 1-2. Confusion matrices by DEM and orbit (Reference>columns; Classified>Rows) for valley. (Ur, urban; LV, low vegetation; Fo, forest; Wa, 
water. UA, user accuracy, PA, producer accuracy). 

  O007  O029  O131 
  Ur LV Fo Wa UA  Ur LV Fo Wa UA  Ur LV Fo Wa UA 

A
W

3
D

 

Ur 304 188 827 2 23.01  305 225 2478 1 10.14  298 175 1292 2 16.86 

LV 25 5447 4117 26 56.65  20 5232 4292 30 54.65  27 5214 3984 33 56.32 

Fo 2 537 76000 19 99.27  1 697 73596 18 99.04  3 606 70952 20 99.12 

Wa 0 32 176 514 71.19  0 27 81 512 82.58  0 27 54 506 86.20 

PA 91.84 87.80 93.69 91.62   93.56 84.65 91.48 91.27   90.85 86.58 93.01 90.20  
                   

SR
TM

 

Ur 319 239 816 1 23.20  318 193 1974 2 12.79  318 177 949 1 22.01 

LV 29 5195 3821 18 57.32  30 5137 4540 28 52.77  29 5102 4404 28 53.35 

Fo 3 598 72313 17 99.15  0 689 70070 14 99.01  1 583 68204 15 99.13 

Wa 0 29 128 429 73.21  0 27 84 421 79.14  0 29 58 420 82.84 

PA 90.88 85.71 93.82 92.26   91.38 84.97 91.39 90.54   91.38 86.61 92.65 90.52  
                   

TD
X

2
0

 

Ur 495 410 1795 1 18.33  492 371 4221 2 9.67  485 277 1923 1 18.06 

LV 35 8150 3874 29 67.42  35 8080 5511 47 59.09  33 7983 5496 44 58.89 

Fo 3 994 113029 34 99.10  1 1022 104714 21 99.01  4 844 95033 26 99.09 

Wa 0 38 108 724 83.22  0 31 36 673 90.95  0 27 48 596 88.82 

PA 92.87 84.97 95.14 91.88   93.18 85.02 91.47 90.58   92.91 87.43 92.72 89.36  
                   

TD
X

3
0

 

Ur 329 274 1267 1 17.58  323 258 2910 1 9.25  324 205 1377 1 16.99 

LV 19 5160 2846 15 64.18  25 5091 3604 24 58.22  19 5068 3732 23 57.32 

Fo 3 594 72894 21 99.16  0 651 68921 12 99.05  1 553 64973 18 99.13 

Wa 0 33 71 428 80.45  0 29 51 411 83.71  0 29 33 378 85.91 

PA 93.73 85.13 94.57 92.04   92.82 84.44 91.30 91.74   94.19 86.56 92.67 90.00  
                   

TD
X

9
0

 

Ur 305 258 1046 0 18.96  304 243 2341 0 10.53  309 187 1256 0 17.64 

LV 24 5299 3304 21 61.27  22 5183 3809 39 57.25  21 5216 3669 39 58.31 

Fo 3 606 70640 19 99.12  2 725 68702 14 98.93  2 610 67360 12 99.08 

Wa 0 26 259 451 61.28  0 28 116 437 75.22  0 25 106 439 77.02 

PA 91.87 85.62 93.88 91.85   92.68 83.88 91.64 89.18   93.07 86.39 93.05 89.59  
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Chapter 2:  Influence of the mosaicking algorithm on 
Sentinel-1 land cover classification over rough terrain 

Borlaf-Mena, I., Badea, O., Tanase, M.A., 2021a. Influence of the Mosaicking Algorithm 

on Sentinel-1 Land Cover Classification Over Rough Terrain, in: 2021 IEEE International 

Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 

2021. Presented at the IGARSS 2021 - 2021 IEEE International Geoscience and Remote 

Sensing Symposium, Brussels, Belgium, 11–16 July 2021, IEEE, Brussels, Belgium, pp. 

6646–6649. https://doi.org/10.1109/IGARSS47720.2021.9553648 

Abstract 

The aim of this study was to assess different strategies for wall to wall SAR-based (Sen-

tinel-1) land cover mapping over mountainous areas. The first strategy was to classify 

by-orbit and combine the resulting classifications. The second strategy derived land 

cover from ascending-descending SAR mosaics. In both cases, the inverse of the scatter-

ing area was used for weighting. Slightly more accurate results were obtained using by-

orbit classification, with larger omission errors for urban areas and forest being ob-

served when classifying the SAR mosaics. Such errors were caused by mismatches be-

tween orbits caused by image normalization errors and/or directional effects. 

 Introduction 

The use of local resolution weighted (LRW) mosaics (Small, 2012) was proposed to com-

bine ascending and descending SAR data takes. LRW mosaics combine such data using 

the inverse of the scattering area as weight. Thus, each pixel in the mosaic is influenced 

by all available data takes, but data takes with smaller scattering area estimate (smaller 

resolution loss) have a larger influence. The mosaics were developed to optimize reso-

lution and reduce speckle, by creating a weighted average of all acquisitions from a given 

period (i.e. 18 days; Rüetschi et al., 2017). When speckle from individual images is re-

moved, one can calculate the weighted standard deviation (SD) over the target period, 

a useful feature to characterize the temporal behavior of land cover classes. For exam-

ple, annual SD will be high for crops (due to tillage and harvest cycle), smaller for areas 

with little vegetation (due to soil moisture variations), and even smaller for forests (array 

of scatters always present) (Hansen et al., 2020). 

The aim of this study was to find a suitable method for wall to wall SAR-based land cover 

mapping. In this context, we compared two methods leveraging backscattering intensity 

annual statistics. The first workflow (a) uses a similar strategy to (Hansen et al., 2020), 

classifying by-orbit and combining the results by vote weighting based on the inverse of 

https://doi.org/10.1109/IGARSS47720.2021.9553648
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the scattering area. Workflow (b) builds on the ideas of (Small, 2012) and (Hansen et al., 

2020), creating local resolution weighted mosaics for the annual statistics followed by 

land cover classification. We used each method to perform classifications over a steep 

mountainous area and assessed their strengths and limitations. 

 Study area and data sets 

The study was carried out on a north-south transect in the southern Carpathians, Roma-

nia. The area is covered by broadleaf (oak, beech), needleleaf (spruce), and mixed for-

ests. The SAR data consisted of three-year (2017-2019) dual-polarized (VV, VH) Sentinel-

1 time series (relative orbits 7, 29 and 131). The images were acquired in interferometric 

wide swath mode (IWS) and were retrieved in single look complex format (SLC), with a 

pixel size of 14.1 m in azimuth and 2.3 m in range. The TanDEM-X DEM (Rizzoli et al., 

2017) (©DLR, Deutsches Zentrum für Luft- und Raumfahrt 2019) was used for geometric 

and radiometric data normalization. 

As ancillary data, we employed the 2015 ESA CCI land cover map (CCILC), the 2016 DLR’s 

global urban footprint, the Tandem-X and ALOS PALSAR forest maps (TFNF, 2011-2015; 

AFNF, 2017), and the Corine land cover (CLC, 2018) (Esch et al., 2017; Feranec et al., 

2016; Kirches et al., 2017; Martone et al., 2018; Shimada et al., 2014b). GEDI level 2B 

products (Dubayah et al., 2020) acquired between 2019-04-20 and 2020-04-15 were 

also employed to account for possible forest losses after the creation of the reference 

land cover datasets. 

 Methods 

 DEM assembly 

The TanDEM-X DEM was received in ellipsoidal height and equiangular geographic coor-

dinates, with a pixel size of 12.5 m. It was resampled (bilinear interpolation) to 20 m to 

match the resolution of the multi-looked Sentinel-1 imagery.  

 SAR data processing 

2.3.2.1 Image normalization and geocoding 

SAR images were assembled by combining the sub-swathes and multi-looked by a factor 

of 7 in range and 2 in azimuth to reduce speckle noise and to obtain a pixel spacing close 

to the analysis resolution (20 m). For each relative orbit, the first image served as mas-

ter: the remaining acquisitions were co-registered to the master image using an iterative 

process based on intensity matching and spectral diversity aided by the DEM. The mas-

ter image is employed alongside the DEM to generate the lookup-table (LUT) relating 

map and range doppler coordinates, as well as auxiliary files such as terrain slope and 

orientation, incidence angle, scattering area and layover and shadow masks. Backscatter 

intensity images were calibrated to terrain flattened 𝛾0, considering scattering area, the 

incidence angle and the DEM surface (Castel et al., 2001). Then, a multi-temporal 

speckle filter was applied. Once filtered, the images were orthorectified using the LUT. 
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2.3.2.2 Masking areas with radiometric distortions 

For every orbit, layover and shadow areas were masked out using the auxiliary layers. 

Foreshortened areas were also masked based on: 1) pixels coordinates – pixels close 

(two pixels in range direction) to neighboring masked pixels were flagged for possible 

distortion and 2) VH z-score - pixels within 100 m distance to a flagged pixel and with a 

z-score > 3 in all years. The z-score was computed with respect to forest backscatter. 

2.3.2.3 Generating the mosaics 

We produced two sets of mosaics: by-orbit (BO) annual statistics (average and standard 

deviation, SD), and all-orbits LRW annual statistics (weighted average and weighted SD). 

By-orbit annual statistics were calculated as: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1     (1) 

SD = 𝑠 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛−1
    (2) 

where 𝑥𝑖  is an individual observation, and 𝑛, is the total number of observations. The 

all-orbit LRW statistics were based on the inverse of the scattering area, 𝑎𝑖. For a pixel 

of orbit 𝑖, the weight 𝑤𝑖 would be: 

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑖 =
1

𝑎𝑖
    (3) 

Then, the weighted statistics are: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑥̅𝑤 =
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

  (4) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝐷 = 𝑠𝑤 = √
∑ 𝑤𝑖(𝑥𝑖−𝑥̅𝑤)2𝑛

𝑖=1
(𝑚−1)

𝑚
∑ 𝑤𝑖

𝑛
𝑖=1

  (5) 

𝑚 is the number of nonzero weights (i.e. the weight was zero if a pixel was masked). 

 Land cover reference dataset 

A land cover layer was created using the agreement between the ancillary classification 

datasets (see section 2.2) as follows: 1) Urban when classified as such in all maps except 

for AFNF; 2) Low vegetation, when classified as non-urban in GUF and non-forest in AFNF 

and TFNF, further split into four sub-classes: a) Rainfed crops when classified as arable 

in CLC and crops or herbaceous cover in CCILC; b) Irrigated crops - manually digitized 

due to non-agreement of ancillary data; c) Pastures and d) grasslands when classified as 

such in CLC data and as grasslands or herbaceous in CCILC; 3) Forests when classified as 

non-urban in GUF, forest in both AFNF and TFNF, and when matching a forest subtype 

(broadleaf, needleleaf, mixed) in CCILC and CLC; and 4) Water when classified as non-

urban in GUF, as water in both CCILC and CLC, and as non-forest in both AFNF and TFNF. 

Once the areas of interest for all land covers were defined, a 40 meters negative buffer 

was used for the extraction of training / validation data to avoid edge effects. 
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 Training and validation data preparation 

We separated the training and the validation pixels by exclusion: all candidates for the 

training sample were excluded from the validation sample. To be selected as part of the 

training sample, a pixel must be free of radiometric distortions in all three orbits. For 

each land cover, 25.000 random pixels were selected. For forests, pixels were selected 

from GEDI shots with fractional cover above 10% and forest height above 5 m (Global 

Forest Resources Assessment, 2000). The training sample was culled using local outlier 

factor algorithm (Breunig et al., 2000) and the yearly BO statistics as features. For the 

water class the median-based z-score of VH annual average was also employed, drop-

ping any water sample with a median-based z-score larger than three. Finally, 5.000 ran-

dom samples, evenly distributed between subclasses, were selected for each land cover.  

 Classification  

The features employed for classification were the annual average and SD for VV and VH 

channel backscatter intensities. Each year was considered an independent sample. Thus, 

each classifier is trained with 60.000 samples, 15.000 per class. The samples were em-

ployed to train a linear support vector machine with a regularization parameter of 1, 

primal problem optimization, L1 penalty, 0.001 stopping tolerance, and 10,000 itera-

tions maximum. 

On BO classification, a classifier is fitted for each orbit. Then, for every pixel, all un-

masked orbits cast a vote for a land cover class with weight 𝑤𝑖 as defined in equation 3. 

The land cover receiving the largest total weight was the one reflected on the classified 

layer. A single classifier is trained and applied over LRW mosaics. 

 Validation 

The accuracy assessment was performed using metrics derived from the confusion ma-

trix: overall accuracy, Cohen’s Kappa, and by-class commission and omission errors. 

Classification errors were also analyzed using alluvial diagrams to understand differ-

ences between classification strategies. The distributions of common misclassifications 

were compared to the distribution of correctly classified counterparts to understand if 

errors are related to the mosaicking process. 

 Results and Discussions 

Accurate classification results were obtained regardless of the mosaicking strategy (Ta-

ble 2.1), with a minimum overall accuracy of 93%, and a minimum kappa statistic of 0.83. 

Classifying individual orbits (BO) was slightly more accurate, reaching an overall accuracy 

of 95% and a kappa of 0.89 in two of the yearly classifications. 

Table 2.1. General accuracy metrics for each classification 

 By-orbit (BO) Local Resolution Weighting (LRW) 

Metric 2017 2018 2019 2017 2018 2019 

Overall accuracy 93 95 95 94 94 93 
Kappa 0.85 0.89 0.89 0.85 0.84 0.83 
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When disaggregating the result by land cover class, water cover had similar omission 

errors (10-11%) being mislabeled as low vegetation for both mosaicking strategies (BO 

and LRW). Commission error differed slightly, 8-12% for BO and 7-15% LRW strategy. 

No matter the strategy, most of the omitted low vegetation pixels were mislabeled as 

forest (Figure 2.1). This was attributed to the heterogeneity of the low vegetation class: 

agricultural areas usually display a large SD, but it may be lower for fallows, pastures, or 

grasslands (Figure 2.2). Misclassification of low vegetation as forest was more prevalent 

in BO classifications: low vegetation omission of 5-7% with BO, 2-3% with LRW and forest 

commission of 11-15% with BO, 6-8% with LRW. This was explained by the mosaicking 

strategy: an orbit may have the best resolution for a pixel but may not have the best 

separability for the land cover of said pixel. For example, in Figure 2.2 to Figure 2.4, 

values distribution for one orbit (29) shows displacement, most likely due to a higher 

nominal incidence angle (~41⁰) when compared to the remaining orbits (~37⁰). 

 

 

 

By-Orbit (BO)  Local Resolution Weighting (LRW) 

Figure 2.1. Alluvial diagrams of omission and commission errors (OE, CE) as a function of 
the mosaicking strategy. Left vertical axis and line color show the reference label (Ur, 
Urban, in purple; LV, low vegetation, in orange; Fo, forest, in green; Wa, water, in blue), 
right vertical axis shows the classified label for the mis-classified (error – ‘e’) pixels. The 
thickness of the lines indicates error frequency compared to the total error. 

 

Figure 2.2. Correctly classified low vegetation pixels (solid green lines) and low vegeta-
tion pixels mislabeled as forest (dashed red lines) with the BO strategy. Thin lines - yearly 
SD for individual orbit images, and thick lines - yearly weighted SD (LRW mosaics) in dB 
scale. Solid green lines depict the value distribution for correctly labeled pixels (a classi-
fied as a), whereas dashed red lines depict the most common misclassification (a mis-
classified as b). 

Low vegetation omission was lower in LRW classifications, but its commission error was 

higher (4-5% with LRW, <1% with BO) due the misclassification of urban (omission of 40-

42% with LRW, 10-14% with BO) and forest (omission of 14-18% with LRW, 3-7% with 

BO). These errors may be explained by the displacement of the SD towards larger values 
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(Figure 2.3-Figure 2.4). In urban cover it may be caused by directional effects (double 

bounce scattering depends on street orientation). The VV channel showed little differ-

ences (Figure 2.3), between correctly and incorrectly classified pixels, whereas for the 

VH channel LRW SD was larger for pixels misclassified as low vegetation. 

  

Figure 2.3. Urban pixels correctly classified (solid green lines) and misclassified as low 
vegetation (dashed red lines) with the LRW strategy. See Figure 2.2. 

By-orbit SD distribution for mislabeled forest pixels had large spreads (Figure 2.4), and 

LRW SD was displaced towards higher values, indicating differences in the backscatter-

ing intensity of the different orbits. These may be caused by the acquisition geometry 

(nominal incidence angle), the presence of volume effects (differences in the distance 

traversed within the forest canopy) (Castel et al., 2001), or the mischaracterization of 

the terrain surface. Backscattering intensity is the product of three terms representing 

the backscatter coefficient of the land cover, the scattering area, and the incidence an-

gle. Thus, variations on the land cover backscattering coefficient will be enlarged if the 

scattering area has been underestimated, whereas they will diminish for overestimated 

areas. Terrain mischaracterization is caused by the lack of detail of the DEM employed 

for scattering area normalization, and mainly appears in steep slopes and terrain crev-

ices (Borlaf-Mena et al., 2020). 

 

Figure 2.4. Correctly classified forest pixels (solid green lines) and forest pixels misclassi-
fied as low vegetation (dashed red lines) with the LRW strategy. See Figure 2.2. 

 Conclusions 

The aim of this study was to assess radar-based land cover classification results as a 

function of the method employed to fuse the ascending and descending Sentinel-1 data. 

The by-orbit SAR image classification and the LRW mosaic-based classification strategies 

provided similar results, with slightly improved accuracy metrics for the former. How-

ever, there were large differences in the error source with LRW classification showing 

larger omission errors for urban and forest classes. These errors were attributed to an 

increase of the yearly SD caused by backscatter values mismatches between orbits due 

to image normalization, directional effects (street orientation affects double bounce, 

slope orientation alters traversed distance within the canopy), or differences induced by 

the acquisition parameters, such as a different nominal incidence angle. 
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These results indicate that land cover maps generated by combining ascending and de-

scending SAR passes can provide high accuracies (>90%). However, user should use cau-

tion, as residual effects may remain (under-correction of scattering area and directional 

effects) particularly over steep areas. For this reason, by orbit products may provide 

better results as they are more resistant to the presence of residual effects, i.e., the 

annual SD is not swelled by combining multi-orbit data 
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Chapter 3:  Assessing the Utility of Sentinel-1 Coherence 
Time Series for Temperate and Tropical Forest 
Mapping 

Borlaf-Mena, I., Badea, O., Tanase, M.A., 2021b. Assessing the Utility of Sentinel-1 Co-

herence Time Series for Temperate and Tropical Forest Mapping. Remote Sensing 13, 

4814. https://doi.org/10.3390/rs13234814 

Abstract 

This study tested the ability of Sentinel-1 C-band to separate forest from other common 

land use classes (i.e., urban, low vegetation and water) at two different sites. The first 

site is characterized by temperate forests and rough terrain while the second by tropical 

forest and near-flat terrain. We trained a support vector machine classifier using increas-

ing feature sets starting from annual backscatter statistics (average, standard deviation) 

and adding long-term coherence (i.e., coherence estimate for two acquisitions with a 

large time difference), as well as short-term (six to twelve days) coherence statistics 

from annual time series. Classification accuracies using all feature sets was high (>92% 

overall accuracy). For temperate forests the overall accuracy improved by up to 5% 

when coherence features were added: long-term coherence reduced misclassification 

of forest as urban, whereas short-term coherence statistics reduced the misclassifica-

tion of low vegetation as forest. Classification accuracy for tropical forests showed little 

differences across feature sets, as the annual backscatter statistics sufficed to separate 

forest from low vegetation, the other dominant land cover. Our results show the im-

portance of coherence for forest classification over rough terrain, where forest omission 

error was reduced up to 11%. 

 Introduction 

Forest ecosystems host a large portion of terrestrial biodiversity, and provide many eco-

system services, such as timber and food production, risk mitigation (i.e., flood, erosion), 

and climate regulation, as forests hold a large portion of terrestrial biomass, and its 

growth and degradation play an essential role on climate and atmospheric CO2 dynam-

ics. This has prompted several international agreements to preserve forest services and 

biodiversity, along with specific procedures to track forest cover and status. One of the 

earliest international efforts for tracking forest status was undertaken under the Food 

and Agriculture Organization (FAO) through the global Forest Resources Assessment 

(FRA), whose first report was published in 1948. FRA defines forest as areas with tree 

canopy cover above 10%, 5 m minimum tree height, and a minimum extent of 0.5 Ha 

(FAO FRA, 2000).  

https://doi.org/10.3390/rs13234814
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Forests’ increasing importance is reflected by subsequent conventions such as the 

United Nations (UN) Rio Convention on Biological Diversity (United Nations, 1992a), and 

the UN Framework Convention on Climate Change (United Nations, 1992c), UNFCC. The 

UNFCC was extended by the Kyoto protocol and the Paris agreements (United Nations, 

1997, 2015b) with the commitment of the signatory countries to reduce their green-

house gasses emissions through, among other, reforestation programs. Further forest-

related agreements include the Bonn Challenge (International Union for Conservation 

of Nature, 2011), a global effort for forest restoration, and the New York declaration of 

forests (United Nations, 2014), aimed at reducing the rate of deforestation. Agreements 

under the UNFCC use indicators considered critical to characterize Earth’s climate, the 

so called essential climate variables (ECVs) (Bojinski et al., 2014) which are assessed and 

monitored through a range of programs and frameworks to track compliance. For ex-

ample, between 2005 and 2015 the UN funded the REDD+ program, focused on “Reduc-

ing emissions from deforestation and forest degradation and the role of conservation, 

sustainable management of forests and enhancement of forest carbon stocks in devel-

oping countries” (Goetz et al., 2015). REDD+ requires the implementation of measure-

ment, reporting and verification (MRV) systems as part of developing national forest 

monitoring systems. In the context of MRV systems, remote sensing technologies were 

used to keep track of forest status thanks to the short revisit times and consistent large-

scale coverage.  

Currently, most forest related ECVs are retrieved from earth observation satellites, with 

the European Space Agency (ESA) Climate Change Initiative (CCI) funding the extraction 

of many forest-related variables (i.e., land cover, above ground biomass, burned area) 

along with other ECVs (i.e., aerosols, sea surface temperature, snow cover, etc.). Remote 

sensing is the only technology able to provide the short revisit times and large-scale 

coverage needed for such tasks (Hansen et al., 2020). Recent approaches on forest/non-

forest (FNF) classification leveraged optical imagery from AVHRR, MODIS, MERIS or 

Landsat, despite the cloud cover related problems of such sensors (Hansen et al., 2020; 

Shimada et al., 2014b; Baron and Erasmi, 2017; Martone et al., 2018; Sica et al., 2019). 

Active systems such as space-borne light detection and ranging (LiDAR) are sensitive to 

forest height and fractional cover, which are important indicators for separating for-

ested areas (FAO FRA, 2000). However, the use of space-borne LiDAR is limited by its 

sparse coverage and cloud cover as is the case for the global ecosystem dynamics inves-

tigation (GEDI) instrument onboard the international space station (Dubayah et al., 

2020). Active systems based on synthetic aperture radar (SAR), are not affected by cloud 

cover, provide continuous or near continuous coverage (due to distortions over rough 

terrain), and are sensitive to forest presence (Baron and Erasmi, 2017; Dostálová et al., 

2018; Hansen et al., 2020) .  

Over the past decades, the SAR backscatter coefficient has been employed for many 

forest-mapping studies (Quegan et al., 2000; Rüetschi et al., 2017; Shimada et al., 2014b; 
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Hansen et al., 2020). Forests tend to have higher backscatter coefficient than other land 

cover classes due to the multiple bounces of the signal within the canopy (volume scat-

tering), allowing a larger amount of energy to return to the sensor. In general, longer 

wavelengths provide a larger contrast between forest and other classes (Mitchell et al., 

2014; Shimada et al., 2014b) while cross-polarized channels are better suited at identi-

fying forest cover since multiple bounces within the canopy cause the return to lose its 

original polarization (Woodhouse, 2006; Ulaby and Long, 2014). Recent mapping exam-

ples include the ALOS PALSAR forest/non-forest maps (Shimada et al., 2014b) which 

used L-band HV (horizontal (H) transmit—vertical (V) receive) backscatter to determine 

forest extent, while water bodies and non-forest areas are separated using the HH chan-

nel.  

The utility of the backscatter coefficient for land cover mapping is often limited by un-

related factors such as dielectric (i.e., soil moisture) and geometric effects (i.e., rough-

ness, tree stumps and debris left after forest clearing) as well as rain, snow, and freeze-

thaw periods (Shimada et al., 2014b; Olesk et al., 2015; Dostálová et al., 2016, 2018; 

Martone et al., 2018; Hansen et al., 2020). For example, the backscatter coefficient may 

increase after forest clearing, as tree stumps and woody debris are left exposed (double 

bounce) and decrease with time as soil surface dries (Shimada et al., 2014b). Further-

more, some land cover classes may be misclassified due to their scattering properties’ 

similarity to those of forest cover (i.e., vineyards, urban parks, and gardens). Neverthe-

less, changes in backscatter may be employed for detecting changes in the land cover 

(e.g., forest loss) (Canty et al., 2019; Doblas et al., 2020). 

Phase information may be leveraged for land cover classification to avoid the shortcom-

ings of backscattering intensity, albeit at the cost of increased data volumes and pro-

cessing times. Single-pass interferometry has been successfully applied to generate a 

global forest map based on TanDEM-X HH interferometric coherence, i.e., the correla-

tion between images acquired from different sensor positions acquired at the same time 

(single-pass) or at different time steps (repeat–pass) (Martone et al., 2018). Repeat–pass 

interferometric coherence has been also employed for land cover classification 

(Wegmuller and Werner, 1995; Bruzzone et al., 2004; Thiel et al., 2009; Sica et al., 2019; 

Jacob et al., 2020) with shorter temporal baselines improving the contrast between clas-

ses (Thiel et al., 2009; Jacob et al., 2020). Nevertheless, such contrast may be lost over 

some land cover classes (e.g., crops due to tillage) even for images acquired at very short 

intervals (Thiel et al., 2009; Jacob et al., 2020). Using dense time series (6–12 days) may 

overcome such limitations, but at a steep increase of data volume. Alternatively, adding 

coherence estimates from a few pairs with long temporal baselines can improve sepa-

rating some classes, such as urban cover, (Sica et al., 2019) with a smaller computational 

cost. 
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Regardless of whether phase information has been employed, multitemporal datasets 

may inform classifiers on land cover temporal behavior. This information can be lever-

aged in several ways, such as using individual observations as features, or using the 

pixel-wise annual statistics (i.e., average, standard deviation). When both approaches 

were tested in the context of forest mapping, the latter approach obtained improved 

results (Hansen et al., 2020), as it reduces data dimensionality and it is less vulnerable 

to the influence of short-lived events such as precipitation (Hansen et al., 2020; Quegan 

et al., 2000; Sica et al., 2019). However, it is important to note that the usefulness of 

such statistics may be hampered by variability due to thawing/flooding events or infre-

quent image acquisition (Dostálová et al., 2018). Within annual statistics layers, SAR 

backscatter variations are usually lower over forested areas when compared to other 

land cover classes such as crops which are affected by cultivation cycles (Quegan et al., 

2000; Hansen et al., 2020). Forest limited annual variation is related to scattering from 

tree canopy and the associated dampening of temporal variations in soil surface mois-

ture. However, annual variations may not suffice when separating younger forests as 

the scattering is influenced by the underlying soil properties (Quegan et al., 2000), or in 

areas with pronounced seasonality (Hansen et al., 2020). Urban areas may also be mis-

classified as forests, as they have a similarly low variability. Hence, the annual backscat-

ter average is also needed to separate forest from urban areas (infrastructure has a high 

backscatter coefficient; Quegan et al., 2000).  

The objective of this study was to investigate the contribution of radar backscatter and 

coherence for forest cover mapping in temperate and tropical settings. Three increas-

ingly richer feature sets were employed to assess the contribution of the variables that 

separate forest from other major land classes such as urban, low vegetation, and water. 

The first feature set was derived from annual backscatter statistics, the second set in-

cluded long-term coherence (i.e., coherence estimate for two acquisitions with a large 

time difference) while for the last set short-term coherence statistics were added (i.e., 

average and standard deviation of coherence estimates with a short temporal baseline). 

The results were assessed using existing land cover datasets and spaceborne Lidar data. 

 Study Area and Data Employed 

The first study area (Figure 3.1A) was a N-S transect over the Romanian Carpathians 

characterized by continuous and discontinuous urban areas, water courses and water 

bodies, croplands, tree and bush orchards, herbaceous cover (natural grasslands and 

pastures), as well as broadleaf, needleleaf and mixed temperate forest. Forests appear 

mainly on over-sloped terrain (Figure 3.2). It has an approximate area of 25,000 km2. 

The second study area (Figure 3.1B) was in the Brazilian Amazon. It mainly contains 

broadleaf tropical forest and cropland mixed with natural vegetation (tree, shrub, her-

baceous), with several water courses and small cities. At this site, forests appear mainly 

over gentle slopes (Figure 3.2). It has an approximate area of 43,000 km2. 
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Figure 3.1. Extent of the study areas ((A), temperate, Romania; (B), tropical, Brazil). the 
white outline represents the extent of the sites. Background imagery is courtesy of 
Google Satellite. 

Dual-polarized (VV, VH) single look complex (SLC) images acquired by Sentinel-1 A and 

B satellites (C-band) in interferometric wide swath mode (IWS) were used. The SLC im-

ages have a pixel spacing of 14.1 m in azimuth and 2.3 m in range. At the temperate site 

(Romania), we processed all overlapping acquisitions (6-day repeat interval) from both, 

ascending (29, 131) and descending (7) “orbital tracks” for years 2017–2019 to ensure 

complete coverage of the rough Carpathians terrain. Data from these three orbits were 

normalized (geometric, radiometric, interferometric) using the 12 m TanDEM-X digital 

elevation model (DEM) (Rizzoli et al., 2017) (©DLR, Deutsches Zentrum für Luft- und 

Raumfahrt 2019). For the tropical site (Brazil) we processed a time series for years 2018 

and 2019, including only images from Sentinel-1A (12-day repeat interval) to ensure co-

herence observations with the same temporal baseline. Notice that Sentinel-1B satellite 

started to consistently acquire images over the area after May 2019. For the flatter ter-

rain at the tropical site, the use of data from one relative orbit (54) was considered suf-

ficient. SAR processing at this site was based on the NASADEM height data (Crippen et 

al., 2016; NASA and JPL, 2020). 

 

Figure 3.2. Frequency distribution of the slopes for forest pixels of both sites. 

We used preexisting land cover maps as data sources to generate a consistent layer for 

training and validation purposes including: 

• 2018 Corine land cover (CLC), generated by manual digitalization over satellite 

imagery with a minimum polygon area of 25 hectares (Büttner et al., 2017; 

Kosztra and Büttner, 2019), with an overall accuracy of 88.7% within the bound-

aries of Romania (Moiret-Guigand et al., 2021). 
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• 2015 European Space Agency Climate Change Initiative land cover dataset (ESA 

CCI LC, from here on CCILC), generated at 300 m resolution with a time series of 

optical data (AVHRR, MERIS, SPOT-VGT, PROBA-V) and machine learning (Kirches 

et al., 2017), with an accuracy of 75.1% (Achard et al., 2017). 

• 2016 global urban footprint (GUF), generated at 12 m resolution with texture 

and intensity of TanDEM-X imagery, with an accuracy of 85–88% (Esch et al., 

2017). 

• 2011–2015 TanDEM-X forest non-forest map (TFNF), generated with 50 m reso-

lution from TanDEM-X bistatic coherence data, with an estimated accuracy of 

85–93% (Martone et al., 2018) 

• 2017 Advanced land observing satellite phased array type L-band synthetic ap-

erture radar forest/non-forest map (ALOS PALSAR FNF, shortened to AFNF) gen-

erated at 25 m resolution using backscatter data, with an accuracy of 85–95% 

(Shimada et al., 2014b) 

To account for possible changes after the creation of the mentioned land cover datasets, 

we used the GEDI level 2B data from period 20/04/2019–15/04/2020 (both sites) and 

one Sentinel-2 image (tropical site, tiles 19LEK, 19LEL, 19LFK, 19LFL, 19LGK, 19LGL) ac-

quired 24 August 2020. 

 Methods 

 SAR Data Processing 

Before SAR data processing, the DEMs employed for SAR co-registration and radio-

metric/geometric corrections were mosaicked. Both the TanDEM-X DEM and the 

NASADEM tiles were received in equiangular coordinates. The TanDEM-X DEM, received 

as height above the ellipsoid with 12 m pixel spacing, was mosaiced and resampled to 

20 m using bilinear interpolation. The NASADEM, received with a pixel size of 30 m and 

geoidal height reference, was mosaiced and shifted to ellipsoidal heights. 

The Sentinel-1 SLC sub-swathes were assembled into a single image and multi-looked to 

a pixel spacing of approximately 25 m, using a factor of 7 in range, and 2 in azimuth. This 

allowed reducing the impact of speckle while bringing the pixel size closer to the reso-

lution intended for analysis. The first image acquired in each relative orbit served as 

master. All remaining acquisitions were co-registered, by relative orbit, to the master 

image using an iterative process based on intensity matching and spectral diversity with 

the DEM as auxiliary dataset (Wegmüller et al., 2002b). The DEM was employed to gen-

erate a lookup-table (LUT), relating its own coordinates (map coordinates) and the SAR 

image coordinates (range-doppler coordinates), as well as auxiliary layers containing in-

formation on terrain slope and orientation, local incidence angle, scattering area and 

layover and shadowed areas. Interferograms were generated between subsequent im-

age pairs as well as at yearly intervals starting with the master image acquisition date. 
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Two series of interferograms were thus obtained for each relative orbit: (1) the long-

term series containing two to three yearly estimates, and (2) the short-term series con-

taining near weekly (6 days) or bi-weekly (12 days) estimates depending on the study 

area. The topographic phase was subsequently removed and coherence was estimated 

for each interferogram using a two-step adaptive approach (Wegmüller and Werner, 

1996; Werner et al., 2000).  

The backscatter intensity was calibrated to terrain flattened γ0, considering the inci-

dence angle and the terrain scattering area estimate (Castel et al., 2001; Small, 2012; 

Frey et al., 2013). A multi-temporal speckle filter was applied to reduce speckle (Quegan 

et al., 2000). Coherence and backscattering intensity estimates were orthorectified us-

ing an inverse distance resampling and the yearly average and standard deviation (SD) 

were computed for each SAR metric (VV and VH backscatter and VV coherence) and 

converted to the decibel (dB) scale. 

Notice that layover and shadow areas were masked using the DEM-derived auxiliary lay-

ers. Foreshortened areas were also masked, because scattering area may be underesti-

mated, leaving them with anomalously high values. To determine when such anomalies 

appear, we characterized the distribution of the annual average of VH backscatter, cal-

culating its median and median absolute deviation for all forest pixels (forest was ex-

pected to have the largest values over sloping terrain). A pixel was marked as distorted 

if the mean annual VH backscatter had a median-based z-score larger than 3 in all years 

and the pixel was within 100 m of any LUT-masked pixel (i.e., pixels where topographic 

normalization may still be problematic). 

 Land Cover Reference Dataset 

We used two datasets for training and validation: a GEDI-derived point layer showing 

forest cover presence or absence, and a land cover raster layer. For the GEDI-based 

layer, shots (points) were labeled as presence when the fractional tree cover was above 

10%, as estimated from both the GEDI shots and the Landsat-derived tree cover ancillary 

data included in the GEDI file; the canopy height (rh100) was above 5 m. If none of these 

thresholds was reached, the shot was considered as non-forest. 

The land cover dataset was created by a Boolean combination of preexisting land cover 

maps. To combine them, we first resampled all data sources to a pixel grid matching the 

Sentinel-1 dataset. Nearest neighbor resampling was employed for qualitative datasets, 

bilinear resampling was employed for Sentinel-2 data, and mode resampling was em-

ployed for GUF, as its pixel size was smaller when compared to the processed Sentinel-

1 data. The matching grids were combined based on the rules depicted on the Table 3.1 

and Table 3.2: to receive a specific sub-class a pixel had to meet all conditions imposed 

for that specific subclass. The logic behind the specific ruleset is described in the follow-

ing paragraphs, as different conditions were necessary for each site due to the land 

cover types present and the difference in available ancillary data. 
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At the temperate site, the AFNF was not used to determine urban cover because it dis-

agreed with the remaining datasets (i.e., parts of the cities were classified as forest). For 

the rest of non-forest classes, the condition imposed on AFNF was “NOT forest”, as open 

areas and water surfaces were sometimes misclassified as each other due to a similarly 

low backscatter. In the case of transitional woodland-shrub, it was necessary to remove 

AFNF or relax the condition (any natural cover of CCI land cover), as most of the plots 

from CLC were lost due to the large size of ESA CCI pixel size, or due to the object-based 

generalization of AFNF. For areas meeting the imposed conditions, a two-pixel negative 

buffer was applied to avoid edge effects. 

Table 3.1. Temperate site classification scheme together with the ruleset employed to 
determine the membership based on the preexisting datasets. The subclasses are based 
on agreement between CLC and CCI LC. GUF had to be 255 (urban) for the homonymous 
class, and 0 (other) for the rest of classes. “!=” denotes the NOT operator, i.e. “! = 1” 
indicates not classified as forest in AFNF or TFNF. 

Class Subclass CLC 2018 CCI LC 2015 AFNF 2017 TFNF 2018 

Urban Artificial 1xx: Artificial surfaces 190: Urban areas - 0: Urban 

Low  
vegetation 

Crops 
211: Non-irrigated 
Arable land 

10: Cropland 
11: Herbaceous 

!=1: Other 
(not forest) 2: Not 

forest 

Pasture 231: Pastures 11: Herbaceous 
130: Grassland Grassland 321: Grassland 

Permanent crops 
222: orchards 
242: agriculture mix 

12: Tree or shrub 

Transitional  
woodland-shrub 

324: transitional  
Woodland-shrub 

40–153: natural  
vegetation 

- 

Forest 

Broadleaf 311: broadleaf 50–62: broadleaf 

1: Forest 1: Forest Needleleaf 312: needleleaf 70–82: needleleaf 

Mixed 313: mixed 90: mixed 

Water Water - 210: Water !=1: Other !=1: Other 

At the tropical site, Sentinel-1 annual averages (by polarization) were added to avoid the 

shortcomings of the preexisting datasets, together with normalized difference indices 

(ND) derived from one Sentinel-2 image (24 August 2020). In the case of low vegetation, 

large areas were covered by mixed land covers (forest and low vegetation appear to-

gether) in the CCI LC. To avoid including thin tree lines in the low vegetation sample, 

pixels with a backscattering intensity over −8 dB on the Sentinel-1 VV annual averages, 

a ND moisture index (NDMI, Gao, 1996) over 0.05, and ND vegetation index (NDVI, 

Tucker, 1979) over 0.6 in the Sentinel-2 image were masked out, as these characteristics 

indicate tree cover. Forest had to have an NDVI over 0.6 in the 2020 Sentinel-2 image to 

avoid including areas that may have been deforested after the creation of the land cover 

datasets. ND water index (NDWI, Xu, 2006) had to be negative for land classes, and pos-

itive for water. Water also needed to have an annual backscattering intensity average 

under −15 and −20 dB for VV and VH channels to avoid errors caused by changes in the 

water cover. Forest and low vegetation (dominant classes) received the two-pixel nega-

tive buffer. The few pixels available for urban areas precluded such a buffer. Similarly, 

the sample for water cover would have been greatly reduced by a negative buffer, as it 

appears as thin rivers. 



Forest attributes mapping with SAR data in the Romanian South-Eastern Carpathians 

Ignacio Borlaf-Mena  2022 Page 75 

Table 3.2. Tropical site classification scheme together with the ruleset employed to de-
termine the membership based on the preexisting datasets. The subclasses are based on 
CCI LC. GUF had to be 255 (urban) for the homonymous class, and 0 (other) for the rest 
of classes. “!=” denotes the NOT operator. 

Class Subclass, CCI LC 2015 AFNF 2017 
TFNF 2018 Sentinel-1 

2018, 2019 
Sentinel-2 
2020 

Urban 190: Urban areas 

!=1: 
Other 

0: 
Urban 

- 
NDVI < 0.6 
NDWI < 0 

Low  
vegetation 

30: Mosaic of cropland with natural vegetation 

2: Not 
forest 

VV < -8 
NDMI < 0.05 
NDVI < 0.6 
NDWI < 0 

40: Mosaic of natural vegetation with cropland 

100: Mosaic tree/shrub and herbaceous 

120: Shrubland 

Forest 50–62: broadleaf 
1: 
Forest 

1: 
Forest 

- 
NDVI > 0.6 
NDWI < 0 

Water 210: Water 
!=1: 
Other 

!=1: 
Other 

VH < −20 dB 
VV < −15 dB 

NDWI > 0 

 Training Data Preparation 

The training sample was taken from unmasked SAR pixels (not affected by layover, 

shadow, or foreshortening) in all the relative orbits employed for the site. The training 

dataset was designed to withhold at least 30% of the sub-class samples for validation, 

taking up to 25.000 random samples from the pixels with said sub-class. In the specific 

case of forest sub-types, samples were taken from the GEDI-derived tree cover layer, 

selecting the shots overlapping with a pixel with the specific forest type. 

The training data was culled by applying the local outlier factor algorithm to each indi-

vidual sub-class, keeping all points that were considered inliers in all orbits and years. In 

the case of water cover, the median-based z-score was also employed by dropping any 

sample where the z-score for the VH channel was over three, cases where we assumed 

the pixel may be partially occupied by land and/or aquatic vegetation, thus reducing the 

separability with low vegetation classes. For each land cover, 5000 random points evenly 

distributed between its subclasses were selected. All sub-classes always had over 1000 

training samples, with the lowest counts for the temperate site low vegetation sub-clas-

ses (1000 samples each), and tropical site urban (1891 samples as the single sub-class). 

Training data was employed to plot the distribution of the land cover classes. 

 Classification Scheme 

Yearly classifications were created using an increasing number of features. The first set 

includes backscatter annual statistics, the second adds long-term interferometric coher-

ence, and the third adds short-term coherence statistics. While training the classifier, 

each year was considered an independent sample, i.e., each classifier was trained with 

20.000 samples per year. A “one-versus-rest” linear support vector machine classifier 

was fitted for every orbit, as anisotropic effects may remain even after performing radi-

ometric terrain flattening (Castel et al., 2001). These classifiers were fit with a regulari-

zation parameter of 1, primal problem optimization, L1 penalty, 0.001 stopping toler-

ance, and 10.000 iterations maximum. At the temperate site, data from several relative 
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orbits were combined to maximize coverage as large areas were masked in each individ-

ual orbit due to the SAR related geometric distortions. For each pixel, every orbit casts 

a vote with a weight equal to the inverse of its scattering area, as pixels with large scat-

tering suffer larger geometric and radiometric distortions (Small, 2012; Small et al., 

2021). The pixel is classified as the land cover accumulating the largest weight. Detailed 

information about the methodology can be found in (Borlaf-Mena et al., 2021a). 

 Validation 

The land cover validation set was created after discarding pixels overlapping the GEDI 

shots, those that have been masked as distorted in all orbits, and any pixel that has been 

considered for inclusion in the training sample. The GEDI validation set (forest and non-

forest classes) was created using all shots, except for those considered as candidates for 

inclusion in the training sample (see 3.2 and 3.3). 

Validation was performed directly for the land cover dataset (same classes), whereas, 

for comparison with the GEDI forest/non-forest validation set, the resulting classifica-

tion was matched to the GEDI binary scheme, with forests being considered as forest 

presence and the remaining classes forest absence. We employed confusion matrices 

and its derived metrics, overall accuracy (OA), Kappa statistic (K), omission, and commis-

sion errors (OE, CE) to assess the results. Alluvial diagrams were employed to track OE 

and CE origin. Classification stability was assessed as the percentage of unchanged pixels 

between yearly classifications (i.e., 2018 vs. 2019) by separating pixels with known land 

cover (in the validation sample) and pixels not included in the validation sample. We 

analyzed the type of change by disaggregating into four groups: deforestation and “af-

forestation” (forest to low vegetation and vice versa), water related changes (water to 

low vegetation and vice versa), urbanization (forest or low vegetation to urban), and 

other changes. Note that these changes have not been independently verified. 

 Results 

 Data Distribution 

At both sites, the pixel-wise annual backscatter average was larger over forests when 

compared to low vegetation, with a large overlap between both. Distribution of the ur-

ban class overlapped with the distribution of the forest class, as the former showed a 

large variability (Figure 3.3 and Figure 3.4). 

Annual backscatter standard deviation (SD) displayed similar tendencies, with a large 

degree of overlap between forest, low vegetation, and urban classes. Long-term coher-

ence helped separating forests from urban, as the former generally displays lower val-

ues, with little overlap between the two classes. Average short-term coherence showed 

the lowest value for forest, increasing for low vegetation and reaching maximum over 

the urban cover. The annual standard deviation helped separating forest from low veg-

etation, as it tends to be higher for the latter, albeit some overlap remained.



Forest attributes mapping with SAR data in the Romanian South-Eastern Carpathians 

Ignacio Borlaf-Mena  2022 Page 77 

  

Figure 3.3. Value distribution of a subset of 1000 random pixels extracted 
from the training sample at the temperate site. The diagonal displays histo-
grams, the remaining cells display the 2D kernel density estimate for each 
pair of variables. Water cover has been excluded to improve visibility for the 
remaining classes. STC stands for “short-term coherence” whereas LTC 
stands for “long term coherence”. Note that backscattering intensity annual 
statistics were calculated in linear scale and then converted to decibel (dB). 

Figure 3.4. Value distribution of a subset of 1000 random pixels extracted 
from the training sample at the tropical site. 
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 Classification with Feature Sets 

All classifications attained accurate results (OA > 90%) and substantial agreement (K > 

0.75; Landis and Koch, 1977) when assessed against the reference land cover (LC) and 

the GEDI-derived validation sets (Table 3.3). When only the backscatter annual statistics 

were used as predictors, the overall accuracy ranged between 94–99% (LC) and 92–97% 

(GEDI). At the temperate site, the Kappa statistic ranged within the 0.86–0.91 (LC) and 

0.79–0.84 (GEDI) interval, whereas at the tropical site it ranged between 0.87–0.93 (LC) 

and 0.77–0.79 (GEDI). Adding long-term coherence data resulted in opposite results de-

pending on the site. At the temperate site, the overall accuracy and K increased to 97% 

and 0.93, respectively. Conversely, at the tropical site the Kappa statistic decreased 

slightly, 0.85–0.91 (LC) and 0.76–0.79 (GEDI). Adding annual statistics from short-term 

coherence series increased the overall accuracy at both sites to 99% (using the land 

cover dataset as reference) and 96–97% (using the GEDI data set as reference). Similarly, 

the Kappa statistic increased at both sites. At the temperate site Kappa increased to 

0.97–0.98 (LC), and 0.90–0.91 (GEDI), whereas at the tropical site it increased to 0.92–

0.96 (LC), and 0.82–0.83 (GEDI). 

Table 3.3. Overall accuracy (%) and kappa by classification. “LC” stands for land cover-
based reference dataset. B00—classification using backscatter annual statistics, B0C—
adding long-term coherence, and BCC—further adding short-term coherence statistics. 
Cells are shaded with a gradient between yellow and green, associated with lower, and 
higher metrics, respectively. 

   Temperate   Tropical 

   Overall accuracy  Kappa statistic  Overall accuracy  Kappa statistic 

   B00 B0C BCC  B00 B0C BCC  B00 B0C BCC  B00 B0C BCC 

LC
 2017 94 97 99  0.86 0.93 0.98         

2018 96 97 99  0.91 0.93 0.97  98 97 99  0.87 0.85 0.92 
2019 96 97 99  0.90 0.93 0.97  99 99 99  0.93 0.91 0.96 

G
ED

I 2017 92 96 97  0.79 0.90 0.91         
2018 93 95 96  0.84 0.89 0.91  95 95 96  0.77 0.76 0.82 
2019 93 96 96  0.82 0.89 0.90  95 95 97  0.79 0.79 0.83 

At both sites, the prevalent land cover types (low vegetation and forest) were most af-

fected by misclassification (Figure 3.5 and Figure 3.11). However, there were different 

tendencies between the two study sites.  

   
B00 (4–6% error) B0C (3% error) BCC (<1% error) 

Figure 3.5. Alluvial diagrams of the errors (OE, CE) as a function of predictor variables 
used for classification at the temperate site. Left vertical axes show the reference label 
(Ur, Urban, in purple; LV, low vegetation, in orange; Fo, forest, in green; Wa, water, in 
blue), right vertical axes show classified label for the misclassified (error—‘e’) pixels. The 
thickness of the lines indicates error frequency compared to the total error. 
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At the temperate site, using only the backscatter annual statistics as predictor variables 

resulted in an omission error (OE) of 4–12% for the forest class, with most pixels being 

assigned to the urban class, which showed an 83% commission error for 2017, 60% for 

2018 and 67% for 2019 (Table 3.4, Figure 3.5). 

Table 3.4. Temperate site errors (%) disaggregated by land cover (Ur, Urban; LV, low 
vegetation; Fo, forest; Wa, water). B00—classification using backscatter annual statis-
tics, B0C—adding long-term coherence, and BCC—further adding short-term coherence 
statistics. Complete matrices in Annex 3-1. Cells are shaded with a green-yellow gradient, 
indicating lower and higher errors. 

   2017  2018  2019 
   Ur LV Fo Wa  Ur LV Fo Wa  Ur LV Fo Wa 

Commission 
error 

B00 83 1 9 14  60 1 8 11  67 1 8 16 
B0C 37 1 7 14  30 1 7 10  28 1 7 14 
BCC 16 <1 1 6  13 1 1 5  17 1 1 5 

Omission 
error 

B00 7 4 12 9  14 4 4 9  11 4 6 9 
B0C 4 3 2 9  4 3 2 9  6 3 2 9 
BCC 1 1 1 8  1 1 2 8  1 1 2 9 

 

There was a large variation on urban commission error across the yearly classification, 

with forest being the main contributor. To understand the source of this misclassifica-

tion, we examined the prevalence of said error in the individual classifications generated 

for each orbit disaggregating by sub-swathes (Figure 3.6). For the by-orbit classification 

of year 2017, the misclassification of forest as urban was more prevalent within a par-

ticular sub-swath for both, 29 and 131 orbits. 

 

Figure 3.6. Percentage of forest pixels misclassified as urban, disaggregated by orbits 
and sub-swathes, at the temperate site. 

When displaying the 2017 classifications there is a clear cutline, where misclassification 

becomes more prevalent (Figure 3.7). To understand the sub-swathes differences, we 

plotted the distribution of all pixels labeled as forest in the validation sample disaggre-

gating by orbit, year, and sub-swath (Figure 3.8). VV and VH annual averages showed 

little difference between years and sub-swathes, with a near-complete match between 

the distributions of all years and sub-swathes. However, for year 2017 the VV annual SD 
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for ascending orbits (29, 131) had its distribution shifted compared to years 2018 and 

2019. For orbit 29, the distributions for the sub-swathes were centered around different 

values, whereas both had a similarly high value for orbit 131. VH annual SD showed 

smaller shifts, with some mismatch between sub-swathes from orbit 131. 

 

Sentinel 2 from 16/10/2019 

(R: B8, G:11, B: 02) 

VV channel annual SD 

for year 2017 

Ur LV Fo Wa 

2017 classification 

Figure 3.7. Annual (2017) SD for VV polarization for orbit 29 (subset), and the derived 
classification for said orbit prior to classification merging. The dotted line represents the 
limit between both sub-swathes. From left to right: Sentinel-2 image shown as reference, 
annual SD (VV) and, classified land cover (Ur, urban; LV, low vegetation; Fo, forest; Wa, 
water). 

 

Figure 3.8. Statistical distribution for pixels labeled as forest in the validation sample dis-
aggregated by year (color) and sub-swath (one line per sub-swath). 

Omission errors for forest class were reduced when coherence information was in-

cluded. Adding long-term coherence as predictor reduced forest OE to 2%, while urban 

CE decreased to 28–37%. Including coherence annual statistics further reduced the com-

mission error for urban class (from 28–37% to 13–17%), forests (from 7% to 1%), and 

water (from 10–14% to 5–6%). 

Evaluating forest cover presence with the GEDI-derived reference (Table 3.5) showed CE 

and OE for forest cover between 14–15% and 8–18%, respectively, when using backscat-

ter annual statistics as predictor variables. CE and OE for non-forest ranged between 3 

and 7%. Adding long term coherence reduced errors for both forest and non-forest clas-

ses whereas including coherence annual statistics further reduced CE for the forest class 

from 10–12% to 2–3%, while increasing OE omission from 4–5% to 11–13%. As expected, 
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the non-forest class showed opposite trends., i.e., decreasing OE from 4–5% to 1%, and 

increasing CE from 1–2% to 4–5%. 

Table 3.5. Temperate site errors (%) based on GEDI forest presence/absence validation 
dataset. B00—classification using backscatter annual statistics, B0C—adding long-term 
coherence, and BCC—further adding short-term coherence statistics. Complete matrices 
in Annex 3-2. Cells are shaded with a green-yellow gradient, indicating lower and higher 
errors. 

 
 2017  2018  2019 

 
 B00 B0C BCC  B00 B0C BCC  B00 B0C BCC 

Commission 
error 

Forest 14 10 2  15 12 3  15 11 2 

Other 7 2 4  3 1 4  4 2 5 

Omission 
error 

Forest 18 5 11  8 4 11  10 4 13 
Other 5 4 1  6 5 1  6 5 1 

Classifications using the full feature set had opposing trends on CE and OE, depending 

on the validation set employed for the assessment. Such trends were explained by ex-

amining the CCI/CLC cover over the GEDI shots where forest omission had happened. 

Most such shots were considered broadleaf forests (27–32% CCI, 19–27% CLC) followed 

by the CLC classes “Fruit tree and Berry plantations”, “Complex cultivation patterns”, 

and “Land mainly occupied by agriculture”. Combined, these agricultural areas repre-

sented a 35–41% of OE for forest class when using the GEDI-derived reference layer. 

Tree and shrub were the CCI land cover class with the second largest contribution to 

misclassification (18–23%). Notice that CCI tree and shrub class largely corresponds to 

CLC agricultural classes that can have a significant tree cover (Figure 3.9). 

   

231, Hayfields with scat-

tered woody vegetation in 

the Romanian Carpathian 

Mountains. 

242, Complex cultivation 

pattern (arable land, or-

chards and hayfields) with 

scattered houses in the 

Ghimeș valley, Romania. 

243, Land principally occu-

pied by agriculture, with 

significant areas of natural 

vegetation (scattered 

trees), Romania 

Figure 3.9. Example illustrations from Corine Land Cover nomenclature guidelines 
(Büttner et al., 2017; Kosztra and Büttner, 2019) for some mixed land covers appearing 
in the temperate site. Photographies by György Büttner (231) and Barbara Kosztra (242, 
243). Copyright: European Environment Agency. 

For the tropical site, the overall classification errors were similar no matter the feature 

set employed (Table 3.6), with slight differences for the majority classes (forest and low 

vegetation), which increased for the minority classes, especially urban, whose omission 

fell from 62–71% to 7–9%. The similar classification errors may stem from the adequate 

separability of forest and low vegetation based on backscatter statistics (Figure 3.4). 
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Table 3.6. Tropical site errors (%) disaggregated by land cover (Ur, Urban; LV, low vege-
tation; Fo, forest; Wa, water). B00—classification using backscatter annual statistics, 
B0C—adding long-term coherence, and BCC—further adding short-term coherence sta-
tistics. Complete matrices in Annex 3-3. 

  2018  2019 

  Ur LV Fo Wa  Ur LV Fo Wa 

Commission 
error 

B00 99 17 <1 16  99 8 <1 16 
B0C >99 15 <1 22  >99 6 <1 19 
BCC 89 11 <1 22  89 5 <1 17 

Omission 
error 

B00 71 4 2 1  62 4 1 1 
B0C 24 4 3 1  27 4 1 1 
BCC 7 4 1 1  9 3 <1 1 

To check differences between sub-swathes on the backscatter-based classification, the 

percentage of forest validation pixels misclassified as low vegetation (most common 

misclassification of the forest class), was plotted by sub-swath (Figure 3.10). Indeed, a 

larger error (3%) was observed for sub-swath IW3 when compared to the remaining sub-

swathes for year 2018. However, the differences in distribution were not as evident as 

at the temperate site. 

 

Figure 3.10. Tropical site percentage of forest pixels misclassified as low vegetation dis-
aggregated by sub-swaths. 

At the tropical site, adding the coherence-based variables resulted in under- or over-

prediction of the minority classes (Table 3.6, Figure 3.11). Adding long-term coherence 

reduced forest omission, low vegetation commission and urban omission errors. When 

coherence annual statistics were included as well, CE for low vegetation dropped to 5–

11%, forest OE dropped to 1% or less, and urban CE dropped to 89%. 

   

B00 (4–6% error) B0C (7% error) BCC (<1% error) 

Figure 3.11. Alluvial diagrams of the errors as a function of predictor variables used for 
classification at the tropical site. Left vertical axes show the reference label (Ur, Urban, 
in purple; LV, low vegetation, in orange; Fo, forest, in green; Wa, water, in blue), right 
vertical axes show classified label for the misclassified (error—‘e’) pixels. The thickness 
of the lines indicates error frequency compared to the total error. 

When assessing the tropical site classifications against the GEDI derived reference layer 

(Table 3.7), similar results were observed regardless of the input features. Differences 

appeared only when short-term coherence statistics were added, with CE for non-forest 
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dropping from 29–33% to 23–25%. In addition, the OE for both, forest and non-forest 

classes, were reduced by 1–2%. 

Table 3.7. Tropical site errors (%) based on GEDI forest presence/absence validation da-
taset. B00—classification using backscatter annual statistics, B0C—adding long-term co-
herence, and BCC—further adding short-term coherence statistics. Complete matrices in 
Annex 3-4. Cells are shaded with a green-yellow gradient, indicating lower and higher 
errors. 

 
 2018  2019 

 
 B00 B0C BCC  B00 B0C BCC 

Commission 
error 

Forest 1 1 1  <1 <1 <1 
Other 32 33 25  29 29 23 

Omission 
error 

Forest 5 5 4  5 5 3 
Other 5 5 4  4 4 4 

 Classification Stability 

The stability between 2018 and 2019 yearly classifications was assessed. The year 2017 

was excluded due to the SAR processing induced differences between sub-swaths and 

the lack of data over the tropical site. Over 85% of all unmasked pixels (not affected by 

SAR geometric distortions) were stable, i.e., did not change classes from year to year 

regardless of the site (Figure 3.12). In addition, pixels labeled as “forest” in the LC vali-

dation sample shows a particularly high stability (>95% in most cases). 

 

Figure 3.12. Percentage of pixels with no change between the 2018–2019 classifications 
segregated in: “Not validated”—pixels with no validation label, “all”—all pixels (with or 
without validation label), “validated”- pixels with validation labels, and “forest”—pixels 
whose validation label was forest (green). Blue bars denote stability. In the case of vali-
dated subset, the blue bar indicates accurate and stable pixels, whereas red indicates 
stable but misclassified pixels. 

At the temperate site, the classification based on backscatter statistics features showed 

lower stability as well as slightly larger proportion of stable, but misclassified pixels when 

compared to classifications based on features taking advantage of the coherence infor-

mation. Differences for the tropical site were smaller, with the largest stability appearing 

when using the full feature set, followed by the backscatter statistics set, and with little 

difference in the proportion of stable, but misclassified, pixels. Note that an unknown 

proportion of the changes detected may be actual land cover changes, as changes have 

not been validated. 
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Generally, changes between the yearly classifications (2018 vs. 2019) were caused by 

transitions between forest and low vegetation classes (Figure 3.13) which appeared fre-

quently at class borders. At the temperate site, the apparent deforestation and affor-

estation increased when more coherence-based features were added, representing 

41%, 58% and 70% of change as the feature set grows larger (backscatter annual statis-

tics, long-term coherence, coherence annual statistics). These changes appeared near 

the mountain tops and in areas with a sparse tree cover (young forest, tree orchards). 

Changes from low vegetation/forest to urban accounted for 33% of the total changes. 

At the temperate site, unclassified changes accounted for up to 25% of all changes (using 

backscatter statistics), albeit most of them were eliminated by the morphological oper-

ator “opening”. 

 

Figure 3.13. Contribution of each specific change type disaggregated by site. The paler 
bar indicates small-sized changes that would be lost after a single pass of the morpho-
logical operator “opening” (i.e., lone misclassified pixels). The darker bars indicate 
changes that were larger and would not be lost (i.e., bigger change patch). 

Deforestation/afforestation followed a similar trend at the tropical site, accounting for 

86% of the change in the yearly classifications when using the backscatter statistics fea-

ture set, 72% when adding long-term coherence and 93% when using the full feature 

set. Changes from vegetation to urban and unclassified changes had a larger represen-

tation when using the full feature set, reaching 12% (compared to 2–9%) and 16% (com-

pared to 4–5%) respectively. Nevertheless, most patches were eliminated by the “open-

ing” operator, indicating that they appear as small, thin areas (salt and pepper noise). 

 Discussion 

Backscatter-based overall mapping accuracy was high regardless of the site (OA >92%). 

However, in temperate environments (i.e., Carpathians), classifications based on 

backscatter annual statistics frequently misclassified forest as urban, especially over 

steep slopes. The 2017 classification presented a particularly large tendency to misclas-

sify forest as urban, prompting further analysis on the possible cause. The analysis 

showed that such misclassifications were prevalent in specific sub-swathes, where the 

statistical distribution of the pixel-wise annual standard deviation appears to be shifted 

compared to other sub-swathes and years. This phenomenon could be attributed to the 
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limited information provided by the Sentinel-1 noise lookup table prior to 13/03/2018, 

which only annotated noise in the range direction. Past this date, the Sentinel-1 instru-

ment processing facility software (IPF), was upgraded to version 2.90, and started 

providing noise annotations in azimuth direction as well (ESA, 2018; Vincent et al., 2018, 

2020). This conclusion is also supported by the marginal differences in distribution ob-

served for years 2018 and 2019. 

Backscatter-based classifications for years 2018 and 2019 displayed a smaller tendency 

to misclassify forest as urban. However, misclassifications were still observed and may 

be related to the inclusion of 2017 data (with the related noise problem) in the training 

sample. Other possible sources of error were the under-correction of slopes facing the 

sensor (Dostálová et al., 2016; Borlaf-Mena et al., 2020, 2021a) and the elongation of 

the path traversed within the forest canopy on backslopes (Castel et al., 2001). Such 

errors may be alleviated if topographic information is included (orientation, slope, inci-

dence angle, etc.) (Mitchell et al., 2014). It is also important to consider that urban cover 

is mostly discontinuous, with a significant presence of gardens and trees that influence 

the urban radiometric signature (small settlements misclassified as forest), a problem 

that also has been encountered by (Santoro et al., 2007a). Furthermore, backscatter-

based maps presented lower stabilities at the temperate site which may be related to 

differences in the meteorological conditions across the years such as the winter length 

(forest presents lower backscatter in freezing conditions; Ranson and Sun, 2000; Olesk 

et al., 2015), or rain frequency (less contrast between land covers; Sharma et al., 2005). 

Adding long-term coherence reduced the misclassification of forest as urban up to 9%. 

Such reductions were possible because urban was the only land cover that retained 

higher coherence levels over long periods (Bruzzone et al., 2004; Sica et al., 2019). Errors 

for all land covers dropped when short-term coherence statistics were added. In partic-

ular, an important reduction of low vegetation to forest misclassification was observed, 

as the former has higher coherence values (i.e., pastures, grasslands), or higher varia-

tions (e.g., agriculture cropping cycle) than forests which are characterized by low co-

herence values (Wegmuller and Werner, 1995). Accompanying these gains in accuracy, 

there were successive increases in classification stability. The remaining apparent 

changes were mainly observed between forest and low vegetation. Apparent afforesta-

tion patches appeared close to the mountain tops and may be related to how long the 

stable winter conditions (i.e., increased coherence) lasted every specific year (Santoro 

et al., 2007b). Apparent deforestation generally appeared close to the edges of forest, 

and in areas with smaller tree cover and height. This may be related to the use of an 

adaptative estimator for coherence. Such estimators reduce the loss of resolution com-

pared to a boxcar filter, albeit it may bias the coherence estimation (Jacob et al., 2020). 

The employed estimator combined several coherence estimates using a gaussian 

weighting function (Wegmüller and Werner, 1996; Werner et al., 2000). It is possible 

that in border areas (i.e., forest contact with pastures) the weighting may have been 
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modified depending on the meteorologic conditions (i.e., a coherence drop due intense 

precipitation), affecting the annual statistics and inducing instability.  

When comparing with GEDI-derived forest presence/absence, including short-term, co-

herence statistics decreased the commission error for forest, but increased its omission. 

These opposing trends were explained by the presence of other land uses with tree pres-

ence (orchards, scattered trees, treed plot borders, Figure 3.9) considered as forest 

cover, according to the criteria set for the GEDI validation dataset, but not classified as 

such. This suggests that it may be possible to separate agricultural classes with signifi-

cant tree cover from actual forests using the Sentinel-1 coherence temporal statistics 

(Wegmuller and Werner, 1995). Notice that such separation based solely on backscatter 

features is difficult, as is also shown in previous studies (Dostálová et al., 2018). 

Over tropical areas, smaller differences between classifications were observed. The 

trends were also different when compared to temperate environments. Such differ-

ences were attributed to flatter terrain and improved Sentinel-1 processing at IPF which 

led to a reduced impact on the training sample. The use of C-band dual-pol backscatter 

annual statistics provided highly accurate results, in line with results in the recent liter-

ature (Hansen et al., 2020; Dostálová et al., 2016, 2018). This contrasts with older studies 

based on single-pol data from the active microwave instrument (SAR) on board of the 

European remote sensing missions (ERS AMI-SAR), where the C-band VV backscatter 

could not discriminate tropical forest from other land covers (Strozzi et al., 1999; Luck-

man et al., 2000; Gaboardi, 2003). 

Including long-term coherence as a feature slightly decreased classification accuracy as 

well as its stability, due the over-prediction of urban (some near-bare areas also kept a 

high coherence). This had little impact on GEDI validation results, indicating the over-

prediction of urban cover does not come from the misclassification of forest. Adding 

short-term coherence statistics increased accuracy, reducing the errors for most land 

cover classes, regardless of validation dataset. This is thanks to the improved contrast 

between forest, urban and low vegetation, as also shown in prior studies based on either 

ERS (Strozzi et al., 1999; Luckman et al., 2000; Gaboardi, 2003) or Sentinel-1 imagery 

(Diniz, 2019; Pulella et al., 2020). 

Differences between sites could be related to the different land cover classes, terrain 

characteristics, land cover dataset generation, the changes in the Sentinel-1 IPF or the 

lower number of acquisitions at the tropical site, where the longer temporal baseline 

may have degraded the contrast between classes, and thus, the value of using coher-

ence data (Thiel et al., 2009; Jacob et al., 2020). 

 Conclusions 

The aim of this study was to evaluate how temporal features extracted from Sentinel-1 

data affect forest/non-forest classification as well as to differentiate possible misclassi-

fication sources. Increasingly richer feature sets were tested starting with annual 
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backscatter statistics (average and standard deviation of VV and VH backscattering in-

tensities) and adding long-term coherence as well as short-term coherence statistics. 

Using only backscatter derived features has advantages as they can be obtained from 

the ground range detected (GRD) products. Contrarily, coherence derived metrics re-

quire pairs of single-look complex images (SLC), with the associated increase in data vol-

ume and processing times. Validation was performed with a land cover dataset, and 

GEDI data binarized into forest presence and absence as per the FAO definitions (FAO 

FRA, 2000). 

All three feature sets provided high overall accuracies, and acceptable omission (<19%) 

and commission (<16%) for forested areas with additional improvements in accuracy 

and classification stability being observed as more features were added. Accuracy of 

forest cover showed larger differences depending on the feature set used at the tem-

perate site. Classifications based on backscatter annual statistics showed important 

omissions (up to 18%) for forested areas which were often misclassified as urban. Add-

ing long-term coherence reduced forest omissions to 5%, while adding annual coher-

ence statistics reduced forest commission errors.  

Over the tropical site the results were highly accurate and stable from year to year, with 

small improvements being observed as more features were added. Classifications based 

on backscatter annual statistics tended to misclassify urban areas as forest. Adding long-

term coherence greatly reduced such misclassifications. Annual coherence statistics had 

an overall positive effect, reducing forest omission and low vegetation commission er-

ror, as well as reducing the error for forest presence/absence when comparing with the 

GEDI dataset. 

Our results show that it is possible to generate highly accurate (>92%) forest/non-forest 

maps based on backscatter annual statistics, with further gains being observed when 

adding coherence-based features, particularly over areas characterized by rough terrain. 

These results complement the study of (Jacob et al., 2020), by providing additional evi-

dence on the use of dense temporal series of interferometric coherence for land classi-

fication in tropical areas, as well as over temperate regions characterized by very rough 

terrain.
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 Annexes 

Annex 3-1. Romanian site confusion matrices by year and feature set (Reference>columns; Classified>Rows) compared to the land cover validation 
dataset. 

  
Backscatter 

statistics (B00) 
 Backscatter statistics, 

long-term coherence (B0C) 
 Backscatter and short-term coherence 

statistics, long-term coherence (BCC) 

  

Ur, 
Urban 

LV, Low 
vegetation 

Fo, 
forest 

Wa, 
Water 

Commission 
error  

Ur, 
Urban 

LV, Low 
vegetation 

Fo, 
forest 

Wa, 
Water 

Commission 
error  

Ur, 
Urban 

LV, Low 
vegetation 

Fo, 
forest 

Wa, 
Water 

Commission 
error 

2
0

1
7

 

Urban 156219 55550 715668 658 83  162320 37453 55637 488 37  167829 29648 3342 130 16 

Low vegetation 3657 16924371 176319 5994 1  1439 17010367 78215 5904 1  605 17455162 71215 3200 0 

Forest 8643 592541 6284942 1474 9  4874 524324 7042834 1764 7  240 96711 7101180 3769 1 

Water 200 11807 774 80258 14  86 12125 1017 80228 14  45 2748 1966 81285 6 

Omission error 7 4 12 9   4 3 2 9   1 1 1 8  

                   

2
0

1
9

 

Urban 145629 46935 168236 1173 60  161350 33984 35227 723 30  167339 23224 2067 84 13 

Low vegetation 3767 16918692 145035 5343 1  1667 16981859 93019 5574 1  1072 17458751 146454 3239 1 

Forest 19092 609823 6863700 1502 8  5594 560937 7048591 1712 7  245 99990 7027733 4110 1 

Water 230 8826 732 80366 11  107 7496 866 80375 10  62 2311 1449 80951 5 

Omission error 14 4 4 9   4 3 2 9   1 1 2 8  

                   

2
0

1
9

 

Urban 149579 49470 258754 1242 67  158263 27764 34328 654 28  167557 32022 2929 106 17 

Low vegetation 3492 16927829 143335 5639 1  1972 17020180 103283 5730 1  887 17464510 140887 3525 1 

Forest 15427 592422 6774737 1371 8  8365 524202 7039024 1863 7  220 85246 7031885 3936 1 

Water 217 14549 874 80132 16  115 12124 1065 80137 14  51 2492 1999 80817 5 

Omission error 11 4 6 9   6 3 2 9   1 1 2 9  

Annex 3-2. Romanian site confusion matrices by year and feature set (Reference>columns; Classified>Rows) compared to the GEDI validation 
dataset. 

 

 
Backscatter 

statistics (B00)  
Backscatter statistics, 

long-term coherence (B0C)  
Backscatter and short-term coherence 
statistics, long-term coherence (BCC) 

 

 Forest Other 
Commission 

error  Forest Other 
Commission 

error  Forest Other 
Commission 

error 

2
0

1
7

 Forest 132335 20733 14  153689 16252 10  144063 3162 2 

Other 28749 412269 7  7308 416645 2  16934 429735 4 

Omission error 18 5   5 4   11 1  

             

2
0

1
8

 Forest 148331 25887 15  155003 21617 12  143374 3911 3 

Other 12753 407116 3  5994 411281 1  17623 428987 4 

Omission error 8 6   4 5   11 1  

             

2
0

1
9

 Forest 144210 25552 15  154712 19966 11  140655 2581 2 

Other 16874 407451 4  6372 413037 2  20429 430422 5 

Omission error 10 6   4 5   13 1  
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Annex 3-3. Brazilian site confusion matrices by year and feature set (Reference>columns; Classified>Rows) compared to the land cover validation 
dataset (comm. stands for commission).  

  

Backscatter 
statistics (B00) 

 
Backscatter statistics, 
long-term coherence (B0C) 

 
Backscatter and short-term coherence 
statistics, long-term coherence (BCC) 

  

Ur, 
Urban 

LV, Low 
vegetation 

Fo, 
forest 

Wa, 
Water 

Comm. 
error 

 
Ur, 
Urban 

LV, Low 
vegetation 

Fo, 
forest 

Wa, 
Water 

Comm. 
error 

 
Ur, 
Urban 

LV, Low 
vegetation 

Fo, 
forest 

Wa, 
Water 

Comm. 
error 

2
0

1
8

 

Urban 238 8677 32889 0 99  634 18288 207037 15 >99  775 5743 618 14 89 

Low vegetation 248 2072595 437681 278 17  96 2069778 357844 313 15  57 2086317 247654 221 11 

Forest 345 84345 22139966 0 <1  103 75279 22041792 0 <1  2 71001 22357746 0 <1 

Water 4 770 5734 33914 16  2 1124 8265 33863 22  1 1356 8176 33924 22 

Omission error 71 4 2 1   24 4 3 1   7 4 1 1  
                   

2
0

1
9

 

Urban 316 15310 29671 0 99  606 22379 125915 9 >99  760 5903 372 12 89 

Low vegetation 219 2079824 187958 275 8  125 2074418 142987 311 6  72 2097155 106030 234 5 

Forest 293 70427 22393056 0 <1  97 68317 22336185 0 <1  0 61805 22499246 0 <1 

Water 5 826 5585 33917 16  5 1273 6785 33871 19  1 1472 5491 33913 17 

Omission error 62 4 1 1   27 4 1 1   9 3 <1 1  

Annex 3-4. Brazilian site confusion matrices by year and feature set (Reference>columns; Classified>Rows) compared to the GEDI validation da-
taset. 

  
Backscatter 
statistics (B00)  

Backscatter statistics, 
long-term coherence (B0C) 

 Backscatter and short-term coherence 
statistics, long-term coherence (BCC) 

  Forest Other 
Commission 
error  Forest Other 

Commission 
error   Forest Forest 

2
0

1
8

 

Forest 377770 2298 1  376550 2096 1  383515 1957 1 

Other 20381 43775 32  21548 43946 33  14572 44083 25 

Omission error 5 5   5 5   4 4  

             

2
0

1
9

 

Forest 379793 1839 <1  379675 1842 <1  384333 1727 <1 

Other 18359 44236 29  18201 44219 29  13532 44332 23 

Omission error 5 4   5 4   3 4  
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Chapter 4:  Sentinel-1/2 time series for selective logging 
monitoring in temperate forests 

Tanase, M., Borlaf, I., Pascu, I., Pitar, Diana, Apostol, B., Petrila, M., Chivulescu, S., Leca, 

S., Pitar, Daniel, Ciceu, A., Dobre, A., Popescu, F., Badea, O., Aponte, C., 2020. Sentinel-

1/2 Time Series for Selective Logging Monitoring in Temperate Forests, in: IGARSS 2020 

- 2020 IEEE International Geoscience and Remote Sensing Symposium. Presented at the 

IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 

IEEE, Waikoloa, HI, USA, pp. 2902–2905.  

https://doi.org/10.1109/IGARSS39084.2020.9323952 

Abstract 

The aim of this study was to evaluate the utility of Sentinel-1/2 time-series for monitor-

ing selective logging in temperate forests. Ten stands were selectively logged with 5 to 

28% of the existing growing stock volume being extracted. The analysis was focused on 

backscatter coefficient and surface reflectance changes for dates immediately prior and 

past the logging period. Monthly information on leaf area index (from terrestrial laser 

scanning) and vegetation water content (from destructive sampling) was used to sup-

port the analysis. The analysis suggested that monitoring selective logging using Senti-

nel-1/2 imagery is challenging in temperate montane forests due to a range of factors, 

including logging time and duration, saturation of C-band wavelength, and relatively 

small changes in canopy cover that cannot be reliably picked up by the optical sensor. 

 Introduction 

Forests are a key element for carbon sequestration and thus a sensitive research topic 

since information on growing stock volume (GSV) is important for greenhouse gases flux 

estimation, and thus global policies monitoring (Gibbs et al., 2007). Over the past dec-

ade, the use of satellite datasets for forest monitoring have expanded significantly in-

cluding the use of both active (radar) and passive (optic) sensors (Kennedy et al., 2010; 

Hansen et al., 2013; Tanase et al., 2015; Mermoz and Le Toan, 2016).  

Passive sensors detect radiation emitted from other source (e.g., sun) and were com-

monly used for forest monitoring due to the wide range of spaceborne orbiting sensors 

and long-time archives. However, optical sensors are limited by cloud cover, low solar 

illumination angles and by sensitivity to mainly forest cover and plant phenology. The 

use of active sensors overcomes some of these limitations as they are independent of 

cloud cover and solar illumination and provide a measure of vegetation structure (Le 

Toan et al., 2011). Past passive missions allowed for the development of inter-annual 

https://doi.org/10.1109/IGARSS39084.2020.9323952
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(Kennedy et al., 2010) and intra-annual algorithms to monitor forest degradation and in 

particular, selective logging (DeVries et al., 2015) despite relatively low revisit times. 

However, most such studies were carried out in tropical forests, less affected by pheno-

logical changes when compared to the deciduous temperate montane forests. The 

strong phenological changes typical for such forests coupled with selective logging du-

ration (one to several months) and timing (often outside the vegetation season) limit 

the use of sparse active and passive time-series for monitoring activities.  

The launch of Sentinel-1 and 2 satellite constellations characterized by high revisit times 

(5-6 days) and improved sensor characteristics (e.g., spatial resolution precise orbital 

information, increased spectral information channels) present new opportunities for the 

integration of active and passive dataset into operational forest monitoring. Therefore, 

this preliminary study evaluated the utility of was Sentinel-1 and Sentinel-2 datasets to 

monitor selective logging in temperate montane forests.  

 Study area and data sets  

The studied forest sites, located in the Carpathian Mountains, include the four main for-

est types (Quercus petraea – QP, Fagus sylvatica – FS, Norway spruce - NS, and Mixed 

beech and coniferous stands - M) in Romania (Figure 4.1). The stands are part of the EO-

ROFORMON permanent sampling areas (PSA) established in 2017 to monitor fast and 

slow changing forest parameters (Tanase et al., 2019). Six one-hectare PSAs were estab-

lished in each forest type: two PSAs represent the reference (no silvicultural interven-

tions) while four PSAs represent managed forests (i.e. two replicates for thinning - T and 

two for selective logging – SL). Reference PSAs were installed within the same forest 

stands (notice the same number in Figure 4.2) as for the corresponding managed PSAs 

thus minimizing differences (e.g., slope, orientation, species) to managed stands. In situ 

data collection provided ancillary information to understand intra-seasonal variations in 

radar scattering properties and surface reflectance of spaceborne sensors. 

 

Figure 4.1. Study area and sites location position. 

Fast-changing forest parameters (i.e., leaf area index - LAI, equivalent water thickness – 

EWT and trunk water content - TWC) were monitored monthly between April and Octo-

ber from 2017 to 2018 using terrestrial laser scanning (TLS), destructive sampling or an-

cillary sensors (e.g. soil moisture and temperature probes, girth bands). The time of field 
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sampling coincided (± 1 day) with Sentinel-1/2 overpasses. Ten managed and six corre-

sponding reference PSAs were used as information on logging time, duration and inten-

sity were not available for all PSAs (Table 4.1). 

Table 4.1. Forest structural properties of the selectively logged (SL) and thinned (T) 
stands.  

Site ID GSV (m3/ha) % logged Logging type 
Difference post - pre 

LAI EWT kg/ m2 

QP1T 77 10.1 thinning NA NA 
QP2T 105 9 thinning -0.35 0 
FS3T 252 14 thinning -0.33 0 
FS4T 250 4.8 thinning -0.72 -0.02 
FS9SL 420 20.8 selective -5.21 0.03 

FS10SL 541 24 selective -0.84 0.01 
QP11SL 352 28.4 selective NA NA 
QP12SL 363 23.5 selective NA NA 

NS8T 242 25 thinning NA NA 
M13SL 641 15 selective NA NA 

 Methods 

 Data processing 

Processing of Sentinel-1 Ground Range Detected (GRD) images included image calibra-

tion to gamma nought (γ°), orthorectification to the UTM reference system, tiling to the 

100 x 100 km Military Reference System Military (MGRS) grid, and multi-temporal filter-

ing to reduce speckle. All images (356 images) intersecting tile 35TLL, from both, ascend-

ing and descending passes, were processed. 

Sentinel-2 imagery (191images) was processed with the MACCS-ATCOR Joint Algorithm 

(MAJA). For each image, MAJA estimates atmospheric absorption from Sentinel-2 band 

9 using the Simplified Model for Atmospheric Correction (Rahman and Dedieu, 1994). 

Cloud and shadow detection and atmospheric optical thickness (AOT) estimation uses 

multispectral and multi-temporal information (Hagolle et al., 2015) nonlinear inversion 

as well as the dark pixel method to generate a lookup-table (LUT). Image atmospheric 

correction is based on the LUT and corrections for adjacency and topographic effects 

are also applied (Hagolle et al., 2015). 

For each PSA the average of al pixels inside the perimeter was computed. To avoid spu-

rious effects the SAR backscatter coefficient was computed independently for the as-

cending and descending passes as the average over one week, i.e., preceding and fol-

lowing the start and end of the logging period. Usually, two images were available within 

the one-week interval. Similarly, for the Sentinel-2 data the average reflectance, by 

band, was computed for the pixels falling inside the PSAs after masking out pixels af-

fected by cloud and cloud shadows. As the region is often affected by orographic clouds 

the optical images were more difficult to match with the start/end of the logging peri-

ods. Therefore, the closest cloud-free optical images available prior/past the logging pe-

riods were used. As for the backscatter coefficient averages over one week were used 

when available. 
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In-situ data (LAI CWC, TWC) matched to the logging period were used as support. For 

logging periods outside the vegetation season in situ measurements were not available.  

 Data analysis  

Scatterplots were used to evaluate the temporal trends for optical indices and backscat-

ter coefficients (VV, VH and VV/VH ratio) together with logging effects and forest phe-

nological cycles. Principal component (PCA) and correlation analyses were carried out 

to appraise spectral indices sensitivity to forest structural changes and their covariation 

while mixed linear models were used to evaluate differences in remote sensing indices 

between paired harvested and not harvested PSAs. Separate models were fitted for all 

plots (n=20), thinned (n=10) and selectively logged plots (n=10).  

  Results and discussions  

For the studied PSAs, thinning of young oak and beech stands (QP1T, QP2T, FS3T, FS4T) 

was carried out at the beginning or during the growing season (Figure 4.2 and Figure 

4.3) with post-harvest index values being larger when compared to pre-harvest values 

as foliage is added to the canopy. The trends suggested that low (5-15%) thinning inten-

sities are compensated by canopy development in spring and that NDRE values increase 

less in thinned stands as also observed when monitoring chlorophyll content (Sun et al., 

2018). 

 

 

Figure 4.2. Temporal trends of NDRE (points) and VV/VH backscatter ratio (lines) for 
thinned oaks (QP1T, QP2T) and selectively logged beech stands (FS9SL, FS10 SL). Corre-
sponding logging periods and reference stands (e.g. xxR) shown. 

Selective logging of old stands coincided with leaf-fall in autumn phenology. Thus, the 

post-intervention spectral indices were lower for both reference and harvested plots. 

Logged old deciduous PSAs (FS9SL, FS10SL, QP11SL, QP12SL) had lower post-harvest re-

flectance values (less foliage) when compared to their paired counterparts. As expected, 
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logged coniferous and mixed stands (NS8T, M13SL) did not show such trends with index 

values being similar of their counterpart PSAs. However, even for PSAs where optical 

indices increased or decreased, the values for harvested stands were within 0.1 of the 

reference stands suggesting that phenology has a much larger role to play than partial 

harvest complicating monitoring activities in temperate mountainous forests from opti-

cal sensors. For the Sentinel-1 data the observed differences where related to the forest 

structure (old vs young stands) rather than harvesting activities. 

A large degree of covariation (r>0.8) was observed among Sentinel-1 backscatter coeffi-

cients while covariation varied (0.3<r<0.9) among Sentinel-2 derived spectral indices. 

Significantly lower values (p<0.05) were found for the Normalized Red-Edge Indices 

(NDRE1 and NDRE2) for thinned when compared to the reference PSAs, suggesting that 

thinned PSA had gained a lower amount of foliage over the growing season, when the 

thinning took place, when compared to their reference counterparts. No further signifi-

cant differences were otherwise observed between harvested and not harvested plots 

in any of the Sentinel-1 and Sentinel-2 indices examined (NDVI, EVI, Chlorophyll indices 

green and red-edge, NDWI, NBR, Tasseled cap indices greenness and wetness, and 

VH/VV backscatter ratio). The covariation between stand biomass, logging treatment, 

and logging timing was evident in Figure 4.3.  

  

  

Figure 4.3. Comparison of VV/VH backscatter ratio (upper panels) and NDRE2 (lower 
panels) values between harvested and reference plots by plot type (selective logging and 
thinning). Data is shown in relationship to harvesting time (left panels) and extracted 
wood volume (right panels). 
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 Conclusions  

This study suggests that monitoring temperate montane forests past clear-cuts is chal-

lenging with Sentinel-1/2 imagery confirming previous simulation work at C-band (Ta-

nase et al., 2019). Difficulties arise from a range of factors, including logging time and 

duration, C-band saturation, and relatively small changes in canopy cover that cannot 

be reliably picked up by optical sensors. Time series at longer SAR wavelengths (L- and 

P-band) may be needed to effectively monitor selective logging. Combining multifre-

quency SAR data may allow for key advancements towards the development of retrieval 

methods to characterize small-scale forest changes.



 

Ignacio Borlaf-Mena  2022  Page 97 

Chapter 5:  Seasonality and directionality are key to 
identify mountain forest types with Sentinel-1 data 

Borlaf-Mena, I., Santoro, M., Villard, L., Badea, O. and Tanase, M.A. Seasonality and di-

rectionality are key to identify mountain forest types with Sentinel-1 data. [To be pub-

lished] 

Abstract 

Sentinel-1 systematic acquisitions provide a high-density high-resolution stream of data 

which allows to describe forest temporal dynamics in detail, a powerful tool for pheno-

logical studies and forest type classification. Several studies have explored the temporal 

variation of backscatter intensity in this context, but none considered that scattering 

directionality of canopies may vary. Said directionality is mainly related to target-sensor 

geometry (incidence angle), forest height, and optical depth, associated with leaf dy-

namics. This study explicitly models backscatter dependance on incidence angle by fit-

ting a regression model per forest type/image pair and accumulating the by-type resid-

uals across time series to allow differentiation of forest structure and thus type. Forest 

pixels are subsequently labeled as the type with the smallest accumulated residuals. This 

modelling and classification strategy has been applied over a tract of the Carpathian 

Mountains, performing increasingly detailed forest type classifications. Classification re-

sults were subsequently assessed against in-situ forest stand data as well as satellite-

based land cover classification products (e.g., Copernicus Forest type layer). The results 

were promising, with high accuracies (k > 0.88, OA > 95%) being observed when sepa-

rating broadleaf from needleleaf forest types. Classification accuracies decreased (k > 

0.61, OA > 84%) when separating mixed forest types. Our results suggest that incorpo-

rating directional effects into classification models can improve SAR-based forest classi-

fication of temperate forest over mountainous terrain. Furthermore, models fitted be-

tween backscatter and incidence angle could be used to improve image normalization 

in regional studies devoted to forest quantitative variables retrieval, such as above 

ground biomass. 

 Introduction 

Forests occupy up to 31% of Earth’s land area (Watson et al., 2018; FAO and UNEP, 

2020), hosting a large portion of terrestrial biodiversity (JRC, 2015; FAO and UNEP, 

2020). They also provide services vital for humanity well-being, such as carbon cycle reg-

ulation (Bonan, 2008; FAO and UNEP, 2020), essential in the current context of climate 

change. Each forest type (i.e., broadleaf, needleleaf) provides ecosystem services at spe-

cific rates (i.e., depending on the harvest cycle) and have an unequal sensibility to 
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threats (i.e., pathogens, fire risk). Knowledge of forest type is thus essential for a sus-

tainable forest management. Historically, such information was collected through costly 

field sampling campaigns (forest inventory) that may not capture all variations across 

forested landscapes. To overcome such shortcomings, remote sensing sensors were in-

creasingly used to complement forest inventory design and generalize field sampled in-

formation into a continuous coverage (McRoberts and Tomppo, 2007).  

The remote sensing sensors employed for forest type classification may be divided into 

optical (use sun illumination), LiDAR (light detection and ranging) and synthetic aperture 

radar (SAR) which use their own illumination. Multi- or hyper-spectral optical sensors 

have been widely used for forest species identification, accounting for most of the stud-

ies identified in systematic surveys (Fassnacht et al., 2016). They are sensitive to leaf 

structure and chemical make-up (i.e., pigment and water content; Ollinger, 2010; 

Homolová et al., 2013; Yang et al., 2017) and forest phenology (Yang et al., 2017; Zhu 

and Liu, 2014). They can also capture forest structure (Fassnacht et al., 2016), albeit this 

relationship saturates with increasing canopy closure (Nilson and Peterson, 1994; Puhr 

and Donoghue, 2000). Studies based on optical wavelengths frequently use additional 

information from aerial laser scanning (ALS, a type of LiDAR) to provide canopy struc-

tural information that multispectral data may miss, such as canopy height or closure 

(Fassnacht et al., 2016; Beland et al., 2019). ALS can provide high-resolution forest struc-

ture data, but requires costly scanning campaigns (Beland et al., 2019), and thus, few 

countries have a systematic wall-to-wall coverage. Although spaceborne LiDAR sensors 

exist (e.g., IceSat GLAS/ATLAS, GEDI) they only provide information on a sampling pat-

tern as opposed to a continuous coverage (Simard et al., 2011; Dubayah et al., 2020). 

SAR sensors use wavelengths that can penetrate clouds, and provide wall-to-wall cover-

age at high spatial and temporal resolutions, valuable characteristics to record a contin-

uous description of forest phenology (Ling et al., 2022). The echoes received by the SAR 

sensor carry information about the dielectric constant and the geometry of the illumi-

nated surfaces (Leckie and Ranson, 1998; Rüetschi et al., 2017). The dielectric constant 

depends on vegetation moisture, whether it is liquid or solid, and the presence of water 

droplets on surfaces (Way et al., 1994, 1997; Leckie and Ranson, 1998; Rüetschi et al., 

2017; Proisy et al., 2000; Soudani et al., 2021). Forests geometry is related to canopy 

structure (height, closure) and leaf dynamics (Ahern et al., 1993; Proisy et al., 2000). In 

addition, the sensor- forest target geometry depends on the local incidence angle (𝜃), 

as it modifies the distance traversed within forest canopy and thus, the amount of scat-

tered energy (Cimino et al., 1986; Saatchi and Rignot, 1997; Leckie and Ranson, 1998; 

Castel et al., 2001; Hoekman and Reiche, 2015).  

Forest type classification using real- or synthetic aperture radar data was explored early 

on (Morain and Simonett, 1967), with studies on the influence of the sensor and acqui-

sition characteristics (date, incidence angle) appearing later. Sensor wavelength (band) 

and polarization influence forest type separability, as each band and polarization have 
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unique interactions with canopy elements (Fung, 1994, pp. 483–516). Studies in boreal 

areas stressed the usefulness of cross-pol data, and debated the role of C-band (Rignot 

et al., 1994; Saatchi and Rignot, 1997; Udali et al., 2021) with some studies demonstrat-

ing a positive impact (Rignot et al., 1994) while some others suggesting little benefit 

from its use, possibly due calibration issues (Saatchi and Rignot, 1997). Regarding acqui-

sition parameters, Ahern et al. (1993) investigated the impact of acquisition date, which 

controls forest status (i.e., leaf shedding), and found that backscatter data distribution 

for broadleaf and needleleaf forests overlaps, suggesting that classifications using im-

agery from multiple dates could attain higher accuracies, as confirmed by later studies 

(Saatchi and Rignot, 1997; Martinez et al., 1998; Maghsoudi et al., 2012, 2013). Finally, 

several studies showed that incidence angle plays a role on forest type classification as 

it modifies the interaction with the canopy (Cimino et al., 1986; Leckie and Ranson, 1998; 

Castel et al., 2001; Hoekman and Reiche, 2015). 

Sentinel-1 C-band SAR data were successfully related to forest phenology (Frison et al., 

2017; Rodionova, 2018; Dubois et al., 2020; Proietti et al., 2020; Soudani et al., 2021; 

Ling et al., 2022), and used to classify forest types (Rüetschi et al., 2017; Dostálová et al., 

2018, 2021; Udali et al., 2021). Rüetschi (2017) and Dostálová (2018, 2021) separated 

broadleaf and needleleaf forests using temporal mosaics (18- and 12-days) whereas 

Udali et al. (2021) used the de-speckled and de-seasonalized original time series to the 

same end. Dostálová et al. (2018, 2021) used similarity (distance) to a “reference” time 

series whereas Rüetschi (2017) and Udali (2021) used random forest classification. 

These studies took advantage of the contrasting temporal behavior between broadleaf 

and needleleaf forests. Broadleaf forest had lower VH backscatter coefficient values dur-

ing the summer months, associated with leaf growth, while needleleaf had a lower VH 

backscatter coefficient during winter which was associated to sub-zero temperatures. 

Such classification approaches quickly recognized the importance of removing the influ-

ence of the orography.  

Sentinel-1 SAR images are provided in the ellipsoid-based sigma nought convention (𝜎𝐸
0) 

to account for scattering area variations caused by the distance to the sensor (range). 

However, such products do not account for target-dependent variations: the echoes re-

turning from mountain ranges can overlap, causing slopes to appear as very bright “com-

pressed” areas in the focused image. Terrain-flattened conventions remove or reduce 

target-dependent variations by using a precise estimate of the illuminated area based 

on digital elevation models (Small, 2011; Frey et al., 2013; Shiroma et al., 2022). In this 

context sigma-nought (𝜎𝑇
0) corrects for terrain scattering area, whereas gamma nought 

(𝛾𝑇
0), also corrects based on incidence angle, following the assumption-driven models 

developed by Clapp (1946).  

Clapp (1946) models consider terrain to be formed by small spheric isotropic scatterers 

with specific arrangements based on the exponent 𝑛 (𝛾𝑇
0 = 𝜎𝑇

0/ cos(𝜃)𝑛). With 𝑛 = 0 

terrain is formed by a single layer of spheres that do not shield each other, resulting in 
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isotropic scattering. 𝑛 = 1 represents the terrain as many layers of spheres, whose illu-

minated area projected onto the image plane depends on the incidence angle. This 

model corresponds to the typical 𝛾𝑇
0 (Cosgriff et al., 1960; CEOS, 2021), widely used as it 

shows little dependance on the incidence angle (Raney, 1998, p. 33; Woodhouse, 2006, 

p. 108). 𝑛 = 2 corresponds to Lambert’s Law for optics (Cosgriff et al., 1960; Ulaby et 

al., 1982, pp. 833–837). Note that 𝑛 does not need to be an integer, allowing for inter-

mediate behaviors (Barrick, 1970). A similar formulation was reached by Castel et al. 

(2001) when adapting the radiative transfer model developed by Hsu (1996) for sloping 

terrain. Castel’s model allows for reducing directional effects induced by the distance 

traversed within forest canopy. 

Many of the previous studies assert that phenology affects the scattering directionality 

(i.e., forward scattering, transmission Ahern et al., 1993). However, they use backscatter 

conventions (𝜎0, 𝛾0 with 𝑛 = 1) that disregard such directionality which imply the ex-

istence of residual influence of the incidence angle due differences in the path length 

traversed within the canopy. Such residual effects can alter backscatter coefficients, re-

ducing sensibility to seasonality and causing classification errors. This study contem-

plates that directional scattering may change with phenology, leveraging both to classify 

forest types on mountainous areas. We account for directionality using the semi-empir-

ical model formulated by Castel et al. (2001), whereas phenology is considered through 

time series similarity to known values extracted from training samples (Dostálová et al., 

2018). Results are then analyzed against in-situ stand data including the possible sources 

of misclassification. In addition, the results are compared to pre-existing forest type lay-

ers derived from remote sensing data (e.g., Copernicus Forest type) as a basis for com-

parison with prior studies (i.e., Dostálová et al., 2018, 2021). 

 Study area 

A North-South transect over the Fagaraş Mountains (Romanian Southern Carpathians), 

covering about 25,000 km2 was used as study area (Figure 5.1). The region hosts a di-

verse array of species (Table 5.1), including most tree species found in European forests. 

Broadleaf species occupy the lowlands in the south, characterized by average annual 

temperatures of 10.5 °C and annual precipitations of 700 mm. Needleleaf and mixed 

forest (mainly beech and conifer mixtures) occupy the highlands, characterized by aver-

age annual temperatures under 4 °C and annual precipitations around 1000 mm. Broad-

leaf forest usually occupies mild slopes, especially in the case of oak forest, whereas 

beech, mixed and needleleaf forest appear over increasingly steep slopes, as high as 50°. 

Over the entire area, minimum winter temperatures drop below zero °C. Most rainfall 

occur in May-July with a dry season between September and October (Micu et al., 2015; 

World Bank, 2020; García-Duro et al., 2021). Broadleaf forest usually occupies mild 

slopes, especially in the case of oak forest, whereas beech, mixed and needleleaf forest 

appear over increasingly steep slopes, as high as 50°. 
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Figure 5.1. Forest stands mask overlaid on high spatial resolution satellite imagery (cour-
tesy of Microsoft Bing, left) and frequency distribution, by slope and elevation, for the 
main forest species and types (right). Stands have been assigned as “Broadleaf” when 
they contain at least 80% of a single broadleaf species but they are neither oak (Quercus 
petraea) nor beech (Fagus sylvatica). 

 Methods 

 Preparation of the reference datasets 

Available forest management plans were employed for training and validation (colored 

areas in figure 5.1; ICAS, 2013a, 2013b, 2014a, 2014b, 2014c, 2014d, 2015a, 2015b, 

2016, 2017). The management plans contain information on forest stands, tree patches 

with uniform and distinct characteristics (DIABOLO, 2021) including boundaries, species 

composition, and fractional cover (reported in 10% intervals). Table 5.1 details the spe-

cies that were mentioned in the forest stand management plans used. The forest man-

agement stands dataset (FMS) was created by filtering the forest management database 

based on fractional canopy cover (at least 50%) and species composition. Broadleaf and 

Needleleaf near-pure stands were defined as stands formed by at least 80% broadleaf 

and respectively needleleaf species. Near-pure stands, for the dominant broadleaf tree 

species in the study area (oak or beech) were defined using the same criteria, 80% of 

the specific tree species. Mixed stands were only used when a nearly even mix of species 

was present, i.e., the dominant leaf type did not represent more than 60% of the trees. 

Three other datasets were employed as ancillary data: 1) a land cover classification layer 

from Borlaf-Mena et al. (2021b) was used to mask forested areas (forest mask from here 
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on). The layer was based on support-vector classification of annual backscatter and co-

herence statistics of year 2019 (full feature set), with an overall accuracy over 95%; 2) 

the high-resolution Copernicus Forest Type (CFT from here on; Langanke et al., 2013; 

CLMS 2021, with an overall accuracy of 96.64%) was used for cross-comparison with 

prior studies (i.e., Dostálová et al., 2018, 2021). CFT high-resolution dataset was 

resampled to match the resolution and projection of the Sentinel-1 data; and 3) a 

merged land cover dataset was also used for cross-comparison purposes. The merged 

land cover dataset (LCm from here on) was derived using the TanDEM-X SAR-based for-

est mask (for the interval 2011-2015; Martone et al., 2018), the ALOS PALSAR forest 

mask (year 2017; Shimada et al., 2014b), the global urban footprint (year 2016; 

Deutsches Zentrum für Luft- und Raumfahrt, DLR; Esch et al., 2017), the European Space 

Agency Climate Change Initiative land cover dataset (ESA CCI LC year 2015; Achard et 

al., 2017), and the Corine Land Cover layer (2018 CLC; Büttner et al., 2017; Kosztra and 

Büttner, 2019). These layers were combined to generate a unique map of main land 

cover classes as described in detail in Borlaf-Mena et al. (2021b). Briefly, pixels were 

considered a type of forest if all layers agreed (i.e., pixels classified as forest and Corine 

and CCI LC agreed on the forest type). The LCm dataset was employed as derived by 

Borlaf-Mena et al. (2021b; section 3.2), keeping areas labeled as different forest types 

(Broadleaf, Needleleaf, Mixed).  

Table 5.1. Species reported in the forest management plans over the study region. Broad-
leaf mix and needleleaf mix classes are used to describe stands with many tree species. 

 Scientific name English name   Scientific name English name 

B
ro

ad
le

af
 

Acer campestre Field maple  

B
ro

ad
le

af
 

Quercus cerris Turkey oak 
Acer negundo Boxelder Maple  Quercus frainetto Hungarian oak 
Acer platanoides Norway Maple  Quercus petraea Sessile oak 
A. pseudoplatanus Sycamore  Quercus robur Eur. Oak 
Alnus glutinosa Black alder  Quercus rubra Red Oak 
Alnus incana Grey alder  R. pseudoacacia Black Locust 
Betula pendula Silver birch  Salix alba White Willow 
Carpinus betulus Eur. hornbeam  Salix caprea Goat willow 
Fagus sylvatica Eur. beech  Sorbus aucuparia Rowan 
Fraxinus excelsior Eur. ash  Tilia tomentosa Silver linden 
Fraxinus ornus Flowering ash  Ulmus glabra Mountain elm 
F. pennsylvanica Green/Red ash  Ulmus minor Eur. field elm 
G. triacanthos Honey-Locust  - Broadleaf mix 

Juglans nigra Black walnut  

N
ee

d
le

le
af

 

Abies alba Silver fir 
Juglans regia Eur. walnut  Larix decidua Eur. larch 
Morus alba White mulberry  Picea abies Eur. spruce 
Populus alba Silver Poplar  Pinus nigra Black pine 
Populus nigra Black Poplar  Pinus strobus White/soft pine 
Populus tremula Eur. aspen  Pinus sylvestris Baltic pine 
P. x canescens Grey Poplar  P. menziesii Douglas fir 
Prunus avium Wild cherry  - Needleleaf mix 

 SAR data processing 

In total, 345 Sentinel-1 SLC images acquired between 2017 and 2019 were used in this 

study. The images were obtained in single look complex (SLC) format. The dataset con-

sisted of images acquired along all relative orbits (i.e., 7, 29 and 131) overlapping the 

study area. The SLC images had a pixel spacing of 14.1 m in azimuth and 2.3 m in range 
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and carried both VV and VH polarizations. The DEM employed for normalization was 

using the 12.5 m TanDEM-X digital elevation model (©DLR, 2019; Rizzoli et al., 2017) 

resampled to a resolution of 20 m. 

For each SLC image, a subset was generated by mosaicking only the sub-swathes over-

lapping the study area. The data was multilooked with factor of 7 in range and 2 in azi-

muth to reduce speckle and bring the pixel size closer to the resolution intended for 

analysis (20 m). The first image acquired for each orbit was used as reference. Each suc-

cessive acquisition was co-registered to the reference using an iterative procedure 

based on intensity matching and spectral diversity aided by the TanDEM-X DEM 

(Wegmüller et al., 2002b). 

The DEM was employed along with the Sentinel-1 state vectors to prepare a lookup ta-

ble relating earth coordinates and SAR image coordinates, as well as auxiliary layers in-

cluding the incidence angle (𝜃𝐸), the local incidence angle (𝜃𝑇), the pixel scattering area, 

and a layover-shadow mask. The backscatter intensity was calibrated to terrain flat-

tened 𝜎0, or 𝜎𝑇
0 (T, terrain-normalized), using the scattering area estimate (Castel et al., 

2001; Small, 2011; Frey et al., 2013). A multi-temporal speckle filter with a window size 

of 5 pixels was applied to reduce speckle (Quegan et al., 2000). Backscatter intensity 

images were ortho-rectified using inverse distance resampling and converted to decibel 

scale (dB). Areas affected by radiometric and geometric distortions were masked using 

the layover and shadow masks derived from the DEM, as well as masking areas with 

anomalously high values as outlined in Borlaf-Mena et al., (2021b; areas not masked as 

layover or shadow where scattering area may have been underestimated). 

 Modelling backscatter dependance on the incidence angle 

Castel (2001) proposed a simple semi-empirical model relating forest backscattering in-

tensity and slope orientation, which has been employed in a multitude of SAR-based 

forest studies (i.e. Santoro et al., 2006; Thiel et al., 2009; Cartus et al., 2014). The com-

plete model (eq. 1) considers the scattering area and the incidence angles respective to 

ellipsoid and terrain surfaces (ellipsoid, 𝐴𝐸  and 𝜃𝐸; terrain, 𝐴𝑇  and 𝜃𝑇, respectively), 

along with the crown optical depth of each polarization (𝜏𝑝, transmitted-pol; 𝜏𝑞, re-

ceived-pol) and the path length within the canopy (𝐿𝑇) which depends on crown height, 

the local incidence angle (𝜃𝑇), and the terrain slope (𝛼) (eq. 2).  

𝛾𝑇
0 = 𝜎𝐸

0 𝐴𝐸

𝐴𝑇

cos 𝜃𝐸·(1−𝑒−(𝜏𝑝+𝜏𝑞)𝐿𝐸)

cos 𝜃𝑇·(1−𝑒−(𝜏𝑝+𝜏𝑞)𝐿𝑇)
= 𝜎𝐸

0 𝐴𝐸

𝐴𝑇
(

cos 𝜃𝐸

cos 𝜃𝑇
)

𝑛
= 𝜎𝑇

0 (
cos 𝜃𝐸

cos 𝜃𝑇
)

𝑛
   (1) 

𝐿𝐸 = cos 0 sec 𝜃𝐸 = sec 𝜃𝐸; 𝐿𝑇 = cos 𝛼 sec 𝜃𝑇      (2) 

where: 𝛾𝑇
0 is backscatter coefficient normalized for both the DEM-derived scattering 

area and the incidence angle; 𝜎𝐸
0 is the backscatter coefficient normalized with an ellip-

soid-derived scattering area; 𝜎𝑇
0 is 𝜎0 corrected for local terrain surface scattering area 

(T, terrain-normalized). The model can be approximated as the ratio of the cosines of 
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the incidence angles raised to the power 𝑛, dependent on the sensor parameters (i.e., 

nominal incidence angle, wavelength) and forest parameters, such as canopy height and 

optical thickness (Castel et al., 2001). In turn, optical thickness depends on fractional 

canopy cover (more space filled by branches and leaves), and leaf area index, as it con-

tributes to wave attenuation (Leckie and Ranson, 1998). If equation (1) is redistributed 

and linearized through decibel scale (eqs. 3-5) it becomes possible to estimate a com-

mon 𝛾𝑇
0 (intercept) and n (slope) for a group of observations by using simple linear re-

gression where 10 · log10(𝑥𝜃) (𝑥𝜃 = cos 𝜃𝑇 cos 𝜃𝐸⁄ ) and 10 · log10(𝜎𝑇
0) are the predic-

tor and the predicted variables, respectively.  

𝜎𝑇
0 = 𝛾𝑇

0 (
cos 𝜃𝑇

cos 𝜃𝐸
)

𝑛
       (3) 

10 · log10(𝜎𝑇
0) = 10 · log10(𝛾𝑇

0) + 𝑛 · 10 · log10 (
cos 𝜃𝑇

cos 𝜃𝐸
)  (4) 

10 · log10(𝜎𝑇
0) = 10 · log10(𝛾𝑇

0) + 𝑛 · 10 · log10 𝑥𝜃   (5) 

 Sample selection and model fitting 

As the relationship (n) between backscatter intensity and incidence angle depends on 

forest characteristics, ideally a separate model should be fit to each forest species/struc-

ture (e.g., age class) combination. However, such modeling is not feasible with limited 

in situ data while also difficult to implement outside of the training/validation sample as 

additional information of forest characteristics (e.g., age) would be needed to assign a 

model to a certain pixel. Instead, we assume certain scattering homogeneity within the 

same forest species or forest types, as the relationship between backscatter and age or 

biomass saturates early at C-band.  

To train the model (i.e., derive 𝑛 and 𝛾𝑇
0 as a function of forest species/type) a common 

frame of sampling (i.e., pixels selection) was needed to avoid large differences (orbit to 

orbit) in the location and the number of the sampled pixels. From the entire sample, 

30% of the pixels were reserved for validation, using the rest as candidates for model 

fitting. For every orbit, the candidate sample was culled to 50.000 pixels per forest type 

while excluding areas prone to radiometric normalization errors (masked areas, 𝜃𝑇 <

10°). Said sample was stratified in 50 intervals of 𝑥𝜃, taking up to 1.000 random samples 

per interval. This approach ensured uncommon 𝑥𝜃 values (i.e., there are few forests in 

areas with slopes over 40°) were sampled while also ensuring a representative sample 

to fit the model. All pixels not selected during this process were added to the validation 

sample, to ensure classes with a smaller representation have a sufficient sample size. 

With sampling pixel locations selected, a model was fit for each image and forest type. 

Model fits were evaluated using their coefficients of determination (R2). 

 Classification 

For each image and forest type we modelled the expected backscatter intensity (𝜎𝑇
0̂) 

based on the cosine ratio (𝑥𝜃), both with decibel scaling. Subsequently we calculated 
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(eq. 6) the absolute residual (AR) for all forest pixels included in the forest mask. The 

residual value was accumulated across images by model (i.e., one for each forest type 

and image) as a weighted average of absolute residuals (WAAR). The weight was the 

inverse of the scattering area to give a larger importance to observations with smaller 

geometric distortions (Small et al., 2021) (eq. 7). 

𝐴𝑅 = |𝜎𝑇
0 − 𝜎𝑇

0̂ |         (6) 

𝑤𝑖 =
1

𝑎𝑖
; 𝑊𝐴𝐴𝑅 =

∑ 𝑤𝑖𝐴𝑅𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

       (7) 

Pixels were assigned to the forest type with the smallest WAAR under the assumption 

that it showed the largest similarity to the ensemble of models fitted for a given forest 

type. To avoid misclassifications caused by radiometric distortions we applied a circular 

majority filter with a diameter of 7 pixels, followed by a MMU (minimum mapping unit) 

filter reclassifying patches smaller than 25 pixels (1 ha).  

We performed several classifications by varying the polarization employed for model-

ling, the time window employed to calculate the WAAR (yearly versus all three years 

together), and the detail of forest type classification: broadleaf/needleleaf (two classes), 

separating mixed as well (three classes), and separating broadleaf forest into beech and 

oak (four classes).  

 Validation and inter-comparison with pre-existing datasets 

Classification runs were assessed based on the FMS dataset using metrics derived from 

confusion matrices: Kappa statistic (K), overall accuracy (OA) and commission and omis-

sion (CE, OE) errors. Classifications showing the largest accuracies were disaggregated 

based on management information, slope, and elevation to understand the drivers be-

hind the errors. Classification results were further compared with CFT and LCm. These 

pre-existing datasets were also analyzed against the FMS field data to understand their 

utility as reference datasets. 

 Results 

 Modelling backscatter based on incidence angle 

Models adjusted for broadleaf, needleleaf and mixed forests classification obtained 

moderate results in the percentile based R2 summaries (Table 5.2): median R2 of 0.5, a 

minimum 5th percentile of 0.32 and a largest 95th percentile of 0.69.  

Table 5.2. Summary (percentiles) of the coefficients of determination for the linear mod-
els disaggregated by forest type and polarization. 

 Broadleaf  Needleleaf  Mixed  Oak  Beech 
 VH VV  VH VV  VH VV  VH VV  VH VV 

Min 0.18 0.30  0.27 0.43  0.20 0.41  0.03 0.10  0.18 0.33 
P05 0.32 0.39  0.39 0.57  0.39 0.47  0.10 0.21  0.34 0.40 
P50 0.50 0.53  0.55 0.62  0.51 0.56  0.30 0.35  0.50 0.52 
P95 0.59 0.63  0.63 0.68  0.59 0.64  0.42 0.49  0.58 0.61 
Max 0.65 0.68  0.68 0.71  0.64 0.67  0.50 0.56  0.62 0.65 
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Fits for individual species varied: the fit for beech forest showed similarly moderate R2 

(min 5th perc. 0.34, median 0.5, max 95th perc. 0.61), whereas the fit for oak forest 

showed lower values (min 0.03, min 5th perc. 0.1, median 0.3, max 95th perc. .49). In all 

cases R2 values were higher for VV, when compared to VH, polarization. Figure 5.2 rep-

resents a selected group of fits for orbit 7. 

 

Figure 5.2. Some fits with R2 > 0.5 from images of orbit 7. From left to right: fit with the 
least area enclosed between the lines of broadleaf (cyan) and needleleaf (magenta), 
cases with the largest 𝛾0and 𝑛 difference between broadleaf and needleleaf fits, and the 
fit with the largest enclosed area. Mixed forest was represented as yellow color. Points 
follow the same code, using subtractive color to represent overlaps between points 
(cases where points of all three forest types overlap are colored black). Note 𝑥𝜃 decreases 
with larger values of 𝜃𝑇. 

The smoothed time series of the n and γ0 values (Figure 5.3) showed seasonal variations. 

For broadleaf forests the largest 𝑛𝑉𝑉 and 𝛾𝑉𝑉
0  were observed in June-July, with the low-

est values being observed around October-November. 𝑛𝑉𝐻 minima and maxima showed 

similar periodicity, albeit with larger inter-orbit differences. Peak values for 𝛾𝑉𝐻
0  were 

observed in November-December and April while it reached minimum values in Septem-

ber-October. Needleleaf forest 𝛾0 displayed a clear yearly cycle with the highest values 

being recorded around July, and lowest values in January-February. 𝑛𝑉𝑉 showed weak 

cycles with the highest values being observed in February-March and lowest values 

around May and November. Similar cycles were observed for mixed forests with peak 

values in summer, half-peak in autumn, and minimums in January-February. Mixed for-

est 𝛾𝑉𝑉
0  showed peak values in winter (as observed for broadleaf class) as well as summer 

(as observed for the needleleaf class) whereas 𝛾𝑉𝐻
0  was high all over the year. 

 Classification results 

All classifications presented at least a moderate agreement (K > 0.5; Landis and Koch, 

1977) with the FMS validation dataset. Results varied little with the time interval used 

(one vs. three years, Table 5.3), with larger differences being observed as a function of 

polarization and number of classes. The highest OA were observed when using the VH 

channel. In particular, classification of two-classes showed a near-perfect agreement 

with the FMS (K > 0.8; OA > 95%) while separating three-classes resulted in slightly lower 
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accuracy (K > 0.7; OA > 85%; Figure 5.4). A moderate agreement with the reference data 

was observed when separating four classes (K > 0.4; OA > 68%). 

 

Figure 5.3. Results of the fitting process separated by forest type and orbit. Thick lines represent 
the 9-dat rolling average while pale lines represent the values obtained during the fitting process. 

Table 5.3. Kappa and overall accuracy of the classifications as evaluated against the in-situ data. 
Cells are colored with a gradient between yellow and green to indicate lower to higher values. 

Datasets used # of classes 
Kappa statistic  Overall accuracy 

2017 2018 2019 all  2017 2018 2019 all 

VH 
polarization 

2 0.88 0.90 0.90 0.90  95.7 96.6 96.7 96.5 
3 0.72 0.72 0.70 0.72  87.2 87.0 85.6 86.9 
4 0.66 0.62 0.63 0.65  77.7 73.8 74.3 76.6 

VV 
polarization 

2 0.87 0.85 0.87 0.87  95.4 94.9 95.6 95.6 
3 0.62 0.63 0.62 0.63  81.7 81.6 81.1 82.0 
4 0.57 0.55 0.55 0.57   71.1 69.1 68.2 70.8 

Considering the patterns found at overall level we decided to focus on the classifications 

performed with the whole time series and the VH channel, as the time window em-

ployed seemed to have little influence, and VH channel always had a larger kappa and 

overall accuracy. Furthermore, classifying several years together may help alleviate dif-

ferences across years. The errors are depicted in the Table 5.4, and the Figure 5.5. 

Table 5.4. Classification errors when using the entire time series of VH backscatter eval-
uated with FMS. Cells are colored with a gradient between green and yellow to indicate 
lower and higher values of error, respectively. 

 Commission Error (CE)  Omission Error (OE) 

Clas-
ses 

Broad 
leaf 

Needle 
leaf 

Mixed Oak Beech  Broad 
leaf 

Needle 
leaf 

Mixed Oak Beech 

2 3.2 4.5     1.2 11.1    
3 4.3 10.1 61.9    9.2 15.6 39.7   
4  8.7 51.2 52.4 17.7   15.2 49.8 18.4 22.1 
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Figure 5.4. Bing maps imagery (left), classification in broadleaf, needleleaf and mixed based on the complete time series of VH data (right)
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2 classes 3 classes 4 classes 

Figure 5.5. Alluvial diagrams of the omission and commission errors depending on the 
number of forest types classified. Left axis shows the reference label (Bl, Broadleaf, light 
green; Nl, Needleleaf, dark green; Mx, mixed forest, medium green; Qu, Quercus pet-
raea, red; Fa, Fagus sylvatica, orange), right axes the label received by the misclassified 
pixels (error – ‘e’). The thickness of the lines indicates the frequency of each error com-
pared to the total error. 

 Factors affecting classification 

Pure and near-pure stands were properly classified in most cases. When only broadleaf 

and needleleaf forests were separated (two-classes) the former type was over-predicted 

in stands with an even mix of species (Figure 5.6, left panel). When mixed forests were 

added (three-classes) the over-prediction of broadleaf forests decreased in a near-sym-

metric fashion (Figure 5.6, central panel).  

 

Figure 5.6. Percentage of pixels classified as each forest type (y-axis) with respect of the 
reported proportion of broadleaf and needleleaf species (x-axis). Classification based on 
the VH channel when using the entire time series and stand data as reference. 

The proportion of pixels classified as mixed forest followed a symmetric distribution cen-

tered around the even mix. However, for evenly mixed stands over 30% of the pixels 

were assigned as pure broadleaf or needleleaf forest. In the four-type classification (Fig-

ure 5.6, right panel), mixed forest had a less symmetric distribution, and the overtake 

point between broadleaf and needleleaf was shifted. Oak stands were properly identi-

fied mainly in areas with pure stands (>80% broadleaf species).  

Misclassification seemed not related to the fractional canopy cover (FCC) when only sep-

arating broadleaf and needleleaf forests (Figure 5.7). However, increasing FCC reduced 

the misclassifications as mixed forest, while increasing misclassifications as broadleaf 

forest in areas with high (>80%) FCC. When separating four classes, classification errors 

for oak forests seemed little related to FCC while beach forests misclassification in-

creased dramatically in stands with FCC above 70%. 
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Figure 5.7. Percentage of all pixels within a fractional cover interval (FCC, x-axis) that 
have been pixels misclassified as a specific forest type (M.C., y-axis). 

Analyzing classification results as a function of slope (Figure 5.8), showed that broadleaf 

forests were more often misclassified over steep slopes (>35°), whereas needleleaf for-

ests misclassification were largely constant over the entire slope range although a small 

uptick was observed over nearly flat (<5°) areas. When separating three forest types, 

misclassification errors for needleleaf and mixed forest increased with increasing slope. 

The opposite trend was observed for oak and beech stands, four-classes, with classifica-

tion errors decreasing with increasing slope. Mixed and needleleaf classes maintained 

the trends observed for the three-class run. 

 

 

Figure 5.8. Percentage of all pixels within a 1º degree slope interval or 10-meter eleva-
tion interval (x-axis), that have been misclassified as a specific forest type (M.C., y-axis). 

Analyzing misclassification errors as a function of elevation (Figure 5.8) revealed a com-

mon pattern for needleleaf forest with slightly increasing errors up to 1500 m above sea 

level (a.s.l.). Mixed forests were more often misclassified in the 1200-1400 m a.s.l. inter-

val. Broadleaf forest classification errors appeared more frequently at 1200-1300 m a.s.l. 

when separating only two forest types and at 800-1000 m a.s.l. when separating three 

types. The largest misclassifications as oak or and beech appeared at low altitudes, albeit 
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the former decreased rapidly, while misclassification as beech was still substantial at 

1000 m a.s.l. 

 Inter-comparison with pre-existing datasets 

5.4.4.1 Assessment of the preexisting forest type datasets 

Overall, the CFT and LCm reference layers showed high accuracies when compared to 

the FMS (Table 5.5, Figure 5.9). CFT (two classes) had a 94.6% overall accuracy (OA) 

when compared to FMS, a value similar to the reported accuracy (96.6%; CLMS 2021). 

Broadleaf forest class reached 95% accuracy whereas the needleleaf forest showed 

some tendency to be misclassified as the former (12.9% omission error). The LCm da-

taset (three classes) was less accurate (88.4% OA), with particularly large CE and OE for 

mixed forests (>47%). 

Table 5.5. Confusion matrices comparing the stand data (reference, columns) and the 
datasets employed for validation (Copernicus Forest Tyle, Land Use/Land Cover, rows). K 
– Kappa, OA – overall accuracy, CE – commission error, OE – omission error. 

 
Copernicus forest type (CFT) 

(K=0.86; OA=94.57%) 
 

Merged land cover (LCm)  
(K=0.71; OA=88.38%) 

 Broadleaf Needleleaf CE  Broadleaf  Needleleaf Mixed CE 

Broadleaf 924882 47914 4.93  673217 10870 36278 6.55 

Needleleaf 23778 324241 6.83  456 122763 5076 4.31 

Mixed     45933 12087 45649 55.97 

OE 2.51 12.87   6.45 15.75 47.53 
 

  

 

 

 Copernicus forest type (CFT)  Merged land cover (LCm) 

Figure 5.9. Disagreement between the Copernicus Forest Type and the Land Use/Land 
Cover dataset with respect to the GIS forest stand layer. Left vertical axes show the label 
in the reference GIS forest stand layer, right vertical axes show the label in the evaluated 
(‘e’) dataset. 

5.4.4.2 Agreement with pre-existing datasets 

Two-type classification showed moderate agreement with CFT (Table 5.6, Figure 5.10, K 

= 0.7; OA = 91.1%), observing particularly large commission (26.4%) and omission errors 

(21.5%) for needleleaf forest.  Agreement between the two-type classification and LCm 

was near-perfect (k ≈ 0.9; OA = 97.8%), with some commission error for needleleaf for-

est (14.1%) while for the three-type classification was moderate (K ≈ 0.6; OA = 86.5%), 

with most of the disagreement caused by misclassification of broadleaf as mixed or 

mixed as other forest type.  
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Table 5.6. Classification errors when comparing the entire time series of VH backscatter 
and pre-existing datasets. CFT stands for Copernicus Forest Type, LCm stands for merged 
land cover; CE and OE stands for commission and omission error, respectively. Cells are 
colored with a gradient between green and yellow to indicate lower and higher values of 
error, respectively. 

 

CFT (2 classes) 
(K=0.70; OA=91.1%) 

 
LCm (2 classes) 

(K=0.89; OA=97.8%) 

 
LCm (3 classes) 

(K=0.64, OA=86.5%) 

 Broadleaf Needleleaf  Broadleaf Needleleaf  Broadleaf Needleleaf Mixed 

CE 4.8 26.4  0.5 14.1  2.1 24.7 62.2 
OE 6.2 21.5  1.9 4.0  11.8 7.9 36.2 

 

   

CFT (2 classes) LCm (2 classes) LCm (3 classes) 

Figure 5.10. Disagreement between the Copernicus Forest Type and the Land Use/Land 
Cover dataset with respect to the GIS forest stand layer. Left vertical axes show the label 
in the reference GIS forest stand layer, right vertical axes show the label in the evaluated 
(‘e’) dataset. 

 Discussion 

 Modelling the backscatter based on incidence angle 

The relationship between backscatter intensity and cosine ratio was relatively strong for 

all forest types (broadleaf, needleleaf and mixed) with median R2 values around 0.5 and 

a maximum of 0.73 (Table 5.2). By species, different trends were observed with median 

R2 values for beech forests reaching 0.5 while for oak forests the median value vas lower 

(0.3) as they generally occupy flatter areas (see Figure 5.1) which reduced the influence 

of topography on the backscatter coefficient. Such values suggest that incidence angle 

account for about 50% of backscatter variability in forested areas. The remaining varia-

bility could be attributed to soil moisture or forest structure (e.g., height, canopy cover) 

which are neglected in the model. Variation of the R2 individual values around the me-

dian could be attributed to meteorological events such as rain and snow, which may 

alter the relationship between slope and scattering mechanisms. 

By polarization, R2 quantiles for VV channel were higher (Table 5.2), which may be ex-

plained by the model design, a first-order model (Castel et al., 2001) which only consid-

ers single interactions. This can be adequate for modelling co-polarized backscatter but 

insufficient for modelling the depolarization process characterized by multiple interac-

tions. Thus, cross-polarized backscatter from vegetated surfaces may be mis-character-

ized, causing fits based on the model to capture less variability (Oh et al., 2002; Kweon 

and Oh, 2015). 
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Temporal patterns observed for 𝛾0 and 𝑛 were attributed to broadleaf forest leaf dy-

namics (Figure 5.3). Broadleaf forest had an increased VH backscatter during winter 

(Rüetschi et al., 2017; Dostálová et al., 2018; Dubois et al., 2020), when the exposed 

woody elements act as a volume scatterer, depolarizing the incoming wave (Ahern et 

al., 1993; Proisy et al., 2000; Dubois et al., 2020; Soudani et al., 2021). As leaf area 

reaches its maximum, the canopy becomes more opaque (higher optical depth; Castel 

et al., 2001), masking woody components and decreasing 𝛾𝑉𝐻
0  (Frison et al., 2017; Dubois 

et al., 2020; Pfeil et al., 2020; Soudani et al., 2021; Ling et al., 2022). In autumn, the 

canopy loses mass and water (Yang et al., 2017; Soudani et al., 2021) thus exposing the 

woody elements with the associated increase in 𝛾𝑉𝐻
0  (Dubois et al., 2020; Proietti et al., 

2020; Soudani et al., 2021; Ling et al., 2022). 

 𝛾𝑉𝑉
0  channel displayed a characteristic cycle over broadleaf forest, a contrasting result 

when compared with prior studies (Proisy et al., 2000; Frison et al., 2017; Dostálová et 

al., 2018; Soudani et al., 2021; Ling et al., 2022). A possible explanation is the use of a 

variable optical depth (n) in our study when compared to the use of a constant value, 

such as the “common” 𝛾𝑇
0 (Rüetschi et al., 2017; Proietti et al., 2020), or 𝜎𝐸

0 (Frison et 

al., 2017; Soudani et al., 2021; Dubois et al., 2020; Ling et al., 2022; Dostálová et al., 

2018, 2021). Relationship between VV backscatter and incidence angle has been found 

to vary with vegetation water content over large scales, which also could be related to 

changes in forest optical depth (ASCAT C-band VV data with 12.5 km resolution; Pfeil et 

al., 2020). A second plausible explanation is related to scale, as prior studies extracted 

the backscatter time series over smaller areas (Proisy et al., 2000; Frison et al., 2017; 

Rüetschi et al., 2017; Soudani et al., 2021). Rüetschi et al. (2017) observe no cycle except 

for the largest beech stand (46 ha), where a small increase in VV backscatter during 

spring followed by a gradual decrease during summer was observed. It is possible that 

VV backscatter relationship with phenology is fainter, or it is affected by additional fac-

tors (i.e., soil moisture, double bounce) and only appears at larger scales. Indeed, scat-

terometer data showed cyclical differences similar to those reported by Rüetschi et al. 

(2017), that were attributed to variations in the woody vegetation water content (Pfeil 

et al., 2020). 

𝛾0 from needleleaf forests displayed a yearly cycle with the highest point during summer 

and the lowest during winter, usually associated to sub-zero temperatures (Ahern et al., 

1993; Rüetschi et al., 2017; Dostálová et al., 2018; Rodionova, 2018; Dubois et al., 2020; 

Yu et al., 2020; Ling et al., 2022). This has been explained by frost resistance mechanisms 

in conifer species (Dubois et al., 2020). As days get shorter and colder conifer species 

stop growth, reduce metabolic activity, and increase solute concentrations (e.g., su-

crose) to withstand frost. This prepares tissues to allow a large portion of the water to 

freeze (Havranek and Tranquillini, 1995; Chang et al., 2021). Both ice formation and so-
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lute accumulation can decrease the dielectric constant, making the canopy more trans-

parent and thus decreasing scattering (Ahern et al., 1993; Way et al., 1997; Santoro, 

2003; Rodionova, 2018; Dubois et al., 2020; den Besten et al., 2021). 

Mixed forests showed an intermediate behavior between broadleaf forest, with peaks 

characteristic of both forest types, in agreement with results shown by Dubois et al. 

(2020). Nevertheless, it should be noted that both soil moisture and weather events also 

may play a role in the behavior of 𝛾0 and 𝑛. For example, a larger moisture content or 

rain events may raise backscatter, whereas snow presence may reduce it (Proisy et al., 

2000; Rodionova, 2018; Dubois et al., 2020). 

 Classification results 

There was a large variability in the results attained for different classifications with K 

varying from 0.5 to 0.9, whereas overall accuracies (OA) ranged between 68 and 97% 

although results based on a single year of data and those using multiple years were sim-

ilar (Table 5.3). More accurate classifications were obtained when using the VH channel, 

possibly because the spacing between the fitted lines is larger compared to VV channel 

(Figure 5.2). Udali et al. (2021) obtained similar results, where improved accuracies were 

observed when using the VH polarization when compared to VV or their joint use. This 

could be explained by the VH channel being more sensitive to tree structure and phe-

nology, whereas the VV channels not only is less sensitive, but also is more affected by 

weather events, soil moisture or ground-trunk interactions (Proisy et al., 2000; Patel et 

al., 2006; Dostálová et al., 2016; Frison et al., 2017; Proietti et al., 2020; Soudani et al., 

2021; Ling et al., 2022) 

Separating broadleaf and needleleaf forest based on the VH channel resulted in high 

accuracies, K ≈ 0.9 and OA > 95% (Table 5.3), values significantly higher when compared 

to prior studies (Rüetschi et al., 2017, K=0.73, OA=86%; Udali et al., 2021, K=0.86, 

OA=94%). When mixed forest is separated as well the accuracy decreased (K > 0.7, OA > 

85%, Table 5.4, Figure 5.5), with most errors being caused by confusion of mixed forests 

with either pure conifer or broadleaf forest stands as also suggested by (Ahern et al., 

1993). Classification accuracies decreased further (K 0.62-0.66, OA 74-78%) when dis-

aggregating at broadleaf species level. Beech forests were frequently misclassified as 

oak as mixed forests as beech trees are often one of the main species in such forest 

stands, (Ahern et al., 1993). Albeit not entirely comparable, classification at main species 

level suggest similar accuracies as those observed in previous studies (Rüetschi et al., 

2017, K=0.58 and OA=72%; Udali et al., 2021, K=0.54 and OA=66%). 

 Factors affecting classification results 

Classifications were assessed against forest management stand data to understand the 

relationship between the mutually exclusive classes, and species composition (mixture; 

Figure 5.6). Classifications separating just broadleaf and needleleaf forest classes 

showed a possible bias towards broadleaf class over areas with an even mix of the two 
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species groups. Such bias was related to the absence of a mixed forests class in the clas-

sification legend and the propensity of the algorithm to classify such stands as broadleaf 

forests. Indeed, such assumption was confirmed when mixed forests were added to the 

classification scheme, as misclassification of mixed forests as broadleaf or needleleaf 

becomes near-equally likely. 

The number of classes considered influenced misclassification errors related to the for-

est fractional canopy cover, slope, or elevation, which could be attributed to the classi-

fier design (Figure 5.7 and Figure 5.8). A pixel is classified as a specific class using the 

closest modelled line, i.e., similarity to the “expected” relationship between backscatter 

and incidence angle. However, introducing model lines for additional forest types may 

alter which is the closest line. For example, pixels whose scattering area has been under-

compensated (high backscatter) will be classified as whichever class has the largest mod-

elled backscatter among all classes considered. Furthermore “closest” does not neces-

sarily mean “close”: pixel values can fall well outside the area bound by the fitted lines, 

i.e., no matter how far they are, they are still assigned to a class. 

The fractional canopy cover (FCC, Figure 5.7) had little influence on classification errors 

for broadleaf and needleleaf classes although it was related to variations in accuracy for 

the mixed, beech and oak forest classes. In general, for these classes, a larger FCC was 

tied to reduced classification errors. Confusions at low FCC levels were attributed to re-

duced differences between forest types due the increased influence of the underlying 

soil. At high FCC, broadleaf (beech) species may heavily influence pixel scattering. This 

would be consistent with the tendency to misclassify areas with an even mix of broad-

leaf and needleleaf species when separating just those classes. Increasing terrain slope 

usually resulted in lager errors for broadleaf in the two-type classification or for 

needleleaf and mixed forest in the remaining classifications (three and four classes; Fig-

ure 5.8). Patterns observed for elevation influence on classification were more difficult 

to explain and could be attributed to climatic conditions (i.e., longer periods with snow 

cover), or differences in forest structure at different altitudinal levels (Dostalova et al., 

2016; Dostálová et al., 2018). 

 Inter-comparison with pre-existing datasets 

The agreement of the classifications based on the full time series of VH data with CFT 

was moderate (K = 0.7, OA ≈ 91%; Table 5.6, Figure 5.10), similar to prior studies 

(Dostálová et al., 2018, K=0.69, OA=85%). Nevertheless, one should note that such val-

ues were obtained over a largely mountainous area where prior studies suggested de-

creased accuracies. Indeed, Dostálová (2018) suggested a drop in OA to 67-76% over 

mountainous regions. This could be explained by the assessment of CFT with FMS as 

reference, where CFT displayed some tendency to misclassify needleleaf of as broadleaf, 

with the former having an omission error of 13% (Table 5.5, Figure 5.7). Such limitation, 

described on CFT product manual, was explained by an overcorrection of Sentinel-2 im-

agery over mountainous areas which propagates into classification results (CLMS 2021, 
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pp. 45–49). Thus, areas misclassified in CFT dataset will cause a disagreement, artificially 

raising the commission error for needleleaf to up to 26%. 

 Conclusions 

In this study we proposed a classification framework that leverages the relationship be-

tween radar scatter and the local incidence angle, as well as the temporal capabilities of 

Sentinel-1 A and B. For each image and forest type we fitted a regression line between 

the backscatter coefficient and the local incidence angle. Subsequently we calculated 

the absolute residuals between every forest pixel and each regression line. The absolute 

residuals were accumulated across dates for each forest type and the pixels were clas-

sified based on the smallest accumulated residuals. The framework was applied to clas-

sify temperate forests across a North-South transect in the Carpathian Mountains. Clas-

sification results were validated against in-situ stand data and cross-compared with the 

Copernicus high-resolution forest type data. 

The classification framework was found to be sensitive to forest phenology regardless 

of the polarization used (VV or VH). Classification of broadleaf and needleleaf forest at-

tained accurate results, with a similar or better performance when compared to prior 

studies. The improvement was especially relevant over areas with significant terrain 

slopes, where the performance of our model degraded less. Incorporating mixed forest 

into the classification scheme reduced the accuracy. As mixed forest retain some simi-

larity to the individual species components it is believed that introducing a fuzzy ap-

proach may be beneficial. When separating broadleaf into oak and beech species the 

accuracy degraded further, with large misclassification of beech as oak, and a large con-

fusion between beech and mixed forest, especially in pixels located at high altitudes or 

on steep slopes. Nevertheless, our results show that the proposed framework may gen-

erate highly accurate (>95%) maps separating broadleaf and needleleaf forest, and mod-

erate accuracies (>84%) when separating mixed forest as well. Further, the forest optical 

depth related parameter 𝑛 is estimated as a biproduct of the process and may be em-

ployed to reduce directional effects in regional studies focused on the retrieval of con-

tinuous variables (i.e., above ground biomass) although additional research would be 

needed to explain its variability.
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Chapter 6:  Growing Stock Volume Retrieval from Single 
and Multi-Frequency Radar Backscatter 

Tanase, M.A., Borlaf-Mena, I., Santoro, M., Aponte, C., Marin, G., Apostol, B., Badea, O., 

2021. Growing Stock Volume Retrieval from Single and Multi-Frequency Radar Backscat-

ter. Forests 12, 944. https://doi.org/10.3390/f12070944 

Abstract 

While products generated at global levels provide easy access to information on forest 

growing stock volume (GSV), their use at regional to national levels is limited by tem-

poral frequency, spatial resolution, or unknown local errors that may be overcome 

through locally calibrated products. This study assessed the need, and utility, of devel-

oping locally calibrated GSV products for the Romanian forests. To this end, we used 

national forest inventory (NFI) permanent sampling plots with largely concurrent SAR 

datasets acquired at C- and L-bands to train and validate a machine learning algorithm. 

Different configurations of independent variables were evaluated to assess potential 

synergies between C- and L-band. The results show that GSV estimation errors at C- and 

L-band were rather similar, relative root mean squared errors (RelRMSE) around 55% 

for forests averaging over 450 m3 ha−1, while synergies between the two wavelengths 

were limited. Locally calibrated models improved GSV estimation by 14% when com-

pared to values obtained from global datasets. However, even the locally calibrated 

models showed particularly large errors over low GSV intervals. Aggregating the results 

over larger areas considerably reduced (down to 25%) the relative estimation errors. 

 Introduction 

Forests are among the most biodiverse terrestrial ecosystems and a key element for 

carbon sequestration as they store large amounts of organic matter (i.e., biomass). 

Therefore, forest above ground biomass (AGB) estimation is a sensitive research topic, 

as information on AGB levels and dynamics is needed to estimate greenhouse gases flux 

and thus to shape policies development, implementation, and monitoring (Gibbs et al., 

2007). This importance is highlighted by the countless forest inventory programs aimed 

at evaluating, monitoring, and reporting, among others, AGB or Growing Stock Volume 

(GSV) levels. Such programs use an array of data sources from in situ measurements to 

information acquired by earth observation (EO) platforms. In situ surveys, based on sys-

tematic sampling grids, are the backbone of traditional national forest inventory (NFI) 

programs sometimes stretching back centuries (Breidenbach et al., 2020). However, NFI 

programs are expensive and time consuming while not providing for a synoptic view 

across the landscape (Santoro and Cartus, 2018). 

https://doi.org/10.3390/f12070944
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With the development of EO technologies, new avenues were open as the systematic 

data collection allowed for frequent, spatially resolved AGB or GSV estimates to be de-

rived within a range of national and global initiatives, such as the Japan Aerospace Ex-

ploration Agency (JAXA) Kyoto and Carbon (KC) Initiative, the United Nation Collabora-

tive Programme on Reducing Emissions from Deforestation and Forest Degradation 

(REDD), NASA’s Carbon Monitoring System (CMS), and the European Space Agency (ESA) 

Climate Change Initiative (CCI). Forest AGB was estimated from optical, radar, and lidar 

sensors. Tracking forest properties with optical sensors is usually limited to the first dec-

ades of development (Tanase et al., 2011). Lidar sensors provide very accurate infor-

mation on forest vertical structure (Hyde et al., 2007), but their use is limited by tem-

poral (airborne) or spatial (space borne) coverage and cloud presence. As the radar sig-

nal is directly influenced by the vegetation structure, synthetic aperture radar (SAR) sen-

sors are more sensitive to AGB levels when compared to optical data, and less limited 

by spatial and temporal availability when compared to Lidar data (Tanase et al., 2015). 

Therefore, over the past two decades SAR sensors have been widely used to retrieve 

forest biomass at a regional to global level due to constant improvements in coverage 

and temporal and spatial resolutions, as well as independence from cloud cover (San-

toro et al., 2002; Sandberg et al., 2011; Mitchard et al., 2012; Neumann et al., 2012; 

Askne et al., 2013; Mihai A. Tanase et al., 2014a; Santoro et al., 2015). Such studies used 

a variety of modelling approaches, including empirical, semi-empirical, numerical, and 

non-parametric modelling. Regardless of the models used, the major limitation of space-

borne SAR observations is the sensitivity to forest unrelated variables which result in 

substantial uncertainties and AGB-dependent biases (Rodríguez-Veiga et al., 2019). 

From the first prototype studies in the 1990s which evaluated the capability of a certain 

set of optical and SAR observations to estimate GSV or AGB, recent studies in the 2000s 

demonstrated that a combination of observations is beneficial to map biomass across 

extended landscapes. While most studies reported on estimating biomass at local to 

regional scale, a range of projects targeted biomass mapping at continental to a global 

scale (Baccini et al., 2008; Saatchi et al., 2011; Thurner et al., 2014; Santoro et al., 2015; 

Avitabile et al., 2016; Hu et al., 2016; Santoro et al., 2021a). However, such data prod-

ucts are of limited use at national level due to the (i) limited sensitivity to biomass, ob-

tained through indirect relationship requiring inference with models and approxima-

tions, (ii) low temporal frequency (e.g., one off), (iii) generally low (>100 m) spatial res-

olution, (iv) unknown errors at national levels, (v) compromises in the retrieval algo-

rithms which need to account for a wide range of conditions (e.g., boreal to tropical), 

and (v) the lack of calibration data over large tracts of forests with the in situ data used 

for algorithm development being sourced from relatively few countries. Such limitations 

translate into discrepancies between in situ and mapped biomass stocks. Indeed, many 

studies have shown differences between the global products specified accuracy and in 

situ samples over national to regional scales (Mitchard et al., 2011; Tropek et al., 2014; 
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Avitabile et al., 2016; Rodríguez-Veiga et al., 2016, 2019; Michelakis et al., 2014) with 

locally calibrated products providing significant improvements for the estimated forest 

parameters (Michelakis et al., 2014; Rodríguez-Veiga et al., 2016, 2019; Næsset et al., 

2020). 

Forests are under constant pressure due to anthropogenic factors related to clearing 

activities and changes in land use with approximately 4.5% of the Romanian forests be-

ing affected by at least one disturbance event (complete or nearly complete tree re-

moval) over the past two decades. The high rate of forest disturbance, as estimated from 

remote sensing datasets (Knorn et al., 2012), suggest changes in Romanian forests grow-

ing stock volume as significant as those caused by climate changes alone (Schimel et al., 

2000; Scheller and Mladenoff, 2005). However, spatially explicit GSV estimates are not 

available for the Romanian forests, as remote sensing technologies were mostly used to 

estimate forest cover rather than GSV (Griffiths et al., 2012; Knorn et al., 2012; Potapov 

et al., 2015). The hypothesis of this study was that SAR datasets may provide the means 

to derive spatially explicit estimates of GSV with higher frequency when compared to 

the five-year cycle of the National Forest Inventory (NFI) and lower errors when com-

pared to globally derived GSV estimates (Santoro et al., 2015, 2021a). The aim of this 

study was to ascertain the utility of locally calibrated models, based on in situ NFI infor-

mation and SAR datasets, for GSV estimation in the Romanian forests. The specific ob-

jectives were to (i) calibrate single- and multi-frequency SAR-based models for GSV re-

trieval in the Romanian forests, and (ii) ascertain the synergies of C- and L-band SAR 

datasets for GSV retrieval. The results were then compared against recent global GSV 

maps (Santoro et al., 2021a) to assess the potential utility of the locally calibrated mod-

els over global datasets. 

 Materials 

 Study Area and In Situ Data 

The study was carried out in selected areas of the Romanian Carpathian Mountains (Fig-

ure 6.1). The Carpathians is third longest range within Europe, after the Urals and the 

Scandinavian Mountains, and stretches 1500 km across seven countries, although most 

of the range (54%) is located within the Romanian borders. The Carpathians are an east-

ward continuation of the Alps, but differ considerably from them as they are less com-

pact and reach lower elevations. In contrast to the Alps, glaciation affected only the 

highest peaks, with the remaining areas being shaped by rivers. The climate is influenced 

by polar-continental air from east and northeast in winter and oceanic mases from the 

west during the rest of the year differentiating them from the much dryer surrounding 

plains. Precipitations range from 600 to 1800 mm. The vegetation is dominated by for-

ests, mainly beech, spruce, and, to a lesser extent, oak species, which provide habitats 

for the largest European populations of brown bears, wolves, and lynxes. The Carpathi-

ans contains most of the European Union’s remnant virgin forests. The selected areas 
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include some of the highest mountain peaks (exceeding 2500 m) as well as three of the 

six ecoregions present within the Romanian national territory (Olson et al., 2001). 

The in-situ samples were collected within the second cycle (2013–2018) of the Roma-

nian NFI. The NFI was established in 2008 using a 4 × 4 km grid, although a denser 2 × 2 

km grid is used in plains where forest cover is low. The NFI is a two stage (aerial photog-

raphy followed by in situ surveys) continuous forest inventory with a five-year cycle that 

covers the entire national territory. The field surveys comprise, at the end of the five-

year cycle, about 24,000 permanent sample plots. To increase field work efficiency, the 

measurements are realized on four permanent sampling plots (PSP) at each grid node 

(Figure 6.1b). 

 

Figure 6.1. Study area within the Romania borders (a) and the locations of the available 
national forest inventory (NFI) sample plots (b). Detail of NFI node (c). Each PSP is formed 
by concentric circles of 7.98 m, 12.62 m, and 25 m radius. 

Each PSP contains three concentric circles (7.98 m, 12.62 m, and 25 m in radius) where 

different forest characteristics are assessed, including forest type, tree species, diameter 

at breast height (DBH), height (H), lying deadwood, and ground vegetation. DBH and 

height are assessed in the first two circles, 7.98 m (5.6 cm ≤ DBH ≤ 28.5 cm) and 12.62 

m (DBH ≥ 28.5 cm). The GSV estimation is based on species-specific (43 main species) 

allometry based on DBH and height. For conifers, the volume of branches (>5 cm diam-

eter) was established through specific equations as percentage of stem volume and was 

added to the stem volume (Giurgiu et al., 2004). The volume measurements are scaled 

(by the circle area), aggregated, and reported per hectare. NFI estimates GSV with a 

sampling error of 1.79%, with target differences between measurements and control 
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surveys less than 1%. The NFI objective is to derive statistics of forest properties over 

the national territory. As such, individual plot measurements are not optimized to cali-

brate or evaluate remote sensing products due to the relatively small sampling area. 

For each PSP, the data provided included the main forest species, forest inventory date, 

percentage forest cover, mean diameter at breast height, and height, as well as per hec-

tare GSV. Of the 1815 PSPs available for this study, 1153 were inventoried between 2015 

and 2016, coinciding with the EO data acquisition period. The remaining plots were in-

ventoried in 2014. As forest stands in Romania consist of homogeneous tracts (species 

composition, age, and DBH classes), the NFI plots are representative of larger areas were 

not falling on stand border, as stands range between 6–10 ha in hilly and 10–15 ha in 

mountainous regions. The DBH, H, and GSV over the in-situ data, reached 96 cm, 50 m, 

and 1577 m3 ha−1, respectively, depending on the sample plot (Table 6.1). As small pock-

ets of large trees influence average values, when relatively small areas are assessed, the 

PSP-wise GSV was high (>1000 m3 ha−1) for some plots (Figure 6.2). 

Table 6.1. Range of plot-wise mean DBH and H and GSV. Values for all/modelling plots 
(see Section 6.3.1). 

Main Species DBH Range (cm) H Range (m) GSV Range (m3 ha−1) 

beech (n = 900/322) 7–157/8–96 3–50/8–50 5–1577/9–1577 
oaks (n = 249/72) 11–80/11–52 9–36/11–32 13–742/22–731 
coniferous (n = 560/238) 8–85/11–85 8–44/9–43 12–1470/22–1401 
other species (n = 106/33) 10–66/10–59 9–39/12–39 15–1080/15–1080 

 

Figure 6.2. Growing stock volume distribution for all sample plots (left) and plots used 
for SAR-GSV modelling (right). 

 Earth Observation Data 

The NFI plots used in this study were covered within 13 ALOS PALSAR-2 frames and six 

ascending and descending Sentinel-1 relative orbits (Figure 6.1). 104 L-band ALOS PAL-

SAR-2 dual-polarized (HH and HV polarizations) datasets were provided by JAXA (2014–

2017 period) as single look complex (SLC) images, while 1034 Sentinel-1 A and B granules 

were downloaded from open repositories for the years 2015–2016, the period when 
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most (83) ALOS PALSAR-2 datasets were acquired. Sentinel-1 ground range detected 

(GRD) dual polarized (VV and VH polarizations) C-band datasets (A and B satellites) were 

downloaded for the six relative orbits (29, 102, and 131 ascending and 7, 80, and 109 

descending passes) covering the selected study areas. 

 Methods 

 SAR Data Processing and Extraction 

The images acquired on the same orbit were first co-registered in the radar geometry. 

For Sentinel-1 products, the orbital state vectors were updated using the Precise Orbit 

Ephemerides, with the co-registration process being carried out by relative orbit after 

slice assembly (i.e., concatenation) as the Sentinel-1 image frames (i.e., slices) acquired 

from the same orbital path are provided in slices of variable ground footprints. For the 

ALOS PALSAR-2 data, the SAR processing was carried out on a path/frame basis. Image 

co-registration was based on a cross-correlation algorithm (Werner et al., 2005) with the 

first image of the temporal data series being used as reference. Each co-registered im-

age was multi-looked to obtain a ground pixel spacing of approximately 30 m (4 × 8 pixels 

in range and azimuth for ALOS PALSAR-2 and 20 × 3 pixels in range and azimuth for Sen-

tinel-1). The backscatter was converted to gamma0 using an ellipsoid-based area as ref-

erence, to account for the influence of topography (Small, 2011). The backscatter coef-

ficient (γ◦) was subsequently topographically normalized using the real scattering area, 

derived pixel-wise (Frey et al., 2013), from the one arc-second Shuttle Radar Topography 

Mission (SRTM) digital elevation model (DEM). Each image was then orthorectified to 

the Universal Transverse Mercator (UTM) coordinate system (zone 35 North, datum 

WGS84) using a look-up table that related the coordinates of each pixel in the radar 

geometry with the coordinates of the same pixel in the map geometry. The look-up table 

was generated using image orbital information and the digital elevation model 

(Wegmüller et al., 2002b). 

At each PSP, the backscatter coefficient of all images acquired before the forest inven-

tory date was extracted for the pixel containing the center coordinates. The backscatter 

values were averaged for all available dates by polarization and by relative orbit (Senti-

nel-1). The standard deviation of the backscatter temporal series (i.e., temporal stabil-

ity) was also computed at each PSP location for every sensor, polarization, and relative 

orbit (Sentinel-1). Out of the 1815 available NFI samples, 704 (665 forest and 39 non-

forest) were used for modelling and validation of the retrieved GSV. The reduced num-

ber of useful samples was determined by the intersection between ALOS PALSAR-2 and 

Sentinel-1 orbits, the correspondence between NFI inventory date and ALOS PALSAR-2 

and Sentinel-1 image acquisition dates, and topography, as pixels affected by geometric 

distortions were masked out during SAR data processing. As both ascending and de-

scending Sentinel-1 orbits were tested, the number of PSPs affected by layover and 

shadow was high. 
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 Growing Stock Volume Retrieval 

Several modeling approaches can be used to retrieve forest GSV (or AGB) from radar 

backscatter coefficients, including parametric and nonparametric models (Lucas et al., 

2010; Englhart et al., 2011; Sandberg et al., 2011; Saatchi et al., 2011; Cartus et al., 2012; 

Mitchard et al., 2012; Neumann et al., 2012; Michelakis et al., 2014; Mermoz et al., 2015; 

Santoro et al., 2015; Villard et al., 2016; Santoro and Cartus, 2018). Within a previous 

study, some of these models were evaluated using the Romanian NFI and ALOS PALSAR-

2 datasets (Tanase et al., 2020). The results suggested that non-parametric models pro-

vide the lowest errors and bias, regardless of polarization or forest species over the se-

lected study area. Therefore, we used a non-parametric modelling approach, based on 

Random Forests (Breiman, 2001), to assess the synergies between the C- and L-band 

dataset for GSV retrieval. As non-parametric models offer the opportunity to include 

non-linearly related variables, and have no assumptions regarding the statistical prop-

erties of the data, such models are often preferred when a sufficiently large dataset of 

samples is available for model parameterization. The models use ensemble learning 

methods to improve the overall predictive power with respect to any of the constituent 

models by aggregating their predictions. In random forest regression, each tree is built 

using a deterministic algorithm by selecting a random set of variables and a random 

sample from the training dataset (Breiman, 2001). Although RF models provide high fit 

statistics there are known drawbacks, including difficulties in interpreting the results, 

potential overfitting, and high computational demands. A total of 85 RF models were 

trained and evaluated by gradually increasing the independent variables, starting from 

single polarized to multi-polarization multi-sensor data (see Section 6.4 and Annex 

6-1 for detailed information of the predictor variables used). Each sensor was individu-

ally tested to generate a reference baseline and allow for cross-sensor comparisons. The 

use of additional variables (e.g., forest type, temporal backscatter variability, and local 

incidence angle) was also evaluated to ascertain the opportunity for GSV retrieval im-

provements. For each sensor, we increased the independent variables, starting with the 

average backscatter, temporal stability (i.e., the standard deviation of the time series, 

sd), local incidence angle (LIA), and the forest type (Ft). For the C-band we analyzed the 

ascending and descending passes separately, as well as their combination. The models 

were calibrated using the 704 PSP samples. In this study, TreeBagger from 

MATLAB® software package (v. 2020b) was used to construct the RF classifier. The num-

ber of decision trees was set to 200 and a curvature test was used to select the best split 

predictor and grow unbiased trees (Loh, 2002). The remaining parameters were kept as 

default, with surrogate splits being allowed to account for missing values in the data. 

 GSV Retrieval Accuracy 

Model performance was evaluated at both pixel and grid levels. At pixel (i.e., plot) level, 

the retrieval was evaluated using repeat random sub-sampling with cross-validation for 

each individual sensor and polarization, as well as for dual polarized and dual frequency 
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configurations. To reduce variability due to random sampling effects, 100 rounds were 

performed by randomly splitting the 704 PSPs into training (75%) and validation (25%) 

samples. During each round, the models were calibrated using the training samples and 

subsequently used to estimate the GSV for the validation samples. The observed and 

predicted GSV for the validation samples was accumulated over the 100 rounds and 

used to compute four accuracy error metrics: the root mean squared error (RMSE, Equa-

tion (1)), the relative RMSE (RelRMSE, Equation (2)), the bias (Equation (3)), and the 

Pearson’s correlation coefficient (r). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑗 − 𝑂𝑗)

2𝑛

𝑗=1
 (2) 

𝑅𝑒𝑙𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/𝑂̃ (3) 

𝐵𝑖𝑎𝑠 = 𝑃̃ − 𝑂̃ (5) 

where: 𝑃𝑗 = predicted values, 𝑂𝑗 = in situ observed values, n = number of samples, 

and 𝑂̃ and 𝑃̃ = mean values for the observed and predicted values, respectively. 

As GSV estimation errors are inherently large when using small NFI plots for SAR models 

calibration (Robinson et al., 2013; Mihai A. Tanase et al., 2014b), accuracy metrics (as 

per Equations (1)–(3)) were also derived over predefined grids of 10 × 10, 20 × 20, and 

30 × 30 km. The grid size was a compromise between having enough samples in each 

tile to obtain a more reliable estimate of the NFI average stem volume and having 

enough tiles to compute the accuracy metrics by volume intervals. As the Sentinel-1 

strips covered the 1815 available PSPs (Figure 6.1), the analysis was focused on the GSV 

maps derived from C-band VH polarized data (see Section 6.4.2) to maximize the num-

ber of tiles containing at least 4 in situ plots (i.e., one NFI grid node). The errors were 

estimated for both ascending and descending satellite passes. Models using the VH 

backscatter and its temporal standard deviation (see Table 6.2, in bold) were calibrated 

using the reduced set (704) of NFI for cross-comparison purposes. At each tile, the aver-

age NFI GSV was compared to the average GSV for the corresponding predicted pixels. 

 Local vs. Global GSV Retrieval 

The GSV overall accuracy estimates were compared against values derived at continen-

tal to global levels. We used the GlobBiomass dataset (Santoro et al., 2021a), the only 

global product currently available at comparable pixel spacing (100 m) and derived from 

comparable remote sensing datasets (C- and L-band SAR data). The GlobBiomass prod-

uct provides GSV estimates for the reference year 2010 based on the combined use of 

Envisat ASAR (C-band) and ALOS PALSAR (L-band) sensors and ancillary information from 

Landsat imagery. GSV values from the first NFI cycle (2008–2012) were used as reference 

to match the dates of the GlobBiomass product. As NFI data collection protocol and lo-

cation did not change between the first and second NFI cycles and we have used the 
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same SAR wavelengths to derive the local product, input datasets influence on the re-

sults were minimized. Please note that Envisat ASAR and ALOS PALSAR sensors were 

decommissioned in 2012 and 2011, respectively while data from Sentinel-1 and ALOS 

PALSAR-2 were not available until 2014. The GlobBiomass GSV values were extracted at 

the location of the available NFI plots to compute the same error metrics. 

 Results and Discussions 

The higher backscatter variability at L-band when compared to C-band, due to the lim-

ited number of multi-temporal datasets available is evident for all the main species in 

the Carpathians (Figure 6.3). Additionally, notice the different GSV ranges, significantly 

larger for beech forests when compared to the coniferous and oak forests. The backscat-

ter coefficient shows the specific raise with GSV up to a SAR wavelength specific satura-

tion point. By main species, the average backscatter values were slightly higher at L-

band over the coniferous forests (Figure 6.3b). For display reasons, a logarithmic model 

was fitted to the data. The fit was very similar for both SAR wavelengths over the high 

biomass beech forests (Figure 6.3c). Different saturation points between the two wave-

lengths are apparent over the coniferous and oak forests (Figure 6.3b,d), suggesting 

changed sensitivity to GSV. 

 

 

Figure 6.3. Scatterplots of cross-polarized backscatter coefficient as a function of grow-
ing stock volume (GSV) for all samples and by main forest species (a–d). Values show 
multi-temporal averages. Grey and black (dashed) lines show logarithmic model fit. 
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 Pixel-Wise GSV Estimation 

Over all sensors, polarizations, and predictor variables combinations, the RMSE, Rel 

RMSE, and r ranged between 238–278 m3 ha−1, 55–65%, −5–6 m3 ha−1, and 0.14–0.48, 

respectively (Table 6.2 and Annex 6-1). As showing results for all possible combinations 

of the predictor variables (19) is problematic, Table 6.2 shows the error metrics for a 

selection of models to understand their variations when expanding the number of pre-

dictor variables. Notice that adding more variables does not translate into more accu-

rate predictions. Additional configurations were provided in Annex 6-1 for complete-

ness. The data is presented by SAR wavelength, multi-frequency configurations and de-

scending C-band passes combinations. 

Table 6.2. GSV accuracy as a function of the independent variables used for the single 
polarized models. Bold numbers show overall results for the models analyzed by GSV 
intervals in Figure 6.4 and Figure 6.5. Abbreviations as follows: RMSE—root mean 
squared error, RelRMSE—relative RMSE, r—Pearson’s correlation coefficient, L—stands 
for L-band, C—stands for C-band, H—horizontal, V—vertical, a—ascending pass, d—de-
scending pass, sd—standard deviation, Ft—forest type, and LIA—local incidence angle. 

Independent 
Variables 

RMSE 
Rel 

RMSE 
Bias r  

Independent 
Variables 

RMSE 
Rel 

RMSE 
Bias r 

L-HV 266.9 62.4 −1.4 0.30  Ca-VH 274.0 63.9 −0.3 0.24 
L-HH 282.9 66.3 3.1 0.14  Ca-VV 275.0 63.9 −2.7 0.21 
L-HV, L-HVsd 254.3 59.5 −1.4 0.35  Ca-VH, Ca-VHsd 263.4 62.6 −0.3 0.28 
L-HV, L-HH 253.0 58.9 0.2 0.36  Ca-VV, Ca-VH 267.0 62.4 0.7 0.25 
L-HV, L-HVsd, Ft 244.0 57.1 0.02 0.41  Ca-VH, Ca-VHsd, Ft 249.0 59.2 2.1 0.38 
L-HV, L-HH, 
L-HH/HV, LIA, Ft 

241.9 56.1 −3.4 0.46  Cd-VV, Cd-VH, 
Cd-VV/VH, LIA, Ft 

245.7 57.0 −4.6 0.41 

L-HV, L-HH/HV, 
Ca-VH, Ca-VV/VH, LIA 

239.9 56.2 1.9 0.45  Ca-VH, Ca-VHsd, Cd-VH, 
Cd-VHsd, Ft, LIAa, LIAd 

249.5 59.5 −0.6 0.40 

Within the single sensor single polarization configuration, the L-band data provided sim-

ilar relative RMSE errors when compared to the C-band data. The small difference was 

explained by the much denser C-band time series, and the use of average backscatter 

over 3 years prior to the forest inventory date. This allowed for a considerable reduction 

in the environmental induced noise (i.e., backscatter variation due to changes in soil and 

vegetation water content) at C-band, where over 150 images were averaged over each 

relative orbit. In contrast, fewer images (5–10) were available for the ALOS PALSAR-2 

sensor over each acquisition frame. Improved GSV retrieval accuracy at C-band was ob-

served when adding as an independent variable either the local incidence angle (LIA) or 

the forest type (FT). However, such improvements were marginal for all accuracy met-

rics. The RMSE, RelRMSE, and r improved, on average, by 15 m3 ha−1, 3%, and 0.1, re-

spectively. Dual polarized models were slightly more accurate (2–5%) when compared 

to single polarized models at both C- and L-bands, while the addition of co- to cross-

polarized backscatter ratios further decreased the estimation error, albeit marginally. 

Adding the time series standard deviation to backscatter and co- to cross-polarized ra-

tios improved the accuracy metrics slightly, suggesting that some information can be 

added to that already contained in the backscatter coefficient. 
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Figure 6.4. GSV retrieval metrics at pixel level for single polarization C- and L-band mod-
els, as well as the combined C- and L-band data: (a) GSV by range, error bars indicate 
standard deviation of the predicted values. (b) Distribution of bias, (c) root mean square 
error, and (d) relative root mean squared error. Dotted lines indicate fitting polynomial 
(a–c) and power (d) curve to the calculated points. The dashed line indicates identity line. 
Bins plotted at average bin value. 

Similarly, adding LIA and/or FT to the models only resulted in marginal improvement, 

most likely being related to the increased number of variables available in the model. 

No synergies were observed in terms of retrieval accuracy, when combining information 

from both ascending and descending C-band passes with model performance not im-

proving over the use of either pass. However, GSV estimation from both ascending and 

descending passes has merit over the rough Carpathian topography, as it limits the ex-

tent of ‘not-observed’ areas, i.e., areas with topographic distortion due to shadows and 

layover which are masked out during SAR processing. Further, the similar error level 

from both passes provides for a homogeneous GSV estimation over the entire land-

scape. Little synergy was also observed when simultaneously using C- and L-band for 

GSV retrieval. Improvements in the RMSE, RelRMSE, and r were noticed with respect to 

using single pass C-band data, but were marginal, i.e., 10 m3/ha, 3%, and 0.05, respec-

tively. In addition, such improvements were observed when adding the LIA to the vari-

ous combinations of SAR frequencies, polarizations, and passes. The information pro-

vided by LIA and Ftype was largely interchangeable in all configurations (single, dual, 

multi-frequency, and multi-pass), as simultaneously using both variables did not im-

prove the results. In fact, the opposite was observed for some of the tested combina-

tions. It seems that LIA partitions data in a similar way to Ftype as oak forests are mostly 
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found on lesser slopes in the hilly region, with conifers being found towards the moun-

tain tops on steep terrain. This explanation is further supported by the fact that adding 

the LIA from different sensors or satellite passes provided no tangible improvement of 

the accuracy metrics. 

Error analysis by intervals (Figure 6.4 for models in bold in Table 6.2) shows much higher 

relative RMSE errors over forests supporting low (<100 m3 ha−1) GSV values at both C- 

and L-bands, which is consistent with previous findings (M. A. Tanase et al., 2014; 

Rodríguez-Veiga et al., 2019). The high relative RMSE are related to the high signal vari-

ability due to the influence of local surface conditions (i.e., soil surface roughness and 

moisture) as direct scattering from the ground dominates the signal in forests support-

ing low GSV levels (van Zyl, 1989). In addition, the relative RMSE metric is unstable at 

lower GSV values, as the denominator approaches zero the relative error approaches 

infinity. Over the remaining GSV intervals the relative RMSE decreased significantly at 

both wavelengths with the minimum values (around 20%) being observed for the 400–

600 m3 ha−1 GSV range. The estimation error was largely dominated by bias, as the co-

efficient of variation (CV) of the error was below one (data not shown), for most GSV 

intervals except the 400–600 m3 ha−1 where the random error dominated, and the 0–

100 m3 ha−1 interval where bias and random error contribution was balanced (0.8 < CV 

< 0.9). Note that the bias was positive over low GSV ranges and negative over the high 

GSV ranges (Figure 6.5b), with a crossover at the GSV range with the lowest errors, 400–

600 m3 ha−1. The standard deviation (SD) of the predicted values did not vary across GSV 

intervals (75–85 m3 ha−1) except for the first bin, where the SD was twice as much (Figure 

6.5a). Similar values were observed over temperate forests in Poland in previous studies 

(Rodríguez-Veiga et al., 2019). Overall, the accuracy assessment shows that GSV is over- 

and under-estimated at low and high GSV values, respectively as the models fitting aims 

at the point defined by the average of the observed and predicted values (Rodríguez-

Veiga et al., 2019). 

The relatively large errors observed for all combinations of predictor variables may be 

related to potential mismatches between the Earth Observation data and the in situ 

samples, as the coordinates at each PSP were reconstructed from the node grid coordi-

nates using the specified distance and azimuth. This may introduce displacements with 

respect to the real location of the NFI plot where field crews were not able to precisely 

measure the required azimuth and distance, or the exact location of the grid node (e.g., 

GPS location error under dense forest canopy may reach several meters). Such position-

ing errors coupled with the relatively small area inventoried may induce errors particu-

larly for border stands. For the remaining NFI samples, the positioning errors should 

have limited effects as Romanian forests stands, averaging between 3.5 and 15 ha from 

plains to mountains, have homogeneous structure and species composition. 
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Figure 6.5. GSV retrieval metrics for 10 × 10 km grid cells for single polarization C-band 
models. Panels (a–d) show the same information as in Figure 6.4. 

 Grid Based GSV Accuracy 

Over the 10 × 10 km grid (244 cells), the RMSE and RelRMSE decreased to 158 

m3 ha−1 and 35%, respectively (average values), with marginal differences being ob-

served between values from ascending (35.2%) and descending (33.8%) satellite passes. 

Averaging GSV values from ascending and descending passes did not result in improved 

accuracy metrics. Further aggregation through the larger 20 × 20 (125 cells) and 30 × 30 

km (78 cells) grids improved RMSE (119 and 105 m3 ha−1, respectively) and RelRMSE 

(29% and 25%, respectively) values, but also increased the bias from 13 to 30 and, 35 

m3 ha−1, respectively, as only two or three bins were available. The RelRMSE for the 30 

× 30 km aggregation level was similar to that observed over the Swedish forests (21.4%) 

at the same scale. However, our retrieval statistics indicate some residual bias, which 

was not the case in Sweden, where a longer wavelength (L-band) was used for retrieval 

and more samples were aggregated (Santoro et al., 2021b). 

When compared to the pixel-based assessment, similar patterns were observed over all 

biomass intervals except for the 0–100 m3 ha−1 range for which no grid cell was available 

(Figure 6.5 for models in bold in Table 6.2). The improvement in retrieval statistics 

seemed related to the absence of low GSV plots (<100 m3 ha−1) where large estimation 

errors were observed at pixel level (Figure 6.4 and Figure 6.5). Notice that the lower 

number of available cells at larger grids precluded a similar analysis for the 20 × 20 and 

30 × 30 km grids. 
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 Comparison to Global Products 

Our results support previous findings which demonstrated increased retrieval accuracies 

for locally calibrated models (Michelakis et al., 2014; Tropek et al., 2014; Rodríguez-

Veiga et al., 2019; Næsset et al., 2020). When compared to the GlobBiomass values (Fig-

ure 6.6), locally derived estimates showed potential to improve the RelRMSE by about 

15% (55.4 vs. 70.5%), decrease the RMSE by about 54 m3 ha−1 (236 vs. 290 m3/ha), and 

increase the correlation between predicted and observe values from 0.2 to 0.5. Such 

improvements, although significant and at a higher (30 vs. 100 m) spatial resolution, are 

still far from the required accuracies needed for operational forest management which 

target 5–10% accuracies for GSV at stand level. Nevertheless, one should notice that 

aggregating the pixel wise GSV to lower spatial resolution (e.g., stand level) has the po-

tential to significantly decrease the RMSE and RelRMSE values (Santoro et al., 2011, 

2015) as also demonstrated by the improvements observed at grid level. The incentive 

in using SAR based GSV estimation from locally calibrate models resides in the oppor-

tunity to better fine tune the model to the local conditions when compared to using 

globally available estimate. In addition, SAR-based maps provide wall to wall cover, 

yearly updates, and the opportunity to derive regional statistics. 

 

Figure 6.6. Growing stock volume estimated by GlobBiomass map at national forest in-
ventory locations. 

 Conclusions 

This study assessed the utility of C- and L-band data for GSV estimation over high grow-

ing stock volume forests in the Carpathians. The study included representative areas 

covering the three main forest species, oak, beech, and coniferous, making up the bulk 

of the Romanian forests. The in situ NFI data and the SAR imagery were acquired be-

tween 2015 and 2016. GSV retrieval was carried out at 30 m pixel size using a machine 

learning (Random Forests) algorithm and various configurations of the independent var-

iables from single sensor single polarization to multi-sensor multi-polarization. The ob-

served RelRMSE varied between 55–66% depending on the input predictor variables. 

For similar predictor variables, the mapping accuracy was slightly higher at L- when com-

pared to C-band. 
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The availability of significantly more datasets at C-band reduced speckle as the much 

denser Sentinel-1 time series seemed to have compensated for the inherent limitations 

of a shorter wavelength. Such a finding suggests that using denser L-band time series, 

as those available from the soon to be launched NISAR mission, have the potential to 

further improve GSV estimation accuracy in high volume forests. The GSV retrieval er-

rors decreased by 5–10% when adding temporal information (i.e., backscatter coeffi-

cient temporal standard deviation) as an independent variable eliminating the need for 

a second polarization. This suggests a high correlation between the information of co- 

and cross-polarized channels, which may be explained by the overall high GSV levels and 

thus the relative low correlation between GSV and backscatter. Little synergies were 

observed when using both C- and L-bands, as well as when jointly using C-band ascend-

ing and descending passes. While the utility of the pixel level GSV values is somewhat 

reduced, their aggregation at grid level decreased the estimation errors (25–35%) and 

provided more reliable estimates which may be useful for regional and national assess-

ments. Future work should focus on reducing GSV errors by fusing the Lidar data ac-

quired by NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission to obtain a 

GSV gridded product that provides more accurate estimates for stock levels at regional 

to national levels. In addition, dense L-band temporal series from the future NISAR mis-

sion should be tested to ascertain the potential to improve the locally derived GSV esti-

mates, as datasets from the P-band BIOMASS mission may not be available over the 

Carpathians. 

As for the limitations of this study, the most important is related to the design of NFIs, 

which are not optimized for calibrating and validating remote sensing products (Santoro 

et al., 2021b), the large differences between the amount of data collected by the two 

SAR sensors, which limited a like-for-like comparison, and the available DEM (SRTM 

DEM) used for terrain normalization as a more precise DEM (e.g., Lidar based or Tan-

dem-X DEM) allows for improved scattering area estimation reducing the effect of to-

pography on the backscatter and thus improving the retrieval of the target biophysical 

characteristic (Small, 2011; Borlaf-Mena et al., 2020).
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 Annexes 

Annex 6-1 (part 1). GSV accuracy as a function of the selected independent variables for a range of configurations. Abbreviations as follows: 
RMSE—root mean squared error, RelRMSE—relative RMSE, r—Pearson’s correlation coefficient, L—stands for L-band, C—stands for C-band, H—
horizontal, V—vertical, a—ascending pass, d—descending pass, sd—standard deviation, Ft—forest type, and LIA—local incidence angle. 

Independent Variables RMSE RelRMSE Bias r  Independent Variables RMSE RelRMSE Bias r 

Single polarized models based on L-band data  Single polarized models based on C-band data 

L-HH 282.9 66.3 3.1 0.14  Ca-VV 275.0 63.9 −2.7 0.21      
 Cd-VV 277.5 64.6 −2.9 0.19 

L-HH, L-HHsd 264.0 61.6 −1.1 0.24  Cd-VH, Cd-VHsd 265.0 62.7 −2.6 0.26      
 Ca-VV, Ca-VVsd 262.6 62.4 −0.5 0.27      
 Cd-VV, Cd-VVsd 264.6 62.8 0.36 0.26 

L-HV, L-HVsd, Ft 244.0 57.1 0.02 0.41  Ca-VH, Ca-VHsd, Ft 249.0 59.2 2.1 0.38 
L-HH, L-HHsd, Ft 244.2 57.6 4.3 0.40  Cd-VH, Cd-VHsd, Ft 253.7 59.8 −3.8 0.36      

 Ca-VV, Ca-VVsd, Ft 248.7 59.3 1.0 0.39      
 Cd-VV, Cd-VVsd, Ft 249.9 59.5 3.1 0.37 

L-HV, L-HVsd, LIA 246.4 57.6 1.5 0.40  Ca-VH, Ca-VHsd, LIA 256.8 60.9 −2.0 0.31 
L-HH, L-HHsd, LIA 250.7 58.8 0.75 0.37  Cd-VH, Cd-VHsd, LIA 260.0 61.2 −3.5 0.32      

 Ca-VV, Ca-VVsd, LIA 257.4 61.3 1.7 0.30      
 Cd-VV, Cd-VVsd, LIA 261.1 61.7 −3.5 0.30 

L-HV, L-HVsd, LIA, Ft 240.3 56.2 −0.6 0.44  Ca-VH, Ca-VHsd, LIA, Ft 248.4 59.3 2.4 0.38 
L-HH, L-HHsd, LIA, Ft 237.7 55.9 3.4 0.45  Cd-VH, Cd-VHsd, LIA, Ft 252.5 59.7 −0.3 0.37      

 Ca-VV, Ca-VVsd, LIA, Ft 249.5 59.5 3.7 0.38      
 Cd-VV, Cd-VVsd, LIA, Ft 249.8 58.6 −5.4 0.39 
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Annex 6-1 (part 2). GSV accuracy as a function of the selected independent variables for a range of configurations. Abbreviations as follows: 
RMSE—root mean squared error, RelRMSE—relative RMSE, r—Pearson’s correlation coefficient, L—stands for L-band, C—stands for C-band, H—
horizontal, V—vertical, a—ascending pass, d—descending pass, sd—standard deviation, Ft—forest type, and LIA—local incidence angle. 

Independent variables RMSE RelRMSE Bias r  Independent variables RMSE RelRMSE Bias r 

Multi-polarized models based on L-band data  Multi-polarized models based on C-band data 

L-HV, L-HH 253.0 58.9 0.2 0.36  Ca-VV, Ca-VH 267.0 62.4 0.7 0.25      
 Cd-VV, C-VH 262.0 61.1 0.2 0.27 

L-HV, L-HH, L-HH/HV 251.9 59.1 2.5 0.39  Ca-VV, Ca-VH, Ca-VV/VH 264.8 61.8 3.3 0.24      
 Cd-VV, Cd-VH, Cd-VV/VH 260.6 61.2 2.6 0.28 

L-HV, L-HH, L-HH/HV, Ft 249.2 58.0 0.42 0.40  Ca-VV, Ca-VH, Ca-VV/VH, Ft 253.1 59.0 −1.0 0.35      
 Cd-VV, Cd-VH, Cd-VV/VH Ft 248.8 58.0 −1.9 0.38 

L-HV, L-HH, L-HH/HV, LIA 242.7 56.3 −2.1 0.43  Ca-VV, Ca-VH, Ca-VV/VH, LIA 253.4 59.7 6.1 0.30      
 Cd-VV, Cd-VH, Cd-VV/VH, LIA 251.9 58. −0.5 0.34 

L-HV, L-HH, L-HH/HV, LIA, Ft 241.9 56.1 −3.4 0.46  Ca-VV, Ca-VH, Ca-VV/VH, LIA, Ft 252.4 58.5 −3.0 0.36      
 Cd-VV, Cd-VH, Cd-VV/VH, LIA, Ft 245.7 57.0 −4.6 0.41 

L-HV, L-HH/HV 252.8 58.8 −0.1 0.38  Ca-VH, Ca-VV/VH 264.2 61.5 −1.8 0.26      
 Cd-VH, Cd-VV/VH 263.9 61.4 −3.5 0.27 

L-HH, L-HH/HV 251.5 58.6 1.2 0.36  Ca-VV, Ca-VV/VH 265.3 62.0 0.4 0.25      
 Cd-VV, Cd-VV/VH 262.3 61.3 −0.1 0.26 

L-HV, L-HH/HV, LIA 242.9 56.9 2.6 0.42  Ca-VH, Ca-VV/VH, LIA 258.8 60.4 0.4 0.29      
 Cd-VH, Cd-VV/VH, LIA 253.8 59.2 −1.1 0.35 

L-HV, L-HH/HV, LIA, Ft 241.2 56.3 1.4 0.45  Ca-VV, Ca-VV/VH, LIA, Ft 249.2 58.1 1.4 0.36 
L-HH, L-HH/HV, LIA, Ft 239.1 55.9 2.7 0.46  Cd-VV, Cd-VV/VH, LIA, Ft 246.0 57.4 −0.5 0.41 
L-HV, L-HH/HV, L-HVsd 247.0 58.0 1.7 0.39  Ca-VH, Ca-VV/VH, Ca-VHsd 259.4 61.3 −2.4 0.31 
L-HH, L-HH/HV, L-HHsd 248.6 58.1 −0.9 0.38  Cd-VH, Cd-VV/VH, Cd-VHsd 261.6 62.2 2.8 0.28 
L-HV, L-HH/HV, L-HVsd, LIA 242.8 56.6 0.9 0.44  Ca-VH, Ca-VV/VH, Ca-VHsd, LIA 258.2 61.4 0.8 0.31 
L-HV, L-HH/HV, L-HVsd, LIA, Ft 236.0 55.4 2.1 0.47  Ca-VH, Ca-VV/VH, Ca-VHsd, LIA, Ft 248.9 59.5 2.0 0.38 
L-HH, L-HH/HV, L-HHsd, LIA, Ft 237.7 55.7 1.7 0.48  Cd-VH, Cd-VV/VH, Cd-VHsd, LIA, Ft 246.8 58.3 −1.3 0.42 

Multi-frequency models (C- and L-band data)  Models based on C-band data from ascending and descending passes 

L-HV, Ca-VV/VH 258.7 60.4 −0.3 0.32  Ca-VV, Ca-VVsd, Cd-VV, Cd-VVsd 256.9 61.2 −1.3 0.32 
L-HV, Ca-VV/VH, Ft 249.0 58.1 −1.6 0.39  Ca-VH, Ca-VHsd, Cd-VH, Cd-VHsd 258.3 61.2 −3.9 0.32 
L-HV, Ca-VV/VH, Cd-VV/VH 252.0 59.1 2.7 0.34  C-VVa, C-VVa sd, C-VVd, C-VVd sd, Ft 249.4 59.8 1.5 0.38 
L-HV, Ca-VV/VH, Cd-VV/VH, LIA 243.2 57.2 4.9 0.41  Ca-VH, Ca-VHsd, Cd-VH, Cd-VHsd, Ft 254.2 59.8 −3.5 0.37 
L-HV, L-HH/HV, Ca-VV, Ca-VV/VH, LIA 239.3 55.8 2.6 0.45  C-VVa, C-VVa sd, C-VVd, C-VVd sd, Ft, LIAa, LIAd 248.6 59.0 −1.4 0.40 
L-HV, L-HH/HV, Ca-VV/VH, Cd-VV/VH, LIA 240.3 56.1 0.2 0.45  Ca-VH, Ca-VVVH, Ca-VVsd, Cd-VH, Cd-VVVH, Cd-VVsd 251.6 60.0 1.9 0.34 
L-HV, L-HH/HV, Ca-VV/VH, Ca-VHsd, Cd-VV/VH, Cd-VHsd, LIA 242.3 57.6 −0.3 0.46  Ca-VV, Ca-VVVH, Cd-VV, Cd-VVVH, Ca-VHsd, Cd-VHsd 254.6 60.7 0.6 0.33 

L-HV, L-HH/HV, Ca-VH, Ca-VV/VH, Cd-VH, Cd-VV/VH, LIA 240.1 57.3 1.2 0.46       
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Conclusions 

Forests are both a vital part of Earth’s climate system and a source of livelihood for many 

people around the world. To make a sustainable use of forest resources they need to be 

quantified, a task often completed through statistic forest inventories based on in situ 

data. The main limitations of such forest inventories are the sparse sampling, as well as 

the time and expense required to perform them. Remote sensing can complement said 

inventories generalizing field samples to a complete coverage and at short repeat inter-

vals. 

This thesis has analyzed the possibility of extracting forest variables using SAR data in a 

mountainous area in the Romanian South-eastern Carpathians. A large portion of the 

work has been devoted to assessing possible estimation bias related to the influence of 

the terrain. The influence of the digital elevation model (DEM) over Sentinel-1 image 

normalization was assessed. Several DEMs were tested (SRTM, AW3D, TanDEM-X), with 

TanDEM-X DEM providing the largest reduction of the differences between orbits. Said 

reduction was particularly noticeable for steep areas or complex landforms such as val-

leys, where it reduced the appearance of pseudo-shadow, “dark” areas that can cause 

misclassification. 

The rugged topography of the study area causes frequent occlusions and distortions in 

the SAR images. Said distortions depend on the viewing geometry, and thus, it is possible 

to increase coverage using data acquired from different orbits through mosaicking. Two 

workflows were assessed, by-orbit classification of combination of annual statistics, and 

classification of multi-orbit weighted statistics. Accuracy was slightly higher for the by-

orbit strategy, whereas the mosaic strategy was affected by higher errors due an in-

creased standard deviation of amplitude. Said increase was attributed to differences be-

tween the images acquired from different orbits. These could have been caused by un-

der-corrected radiometric distortions, or directional effects associated with slope orien-

tation, as it can alter the distance signal traverses within forest canopies. For example, 

if slope surface is parallel to wave propagation direction the distance traversed will be 

larger, whereas if it is perpendicular the distance will be shorter. 

Forest mask creation was accurate when using amplitude annual statistics, albeit rele-

vant errors could appear when including images processed with older versions of Senti-

nel-1 instrument processing facility. Adding long-term coherence helped separating for-

est from urban areas, as it is the only land cover that retains coherence for long periods. 

Short-term (minimum temporal baseline possible) coherence statistics were useful for 

separating forest from low-vegetation sub-classes. Detecting selective logging based on 

Sentinel-1/2 imagery proved to be challenging due saturation of the relationship be-

tween cover and sensor wavelengths, or the influence of tree phenology. 
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Considering the presence of directional effects, a forest classification strategy was de-

vised to separate between main forest type taking advantage of species specific pheno-

logical cycles. An ensemble of models relating amplitude and incidence angle was em-

ployed to identify forest types and understand their phenology. Modelled results 

showed 1) canopy transmission varies with leaf dynamics, 2) broadleaf and needleleaf 

forests have distinct “phenological” signatures, and 3) it is possible to use said signature 

to separate said classes with high accuracy.  

Estimation of above ground biomass from C-band Sentinel-1 and L-band ALOS PALSAR 2 

data attained similar results, with little gain observed when both wavelengths were em-

ployed together, as they seem to convey similar information. However, training a local 

model for the study area did result in an increase of accuracy when compared with 

global biomass estimates underlining the importance of adjusting models sensitive to 

local conditions. 

Future lines of work 

The work reflected in this thesis is a relevant steppingstone for future studies. The meth-

ods used for DEM evaluation could be employed to assess new models, or to select the 

most adequate DEM over a given area. The fitting methodology employed for forest 

type classification could be extended substituting by-acquisition fitting with multi-

date/multi-obit fitting. This could allow obtaining a description of phenology and spatial 

estimates of canopy opacity in combination with canopy height data from LiDAR sensors 

(i.e., GEDI). Phenology descriptors could be employed for trend removal, helping to sep-

arate selective logging or insect attacks from phenology. Canopy opacity could be used 

to analyze parameters such as canopy moisture or leaf area index. Other possible appli-

cations could be mosaic generation and improvement of forest presence/absence clas-

sification, or biomass estimation, reducing the influence of phenology and terrain orien-

tation on the radar signal.
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