1,231 research outputs found

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Classification of nucleic acid amplification on ISFET arrays using spectrogram-based neural networks.

    Get PDF
    The COVID-19 pandemic has highlighted a significant research gap in the field of molecular diagnostics. This has brought forth the need for AI-based edge solutions that can provide quick diagnostic results whilst maintaining data privacy, security and high standards of sensitivity and specificity. This paper presents a novel proof-of-concept method to detect nucleic acid amplification using ISFET sensors and deep learning. This enables the detection of DNA and RNA on a low-cost and portable lab-on-chip platform for identifying infectious diseases and cancer biomarkers. We show that by using spectrograms to transform the signal to the time-frequency domain, image processing techniques can be applied to achieve the reliable classification of the detected chemical signals. Transformation to spectrograms is beneficial as it makes the data compatible with 2D convolutional neural networks and helps gain significant performance improvement over neural networks trained on the time domain data. The trained network achieves an accuracy of 84% with a size of 30kB making it suitable for deployment on edge devices. This facilitates a new wave of intelligent lab-on-chip platforms that combine microfluidics, CMOS-based chemical sensing arrays and AI-based edge solutions for more intelligent and rapid molecular diagnostics

    The Multicorder: A Handheld Multimodal Metabolomics-on-CMOS Sensing Platform

    Get PDF
    The use of CMOS platforms in medical point-of-care applications, by integrating all steps from sample to data output, has the potential to reduce the diagnostic cost and the time from days to seconds. Here we present the `Multicorder' technology, a handheld versatile multimodal platform for rapid metabolites quantification. The current platform is composed of a cartridge, a reader and a graphic user interface. The sensing core of the cartridge is the CMOS chip which integrates a 16×16 array of multi-sensor elements. Each element is composed of two optical and one chemical sensor. The platform is therefore capable of performing multi-mode measurements: namely colorimetric, chemiluminescence, pH sensing and surface plasmon resonance. In addition to the reader that is employed for addressing, data digitization and transmission, a tablet computer performs data collection, visualization, analysis and storage. In this paper, we demonstrate colorimetric, chemiluminescence and pH sensing on the same platform by on-chip quantification of different metabolites in their physiological range. The platform we have developed has the potential to lead the way to a new generation of commercial devices in the footsteps of the current commercial glucometers for quick multi-metabolite quantification for both acute and chronic medicines

    Are Brain-Computer Interfaces Feasible withIntegrated Photonic Chips?

    Get PDF
    The present paper examines the viability of a radically novel idea for brain-computer interface (BCI), which could lead to novel technological, experimental and clinical applications. BCIs are computer-based systems that enable either one-way or two-way communication between a living brain and an external machine. BCIs read-out brain signals and transduce them into task commands, which are performed by a machine. In closed-loop the machine can stimulate the brain with appropriate signals. In recent years, it has been shown that there is some ultraweak light emission from neurons within or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling pieces of evidence are beginning to emerge that UPE may well play an informational role in neuronal functions. In fact, several experiments point to a direct correlation between UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow, cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on the interior surface of the skull may enable a new form of extraction of the relevant features from the UPE signals. In the current technology landsacepe, photonic technologies are advancing rapidly and poised to overtake many electrical technologies, due to their unique advantages, such as miniaturization, high speed, low thermal effects, and large integration capacity that allow for high yield, volume manufacturing, and lower cost. For our proposed BCI, we are making some very major conjectures, which need to be experimentally verified, and therefore we discuss the controversial parts, feasibility of technology and limitations, and potential impact of this envisaged technology if successfully implemented in the future.BERC.2018-2021 Severo Ochoa.SEV-2017-071

    The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics

    Get PDF
    Planar microelectrode arrays (MEAs) are devices that can be used in biomedical and basic in vitro research to provide extracellular electrophysiological information about biological systems at high spatial and temporal resolution. Complementary metal oxide semiconductor (CMOS) is a technology with which MEAs can be produced on a microscale featuring high spatial resolution and excellent signal-to-noise characteristics. CMOS MEAs are specialized for the analysis of complete electrogenic cellular networks at the cellular or subcellular level in dissociated cultures, organotypic cultures, and acute tissue slices; they can also function as biosensors to detect biochemical events. Models of disease or the response of cellular networks to pharmacological compounds can be studied in vitro, allowing one to investigate pathologies, such as cardiac arrhythmias, memory impairment due to Alzheimer's disease, or vision impairment caused by ganglion cell degeneration in the retin

    Beyond solid-state lighting: Miniaturization, hybrid integration, and applications og GaN nano- and micro-LEDs

    Get PDF
    Gallium Nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global market of efficient, long-lasting and ubiquitous white light sources has developed around the inception of the Nobel-price-winning blue GaN LEDs. Today GaN optoelectronics is developing beyond lighting, leading to new and innovative devices, e.g. for micro-displays, being the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imaging, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (microLEDs and nanoLEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN microLEDs with silicon microelectronics in a fully hybrid approach. GaN LED technology today is even spreading into the realm of display technology, which has been occupied by organic LED (OLED) and liquid crystal display (LCD) for decades. In this review, the technological transition towards GaN micro- and nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art

    Microfabricated electrochemical systems

    Get PDF

    CMOS IMAGE SENSORS FOR LAB-ON-A-CHIP MICROSYSTEM DESIGN

    Get PDF
    The work described herein serves as a foundation for the development of CMOS imaging in lab-on-a-chip microsystems. Lab-on-a-chip (LOC) systems attempt to emulate the functionality of a cell biology lab by incorporating multiple sensing modalidites into a single microscale system. LOC are applicable to drug development, implantable sensors, cell-based bio-chemical detectors and radiation detectors. The common theme across these systems is achieving performance under severe resource constraints including noise, bandwidth, power and size. The contributions of this work are in the areas of two core lab-on-a-chip imaging functions: object detection and optical measurements

    Development of a Dual-Mode CMOS Microelectrode Array for the Simultaneous Study of Electrochemical and Electrophysiological Activities of the Brain

    Get PDF
    Medical diagnostic devices are in high demand due to increasing cases of neurodegenerative diseases in the aging population and pandemic outbreaks in our increasingly connected global community. Devices capable of detecting the presence of a disease in its early stages can have dramatic impacts on how it can be treated or eliminated. High cost and limited accessibility to diagnostic tools are the main barriers preventing potential patients from receiving a timely disease diagnosis. This dissertation presents several devices that are aimed at providing higher quality medical diagnostics at a low cost. Brain function is commonly studied with systems detecting the action potentials that are formed when neurons fire. CMOS technology enables extremely high-density electrode arrays to be produced with integrated amplifiers for high-throughput action potential measurement systems while greatly reducing the cost per measurement compared to traditional tools. Recently, CMOS technology has also been used to develop high-throughput electrochemical measurement systems. While action potentials are important, communication between neurons occurs by the flow of neurotransmitters at the synapses, so measurement of action potentials alone is incapable of fully studying neurotransmission. In many neurodegenerative diseases the breakdown in neurotransmission begins well before the disease manifests itself. The development of a dual-mode CMOS device that is capable of simultaneous high-throughput measurement of both action potentials and neurotransmitter flow via an on-chip electrode array is presented in this dissertation. This dual-mode technology is useful to those studying the dynamic decay of the neurotransmission process seen in many neurodegenerative diseases using a low-cost CMOS chip. This dissertation also discusses the development of more traditional diagnostic devices relying on PCR, a method commonly used only in centralized laboratories and not readily available at the point-of-care. These technologies will enable faster, cheaper, more accurate, and more accessible diagnostics to be performed closer to the patient

    Towards Single-Chip Nano-Systems

    Get PDF
    Important scientific discoveries are being propelled by the advent of nano-scale sensors that capture weak signals from their environment and pass them to complex instrumentation interface circuits for signal detection and processing. The highlight of this research is to investigate fabrication technologies to integrate such precision equipment with nano-sensors on a single complementary metal oxide semiconductor (CMOS) chip. In this context, several demonstration vehicles are proposed. First, an integration technology suitable for a fully integrated flexible microelectrode array has been proposed. A microelectrode array containing a single temperature sensor has been characterized and the versatility under dry/wet, and relaxed/strained conditions has been verified. On-chip instrumentation amplifier has been utilized to improve the temperature sensitivity of the device. While the flexibility of the array has been confirmed by laminating it on a fixed single cell, future experiments are necessary to confirm application of this device for live cell and tissue measurements. The proposed array can potentially attach itself to the pulsating surface of a single living cell or a network of cells to detect their vital signs
    • …
    corecore