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A B S T R A C T

The COVID-19 pandemic has highlighted a significant research gap in the field of molecular diagnostics.
This has brought forth the need for AI-based edge solutions that can provide quick diagnostic results whilst
maintaining data privacy, security and high standards of sensitivity and specificity. This paper presents a
novel proof-of-concept method to detect nucleic acid amplification using ISFET sensors and deep learning.
This enables the detection of DNA and RNA on a low-cost and portable lab-on-chip platform for identifying
infectious diseases and cancer biomarkers. We show that by using spectrograms to transform the signal to the
time–frequency domain, image processing techniques can be applied to achieve the reliable classification of the
detected chemical signals. Transformation to spectrograms is beneficial as it makes the data compatible with
2D convolutional neural networks and helps gain significant performance improvement over neural networks
trained on the time domain data. The trained network achieves an accuracy of 84% with a size of 30𝑘𝐵 making
it suitable for deployment on edge devices. This facilitates a new wave of intelligent lab-on-chip platforms that
combine microfluidics, CMOS-based chemical sensing arrays and AI-based edge solutions for more intelligent
and rapid molecular diagnostics.
1. Introduction

The COVID-19 pandemic has highlighted the need for rapid and
accurate diagnosis of infectious diseases. AI-based edge solutions have
shown significant promise towards the real-time classification of sensor
data and have the potential to realise fully integrated sensing and
processing systems which operate intelligently with their data. The use
of Lab-on-Chip (LoC) devices can enable tests to be brought to the point
of need and therefore stand to benefit from the use of edge-based AI.
Towards this goal, this work introduces a new methodology involving
spectrograms and AI for portable CMOS-based LoC diagnostic platforms
that can rapidly identify infectious diseases and cancers by using arrays
of electrochemical sensors.

Infectious disease detection commonly relies on identifying two
types of biomarkers. The first involves, detecting antigens specific to
the pathogen and is achieved by reading the signal associated with
antigen–antibody binding. Lateral flow devices (LFD) are the most
accessible readout technology, achieving low-cost diagnostics at the
point of care, thanks to their simplicity of use and manufacture, at
the expense of accuracy of the test [1]. The second involves, detecting
nucleic acids using molecular methods to target and amplify a known
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sequence. Quantification can be achieved by analysing the speed of
the reaction. Common nucleic acid amplification tests (NAATs) include
the polymerase chain reaction (PCR) and loop-mediated isothermal
amplification (LAMP). PCR is the gold-standard laboratory technique
and is preferred for high-accuracy diagnostics. Both techniques are
highly specific and commonly only result in amplification when their
specific nucleic acid target sequence is present in the solution.

There are several readout methods associated with biomarker de-
tection. Fluorescence methods are currently very common and well
suited for applications in specialised laboratories as they rely on bulky
and expensive optical instrumentation [2]. However, they fall short
of the requirements of point-of-care diagnostics in low-resource set-
tings. In this context, electrochemical sensing in CMOS technology is
a promising alternative that leverages the economies of scale of the
semiconductor industry and combines scalability, miniaturisation and
high accuracy. Ion-Sensitive Field-Effect Transistors (ISFETs) [3] are
electrochemical sensors which carry the potential to bring the accuracy
of molecular methods with the portability of the LFD by leveraging the
evolution of CMOS technology in accordance with Moore’s law [4]. IS-
FET sensors were first introduced by Bergveld in 1972 [3] by replacing
vailable online 12 May 2023
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Fig. 1. Concept workflow for the proposed method: ML for infectious disease diagnostics using LoC platform. Sample from the patient is loaded onto microchip A in cartridge
B. The data is preprocessed and passed through a spectrogram-based AI classifier to identify the presence of an infection.
the gate oxide of a transistor with an insulating membrane for sensing
pH changes in the solution at the sensor surface. Once their imple-
mentation was achieved in unmodified CMOS technology [5], ISFETs
have been adopted as an industry-standard method for next-generation
DNA sequencing (Ion Torrent) [6] and recently have been reported for
infectious disease and cancer diagnostics [7–9]. Coupled with LAMP,
this technology allows for the detection of amplification in samples of
small volume [10] and with minor alterations to the assay (the reaction
mix is only weakly buffered to allow for proton release during the
reaction) without the need for complex thermocycling. ISFETs also
allow for the integration of instrumentation within the same system-
on-chip. This technique has previously been used to mitigate device
non-idealities (such as offset and drift) and further allow for accurate
detection.

ISFETs suffer from non-idealities with drift posing the main chal-
lenge to extract the signal generated by nucleic acid amplification.
The frequency range of drift and the signal of interest are within
10 mHz to 100 mHz approximately. So far previous works have focussed
on standard signal processing methods, identifying an inflection point
in the time-series output signal as the amplification event [11,12].
However, this method is compromised by a high drift rate and low
signal amplitude and is highly sensitive to any instability or additional
noise in the sensor output.

Deep neural networks are a popular tool in the field of healthcare,
with medical imaging applications ranging from diagnostics to assistive
surgery [13–18]. Deep learning [19] has become one of the greatest
success stories in the field of computer vision [20]. However, a vast
amount of data is required to effectively train neural networks [21,
22]. This highlights a huge challenge in data collection for the deep
learning community, as the crucial role of patient privacy and security
needs to be respected [23]. Deep learning is helping physicians by
demonstrating promising results for complex diagnostics in radiol-
ogy [24], dermatology [25,26], ophthalmology [27], ureteroscopy [16]
and pathology [28]. These advances bring forth the opportunity to
extend deep learning solutions to point-of-care diagnostic devices for
infectious diseases as illustrated in Fig. 1.

This paper proposes a framework to efficiently identify nucleic acid
amplification from ISFET arrays, towards a fully integrated, portable di-
agnostic platform, using a novel combination of spectrogram processing
and neural networks. It is the first proof-of-concept study for the use of
deep learning techniques to improve on the accuracy of classification of
ISFET-based nucleic acid amplification data by relying on its frequency
spectrum. A dataset of nucleic acid amplification was selected from two
categories of diagnostic assays, namely SARS-CoV-2 and three cancer
biomarkers. To benchmark our work in the absence of earlier research
on this dataset, a time-based approach is first proposed and then
2

compared against the spectrogram approach to understand how neural
networks can best visualise ISFET data for biomarker detection. Finally,
an edge implementation with the potential to become a tool in routine
diagnostics and future pandemics is proposed. The contributions of this
work include the following:

• a benchmark for combining the field of deep learning with point-
of-care lab-on-chip (LoC) diagnostics for infectious diseases and
cancer

• a novel spectrogram-based approach that facilitates the applica-
tion of image-processing ML techniques, including 2D-CNNs, for
the classification of ISFET data

• an approach that can help train neural networks with a limited
dataset of infectious diseases for high precision and accuracy

• a framework for machine intelligent LoC diagnostic platforms by
leveraging the combined advances in the fields of spectrogram,
deep learning and electrochemical-based detection to (1) improve
upon the diagnostic accuracy of conventional methods, (2) trans-
fer learning for faster deployment of tests, (3) reduce bandwidth
requirement for sensor data transfer, (4) reduce carbon footprint,
(5) have a lower cost and (6) promote data privacy and security.

2. Related work

2.1. ISFETs

𝑉𝑡ℎ(𝐼𝑆𝐹𝐸𝑇 ) = 𝑉𝑡ℎ(𝑀𝑂𝑆𝐹𝐸𝑇 ) + 𝛾 + 𝛼𝑆𝑁 𝑝𝐻 (1)

Various circuits have been proposed to achieve sensor readout, i.e. to
translate the threshold voltage variation into a signal. An exhaustive
review can be found in [29]. In the context of this paper, the ISFET
interface leads to an output signal 𝑉𝑜 that is linearly related to pH.

Measurement of pH in a solution allows for the detection of DNA
amplification on-chip: this is because DNA amplification results in a
release of protons during nucleotide incorporation (Eq. (2)). Hence,
detecting a pH change indicates the amplification of DNA on the chip
surface [7,30].

𝐷𝑁𝐴𝑛 + 𝑑𝑁𝑇𝑃 → 𝐷𝑁𝐴𝑛+1 + 𝑃𝑃𝑖 +𝐻+ (2)

However, despite the great potential, ISFETs present a number of non-
idealities that set great challenges for the interpretation of the data.
Apart from the electrical noise, ISFETs suffer from certain sources of
noise that are specific to the technology. Refer to [29] for an exhaustive
discussion on the limitations of ISFET technology in relation to the
physical properties of the sensor. In this context, the impact of the

non-idealities on the output signal is described as:
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Fig. 2. ISFET overview. (a) Structure of an ISFET sensor fabricated in unmodified CMOS technology [5]. (b) Illustration of main sensor non-idealities (different curves are output
from sensors on the same array). (c) Schematic of the circuit required for array integration of the ISFET.
• Trapped charge during fabrication at the interfaces of the sensing
materials [31] causes an offset of the threshold voltage of the
transistor. This offset induces a mismatch between sensors and
may drive some out of the range of readout Fig. 2(b).

• Drift is a modification of the threshold voltage of the transistor
over time, caused by the chemical interaction between the ISFET
surface and the solution [32]. It is a complex phenomenon that is
challenging to model mathematically because of its highly unpre-
dictable behaviour. A dependence upon several factors has been
shown, such as surface geometry and material, sensor size, pH
of the solution and readout configuration [33]. In practice, drift
results in a monotonic exponential decay in the signal, as shown
in Fig. 2(b). The drift behaviour has been shown to demonstrate
high stochasticity, and may often exceed the chemical signal in
amplitude, adding to the challenge of output classification.

The limitations in ISFET performance motivate the integration of the
sensors onto large arrays [4]. This allows the collection of a large
amount of spatio-temporal data for each experiment to compensate for
the inaccuracies of the individual sensor outputs. The output can be
interpreted as a series of frames of 𝑝𝐻 values, where each frame is
equivalent to a chemical image and each sensor acts as a pixel. The data
used in this paper is the output of a 78 × 56 sensing array fabricated in
350 nm CMOS technology with 1 μm SiO2 with 1 μm SiN4 on top as the
sensing surface obtained using Serial Parallel Interface (SPI) as shown
in Fig. 2(c).

2.2. AI for ISFETs

AI techniques are slowly becoming a topic of interest in the field
of ISFET sensing. Whilst circuit design has been the foremost method
of improving sensor performance [29], recent efforts have been re-
ported using deep learning networks and neuromorphic architectures to
combat ISFET non-idealities. The use of Multi-layer perceptron, linear
regression, support vector machine, decision trees, random forests,
LSTM and GRU have been proposed to compensate for temperature
and temporal drift in ISFETs [34,35]. Virtual training feature generation
and subsequent training of SVM and ANNs have also been proposed
for separating light and pH signals in dual-gated ISFETs [36]. An alter-
native approach is embedding neuromorphic architectures and using
backpropagation as part of the sensor front-end to help compensate for
non-ideal effects [37] by using the spatial correlation among neighbour-
ing sensors [38]. While the majority of these efforts have been focused
on improving sensor performance, we propose a method to extend the
benefits of AI to be used as a classification tool for the ISFET data.
3

2.3. Spectrograms and AI

Section 2.1 presents a possible analogy between the ISFET array
output and a set of frames, i.e. a video. In contrast, we propose
an alternative analogy between an ISFET output and an audio sig-
nal: where each sensor output is treated independently as a time
series. This allows us to explore an entirely new set of processing
techniques for experiment classification. When treating audio signals,
the choice of how to treat a signal is non-trivial. The signal can be
processed in the original time-domain or transformed with a number
of methods, including Mel Frequency Cepstral Coefficients (MFCCs),
Magnitude spectra and Spectrograms [39,40]. Spectrograms have been
used for animal audio classification in combination with Siamese neural
networks (SNN), clustering techniques and Support vector machines
(SVM) [41]. In the context of cough recognition from audio recordings,
Mel-spectrograms have been proposed as data pre-processing technique
for CNN classification [42].

The same question has been raised for ECG signals, where 99%
classification accuracy in arrythmia classification has been shown by
transforming the signal in time–frequency domain with Short-Time
Fourier Transform (STFT)-based spectrograms, and using 2D image
processing techniques for classification [43]. Similarly for EEG signals,
stacked multi-channel EEG spectrograms have been used for training
DCNNs for REM Behaviour Disorder (RBD) diagnosis [44]. The EEG
spectrograms have also been used for Autism Spectrum disorder using
SVM classifiers [45]. The successful application of these algorithms to
biological signals poses the justification for the approach proposed in
this paper, that is employing spectrograms and CNNs on ISFET outputs
for classification.

3. Data collection

Nucleic acid amplification tests, such as the polymerase chain re-
action (qPCR), result in amplification events where a specific nucleic
acid sequence is detected. These amplification events result in the
formation of large quantities of DNA. With each addition of a nucleic
acid to a double-stranded DNA sequence, one proton is released into
the solution [46]. qPCR usage is limited within point-of-care settings,
predominantly due to the requirement for thermal cycling [47]. Loop-
mediated isothermal amplification (LAMP) is a rapid, isothermal and
quantitative amplification technique [48]. The addition of reverse tran-
scriptases into LAMP assays (RT-LAMP) also results in the detection of
RNA sequences. As a result, RT-LAMP has been utilised in the detection
of SARS-CoV-2 mRNA, prostate cancer mRNA and influenza mRNA for
diagnostics [7,49,50]. Augmentation of LAMP assays to generate a pH
readout has previously been established [51]. This work utilises aug-

mented RT-LAMP assays (RT-pHLAMP) for detecting the 𝑁 gene from
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Table 1
Dataset distribution.

Biomarker No. of samples No. of active pixels In training In testing

N gene (SARS-CoV-2) 24 23193 ✓ ✓

Cancer marker 1 mRNA 9 14198 ✓ ✓

Cancer marker 2 mRNA 12 24259 ✓ ✓

Cancer marker 3 DNA 4 5320 X ✓

Negatives 34 43876 ✓ ✓

Dataset-1 (Negatives, Cancer Marker 1 and 2 mRNA) 5 7897 X ✓
e
p
I
i
b
S
𝑆

w

𝑤

SARS-CoV-2. The specificity of this assay has been robustly ratified [7].
Cancer markers 1,2 (mRNA) [8] and 3 (DNA) [9] show potential as
circulating biomarkers for cancer diagnosis and prognosis. As such, RT-
pHLAMP and pHLAMP assays for these markers were implemented on
the ISFET sensing array; their data is also included in the dataset.

Microfluidic manifolds were used to house the reaction mixtures
over the ISFET sensing array. SARS-CoV-2 samples were contained
within a bio-compatible resin (MED-AMB-10) with two 5 μL chambers,
one with a positive sample (i.e, would render a release of protons)
and one negative sample. The RT-pHLAMP and pHLAMP assays for
cancer marker detection were housed in an acrylic manifold with one
20 μL chamber. Positive and negative samples in this instance were run
separately. Each chamber of each assay type was affixed to the ISFET
sensing array with an adhesive gasket (Double-sided smooth lamination
filmic tape, Tesa®) to avoid leakage of the RT-pHLAMP or pHLAMP
solution. The reference electrode (AgCl/Ag, 0.03 mm chloridised silver

ire) was secured between the adhesive gasket and the ISFET sensing
rray. A 100mV voltage spike from the reference electrode occurs at the
eginning of the experiment. This indicates if the reference electrode
s connected to the circuit and illustrates which pixels are responding
o variations in pH change. The reaction was heated to 63 ◦C with a
eltier heating module in contact with the chip.

The chambers were initially filled with nuclease-free water for 700 s
o set a common voltage for the array surface. At 700 s the water was
eplaced with the RT-pHLAMP assay solution. All positive reactions
ere then run for a further 30 min. SARS-CoV-2 negative reactions
ere run for 30 min, negative cancer biomarker assays were run for
0 min. Data was recorded in real-time on a mobile phone. Table 1
resents the dataset distribution between training and testing based on
he experiments.

. Method and results

.1. Data pre-processing

Data preparation is required to address sensor non-idealities prior
o network classification. The steps proposed in this method are in-
ividually discussed in the following paragraphs and illustrated in
ig. 3: identification of active pixels, extraction of relevant time inter-
al, trapped charge compensation, spectrogram generation, and high-
requency noise compensation.

dentification of active pixels. These filtering steps are computationally
nexpensive operations that allow filtering of the sensors that carry
ignificant information about the chemical reaction in the well. Pixels
re generally considered as inactive if they are covered by the microflu-
dic manifold or out of the readout range due to non-ideal effects like
rapped charge and drift. These pixels are identified as the sensors that
espond to a variation in reference electrode voltage at the beginning of
ach experiment. Moreover, the offset caused by uneven trapped charge
n every sensor causes some of the pixels to have an output that cannot
e expressed by the voltage output range 𝑉𝑜 = 0 − 1 V. These clearly
eed to be disregarded.
4

Relevant time interval. As highlighted in Section 3, the relevant section
of the experiment has to be identified after the sample is inserted in
the well. Any earlier signal is then disregarded as irrelevant. Similarly,
the underlying biological properties allow identifying the end of the
experiment after 450 samples. In fact, it is possible to infer from the
standard curve of Covid-19 and Cancer Biomarkers 1, 2, and 3 LAMP
amplification that any positive sample would lead to detectable DNA
amplification within the first 22 min [7]. Despite the uneven sampling
across experiments, selecting 450 samples allows us to always capture
the relevant interval whilst avoiding fitting irrelevant data after the 22
min timestamp.

Trapped charge compensation. Trapped charge compensation consists
in subtracting the initial offset from the signal to ensure that all
experiments start at the same voltage. However, this approach does not
account for the effect of trapped charge on sensor drift, which has not
been fully characterised and therefore is not addressed in this work.
In reality, offset subtraction does not completely mitigate the effect
of trapped charge, which has an influence on the drift behaviour and
pH sensitivity of the ISFET, but any additional compensation would be
non-trivial because of the lack of complete mathematical models that
account for these dependencies.

Spectrogram generation. To explore the frequency content of a discrete
ISFET output signal 𝑣(𝑛) of length 𝑁 , the average behaviour of the
ntire signal could be explored by taking the DFT over the entire
eriod 𝑁 . However, a more appropriate tool for the non-stationary
SFET output is to look for local information by dividing the signal
nto small overlapping windows, where the signal can be assumed to
e stationary. The time–frequency spectrogram is then found with the
TFT as
𝑇𝐹𝑇 {𝑣(𝑛)} = 𝑉 (𝑚,𝜔)

=
𝑁−1
∑

𝑛=0
𝑣(𝑛 + 𝑚𝐻)𝑤(𝑛) 𝑒𝑥𝑝

(

− 2𝜋𝑖𝑘 𝑛
𝑁

) (3)

where 𝑁 is the window size, 𝐻 is the shift between successive win-
dows, 𝑚 ∈ [0 ∶ 𝑀], 𝑘 ∈ [0 ∶ 𝐾] and 𝑤(𝑛) is a Hanning window (4) with

indow size 𝑁 = 22 and window shift 𝐻 = 11.

(𝑛) = 0.5
(

1 − cos
(

2𝜋 𝑛
𝑁 − 1

))

(4)

The spectrogram is individually obtained for every pixel, so that each
450-sample signal is transformed in a 12 × 39 spectrogram array
𝑉 (𝑚,𝜔), with frequency estimates ∈ [0 ∶ 𝑓𝑠∕2] and resolution of 𝑓𝑠∕𝑁 ,
where 𝑓𝑠 is the sampling frequency.

The spectrogram represents the ISFET readout in a redundant man-
ner, such that each time sample is used twice to obtain a frequency
estimate. This in turn allows training a neural network that can learn
to classify these features. The underlying idea is that the frequency of
drift at the time of amplification is lower than the sigmoid indicating
amplification, thus aiding in classification.

High-frequency noise compensation. The chemical reaction associated
with DNA hybridisation is a slow process, hence the expected ISFET
signal is equivalently expected not to show abrupt changes. As such,
the high frequencies are not expected to carry any significant infor-
mation for classification. Then, the 10 × 39 section of the spectrum
corresponding to the lowest frequencies is used as input to the CNN to

avoid fitting data that is known to be irrelevant for classification.
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Fig. 3. Schematic of the steps involved in the data pre-processing. Note that the spectrograms are generated for each pixel individually although the output is only illustrated
here for a single sensor.
Fig. 4. Time domain neural networks: (a) DCNN, (b) FCN.
4.2. Implemented networks and results

The aim to implement a neural network for binary classification
involving the use of both time domain and spectrogram-based ap-
proaches to train neural networks. All networks are trained and com-
pared by employing the same seed value, learning rate, epoch, batch
size and adam as the optimiser for a fair comparison. For the cho-
sen spectrogram-based network, the hyperparameter optimisation is
reported in Appendix C. The first approaches explored to achieve the
binary classification of the ISFET data are based on processing the time
domain data directly. There are sophisticated methods proposed for
5

time-series-based classification in literature such as FCN [53], Inception
Time [52], and RESNET [53] that are proven to perform better than
image classification using CNN based models. This was the motivation
behind the implementation of the following time-based networks on the
time series data from ISFETs:

• Feed forward neural network: a basic network with 64 nodes in the
input layer followed by 32 and 16 nodes in the hidden layer. They
all use Rectified Linear Unit (ReLU) as the activation function.
These are then flattened and the output Sigmoid layer makes the
classification.
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Fig. 5. InceptionTime: This implementation uses multiple filters to automatically extract relevant features on time series data [52].
• 1D-DCNN : a convolutional network was implemented as shown
in Fig. 4a, showing some improvement in performance with the
addition of convolutional filters. From Table 2, it can be in-
ferred that 1D-DCNN has the highest accuracy for all the time
domain approaches but the lowest recall, suggesting a very high
probability of false negatives.

• FCN : this was implemented as shown in Fig. 4b From Table 2,
it can be inferred that not only does FCN take a longer training
runtime but also has a very low recall making it unsuitable for
medical applications like the 1D-DCNN.

• InceptionTime: this was implemented as shown in Fig. 5. From
Table 2, it can be inferred that InceptionTime has the highest
accuracy of all the time domain approaches. However, the ex-
tremely high training runtime and a large number of trainable
parameters make it unsuitable for edge implementations.

• RESNET : this was implemented as shown in Fig. 6. From Table 2,
it can be inferred that while the RESNET has a more balanced
performance across all the metrics, it still needs a longer training
runtime and manages to reach an accuracy of only 66.89

• Autoencoder : this was implemented as from Fig. 7 and trained
with Mean Absolute Error [54] loss function, given in Eq. (5),
where 𝑦𝑖 is the predicted value and 𝑦𝑖 is the true value and 𝑁
is the number of samples.

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑗=1
|𝑦𝑖 − 𝑦𝑖| (5)

This started showing some improvements in the recall of the
network but leading to low accuracy and precision, essentially
showing a bias towards the classification of samples as positive.
6

This is due to the network being trained only with the posi-
tively labelled data and then applying the principle of anomaly
detection by using a threshold to treat the negative samples as
anomalies. The encoder input, decoder output and reconstruction
error for eight pixels in the test set is shown in Fig. 8.

The overall unsatisfactory classification performance of the time-based
networks reported in Table 2 resulted in the decision to feature engi-
neer the sensor data into spectrograms, thus allowing the exploration
of image-based approaches for training neural networks. A 2D-CNN
was designed for classification as shown in Fig. 9. This consists of
two convolutional layers with ReLU activation function, with each
convolutional layer being followed by a 2 × 2 Max-Pooling function.
The layer is then flattened and passed through a dense layer with
ReLU activation function. The output layer is based on a Sigmoid ac-
tivation function for the ultimate classification of a healthy or infected
patient. Because the aim is to solve a binary classification problem,
the loss function is Binary Cross-entropy [55], reported in Eq. (6), with
mean-based threshold classification in the neural networks.

𝐿𝐵𝐶𝐸 (𝑦, �̂�) = −(𝑦𝑙𝑜𝑔(�̂�) + (1 − 𝑦)𝑙𝑜𝑔(1 − �̂�)) (6)

The hyperparameter optimisation performed on the network led to the
decision to train with a Batch Size of 16, 40 Epochs, an initial learning
rate of 0.001 with a step decay of 75% every 10 epochs.

As the model is implemented to achieve point-of-care diagnostic
on a microcontroller, the neural network implementation is aimed
at compact structures that are compatible with the application, and
that can additionally be trained quickly to be deployed in emergen-
cies. Furthermore, quantisation-aware training was performed with
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Fig. 6. RESNET: These use skip connections that can help train deeper neural networks by tackling the vanishing gradient.

Fig. 7. Autoencoder: The approach is based on training a network to reconstruct just the infected samples and using reconstruction error as a metric for classification.

Fig. 8. Autoencoder Processing. Input, Reconstruction and Error for 8 time-domain test pixel signals using autoencoders.
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Fig. 9. DCNN using spectrograms. This consists of two convolutional layers with ReLU activation function, with each convolutional layer being followed by a 2 × 2 Max-Pooling
function. The layer is then flattened and passed through a dense layer with ReLU activation function. The output layer is based on a Sigmoid activation function for the ultimate
classification of a healthy or infected patient.
Fig. 10. T-SNE plot. T-SNE plot of the features from the penultimate layer in DCNNs for time series and spectrogram.
Table 2
Evaluation metrics values for comparison of the proposed methods. I-B Precision stands for inter-biomarker testing precision on experiment data.

Metrics Time-based Spectrogram-based 2D-DCNN

ANN 1D-DCNN Autoencoder FCN Resnet InceptionTime Fold1 Fold2 Fold3 Fold4 Fold5

Precision (%) 58.15 74.87 57.91 59.11 66.89 69.77 85.04 85.76 85.01 84.54 85.45
Accuracy (%) 57.58 60.33 55.8 57.24 69.67 69.05 84.21 84.78 84.84 83.79 84.84
Recall (%) 54.05 31.1 89.16 46.93 77.87 67.23 83.21 83.67 84.43 82.59 83.85
F1 score (%) 56.03 43.95 70.21 52.32 71.96 68.48 84.11 84.70 84.72 83.55 84.64
Accuracy (Dataset-1) (%) – – – – – – 71.98 72.16 73.26 72.66 73.08
Precision (Dataset-1) – – – – – – 5/5 5/5 5/5 5/5 5/5
I-B Precision – – – – – – 4/4 4/4 4/4 4/4 4/4
Training runtime(hrs) 0.22 0.38 0.12 2.4 0.5 3.95 0.26 0.27 0.25 0.26 0.2
Trainable Parameters 9937 77513 34578 50177 23009 40369 24265 24265 24265 24265 24265
the spectrogram-based DCNN model. This in turn allows conversion
of the model to TFLite and TFLite-Micro for compatibility with the
microcontroller.

Training approach. Two conflicting arguments were considered in the
training set preparation. On one hand, as seen in Section 2.1, the
single-pixel signal is highly non-ideal: that is why experiments are often
treated as the average of the active pixels, essentially using spatial
averaging to compensate for the noise of the isolated signal. This is in
contrast with the requirement for large amounts of data to successfully
train a network. The proposed method thus uses all pixel data as
independent samples to train the model. The underlying assumption
is that all sensors in contact with a positive sample will eventually
detect the reaction at some point. Thus, we present a data augmentation
approach for LoC devices to help train with fewer experiments. The
limitation in the number of experiments available (83) lead to the
decision to consider the single-pixel data in the model instead of the
experiment average, leading to 70,208 sets used for training and 17552
for testing. In fact, each experiment is comprised of thousands of
pixels that provide a reading independently; the pixel signals from the
same experiment do present some level of correlation, thus introducing
some redundancy in the dataset but were sufficient for training. In
8

this method, the dataset is kept balanced in the training by selecting
an equal number of positive and negative active pixels. All ISFET
pixels are independent and only share resources for communication
protocols. The dataset is thus trained and validated using a 5-fold cross-
validation strategy by treating each pixel as an independent training
data point with its own spectrogram. This is followed by testing on
Dataset-1 which comprises 5 new patient samples which have 3 mRNA-
based samples and 2 negatives. To further test the generalisability,
Interbiomarker precision is further defined for testing of 4 additional
Cancer samples which is the cancer marker 3 and is DNA based sample.

Testing approach. 5-Fold Cross-Validation is used for testing, resulting
in an 80∕20 split for train/test sets with 21105 pixels in turn used
to evaluate the performance of the model. Performance metrics are
introduced in Appendix B of the supplementary material and values
are reported for each fold in Table 2. Bar error plots with tolerance
intervals with respect to the random seed are also provided in Ap-
pendix C. Appendix C presents the hyperparameter optimisation with
hyperparameter tuning done through the scikit grid search. The per-
formance metrics are reported across multiple hyperparameter values
and the order of optimisation is also defined. Fig. 10 shows the T-SNE
plot of the features from the penultimate layer in the DCNN applied
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Fig. 11. Proposed edge implementation framework for new infectious diseases. Note that here edge devices will be microcontrollers like the Arduino Nano 33 BLE Sense.
to the time series (left) and on the spectrogram (right). This succinctly
depicts that the features extracted from the time–frequency data allow
for better distinguishability of the negative and positive experiments,
respectively labelled 0 and 1.

Although the spectrogram-based DCNN has proven to be a powerful
approach for single-pixel classification, in the context of LoC diag-
nostics the interest is towards the classification of data from entire
experiments, that is, identifying samples as positive/negative using data
from the array. Table 1 shows that the SARS-COV-2, Cancer Biomarker
1, Cancer Biomarker 2 and Negatives are used for both training and
testing. On the other hand, 4 samples of Cancer Biomarker 3 are just
used for testing. This gives rise to the Inter-Biomarker Precision metric
in Table 2. Here, the model is evaluated on the basis of single pixel
classification and then a majority voting approach is implemented to
determine whether the entire experiment is classified as positive or
negative. This was tested across the 5 folds for positive samples of
Biomarker 3. The percentage of positive active pixels in the positive
cancer Biomarker 3 experiments was 59.01% on average, with a stan-
dard deviation of 5.57%, with the majority voting always in favour of
a positive outcome. This shows that the algorithm is robust to allow
diagnostics of data not directly used in the training, thus potentially
resulting in a universal diagnostics platform where only the assay
preparation needs to be updated.

5. Edge implementation

When treating medical data, such as patient samples in the pro-
posed application, patient privacy and security is essential to avoid
malicious intent. Therefore, the use of edge devices is critical to sup-
port diagnostic testing while respecting patient confidentiality. The
quantisation-aware training of the proposed spectrogram-based DCNN
model showed limited drop in performance, achieving an accuracy
of 84.57% in the TFLite implementation, thus showing good metrics
for deployment of devices on the edge. The converted TFLite-Micro
model of the Spectrogram based DCNN is 30 kB, making it suitable for
deployment on most microcontrollers. The microcontroller of choice is
the Nano 33 BLE Sense which is compatible with TFLite-Micro and can
have a standby power consumption of just 0.9 nA. It is expected that
the edge implementation of the neural network-based inference engine
will have a negligible contribution compared to the heater required
for the LAMP reaction that is present on the current system and takes
more than 80% of the power consumption. This will further be tested
in future work with a full system implementation. Fig. 11 illustrates a
framework for the use of the proposed platform in a generic diagnostics
context by leveraging the power of TinyML [56].

6. Conclusion

This paper presents a novel spectrogram-based DCNN approach
that leverages the redundant feature space representation achieved by
spectrograms for the classification of ISFET array data of nucleic acid
amplification on LoC platforms. The proposed method provides a sig-
nificant improvement from 57.58%, 60.33%, 55.8%, 57.24%, 69.67%,
and 69.05% for the time-domain-based ANN, 1D-DCNN, autoencoder,
FCN, RESNET, and InceptionTime approaches respectively, to 84.84%
for the spectrogram based 2D-DCNN approach. Our proposed method
is the preferred approach because it improves accuracy, reduces band-
width requirement and allows faster time to market as a more gen-
eralised approach without the need for complex feature engineering.
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Thus allowing for more efficient diagnostics. Furthermore, medical data
from ISFET sensors is very different from the EMG-based and ECG-
based time-domain data that has been used to prove the accuracy of
time-domain-based networks in the past. This is due to the fact that the
presence of an infected sample is plagued by drift, offset and trapped
charge in the CMOS-based ISFET sensors, thus making it difficult to
highlight a constant feature in the time series data. In addition, we have
proposed a preprocessing approach to augment the dataset to allow
researchers to train with limited datasets of electrochemical readouts
from nucleic acid amplification for infectious disease diagnosis. We also
present an edge implementation framework that can help provide tests
with high sensitivity and specificity to patients while addressing the
need for data security. The accurate classification of Cancer Biomarker
3, which is excluded from the training set, proves that the model
can be generalised for future diagnostic applications. This work sets a
benchmark for future AI approaches to point-of-care diagnostic devices
using potentiometric sensors and presents spectrograms as a benchmark
transform for implementing neural networks in the field of diagnostics
for infectious diseases and cancers.

7. Limitations and future work

• Although some methods are used for active pixel identification,
the performance of individual sensors has not been characterised
in the overall positive and negative experiments. This means a
greater amount of time spent on the annotation of individual
sensor data could result in higher accuracy of the models.

• The pre-processing of data needs to be converted from Python to
C++ for integration with microcontrollers. We intend to work on
this and show real-time results in the future.

• Treating the sensors as pixels forming electrochemical image
frames can help us apply image processing techniques without
much pre-processing. This would require a large amount of frame-
wise annotation and will be pursued in the future to compare
performance.

• The ISFET output signal is low frequency and has information
in terms of time, frequency and amplitude. This makes a time–
frequency and amplitude transform like the spectrogram, a per-
fect approach for ISFET based diagnostics, allowing the authors
to present it as a benchmark. We expect to carry out future work
to identify the pros and cons of alternative transforms. Among the
alternative transforms, Wigner Ville [57,58] and scalograms [59]
have shown promise in the past in biomedical applications. How-
ever, Wigner Ville is known to introduce cross terms between
several frequency components. As is visible in the signal from
ISFETs, there are a large amount of frequency components resid-
ing in the low-frequency region, making Wigner Ville unsuitable
for this application. Scalograms on the other hand are compu-
tationally expensive and are not suitable for implementation on
microcontrollers. Currently, the constant window constant length
in STFT for spectrograms appears as a more suitable candidate.

• The models used in this paper have been chosen by keeping in
mind that the size of the model should be compact enough for
deployment on a Nano BLE 33. This means an effort will be
made in the future to explore more sophisticated neural networks
such as recurrent neural networks (RNNs) and transformer-based
models.
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