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Abstract Planar microelectrode arrays (MEAs) are devices
that can be used in biomedical and basic in vitro research to
provide extracellular electrophysiological information about
biological systems at high spatial and temporal resolution.
Complementary metal oxide semiconductor (CMOS) is a
technology with which MEAs can be produced on a
microscale featuring high spatial resolution and excellent
signal-to-noise characteristics. CMOS MEAs are specialized
for the analysis of complete electrogenic cellular networks at
the cellular or subcellular level in dissociated cultures,
organotypic cultures, and acute tissue slices; they can also
function as biosensors to detect biochemical events. Models
of disease or the response of cellular networks to pharmaco-
logical compounds can be studied in vitro, allowing one to
investigate pathologies, such as cardiac arrhythmias, memory
impairment due to Alzheimer’s disease, or vision impairment
caused by ganglion cell degeneration in the retina.
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Introduction

The growing importance and increasing sophistication of
biomedical technology is leading a trend toward the

diagnosis and study of disease on the microscale. While
well-established methods in electrophysiology, such as the
electrocardiogram (ECG) and electroencephalogram (EEG),
are regularly used to monitor the health of patients and in
models of disease, there is an increasing need for methods
that measure the electrical activity and biochemistry of
tissue in ever greater detail. In recent years, rapid advances
in complementary metal oxide semiconductor (CMOS)
technology have made construction of circuits on a
microscale possible. This technology provides information
about electrophysiological and biochemical events that
occur at the cellular or even molecular level can be
obtained.

Planar CMOS microelectrode arrays (MEAs) are the
focus of this review, as they are ideally suited for the study
of complex cellular networks and sensitive molecule
detection in vitro. Such technology is crucial in applications
such as pharmacological drug screening and high-
throughput systems for electrophysiological testing. Fur-
thermore, such a system is invaluable in basic research,
where a complex in vitro system can be used to examine
network behavior in cell populations. CMOS technology
has the advantage of being robust, straightforward to use,
and it can yield immense amounts of data from biological
systems in vitro.

Electrophysiology and multielectrode arrays

The vital processes in the human body are regulated by the
activity of electrogenic cells that are connected in networks.
Some examples of such activity are: information processing
and neurotransmission between cells in the brain; light-
driven responses transmitted through retinal ganglion cells;
the synchronized beating of cardiomyocytes in the heart.
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Electrogenic cells essentially behave as signal receivers and
generators, conveying information from one part of the
body or organ to another via intercellular transmission.
Cellular signals originate in the following manner: each cell
has a concentration gradient of ions across its membrane,
which means that there is an electrochemical potential
difference across the membrane, called the membrane
potential. A transitory alteration of the membrane potential
is caused by the acceptance and release of ions across the
cell membrane, causing the number of ions in the
extracellular environment—and therefore the local charge
density—to change. When the membrane potential
becomes more positive and reaches a threshold value
greater than its normal resting membrane potential, the cell
depolarizes rapidly, causing an action potential, followed by
a repolarization back to baseline.

In the field of electrophysiology, there are two principal
methods by which the electrical activity of electrogenic
cells can be measured: intracellular and extracellular.
Intracellular electrophysiologic activity of the cell is
detected by the patch clamp device; this is a device, which
features an electrode that is inserted into the cell, and a
second electrode that, e.g., can be sealed to a small region
of the cell and measures the flux of ions across the
membrane [1, 2]. There are multiple patch clamp config-
urations (single ion channel, whole cell, etc.) and there are
also robotically controlled multi-patch clamp setups that
can patch several cells simultaneously [3]. External micro-
transducers are used to measure the extracellular electro-
physiological activity, which occurs outside of the cell
membrane [4–14]. Microtransducers measure the concen-
tration of ions in their vicinity, which changes according to
the activity of the cell. Upon the occurrence of electrical
activity of the cell, a so-called action potential, ions, mostly
sodium and potassium ions, travel across the cell membrane
in and out of the cell. These moving ions generate an
electric field, which can directly influence the open-gate
region of a field-effect transistor [15, 16], or which can be
recorded by means of metal microelectrodes [17–21], as
shown in the schematic in Fig. 1. This enables the
measurement of the extracellular voltage or current that is
produced by the cell when it undergoes an action potential.
Additional methods that indirectly indicate the voltage
change of a cell include optical measurements using
voltage-sensitive or fluorescent dyes [22–24].

Measurement of the simultaneous and interdependent
activity of electrogenic cells is crucial, since the cells
respond to a complex set of environmental and contextual
stimuli. It is therefore desirable to have the capability to
measure the behavior of many cells simultaneously to
reveal network characteristics and, at the same time, to have
the possibility to conduct measurements at high spatial
resolution, ideally subcellular resolution, to reveal details of

cellular signaling. The previously mentioned techniques of
directly measuring the electrophysiological signal are
limited in this respect; to overcome these limitations, a
multielectrode array (MEA) or multitransducer array may
be a more suitable device. An MEA is a two-dimensional
grid of biocompatible microtransducers embedded in an
insulating surface, such that each microtransducer is
electrically independent of its neighbors. Each transducer
is connected to a differential amplifier, which measures
voltage or current with respect to a common reference.
Thus, an MEA provides a regular spatial sampling of the
voltage or current signals across a two-dimensional plane.
A high-density (HD) MEA is a two-dimensional array of
densely packed transducers that can measure the responses
from many cells simultaneously; depending on the density
and capabilities of the array and the cell density, signals can
be acquired simultaneously from all cells within a culture or
slice. Finally, it should be noted that in contrast to methods
such as patch clamping, cells can be maintained for up to
several months so that long-term studies can be conducted.

While it is useful to have the ability to record the activity
of cells, there are some instances in which intrinsic activity
alone does not provide sufficient information; stimulation
of the slice or culture is necessary to study certain aspects
of cellular network behavior or activity; for example,
phenomena such as memory formation in brain tissue or
pacemaking in the heart often require an external stimulus.
To provide this capability, some MEA devices have
bidirectional functionality, meaning that they can not only
record activity, but can deliver either a current or voltage
stimulus, thereby eliciting a response in a population of
electrogenic cells. These devices can be used to stimulate a
single cell or small number of cells with one or more

Fig. 1 Schematic of a cell in close proximity to an example planar
microtransducer (open-gate transistor/electrode). The displayed cell
features ion channels; ions that move through these channels generate
an electric field or voltage change that is recorded by the micro-
transducer [25]
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electrodes. The subsequent cell population response can
then be recorded with the non-stimulating electrodes [26–
29]. Likewise, chemical concentrations and gradients
provide a wealth of information about cell processes and
communication. Two- or three-electrode measurements can
be made by using MEAs, which detect the presence of
electroactive or non-electroactive neurotransmitters or other
relevant ions or molecules [30].

The MEA as a device for electrophysiological recording
has been in existence for several decades and has
undergone several improvements throughout this time.
One of the early planar MEAs was described in a 1972
publication by Thomas et al. (Fig. 2), who aimed to record
electrical activity from cells using a noninvasive device,
allowing them to address questions involving plasticity and
electrical interaction among cells. The array comprised 15
gold electrodes with 100 μm spacing; experiments with
dorsal root ganglion cells were carried out [31]. A similar
MEA device was published 5 years later by Gross et al.
[32], while the first successful recordings from dissociated
neurons were reported by Pine in 1980 [33]; in the latter
case, an MEA with two parallel rows of 16 planar gold
electrodes measuring 10×10 μm2 with a 250-μm spacing
was developed.

An alternative approach to the use of metal electrodes
was presented in 1970 by Bergveld [35]. He developed an
open-gate field-effect transistor (FET) in order to measure
ionic concentrations in a solution. This device, called
ISFET (ion-sensitive FET), relies on the same working
principle as a normal metal oxide semiconductor FET

(MOSFET); however, the current flow is regulated (gated)
by a reference electrode and the concentration of ions in the
solution (Fig. 2) instead of a metal gate electrode
(MOSFET). Bergveld successfully used ISFETs to measure
ions fluxes around a nerve [36]. Similarly, in 1981 Jobling
et al. reported a nine-electrode MEA in which the gates of a
FET on a silicon chip were used as electrodes [37]. The
firing neurons were located close to the exposed gate of the
transistor, which behaved as a sensor; changes in the
extracellular potential directly modulated the current flow-
ing through the transistor. Successful recordings from
hippocampal slices with high signal-to-noise ratio were
demonstrated.

CMOS technology

There are a variety of MEAs available for electrophysiolog-
ical measurements. In most commercially available systems
(e.g., Multi Channel Systems GmbH, Germany; Panasonic
Inc., Japan; Plexon Inc., USA), passive metal electrode
arrays are employed. These devices usually consist of 64
electrodes and are aligned on a glass or silicon substrate with
externally situated signal recording and filtering compo-
nents. However, transducers can also be realized by using
standard integrated circuit or complementary metal oxide
semiconductor (CMOS) technology. There are three primary
advantages to using this technology: (1) connectivity: on-
chip multiplexing means that many electrodes can be
addressed, allowing for measurements at high spatiotempo-

Fig. 2 Top: diagrammatic cross
section of microelectrode array
forming the floor of a culture
chamber, reprinted from [31].
Bottom: schematic representa-
tion of a standard metal oxide
semiconductor field-effect tran-
sistor, MOSFET (a) and an ion-
sensitive field-effect transistor,
ISFET (b). Reprinted from [34]
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ral resolution; (2) signal quality: signal processing circuitry
can be located directly below the electrode, facilitating the
detection of weak signals through immediate signal condi-
tioning and digitization; (3) ease of use: many functions can
be implemented via user-friendly software that communi-
cates with on-chip logic units through a digital interface.
Moreover, the use of CMOS technology allows for the
realization of small system chips with large numbers of
electrodes; arrays of up to 16,384 electrodes on 6 mm by
6 mm chips have been reported [38–42].

High-density microelectrode arrays realized in standard
CMOS technology offer the potential to perform recordings
at single-cell or even subcellular resolution [42]. When
designing such systems, a compromise between noise
performance and spatial resolution must be made. To
achieve high spatial resolution, small electrodes are
preferred; unfortunately, thermal noise is inversely corre-
lated to electrode size. A further impediment is that,
because of spatial constraints, filters and amplifiers with
large noise-reducing capacitors cannot be used.

Another issue that must be taken into account with
CMOS MEAs is the packaging of the chip. The standard
metal used in CMOS technology is aluminum, which is a
neurotoxin, so it must not come into contact with cell
cultures. Moreover, electronic circuits are corroded and
destroyed by aqueous salt solutions, so the chips them-
selves need to be protected from the very things they
measure.

A device relying on FET transducers in CMOS
technology was developed at the Max Planck Institute for
Biochemistry, Germany, by the group of P. Fromherz [40,
43]; this CMOS MEA featured 16,384 open-gate FETs at a
pitch of 7.8 μm (16,000 sensors/mm2), as shown in Fig. 3.

The array was composed of 128×128 pixels, each
comprising three transistors for voltage sensing, pixel
selection, and calibration to compensate for transistor

mismatch and leakage. The sensor chip also incorporates
a column decoder to control each pixel, a readout amplifier
for each of the 128 rows, and an 8-to-1 multiplexer to drive
the outputs of the amplifiers. The generated output currents
are transferred to a set of off-chip current-to-voltage
converters whose output is digitized by 16 analog-to-
digital converters (ADCs). In order to maintain high spatial
resolution, a small pixel size must be balanced against the
need for circuits that are sufficiently large to reduce signal
noise, which can range from 70 to 250 μVRMS [38, 40].

CMOS-based devices relying on planar metal electrodes
also have been devised: an MEA with integrated multi-
plexers and in-pixel amplifiers that can simultaneously
record from 4,096 aluminum or gold electrodes was
presented by Berdondini et al.; the electrodes were
constructed with a 40-μm pitch, which is equivalent to
approximately 500 electrodes/mm2 [39, 44–46]. The system
is based on the active pixel sensor (APS) concept,
originally designed for image sensors; it is composed of a
64×64 pixel or electrode array with a pixel area of 40×
40 μm2. Data streams can be collected from the whole array
at 7.7 kHz, but it is also possible to select specific regions
of interest and to record at higher temporal resolutions of
up to 120 kHz [44, 45]. In this design, noise-optimized and
spatially optimized operational transconductance amplifiers
consisting of only five transistors have been employed. The
noise of the system is approximately 10–20 μVPP. The chip
also includes filtering circuits, high-speed addressing logic,
and a field-programmable gate-array interface, which
provides dynamic analog-to-digital (AD) conversion as
well. The system is linked to a computer running custom
software for data acquisition and analysis. A chip micro-
graph, the overall system overview, and the amplifier
schematics are shown in Fig. 4.

A CMOS chip with stimulation capabilities was pre-
sented by the group of Kovacs at Stanford [47], using an
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Fig. 3 High-density sensor array with 16,384 pixels based on open-gate field effect transistors on a 1×1 mm2 area. a Pixel schematic. b Zoom-in
on sensor array. c System architecture [40]
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integrated stimulation electrode outside the recording
electrode array. CMOS-based needle arrays featuring
stimulation and recording electrodes for insertion into
living tissue were reported by Wise and Najafi [5, 48,
49]; these devices for in vivo applications feature multiple
electrodes per needle shank and integrated circuitry units,
including radio frequency transmission, on the chip base.
Several of them can be assembled in 3D electrode arrays.

Monolithic bidirectional CMOS MEAs, which have
stimulation and recording capabilities, have been published
by Heer et al. [25, 50, 51] and Frey et al. [41, 42]. Both
system chips employ planar metal electrodes and are used
directly as a substrate for cell and slice culturing or for
accommodating acute tissue slices; they include circuitry
for stimulation, immediate cell signal modulation, analog-
to-digital conversion, and a digital interface, thus allowing
a rapid interaction approaching real-time functionality.

The system of Heer et al. includes 128 electrodes and a
reference electrode. Each pixel is adjacent to an electrode
and contains a band-pass filter, a mode storage unit, a
buffer for stimulation; the pixel pitch is 250 μm. The chip
also includes a digital control unit in order to provide
multiplexing, the electrode selection for stimulation, the
resetting of single electrodes and the AD converters, and
the interface to the external world. A temperature sensor is
included to ensure that electrogenic cells are at the correct
temperature. The close proximity of filters and buffers to
each electrode offers several advantages: (1) reduced

interference-induced noise at connection lines; (2) a high-
pass filter, which reduces offset and drift; (3) a low-pass
filter that limits noise bandwidth and prevents aliasing in
the multiplexing and analog-to-digital conversion stages.
The measured noise of the in-pixel circuitry is 11.7 μVRMS,
and the total power dissipated is 120 mW. Any arbitrary
stimulation configuration can be applied to any subset of
electrodes. Moreover, every recording channel can be reset
to its initial state in order to suppress stimulation artifacts.

Figure 5 shows the implementation of Frey et al.’s
design that achieves high signal-to-noise ratios and high
spatial resolution. The system features 11,011 electrodes
and an analog switching matrix, located directly underneath
the electrode array. This switching scheme is compact, has
low-noise characteristics, and allows the routing of an
arbitrarily selectable subset of electrodes to 126 readout
channels.

In this system, electrodes are small, with a diameter of
7 μm and a pitch of 17 μm. Signal modification circuitry
has therefore to be placed outside of the array, where space
constraints are no longer a concern. The array area is 2×
1.75 mm2, which yields a density of 3,150 electrodes/mm2.
The electrode selection can be adapted to the biological
sample of interest, while the integrated circuitry can be
optimized for noise, which is as low as 4 μVRMS.
Moreover, the large redundancy of the data obtained from
such a multi-data point recording (each neuronal activity is
simultaneously recorded by many electrodes because of the

Fig. 4 Left: chip micrograph and system overview of the high resolution CMOS-MEA presented in [46]. Right: a schematic of the in-pixel five-
transistor preamplifier. b Complete schematic of the in-pixel amplifier (OTA, operational transconductance amplifier). Reprinted from [39]
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tight spacing) can be used for spike sorting software
algorithms that separate action potentials based on shape
and occurrence pattern. This system makes it possible to
obtain a high spatially and temporally resolved reconstruc-
tion of the extracellular activity of a cell or cell population.

A block diagram of the system is depicted in the right
side of Fig. 5. The recorded signals are amplified and
filtered in three stages, each of which has programmable
gain. After the second stage, signals are multiplexed,
sampled, and digitized; finally, the data are transferred by
a digital interface to off-chip computational machines. The
same interface also controls the array configuration and
stimulation mode settings. Stimulation is performed by
integrated buffers, which have both voltage and current
modes for stimulation delivery at an arbitrary electrode
subset [52].

Both the Heer and Frey systems were fabricated with
standard 0.6-μm CMOS technology; special post-CMOS
processing and packaging for operation under physiological
conditions were subsequently applied. Electrodes were cov-
ered by biocompatible platinum and a four-layer passivation
stack of alternating silicon dioxide and silicon nitride was
deposited on the chip and opened at the site of the electrodes
[50]. Finally, the chips were mounted on a custom-designed
printed circuit board (PCB) for long-term culturing.

Biological preparation methodology

The most common biological preparations studied using
MEAs are divided into two main categories: acute tissue
slices, which are recorded immediately after they are
removed from the animal; and cell cultures, which can be
further divided into dissociated cell cultures and organo-
typic tissue cultures. Dissociated cultures are cells whose

relative in vivo positions are no longer preserved, whereas
organotypic tissue cultures are slices that are maintained in
vitro over a period of time. These variations encompass the
spectrum from short-term, functionally preserved tissue
slices to long-term organotypic or cell culture preparations.

Several parameters must be taken into consideration
when using MEAs as a tool for recording from cells. Most
importantly, the neuron–electrode interface must be opti-
mized so that tight coupling between the cells and electro-
des is established, maximizing the signal-to-noise ratio.
Acute slices, for example, have a layer of dead cells that are
damaged during the cutting of the tissue, which introduces
a degree of isolation between the active cells and the
electrodes. To promote the adhesion of cells or the tissue
mass, MEAs are coated with cell-adhesion substrates such
as poly-D-lysine, laminin, collagen, and fibronectin [53,
54]. Successful tactics for making recordings from tissue
sections utilize, for example, cellulose nitrate or coagulated
plasma/thrombin clots to stabilize the slices on the MEA
surface [55].

Acute tissue slices, including brain tissue and retina,
preserve the structural and functional relationships between
groups of cells because there is no opportunity for the cells
to alter their relative formation from the initial in vivo state.
Acute slices are cut at a thickness ranging from approxi-
mately 100 to 400 μm, although the maximum distance
away from an electrode that a signal can obtained is
approximately 100 μm [56]. Some high-density MEAs are
capable of recording from as far away as 100 μm, but the
signal-to-noise ratio drops off rapidly with distance [57].
Brain slices prepared from mice and rats at postnatal day 6–
12 were reported to exhibit optimal cell health and
maintained neurogenesis [58].

The major limitation of acute slice preparations is the
duration of viability, which is typically up to several hours

Fig. 5 Left: 11,011-electrode CMOS chip micrograph. The electrode array is in the center, surrounded by the analog circuitry for filtering,
amplification, and stimulation; on the right side sits the digital interface. Right: block diagram of the on-chip circuitry. Reprinted from [52]
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following slice preparation. Furthermore, a perfusion
system is necessary for the delivery of carbogen gas
(95% O2/5% CO2) and nutrients, which are required to
sustain the physiologic processes of the cells. It must also
be considered that inputs originating from diffuse neuro-
modulatory systems, which exert effects on neurons via
neurotransmitters, are absent in acute slice preparations.
To restore the inputs, co-cultures of slices from various
brain regions have been used to study effects of neuro-
modulators [59].

Dissociated and randomly seeded cell cultures of
electrogenic cells, such as neurons or cardiac myocytes,
have been well established as biological preparations with
MEAs [11, 27, 39, 60, 61] as shown in Fig. 6. Primary
neurons are usually isolated from brains of embryonic or
postnatal rodents, since these cells exhibit a high degree of
plasticity, a characteristic that is required for developing
neuronal networks in vitro [62]. The ability to record and
stimulate cultured cells has provided unique experimental
setups for studying the cellular activity over extended
periods of time, ranging from hours to weeks [63, 64].
Moreover, patterned neuronal networks have been used to
further increase the number of occupied electrodes [65, 66].

The organotypic tissue slice preparation is the third type
of tissue preparation and provides a compromise between
the longevity of the cell culture and the in vitro character-
istics of the acute slice (Fig. 7). The preparation of
organotypic slices is similar to that used for acute slices,
except that the cultures must be rotated through liquid
medium and the ambient gas during the culturing and
maturation phase, which lasts for up to 4 weeks [68]. After
several days, the cultures stabilize with high cell viability.
Prior to recording, the culture chamber must be removed

from the cell culture incubator; a slow perfusion system is
then used to supply carbogen gas and nutrients.

Numerous studies have involved the administration of
pharmacological compounds to organotypic brain slices on
MEAs for simulating pathological conditions leading to
neuronal death and neurotoxicity. Examples include studies
on the use of hippocampal slices cultured on MEAs and the
time-course of synaptic responses and neuronal damage by
using glutamate receptor agonists, N-methyl-D-aspartate
(NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) [70, 71], as well as the long-term
recording of long-term potentiation (LTP) after tetanic
stimulation [72, 73].

Diagnostic applications

CMOS technology can provide electrophysiological data at
unprecedented spatiotemporal resolution for several appli-
cations in basic research, as well as in applied science and
industry. As an electrophysiology modality, the CMOS
MEA can be considered relatively high throughput, as
many data points can be collected from one sample. As
already mentioned, longitudinal studies are possible, which
offers the possibility to conduct chronic drug exposure
studies. As will be described below, the MEA can be used
for several applications: here, its potential for research in
the cardiac, ocular, and nervous systems as well as its
implementation for molecule detection is discussed.

Cardiac system

Arrhythmias are rhythmic disruptions of the heart, which
can cause death [74]. A leading culprit for arrhythmia
manifestations are arrhythmogenic prescription medications
such as antibiotics, antipsychotics, antihistamines, and
antiarrhythmics [75], many of which have been taken off
the market because of these effects [76]. An increase in the
time required for the ventricle of the heart to repolarize—
known as the “QT interval”—has been associated with
ventricular tachyarrhythmia in patients [77]. The QT
interval is a measure of the time between the start of the
Q wave and the end of the T wave in the heart’s electrical
cycle. A prolonged QT interval is a risk factor for
ventricular tachyarrhythmia and sudden death.

Ventricular depolarization and repolarization are the
result of the complex activities of many cellular membrane
ion channels, particularly the calcium and sodium channels.
At the cellular level, the action potential duration (APD) of
individual cardiomyocytes in vitro is the amount of time
required for the cell’s membrane to depolarize and
repolarize back to resting membrane potential. In a
simplified sense, the QT interval of the heart is a

Fig. 6 A scanning electron micrograph with false coloring of chicken
dorsal root ganglion neurons on the HD-MEA after 2 days of in vitro
culture. Microelectrodes are colored blue and neurons are colored
green; (scale bar is 30 μm) [67]
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summation of the APDs of individual heart cells (the
cardiomyocytes) of the heart’s ventricular compartment. It
is for this reason that in vitro measures of ADP in heart
cells are of relevance as a screen for drug-induced disorders
of the heart [19, 78, 79].

While the above-mentioned screening methods are in use
regarding the risk of QT prolongation associated with
certain drugs, they are laborious and costly. An MEA, on
the other hand, can provide electrophysiological informa-
tion about the activity of cardiomyocytes on a finer scale,
describing microcircuitry of the cardiac tissue, which may
lead to a better understanding and characterization of QT
prolongation [79], as shown in Fig. 8.

There have not only been several studies in which an
MEAwas used to record from cultured cardiomyocytes, but

the effects of pharmacological agents have also been
investigated [61, 80–82]. Using a 60-electrode array, Stett
et al. used antiarrhythmatic drugs quinidine and sotalol and
hERG blocker E4031 to show a change in field potential of
myocytes of embryonic chicken ventricles [19]. Another
group used the same MEA measurement of repolarization
in human embryonic stem cell-derived cells using the
antiarrhythmic agent sotalol to show prolongation of the
APD [83]. Meyer et al. used an MEA1060 system from
Multi Channel Systems GmbH, Reutlingen, Germany
recording from 60 channels, to characterize the effects of
antiarrhythmic agents E4031, amiodarone, quinidine, sota-
lol, and verapamil on cultured embryonic chicken cardio-
myocytes [78, 84]. The results for the first four drugs
confirmed their QT-prolonging effects, while verapamil was

Fig. 8 Recordings of human
stem cell-derived cardiomyo-
cytes [79]. a Cardiomyocytes on
an 8×8 MEA. b Corresponding
signals from electrodes of the
MEA. c A recording from one
electrode channel, shown at a
larger timescale

Fig. 7 Organotypic cultures
on an MEA. a A 9-day-old
organotypic co-culture of ento-
rhinal cortex and dentate gyrus
from rats and mice. b Signals
recorded using the MEA fol-
lowing stimulation (location of
stimulation is marked by
asterisk). Each waveform repre-
sents the electrophysiologic
activity recorded by the
corresponding electrode. Dotted
lines indicate locations of ento-
rhinal cortex and dentate gyrus
[69]
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a false positive. The overall successes of these studies show
the suitability of MEA systems for the characterization of
antiarrhythmic agents.

Cardiac infarctions in patients have been shown to cause
a phenomenon called reentry, which is a condition whereby
abnormal action potential wavefronts occur in cardiac
tissue; this can lead to ventricular tachycardia [85–87].
Hong et al. used optical mapping and MEAs to measure
cardiac excitation waves in dissociated cardiac cell cultures.
They found that high-density cultures of cardiac cells are
able to sustain reentries [88].

Certain types of heart disease and rhythm disturbances
cause arrhythmogenic remodeling within the heart, affect-
ing the distribution of gap junction channels within the
cardiac tissue [89]; among many effects, the cell coupling is
altered [90]. Subtle changes, including action potential
propagation speed, can be characterized with an MEA,
which is not possible with other recording systems. Using a
high-density MEA with a resolution of 17 μm, it was
shown that the antiarrhythmic agent lidocaine modified the

action potential shape as well as the signal propagation
speed [61, 82].

Retina

The retina contains complex circuits of neurons that extract
specific features from the visual input, such as changes in
light intensity, color variations, and the direction of moving
objects [91]. The final output of the retina is computed in
the ganglion cell layer and consists of complex spatiotem-
poral patterns of action potentials that can be recorded with
MEA technology [92]. Therefore, MEAs are ideal for
accessing the electrodynamics of retinal ganglion cell
populations because their cell bodies and axons are aligned
in a 2D layer (Fig. 9).

Multisite extracellular recordings showed synchronized
activity between retinal ganglion cells [96–98] and demon-
strated that specific features of the visual scene are coded
by this correlated activity across the retina [93, 99] (Fig. 9);
furthermore, pharmacological studies in combination with

A B

D

30 µm  

C

Fig. 9 a A patch of salamander
retina placed over a multielec-
trode array. Ganglion cell and
axon bundles are fluorescently
stained with rhodamine dextrane
(green) [92]. b Simultaneously
recorded signals from six retinal
ganglion cells as the direction of
a dark bar near their receptive
field centers is reversed [93].
c Responses of retinal ganglion
cells to electrical stimulation on
MEAs [94]. d Representation
of epiretinal and subretinal
implants for visual restoration
[95]

Potential of microelectrode arrays and microelectronics 2321



microelectrode array recordings have revealed distinct types
of temporal correlations [100]. The majority of these
correlations arise from electrical and chemical synapses
and cause redundancy in the retinal output [101].

All these studies indicate the potential of MEAs as a
fundamental tool for analyzing how retinal populations
code visual input in order to communicate with higher brain
centers. In addition, MEA technology provides a platform
in biomedical research for developing new strategies to cure
retinal diseases. Vision loss affects thousands of people
around the world [102] and, in most cases, poor vision or
blindness is caused by photoreceptor degeneration [103].

Multielectrode arrays have been used to analyze how
electrical stimulation evokes spiking activity in retinal
ganglion cells [94] (Fig. 9). Such electrical stimulations
are essential for developing retinal implants for vision
restoration. There are two types of retinal implants currently
showing promise in clinical trials: epiretinal implants (on
the retina) and subretinal implants (behind the retina), see
Fig. 9d. Epiretinal implants sit on top of the retina, directly
stimulating ganglia using signals sent from an external
camera and power sent from an external transmitter,
whereas subretinal implants sit under the retina, stimulating
bipolar or ganglion cells from underneath and have
provided promising results recently [104]. In the epiretinal
approach, the prosthesis adjacent to the ganglion cell layer
bypasses the entire retinal circuitry [95].

An alternative approach to restore photosensitivity in the
retina is to express genes encoding light sensitive functions
in specific retinal neuron subtypes [105]. Microelectrode
arrays are a required support for this strategy because they
provide a rapid and detailed analysis of the response
induced by the expressed gene.

Furthermore, MEA technology is applied in develop-
mental studies of retinal circuits [106] and to analyze the
spatiotemporal properties of retinal ganglion cell receptive
fields [107]; accurate description of spatiotemporal recep-
tive fields is used to create models predicting the output of
specific subtypes of retinal ganglion cells [108].

Commercial MEAs have been routinely used for retina
research, nevertheless the electrode density is still too poor
to access the rich amount of information coded by the
different retinal ganglion cell subtypes. CMOS-based
MEAs with high spatiotemporal resolution will be crucial
to increase our knowledge of the retinal code and to
develop efficient medical application to treat diseases of
vision.

Central and peripheral nervous system

Because of its high level of complexity, our understanding
of the human brain is still largely a work in progress.
Elucidating the various functional circuitry of the brain has

been the subject of many studies, yet the disorders that
occur in the brain have not been fully characterized. It has
been shown that conditions such as Alzheimer’s disease
(AD) and epilepsy depend on the concerted activity of
neural networks. Use of cultures as surrogates for in vivo
experiments is contingent on the premise that the
“functional units” of the brain are distinct cellular
populations [109]. As such, cultured networks of neurons
can be considered the “functional unit of functional organi-
zation” in the brain [110]. The elucidation of such functional
units may be expanded by using the MEA, facilitating the
study of brain disorders and pathologies [69].

One of the characteristic symptoms of AD is the
impairment of memory function [111]. Although memory
mechanisms are still not well understood, two processes,
long-term potentiation (LTP) and long-term depression
(LTD), are thought to be opposing forces that are
responsible for memory storage [112, 113]. Some light
has been shed on mechanisms that cause AD: in the
cerebral cortices of human subjects with Alzheimer’s
disease, amyloid beta protein (Ab) oligomers inhibit LTP,
enhance LTD, and reduce dendritic spine density in normal
rodent hippocampus [114]; at the Alzheimer’s Association
International Conference on Alzheimer’s Disease in 2009,
the toxic effects of Ab oligomers were demonstrated by
using cultured hippocampal neurons on an MEA, confirm-
ing previous data from patch clamp studies [115].

Epilepsy is the most common neurological disorder,
affecting 50 million people worldwide [116]. MEA record-
ings were acquired from pharmacologically induced models
of epileptiform activity in rat acute hippocampal slices. Hill
et al. [117] used the introduction of 4-aminopyridine (4-AP)
and the removal of external Mg2+ ions as in vitro models of
epilepsy, as shown in Fig. 10. The effects of two
anticonvulsant drugs, felbamate and phenobarbital, were
assessed on these model platforms; phenobarbital was
shown to completely repress all induced epileptic bursting
in the slices. The characteristics typically seen in vivo, such
as changes in burst duration, frequency, and amplitude,
were measured in these slices [117].

For the investigation of pharmacological compounds,
cultured neural networks provide a highly sensitive plat-
form. Such a system is stable over the long-term for evoked
or spontaneous electrophysiological activity [27, 61, 63].
Furthermore, sensitivities to certain compounds can be
regulated by the increase or decrease of receptor expression
[118]. It has also been established that cultured neural
networks respond to neurotransmitters, blockers, and many
pharmacological substances such that in vivo behavior of
neurons can be mimicked in vitro [11, 119–122]. For
example, bicuculline blocks the main inhibitory neurotrans-
mitter γ-aminobutyric acid (GABA), causing an increased
spiking frequency, as does the chloride channel antagonist
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strychnine (Fig. 11). Such cultures are cultured for long-
term monitoring of neuronal electrophysiological activity
including development, neuronal plasticity, and axonal
regeneration [123, 124], all of which may be affected by
the introduction of pharmaceutical compounds.

Neurotoxicity assessment studies for new compounds, as
per the guidelines of the Organization for Economic Co-
operation and Development and European Community,
require only in vivo neurobehavioral and neurotoxicity
testing. Such testing procedures do not always accurately
predict responses in humans, are costly, and require the use
of numerous laboratory animals, the number of which could

be reduced by the use of in vitro methods, such as
described in the preceding paragraph [122]. At the 11th
International Neurotoxicology Association Meeting, several
in vitro models were discussed [125]. Two groups used
primary dissociated cultures from mouse or rat cortex and
spinal cord neuronal networks to study spontaneous and
evoked neuronal activity. The effect of several pharmaco-
logical agents on spontaneous activity of cultured neural
networks was assessed. A standard neurotoxicant, trime-
thyltin chloride, had a dose-dependent effect in mouse
central nervous system (CNS), specifically the spinal cord
and auditory cortex [121]. The group established five

Fig. 11 Recordings from five neurons in spinal cord cultures. a Control recordings. b GABA receptor blockage by bicuculline (BCC) and c
chloride channel antagonist strychnine (STR) [122]

Fig. 10 Models of epilepsy
in hippocampal slices. a A hip-
pocampal acute slice from an
adult rat (p=30) mounted on an
MEA. Scale bar is 200 μm. b, c
Recordings of epileptiform
bursts in the slice induced by the
potassium channel blocker
4-aminopyridine (4-AP) and the
absence of Mg2+ in extracellular
solution [117]. d, e Representa-
tive bursts from b and c [117]
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distinct drug-induced oscillatory activity states by blocking
common neurotransmitter receptors. This study created
“fingerprints” of characteristic responses to known and
unknown substances, which can be used to evaluate
responses to drugs [122, 125, 126].

The peripheral nervous system has also been the focus of
several studies. Czarnecki et al. used MEAs to study the
repetitive patterns of neural activity in spinal cord that are
responsible for behavior such as locomotion; they investi-
gated neuronal networks of cells from the vertebrate spinal
cord, and coupling properties were elucidated by using
pharmacological methods. Bursting network activity and
intrinsic activity in these cultures were modulated by 5-
hydroxytryptamine (5-HT, serotonin) and the cholinergic
agonist muscarine [127]. Rhythmic activity in spinal cord
slices has been monitored over long durations using MEAs
[128], as has been circadian rhythm activity in organotypic
slices of the hypothalamic suprachiasmatic nucleus [129,
130].

Biochemical sensors

Biochemical sensors are devices that reveal information
about the chemical composition of a biological system
either in vitro or in vivo in real time. They make it possible
to discriminate the relevant species from biologically
significant background molecules and to signal the pres-
ence of a chemical or measure its concentration with an
electrical signal such as current, voltage, or frequency.
While some medical equipment has become more complex
and more expensive, the nature of and specific applications
for biochemical sensors associated with diagnosis drive
them to become more compact and more economically
viable.

Electrode-based electrochemical sensors constitute the
oldest and most diverse group of chemical sensors, as they
can be used for a large variety of applications. Potentio-
metric, conductometric, and voltammetric measurement
techniques can be employed depending on the mechanism
of the reaction to be analyzed. Potentiometric sensors
operate at the equilibrium state: a potential is measured
while no current is allowed to flow. The potential is thus
proportional to the logarithm of the concentration of the
electroactive species, as described in the Nernst equation
[131]. Chemically sensitive field-effect transistors (Chem-
FETs) and ISFETs, in which the gate voltage is supplied by
the studied chemical process, are examples of potentiomet-
ric sensors that can be used to measure pH [34]. Two-
dimensional 10×10 arrays of pH sensors have been
constructed, which can continuously monitor sub-second
pH changes in a solution and output visual images [132].
Conductometric sensors measure impedance (resistance or
capacitance) changes between sets of electrodes with a

sensing layer between them before and after exposure to
analytes. Conductometric sensors are usually employed as
gas sensors [131]. Capacitive sensors can also be used as gas
sensors, although are more typically employed as humidity
sensors [133]. Either of these types of gas sensors can be
used for diagnostic purposes, such as for evaluating lung
performance or measuring acetone concentration in the
breath, which can indicate an exacerbation of diabetes
[134], as long as they are specific and discriminating enough
in real-world conditions. Notably, DNA hybridization has
been detected by using arrays of capacitive sensors as well
[135]. This approach will be examined in greater detail
below. Finally, voltammetric sensors feature potentiostats,
which enable them to perform dynamic experiments such as
voltammetry (coulometry) where the voltage is modulated
and the resulting current is measured, or vice versa. These
electrochemical sensors are two- to three-electrode con-
figurations and rely on charge transfer reactions between
analytes and electrodes that oxidize and reduce species
of interest. The resulting signals are usually linearly
proportional to the concentration of the electroactive
species of interest. The use of standardized reference
electrodes in combination with the potentiostat allows a
single half-cell reaction to be studied. Combinations of
linear sweeps, pulses, and cycling of these methods
within different ranges and at varying scan rates provide
a wealth of information about the system being studied.
Cyclic voltammetry and fast scan voltammetry are two
well-known techniques, which are used to discern
information about charge exchange, chemical concentra-
tions, and adsorption of reactants [136].

CMOS chips can be designed with innumerable electri-
cal functions, and can have electrodes or other micro-
structures built onto them in batch processes. These
interfaces can additionally be chemically or enzymatically
activated, making the possibilities of CMOS chips as
biological or chemical signal sensors extensive [131].

One CMOS chip that is based on voltammetric techni-
ques combines a multiplexed MEA of 576 platinum
sensors, on-chip reference and counter electrodes, and an
on-chip potentiostat, which can be used for electrochemical
detection of processes such as DNA hybridization for
disease detection, e.g., HIV, HSV, and malaria, and
neurotransmitter detection for fundamental research or drug
screening [137]. For DNA hybridization sensing, a con-
ducting polymer and then a linking/spacing polymer are
sequentially electrodeposited, and thus unlabeled, unmod-
ified single-stranded DNA is immobilized via its naturally
occurring phosphate groups onto the chip [138]. Cyclic
voltammetry, in which the potential between the working
and reference electrodes is ramped up and down, is applied
before and after the introduction of sample (“target”) DNA,
and hybridization is measured as a diminution in the
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current. The MEA structure creates excellent opportunities
in terms of diagnosis in that different DNA can be
deposited on different electrodes, making it possible to test
for many diseases or strains of a disease with a single
sample and in a single measurement cycle [137, 138].

Another chip, which utilizes a capacitance variation
upon DNA hybridization, further demonstrates the versatil-
ity of CMOS to accomplish the same goal (Fig. 12).
Thiolated, single-stranded DNA covalently bonds to gold
electrodes in one chamber of a dual-chambered 8×16 array
of interdigitated electrodes [139]. Sample DNA is then
introduced into both chambers (bare electrodes and immo-
bilized target DNA) and the changes in capacitance are
measured by converting changes in voltage to changes in
frequency. This is accomplished by exciting the electrodes
with current pulses and measuring their responses, which
are voltage changes whose waveform time constant is
dominated by the capacitive component of the interface
impedance.

Yet another approach functions both as a hybridization
and polymerization sensor, and could therefore be used to
sequence DNA [140]. Probe DNA is immobilized over a
polymer layer by spotting, and target DNA of a different
length is then introduced. The shorter strand is then
extended via computer-controlled deoxynucleotide triphos-
phate (dNTP) release, and at each incorporation of a
nucleotide, a proton is released which diffuses quickly
away. This transient current is the measured signal [141].

For all of these CMOS approaches, redundant measure-
ments for improved statistics can be performed, since many
different electrodes can easily be prepared with the same
DNA. Additionally, chips can be activated with many kinds
of DNA specific to a subset of patients based on their

susceptibility or exposure so that a single measurement
could test for many diseases and parasites.

Several of these chips can also be used to detect
electroactive neurotransmitters, such as dopamine, nor-
epinephrine, epinephrine, and serotonin [142], or can be
functionalized with enzymes for the detection of neuro-
transmitters that are oxidized by those enzymes and
produce the electroactive by-product hydrogen peroxide
(i.e., glutamate, acetylcholine, choline, glucose—each
oxidized by its respective oxidase) for in vitro and in vivo
applications [143]. Although noble metal electrodes have
rarely been used for detection via oxidation of electro-
active neurotransmitters (carbon fiber electrodes were
most often used), they are now becoming more popular
as they can be coated with polymers which extend their
potential [144]. With metal electrodes, techniques such as
fast scan cyclic voltammetry, in which entire measurement
cycles can be made in milliseconds, and differential pulse
voltammetry can be used to identify chemicals of interest
and monitor their concentrations. It is important to have
very sensitive and selective techniques because many
different chemicals are present in the brain, which interact
and interfere with each other [30]. The electrochemical
techniques are very useful for the application, but other
methods are needed for non-electroactive neurotransmit-
ters. For these, enzymes can be affixed to only one of two
adjacent electrodes and differential measurements can be
performed. Selective membranes (permeable only to
certain molecules) can also be used as long as they do
not slow down reaction times to unacceptable levels [30].

There also exist a number of different other non-
electrochemical mechanisms, which can be employed for
the recognition of the pertinent molecule(s) as well as for
signal transduction, which have evolved and become
significantly more sophisticated over the years. With regard
to sensing methods that can effectively be realized in
CMOS, mass-sensitive, thermal, or optical detection means
have been developed, which can employ either equilibrium
or kinetic selectivity measures [145]. Mass-sensitive sen-
sors, e.g., employ techniques such as the deflection or
resonance of very small stiff cantilevers upon mass
accretion. These can be produced on CMOS as micro-
electromechanical or nanoelectromechanical structures
(MEMS or NEMS), and detect changes of mass due to
adsorption, deposition, evaporation, or erosion or as a result
of an affinity binding reaction [145]. Commercially
available CMOS image sensors have become popular in
digital cameras, although more sensitive devices than these
are required for the very small signals associated with
biochemical sensing. CMOS-photodiode microluminome-
ters for the detection of chemi- or bioluminescent signals
from as few as 5,000 fluorescently labeled cells (pA
currents) have been realized [146], as have arrays with

Fig. 12 Microsensor MEA chip with 8×16 array of capacitive
sensors shown with printed circuit board (PCB) and fluidic cell [139]
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high frame rate imagers with timing resolutions exceeding
150 ps which are able to resolve fluorescent lifetimes [147].

Conclusion

CMOS has been shown to be a powerful technology for the
construction of microdevices for biomedical research and
pharmaceutical screening. The planar MEAs described are
capable of measuring electrophysiological activity of
multiple cells simultaneously, providing information about
the activity of individual cells at high spatiotemporal
resolution. Moreover, integrated electrode arrays are suit-
able tools to perform highly localized and distributed
electrochemical sensing in biological preparations.

In the future, systems with an increased number of
recording and stimulation electrodes will be developed. The
use of CMOS technologies with small minimum feature
size (i.e., 0.35-μm or 0.18-μm technology) will accelerate
system innovation, allowing also the integration of more
advanced analog front ends and digital interfaces with even
smaller size and lower power consumption, which are
needed to reduce heating that could damage the on-chip
cultured cells. At the same time, such complex systems
generate huge amounts of data, requiring advanced data
sorting and compression. The development of novel
algorithms and filters will allow data acquisition in real
time. Finally, MEAs will be integrated with different sensor
types, such as chemical sensors, so that even more
comprehensive studies can be performed, such as the
observation of cell metabolism, monitoring of neurotrans-
mitters, the study of cell location and of tissue morphology.

The devices described have important implications in
biomedical research, opening up new avenues for under-
standing human disease. Vastly complex organs, such as
neuronal ensembles or cardiac tissue, can be investigated at
a greater level of detail and pathologic mechanisms can be
mimicked, studied, and perturbed by using pharmacologic
or electrophysiological stimuli. The authors of this review
anticipate that MEAs will have a substantial impact on
diagnostics and pharmacology in the near future. While
MEAs have not yet been formally accepted as a standard
method for such diagnostics, it seems highly probable that
these devices will play an increasingly vital role in the field
as physiologic testing platforms for pharmacology require
ever higher throughput dynamics and capabilities.
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