8,796 research outputs found

    A framework for green manufacturing practicies in small and medium enterprises in Malaysia

    Get PDF
    Green Manufacturing Practices (GrMP) is a term used to describe manufacturing practices that do not harm the environment during any part of the manufacturing process. It emphasizes the use of processes that do not pollute the environment or harm consumers, employees, or other members of the community. Small and medium enterprises (SMEs) are moving toward sustainable alternatives through GrMP method. It stresses on critical factors such as organisational style, eco-knowledge, business environment, society influences, supply chain management and technology network. Large size industries are more compelled to do so compared to SMEs due to the fact that they are more influential with better organizational management and good financial stability compared to SMEs. However, SMEs are trying to adapt GrMP as a mandatory process, but lack of proper framework which guide them for implementation. Therefore, this study developes the framework of GrMP for local SMEs. The study involves enablers and barriers in implementing GrMP from previous literatures. This work formulate a framework based on relationship between criticals factors with enablers and barriers. 59 of respondents from local industries in Malaysia were selected as respondents based on six of critical factors divided into two parts which are enablers and barriers. The questionnaire are designed based on this. Survey were evaluated by using Statistical Package for the Social Sciences (SPSS) version 23, in terms of correlation, reliability, central tendency and variability testing. The finding on this study in the term of framework will help SMEs to implementing GrMP. Framework formulate relates the critical factors from previous literature and enablers and barriers from survey based on perception of industries expert. GrMP for SMEs are the first step of environmental awareness and ecological responsibilties

    DDoS-Capable IoT Malwares: comparative analysis and Mirai Investigation

    Get PDF
    The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    Online on-board optimization of cutting parameter for energy efficient CNC milling

    Get PDF
    Energy efficiency is one of the main drivers for achieving sustainable manufacturing. Advances in machine tool design have reduced the energy consumption of such equipment, but still machine tools remain one of the most energy demanding equipment in a workshop. This study presents a novel approach aimed to improve the energy efficiency of machine tools through the online optimization of cutting conditions. The study is based on an industrial CNC controller with smart algorithms optimizing the cutting parameters to reduce the overall machining time while at the same time minimizing the peak energy consumption

    Pembangunan Modul Pengajaran Kendiri (MPK) keusahawanan dalam topik isu keusahawanan bagi pelajar diploma di politeknik

    Get PDF
    Terdapat pelbagai kaedah pembelajaran yang telah diperkenalkan termasuklah kaedah pembelajaran yang menggunakan pendekatan pembelajaran bermodul secara kendiri. Kajian ini adalah bertujuan untuk mengkaji kesesuaian Modul Pengajaran Kendiri Keusahawanan dalam topik Isu Keusahawanan yang telah dihasilkan bagi pelajar yang mengikuti pengajian Diploma di Jabatan Perdagangan Politeknik. Antara aspek yang dikaji ialah untuk menilai sama ada rekabentuk modul yang dihasilkan dapat memenuhi ciri-ciri modul yang baik, MPK yang dihasilkan dapat membantu mencapai objektif pembelajaran, MPK ini bersifat mesra pengguna dan MPK yang dihasilkan membantu pensyarah menyampaikan pengajarannya dengan lebih berkesan. Kajian ini dilakukan ke atas 110 orang pelajar semester en am yang mengikuti pengajian diploma dan 4 orang pensyarah yang mengajar subjek Keusahawanan di Jabatan Perdagangan Politeknik Sultan Salahuddin Abdul Aziz Shah, Selangor. Kaedah analisa data yang digunakan dalam kajian ini ialah skor min dan peratus. Hasil daripada kajian ini menunjukkan bahawa rekabentuk modul yang dihasilkan memenuhi ciri-ciri modul yang baik, MPK ini membantu untuk mencapai objektif pembelajaran, MPK ini bersifat mesra pengguna dan MPK yang dihasilkan dapat membantu pensyarah menyampaikan pengajarannya dengan lebih berkesan. Ini bermakna secara keseluruhannya, hasil kajian menunjukkan bahawa modul yang dihasilkan oleh pengkaji adalah sesuai digunakan oleh pelajar-pelajar semester enam yang mengikuti pengajian diploma di Jabatan Perdagangan peringkat politeknik. Seterusnya, beberapa pandangan telah dikemukakan bagi meningkatkan rnutu dan kualiti MPK yang dihasilkan. Semoga kajian ini dapat memberi manfaat kepada mereka yang terlibat dalam bidang pendidikan

    Derivation of a cost model to aid management of CNC machine tool accuracy maintenance

    Get PDF
    Manufacturing industries strive to produce improved component accuracy while not reducing machine tool availability or production throughput. The accuracy of CNC production machines is one of the critical factors in determining the quality of these components. Maintaining the capability of the machine to produce in-tolerance parts can be approached in one of two ways: run to failure or periodic calibration and monitoring. The problem is analogous to general machine tool maintenance, but with the clear distinction that the failure mode of general machine tool components results in a loss of production, whereas that of accuracy allows parts to be produced, which are only later detected as non-conforming as part of the quality control processes. This distinction creates problems of cost-justification, since at this point in the manufacturing chain, any responsibility of the machine is not directly evident. Studies in the field of maintenance have resulted in cost calculations for the downtime associated with machine failure. This paper addresses the analogous, unanswered problem of maintaining the accuracy of CNC machine tools. A mathematical cost function is derived that can form the basis of a strategy for either running until non-conforming parts are detected or scheduling predictive CNC machine tool calibrations. This is sufficiently generic that it can consider that this decision will be based upon different scales of production, different values of components etc. Therefore, the model is broken down to a level where these variables for the different inputs can be tailored to the individual manufacturer

    An investigation into reducing the spindle acceleration energy consumption of machine tools

    Get PDF
    Machine tools are widely used in the manufacturing industry, and consume large amount of energy. Spindle acceleration appears frequently while machine tools are working. It produces power peak which is highly energy intensive. As a result, a considerable amount of energy is consumed by this acceleration during the use phase of machine tools. However, there is still a lack of understanding of the energy consumption of spindle acceleration. Therefore, this research aims to model the spindle acceleration energy consumption of computer numerical control (CNC) lathes, and to investigate potential approaches to reduce this part of consumption. The proposed model is based on the principle of spindle motor control and includes the calculation of moment of inertia for spindle drive system. Experiments are carried out based on a CNC lathe to validate the proposed model. The approaches for reducing the spindle acceleration energy consumption were developed. On the machine level, the approaches include avoiding unnecessary stopping and restarting of the spindle, shortening the acceleration time, lightweight design, proper use and maintenance of the spindle. On the system level, a machine tool selection criterion is developed for energy saving. Results show that the energy can be reduced by 10.6% to more than 50% using these approaches, most of which are practical and easy to implement

    Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations

    Get PDF
    Hybrid machine tools combining additive and subtractive processes have arisen as a solution to increasing manufacture requirements, boosting the potentials of both technologies, while compensating and minimizing their limitations. Nevertheless, the idea of hybrid machines is relatively new and there is a notable lack of knowledge about the implications arisen from their in-practice use. Therefore, the main goal of the present paper is to fill the existing gap, giving an insight into the current advancements and pending tasks of hybrid machines both from an academic and industrial perspective. To that end, the technical-economical potentials and challenges emerging from their use are identified and critically discussed. In addition, the current situation and future perspectives of hybrid machines from the point of view of process planning, monitoring, and inspection are analyzed. On the one hand, it is found that hybrid machines enable a more efficient use of the resources available, as well as the production of previously unattainable complex parts. On the other hand, it is concluded that there are still some technological challenges derived from the interaction of additive and subtractive processes to be overcome (e.g., process planning, decision planning, use of cutting fluids, and need for a post-processing) before a full implantation of hybrid machines is fulfilledSpecial thanks are addressed to the Industry and Competitiveness Spanish Ministry for the support on the DPI2016-79889-R INTEGRADDI project and to the PARADDISE project H2020-IND-CE-2016-17/H2020-FOF-2016 of the European Union's Horizon 2020 research and innovation program

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines
    corecore