1,850 research outputs found

    Evaluation methodology for visual analytics software

    Get PDF
    O desafio do Visual Analytics (VA) é produzir visualizaçÔes que ajudem os utilizadores a concentrarem-se no aspecto mais relevante ou mais interessante dos dados apresentados. A sociedade actual enfrenta uma quantidade de dados que aumenta rapidamente. Assim, os utilizadores de informação em todos os domínios acabam por ter mais informação do que aquela com que podem lidar. O software VA deve suportar interacçÔes intuitivas para que os analistas possam concentrar-se na informação que estão a manipular, e não na técnica de manipulação em si. Os ambientes de VA devem procurar minimizar a carga de trabalho cognitivo global dos seus utilizadores, porque se tivermos de pensar menos nas interacçÔes em si, teremos mais tempo para pensar na anålise propriamente dita. Tendo em conta os benefícios que as aplicaçÔes VA podem trazer e a confusão que ainda existe ao identificar tais aplicaçÔes no mercado, propomos neste trabalho uma nova metodologia de avaliação baseada em heurísticas. A nossa metodologia destina-se a avaliar aplicaçÔes através de testes de usabilidade considerando as funcionalidades e características desejåveis em sistemas de VA. No entanto, devido à sua natureza quatitativa, pode ser naturalmente utilizada para outros fins, tais como comparação para decisão entre aplicaçÔes de VA do mesmo contexto. Além disso, seus critérios poderão servir como fonte de informação para designers e programadores fazerem escolhas apropriadas durante a concepção e desenvolvimento de sistemas de VA

    The Reality of the Situation: A Survey of Situated Analytics

    Get PDF

    Using Machine Learning to Infer Reasoning Provenance from User Interaction Log Data

    Get PDF
    The reconstruction of analysts’ reasoning processes (reasoning provenance) during complex sensemaking tasks can support reflection and decision making. One potential approach to such reconstruction is to automatically infer reasoning from low-level user interaction logs. We explore a novel method for doing this using machine learning. Two user studies were conducted in which participants performed similar intelligence analysis tasks. In one study, participants used a standard web browser and word processor; in the other, they used a system called INVISQUE (Interactive Visual Search and Query Environment). Interaction logs were manually coded for cognitive actions based on captured think-aloud protocol and posttask interviews based on Klein, Phillips, Rall, and Pelusos’s data/frame model of sensemaking as a conceptual framework. This analysis was then used to train an interaction frame mapper, which employed multiple machine learning models to learn relationships between the interaction logs and the codings. Our results show that, for one study at least, classification accuracy was significantly better than chance and compared reasonably to a reported manual provenance reconstruction method. We discuss our results in terms of variations in feature sets from the two studies and what this means for the development of the method for provenance capture and the evaluation of sensemaking systems

    Using machine learning to infer reasoning provenance from user interaction log data: based on the data/frame theory of sensemaking

    Get PDF
    The reconstruction of analysts’ reasoning processes (reasoning provenance) during complex sensemaking tasks can support reflection and decision making. One potential approach to such reconstruction is to automatically infer reasoning from low-level user interaction logs. We explore a novel method for doing this using machine learning. Two user studies were conducted in which participants performed similar intelligence analysis tasks. In one study, participants used a standard web browser and word processor; in the other, they used a system called INVISQUE (Interactive Visual Search and Query Environment). Interaction logs were manually coded for cognitive actions based on captured think-aloud protocol and posttask interviews based on Klein, Phillips, Rall, and Pelusos’s data/frame model of sensemaking as a conceptual framework. This analysis was then used to train an interaction frame mapper, which employed multiple machine learning models to learn relationships between the interaction logs and the codings. Our results show that, for one study at least, classification accuracy was significantly better than chance and compared reasonably to a reported manual provenance reconstruction method. We discuss our results in terms of variations in feature sets from the two studies and what this means for the development of the method for provenance capture and the evaluation of sensemaking systems

    Collaborative Human-Computer Interaction with Big Wall Displays - BigWallHCI 2013 3rd JRC ECML Crisis Management Technology Workshop

    Get PDF
    The 3rd JRC ECML Crisis Management Technology Workshop on Human-Computer Interaction with Big Wall Displays in Situation Rooms and Monitoring Centres was co-organised by the European Commission Joint Research Centre and the University of Applied Sciences St. Pölten, Austria. It took place in the European Crisis Management Laboratory (ECML) of the JRC in Ispra, Italy, from 18 to 19 April 2013. 40 participants from stakeholders in the EC, civil protection bodies, academia, and industry attended the workshop. The hardware of large display areas is on the one hand mature since many years and on the other hand changing rapidly and improving constantly. This high pace developments promise amazing new setups with respect to e.g., pixel density or touch interaction. On the software side there are two components with room for improvement: 1. the software provided by the display manufacturers to operate their video walls (source selection, windowing system, layout control) and 2. dedicated ICT systems developed to the very needs of crisis management practitioners and monitoring centre operators. While industry starts to focus more on the collaborative aspects of their operating software already, the customized and tailored ICT applications needed are still missing, unsatisfactory, or very expensive since they have to be developed from scratch many times. Main challenges identified to enhance big wall display systems in crisis management and situation monitoring contexts include: 1. Interaction: Overcome static layouts and/or passive information consumption. 2. Participatory Design & Development: Software needs to meet users’ needs. 3. Development and/or application of Information Visualisation & Visual Analytics principle to support the transition from data to information to knowledge. 4. Information Overload: Proper methods for attention management, automatic interpretation, incident detection, and alarm triggering are needed to deal with the ever growing amount of data to be analysed.JRC.G.2-Global security and crisis managemen

    Collaborative behavior, performance and engagement with visual analytics tasks using mobile devices

    Get PDF
    Interactive visualizations are external tools that can support users’ exploratory activities. Collaboration can bring benefits to the exploration of visual representations or visu‐ alizations. This research investigates the use of co‐located collaborative visualizations in mobile devices, how users working with two different modes of interaction and view (Shared or Non‐Shared) and how being placed at various position arrangements (Corner‐to‐Corner, Face‐to‐Face, and Side‐by‐Side) affect their knowledge acquisition, engagement level, and learning efficiency. A user study is conducted with 60 partici‐ pants divided into 6 groups (2 modes×3 positions) using a tool that we developed to support the exploration of 3D visual structures in a collaborative manner. Our results show that the shared control and view version in the Side‐by‐Side position is the most favorable and can improve task efficiency. In this paper, we present the results and a set of recommendations that are derived from them
    • 

    corecore