70 research outputs found

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    In-shoe sensor system with an embedded user interface and wearable leg unit

    Get PDF
    In-shoe sensor systems are of great interest to monitor foot health, sports activities and rehabilitation strategies. Among the potential users are people with diabetes, a large part of the population for which monitoring foot pressure and temperature is critical to avoid ulceration, and even amputation. Despite all these reasons the use of foot monitoring devices is still uncommon compared to other accessories such as fitness tracking devices. This work describes the development of an instrumented insole for monitoring pressure, temperature and humidity taking advantage of widely available wearable components. This is made possible by additionally developing a shield board for time-division multiplexing of the pressure signals and an embedded user interface which is stored in the microcontroller's memory and uploaded to a smartphone at start-up via Bluetooth Low Energy. The user interface runs on a smartphone to provide both real time monitoring and averages of sensor data. The system is described in detail and validated by monitoring pressure patterns during stance, by testing response to temperature variations and observing patterns in individuals with pes planus posture.info:eu-repo/semantics/publishedVersio

    MEMS Biomedical Sensor for Gait Analysis

    Get PDF

    A Portable Insole System to Simultaneously Measure Plantar Pressure and Shear Stress

    Get PDF
    Objective: This work aims to develop an integrated in-shoe measurement system to fully record plantar loading, including both pressure and shear stresses, across the full contact surface. These data are vital to help understand and prevent the development of complex conditions such as Diabetic Foot Ulcers (DFUs), a worldwide healthcare challenge. Currently no systems exist to reliably record these data. Methods: In this paper we report development of the SLIPS ('Shear Load Inductive Plantar Sensing') system which integrates 64 tri-axial force sensors into a flexible insole to measure plantar loading. SLIPS translates our multi-axis inductive load sensing technology into a full sensory array embedded within an insole and complete with communication and power bus. A pilot study evaluates the system in three healthy participants during walking. Results: Testing shows that the SLIPS system is well tolerated by participants and can operate under dynamic gait loading regimes. The pilot study reveals the complex nature of plantar loading. Regions of peak pressure loading align with anatomical landmarks and shear loading forms a significant component of the overall load. Notably, regions of peak shear and pressure are not necessarily collocated or present in unison. Conclusion: This work highlights the need for in-shoe plantar measurement systems like SLIPS capable of mapping both pressure and shear load, and their use to improve understanding of how these factors relate to clinical conditions like DFU. Significance: SLIPS represents the first in-shoe measurement system capable of measuring both pressure and shear across the whole plantar surface in unison

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Foot Modeling and Smart Plantar Pressure Reconstruction from Three Sensors

    No full text
    International audienceIn order to monitor pressure under feet, this study presents a biomechanical model of the human foot. The main elements of the foot that induce the plantar pressure distribution are described. Then the link between the forces applied at the ankle and the distribution of the plantar pressure is established. Assumptions are made by defining the concepts of a 3D internal foot shape, which can be extracted from the plantar pressure measurements, and a uniform elastic medium, which describes the soft tissues behaviour. In a second part, we show that just 3 discrete pressure sensors per foot are enough to generate real time plantar pressure cartographies in the standing position or during walking. Finally, the generated cartographies are compared with pressure cartographies issued from the F-SCAN system. The results show 0.01 daN (2% of full scale) average error, in the standing position

    Monitoring and Managing the Offloading, Physical Activity Engagement and Fall Risk of Persons with Diabetic Foot Disease

    Get PDF
    This thesis integrates a series of previously published papers centring around three interrelated themes addressing the complex relationship between diabetic foot ulcers (DFU) and physical activity engagement. The three foci of the thesis include: 1) ‘offloading’ DFU via specialized footwear that limit the application of physical stress to ulcers during weight bearing activity in order to promote healing; 2) monitoring and managing physical activity engagement of both patients at risk for DFU and patients with active DFU; 3) the heightened risk of falls in individuals at risk for DFU. A cohesive underlying foundation of the body of work contained within this thesis is an effort to help care providers and patients achieve better physical activity profiles. Offloading diabetic feet refers to the redistribution of physical stress away from sites at risk for or with active DFU. Thus, it is important to both prevent DFU but also to heal active DFU. This thesis includes two publications pertaining to the objective measurement of patient adherence to offloading modalities as well as two publications regarding the biomechanical assessment of devices used to offload DFU. The need for offloading is necessitated by the fact that individuals with DFU engage in weight bearing physical activity that can inflict physical trauma beyond the tolerance of the soft tissue of their feet, however, the relationship between physical activity and the formation as well as healing of DFU is not fully understood. A series of five publications concerning physical activity within patients with, or at risk for DFU are included in this thesis: two focus on improved monitoring of physical activity and three focus on safely increasing physical activity engagement. Due to a number of interconnected factors, individuals at risk for DFU are also at high risk for falling. The final three publications included in this thesis are devoted to falls risk

    Sensores de fibra ótica para arquiteturas e-Health

    Get PDF
    In this work, optical fiber sensors were developed and optimized for biomedical applications in wearable and non-intrusive and/or invisible solutions. As it was intended that the developed devices would not interfere with the user's movements and their daily life, the fibre optic sensors presented several advantages when compared to conventional electronic sensors, among others, the following stand out: size and reduced weight, biocompatibility, safety, immunity to electromagnetic interference and high sensitivity. In a first step, wearable devices with fibre optic sensors based in Fiber Bragg gratings (FBG) were developed to be incorporated into insoles to monitor different walking parameters based on the analysis of the pressure exerted on several areas of the insole. Still within this theme, other sensors were developed using the same sensing technology, but capable of monitoring pressure and shear forces simultaneously. This work was pioneering and allowed monitoring one of the main causes of foot ulceration in people with diabetes: shear. At a later stage, the study focused on the issue related with the appearance of ulcers in people with reduced mobility and wheelchair users. In order to contribute to the mitigation of this scourge, a system was developed composed of a network of fibre optic sensors capable of monitoring the pressure at various points of the wheelchair. It not only measures the pressure at each point, but also monitors the posture of the wheelchair user and advises him/her to change posture regularly to reduce the probability of this pathology occurring. Still within this application, another work was developed where the sensor not only monitored the pressure but also the temperature in each of the analysis points, thus indirectly measuring shear. In another phase, plastic fibre optic sensors were studied and developed to monitor the body posture of an office chair user. Simultaneously, software was developed capable of monitoring and showing the user all the acquired data in real time and warning for incorrect postures, as well as advising for work breaks. In a fourth phase, the study focused on the development of highly sensitive sensors embedded in materials printed by a 3D printer. The sensor was composed of an optical fibre with a FBG and the sensor body of a flexible polymeric material called "Flexible". This material was printed on a 3D printer and during its printing the optical fibre was incorporated. The sensor proved to be highly sensitive and was able to monitor respiratory and cardiac rate, both in wearable solutions (chest and wrist) and in "invisible" solutions (office chair).Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica para aplicações biomédicas em soluções vestíveis e não intrusivas/ou invisíveis. Tendo em conta que se pretende que os dispositivos desenvolvidos não interfiram com os movimentos e o dia-a-dia do utilizador, os sensores de fibra ótica apresentam inúmeras vantagens quando comparados com os sensores eletrónicos convencionais, de entre várias, destacam-se: tamanho e peso reduzido, biocompatibilidade, segurança, imunidade a interferências eletromagnéticas e elevada sensibilidade. Numa primeira etapa, foram desenvolvidos dispositivos vestíveis com sensores de fibra ótica baseados em redes de Bragg (FBG) para incorporar em palmilhas de modo a monitorizar diferentes parâmetros da marcha com base na análise da pressão exercida em várias zonas da palmilha. Ainda no âmbito deste tema, adicionalmente, foram desenvolvidos sensores utilizando a mesma tecnologia de sensoriamento, mas capazes de monitorizar simultaneamente pressão e forças de cisalhamento. Este trabalho foi pioneiro e permitiu monitorizar um dos principais responsáveis pela ulceração dos pés em pessoas com diabetes: o cisalhamento. Numa fase posterior, o estudo centrou-se na temática relacionada com o aparecimento de úlceras em pessoas com mobilidade reduzida e utilizadores de cadeiras de rodas. De modo a contribuir para a mitigação deste flagelo, procurou-se desenvolver um sistema composto por uma rede de sensores de fibra ótica capaz de monitorizar a pressão em vários pontos de uma cadeira de rodas e não só aferir a pressão em cada ponto, mas monitorizar a postura do cadeirante e aconselhá-lo a mudar de postura com regularidade, de modo a diminuir a probabilidade de ocorrência desta patologia. Ainda dentro desta aplicação, foi publicado um outro trabalho onde o sensor não só monitoriza a pressão como também a temperatura em cada um dos pontos de análise, conseguindo aferir assim indiretamente o cisalhamento. Numa outra fase, foi realizado o estudo e desenvolvimento de sensores de fibra ótica de plástico para monitorizar a postura corporal de um utilizador de uma cadeira de escritório. Simultaneamente, foi desenvolvido um software capaz de monitorizar e mostrar ao utilizador todos os dados adquiridos em tempo real e advertir o utilizador de posturas incorretas, bem como aconselhar para pausas no trabalho. Numa quarta fase, o estudo centrou-se no desenvolvimento de sensores altamente sensíveis embebidos em materiais impressos 3D. O sensor é composto por uma fibra ótica com uma FBG e o corpo do sensor por um material polimérico flexível, denominado “Flexible”. O sensor foi impresso numa impressora 3D e durante a sua impressão foi incorporada a fibra ótica. O sensor demonstrou ser altamente sensível e foi capaz de monitorizar frequência respiratória e cardíaca, tanto em soluções vestíveis (peito e pulso) como em soluções “invisíveis” (cadeira de escritório).Programa Doutoral em Engenharia Físic
    corecore