552 research outputs found

    Enhanced Authentication Scheme for Mobility Model in Medical Wireless Sensor Networks

    Get PDF
    The advent of wireless sensor networks has brought significant advancements in healthcare, enabling remote interactions between medical professionals and patients. However, ensuring the security of communication in Medical Wireless Sensor Networks (WSNs) poses different challenges. To address this, this paper introduces a novel authentication framework designed for doctors and patients. The proposed mechanism incorporates essential features such as mutual authentication, anonymity, and data integrity, safeguarding the Medical Wireless Sensor Networks (MWSN). Symmetric encryption techniques are employed to maintain the overall security of the system

    A Study of Technology Innovations and Applications in Transforming Safety and Security in Healthcare Facility Management

    Get PDF
    The increasing complexity of construction projects has transformed the Architecture, Engineering, and Construction (AEC) industry through technology adoption over the last decade. But, Facility Management (FM) as an industry has been slow in technology adoption. Growing market competition, corporate demands and new ways of attracting clients for owners are compelling FM professionals to be more efficient. This requirement is driving technology adoption by FM professionals. This study identifies technologies adopted by Healthcare Facility Management (HFM) professionals for improving safety and security of users that have capabilities and conceived and/or developed applications that can or in some cases are at present used in HFM. Simultaneously, it also looks into potentials and capabilities of a handful of other technologies in further improving safety and security. Using Literature-Based Discovery (LBD), the technology applications and innovations aimed towards safety and security are discovered from the literature that falls within the purview of HFM to form a picture of how these technologies enhance the practice of FM. The study aims at detecting how technologies have contributed towards transforming user experience. Also, this study identifies existing technologies and innovation demands (knowledge and gaps in knowledge), a general understanding of technology, its use and capabilities, and its recognition by users and industry professionals (adoption/rejection). They serve to illustrate how and to what degree the technologies will come to be used in facility management. Technologies, as they mature, will come to be used by facility managers in similar functions and hypothetically, entirely new ones. One should create a better user experience tailored to the functionality demanded. It is important for facility managers to partner with technology companies presenting innovative solutions to create a platform that is tailored to user-specific needs. Acceptance of a unified process, together with input from users, facility managers, and an assessment of current technologies and new advances in practice are productive ways to develop technologies that drive user satisfaction. This paper works to illustrate a future vision of HFM based on these technologies. Healthcare facility managers will have a reference that assembles multiple technological proficiencies that can function in their practice going forward

    A survey on wireless body area networks: architecture, security challenges and research opportunities.

    Get PDF
    In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensitive information within the Wireless Body Area Networks (WBANs), insecure data violates the patients’ privacy and may consequently lead to improper medical diagnosis and/or treatment. Achieving a high level of security and privacy in WBAN involves various challenges due to its resource limitations and critical applications. In this paper, a comprehensive survey of the WBAN technology is provided, with a particular focus on the security and privacy concerns along with their countermeasures, followed by proposed research directions and open issues

    The Applications of the Internet of things in the Medical Field

    Get PDF
    The Internet of Things (IoT) paradigm promises to make “things” include a more generic set of entities such as smart devices, sensors, human beings, and any other IoT objects to be accessible at anytime and anywhere. IoT varies widely in its applications, and one of its most beneficial uses is in the medical field. However, the large attack surface and vulnerabilities of IoT systems needs to be secured and protected. Security is a requirement for IoT systems in the medical field where the Health Insurance Portability and Accountability Act (HIPAA) applies. This work investigates various applications of IoT in healthcare and focuses on the security aspects of the two internet of medical things (IoMT) devices: the LifeWatch Mobile Cardiac Telemetry 3 Lead (MCT3L), and the remote patient monitoring system of the telehealth provider Vivify Health, as well as their implementations

    A lightweight and secure multilayer authentication scheme for wireless body area networks in healthcare system

    Get PDF
    Wireless body area networks (WBANs) have lately been combined with different healthcare equipment to monitor patients' health status and communicate information with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, it is important that healthcare systems have a secure way for users to log in and access resources and services. The lack of security and presence of anonymous communication in WBANs can cause their operational failure. There are other systems in this area, but they are vulnerable to offline identity guessing attacks, impersonation attacks in sensor nodes, and spoofing attacks in hub node. Therefore, this study provides a secure approach that overcomes these issues while maintaining comparable efficiency in wireless sensor nodes and mobile phones. To conduct the proof of security, the proposed scheme uses the Scyther tool for formal analysis and the Canetti–Krawczyk (CK) model for informal analysis. Furthermore, the suggested technique outperforms the existing symmetric and asymmetric encryption-based schemes

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system
    • …
    corecore