3,088 research outputs found

    Utilizing ant colony optimization and intelligent water drop for solving multi depot vehicle routing problem

    Get PDF
    Multi-depot vehicle routing problem (MDVRP) is a real-world variant of the vehicle routing problem (VRP). MDVRP falls under NP-hard problem where trouble in identifying the routes for the vehicles from multiple depots to the customers and then, returning to the similar depot. The challenging task in solving MDVRP is to identify optimal routes for the fleet of vehicles located at the depots to transport customers' demand efficiently. In this paper, two metaheuristic methods have been tested for MDVRP which are Ant Colony Optimization (ACO) and Intelligent Water Drop (IWD). The proposed algorithms are validated using six MDVRP Cordeau's data sets which are P01, P03, P07, P10, P15 and P21 with 50, 75, 100, 249, 160 and 360 customers, respectively. Thus, the results using the proposed algorithm solving MDVRP, five out of six problem data sets showed that IWD is more capable and efficient compared to ACO algorithm

    Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN

    Get PDF
    In the last decade, user demand has been increasing exponentially based on modern communication systems. One of these new technologies is known as mobile ad-hoc networking (MANET). One part of MANET is called a vehicular ad-hoc network (VANET). It has different types such as vehicle-to-vehicle (V2V), vehicular delay-tolerant networks, and vehicle-to-infrastructure (V2I). To provide sufficient quality of communication service in the Vehicular Delay-Tolerant Network (VDTN), it is important to present a comprehensive survey that shows the challenges and limitations of VANET. In this paper, we focus on one type of VANET, which is known as VDTNs. To investigate realistic communication systems based on VANET, we considered intelligent transportation systems (ITSs) and the possibility of replacing the roadside unit with VDTN. Many factors can affect the message propagation delay. When road-side units (RSUs) are present, which leads to an increase in the message delivery efficiency since RSUs can collaborate with vehicles on the road to increase the throughput of the network, we propose new methods based on environment and vehicle traffic and present a comprehensive evaluation of the newly suggested VDTN routing method. Furthermore, challenges and prospects are presented to stimulate interest in the scientific community

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    An adaptive multi-hop routing with IoT abstraction for minimizing delay-node capacity trade-offs in mobile ad-hoc network

    Get PDF
    Delay and node capacity are incompatible mobile ad hoc constraints because of the network's versatility and self-disciplined design. It is a challenging problem to maximize the trade-off between the above mobility correlation factors. This manuscript proposes an adaptive multi-hop routing (A.M.R.) for mobile ad-hoc network (MANET) to minimize the trade-off by integrating the internet of things (IoT). IoT nodes' smart computing and offloading abilities are extended to ad-hoc nodes to improve routing and transmission. Dor MANET nodes in route exploration, neighbor selection, and data transmission, the beneficial features of IoT include enhanced decision making. The traditional routing protocols use IoT at the time of the neighbor discovery process in updating the routing table and localization. The harmonizing technologies with their extended support improve the performance of MANETs has been estimated. The proposed method achieves better throughput (14.16 Mbps), delay (0.118), packet drop (126), and overhead (36 packets) when compared to existing methods

    A water flow algorithm for optimization problems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore