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ABSTRACT 

A novel natured-inspired algorithm, called the water flow algorithm (WFA), for solving 

optimization problems has been proposed in this research work. The proposed algorithm is 

designed by simulating the hydrological cycle in meteorology and the erosion 

phenomenon in nature. Basic operators of this algorithm are based on the raindrops 

distribution simulation, the property of water flow always moving to lower positions, and 

the erosion process to overcome obstacles. Depending on the structure of a specific 

problem, the WFA can be appropriately customized to solve the problem efficiently. 

In this thesis, we focus on solving well-known combinatorial optimization problems, 

such as the permutation flow shop scheduling problem (PFSP) in production planning, 

quadratic assignment problem (QAP) in facility layout design, and vehicle routing 

problem (VRP) in logistics and supply chain management. The general WFA has been 

customized and implemented successfully for solving these problems. For the PFSP, the 

proposed algorithm obtained not only optimal solutions for several PFSP benchmark 

instances taken from OR Library, but also a new best known solution for the benchmark 

instance of Heller. For the QAP, the algorithm solved most QAP benchmark instances 

drawn from the QAPLIB. The comparison results also show that the WFA outperforms 

other algorithms in terms of solution quality for both the PFSP and the QAP. For the VRP, 

the WFA is combined with solving the relaxed mathematical programming model of the 

VRP to search for optimal solutions to this problem. Preliminary results show that this 



 

ix 
 

algorithm is able to obtain optimal solutions for some of the VRP benchmark instances 

taken from the literature.  

Also, the WFA has been developed to solve flexible flow shop scheduling problem 

(FFSP) with intermediate buffers, which is a general case of the PFSP. The FFSP is more 

complex than the PFSP since there are a number of parallel identical machines at each 

stage and intermediate buffers between consecutive stages. To solve the problem, an 

efficient procedure for constructing a complete schedule is required. Hence, we proposed 

a procedure for constructing a complete schedule as well as determining corresponding 

objective values for the FFSP. The procedure is included in the WFA to increase the 

efficiency of this algorithm. The experimental results and comparisons show that the 

proposed algorithm outperforms other algorithms in terms of solution quality as well as 

computation time. Moreover, the WFA has obtained new upper bound solutions for 

several Wittrock benchmark instances.     

The WFA can also be modified to solve multi-objective optimization problems. In this 

thesis, we have designed the WFA for solving multi-objective scheduling problems, called 

the MOWFA. Landscape analysis as well as evaporation and precipitation processes are 

integrated into the MOWFA to solve the multi-objective FFSP with limited buffers 

efficiently. Experimental results show that the MOWFA outperforms an improved hybrid 

multi-objective parallel genetic algorithm for the multi-objective scheduling problem.   

In conclusion, the WFA is able to obtain optimal or good quality solutions to several 

well-known combinatorial optimization problems within reasonable computation time. It 

is thus a promising algorithm to solve other types of optimization problems as well. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

Combinatorial optimization problems are considered as a category of general optimization 

problems in which the values of decision variables are subjected to integrality constraints. 

Such problems are commonly encountered in the real world, especially in the field of 

industrial systems (Yu, 1998). Because of the integrality constraints, their set of feasible 

solutions is finite and an enumeration method may be applied to find an optimal solution 

for these problems. However, the solution search space of combinatorial optimization 

problems can grow exponentially according to the size of the problems, and many of them 

are classified as NP-hard problems (Papadimitriou and Steiglitz, 1982). Thus when 

solving combinatorial optimization problems with large size, exact optimization methods, 

such as the branch and bound method, may not obtain optimal solutions to these problems 

within acceptable computation time; even heuristic algorithms may face difficulties 

finding good quality solutions. Recently, meta-heuristics, especially nature-inspired 

algorithms, have achieved some success with solving certain combinatorial optimization 

problems in reasonable computation time (Shah-Hosseini, 2007; and Yang, 2008). The 

results show the potential of such approaches in solving other types of combinatorial 

optimization problems.  
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In this thesis, we propose a novel nature-inspired meta-heuristic algorithm that is able 

to solve different types of combinatorial optimization problems. A brief description of 

such problems that can be solved by the proposed algorithm is provided in the next section. 

We also present an overview of the practical applications of combinatorial optimization 

problems in this section. As meta-heuristic algorithms are able to obtain solutions for 

certain combinatorial optimization problems effectively, we describe the features of meta-

heuristic algorithms, especially nature-inspired ones, as well as give a classification of the 

algorithms in Section 1.2. Next, we present the motivation and research objectives of the 

thesis in Section 1.3. Then, the main contributions of the thesis are summarized in Section 

1.4. Finally, the organization of this thesis is provided in Section 1.5. 

1.1 Combinatorial Optimization Problems 

Many real-world optimization problems can be formulated as mathematical programming 

models with integrality constraints. The modeling and solving of such real-world 

problems are related to “Combinatorial Optimization” (Christofides et al., 1979).  In a 

combinatorial optimization problem, the set of feasible solutions is discrete, or can be 

reduced to a discrete set. Some examples of classical combinatorial optimization problems 

consist of the knapsack problem that arises in resource allocation with financial 

constraints or electronic transfer of funds (Martello and Toth, 1990), traveling salesman 

problem that is applied to product distribution or the production of printed circuit boards 

(Applegate et al., 1994), and the multi-commodity flow problem that has applications in 

production planning or warehousing (Ahuja et al., 1993). In addition, other well-known 

examples of combinatorial optimization problems in production and logistics include the 
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permutation flow shop scheduling problem, flexible flow shop scheduling problem, 

quadratic assignment problem and vehicle routing problem, which are described below: 

1. Permutation Flow Shop Scheduling Problem: This problem involves 

determining a sequence of n jobs to be processed through m machines with the 

same order of jobs on the machines. Because of the same order of jobs through all 

machines, the sequence of jobs processed on the first machine is considered as a 

feasible solution of the problem. The most popular objective of this problem is to 

minimize the completion time of jobs, also known as makespan (Cmax). An integer 

programming model for the scheduling problem was presented in Pinedo (2005). 

2. Flexible Flow Shop Scheduling Problem: This problem involves a set of jobs 

processed through several consecutive operation stages with parallel identical 

machines in each stage. A job can be processed on any idle machine at the stage 

into which the job is going. In some cases, there are limited intermediate buffers 

between consecutive stages. The primary objective of this problem is to find a 

production schedule to minimize the completion time of jobs. There are also other 

important objectives of this problem, such as to minimize the total weighted flow 

time of jobs and to minimize the total weighted tardiness time of jobs. This 

problem can be formulated as a mixed-integer programming model (Sawik, 2000).  

3. Quadratic Assignment Problem: This problem is first stated by Koopmans and 

Beckmann (1957). Given a set of facilities and a set of locations with the same size 

n, the aim is to assign the facilities to the locations such that the total cost is 

minimized. The total cost w is calculated using the distance between locations and 
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the flow between facilities. This problem can then be expressed as the problem of 

finding a permutation π  of  n facilities as follows: 

 
 

where nΠ  denotes  the  set  of  possible  permutations  of N = {1, 2, …, n}, while 

[ ]iπ  and [ ]jπ  denote the location of facilities i and j in the permutation π  

respectively. Furthermore, ijf  is the flow between facilities i and j, and [ ] [ ]i jdπ π  is 

the distance between locations [ ]iπ  and [ ]jπ . 

4. Vehicle Routing Problem: The problem on how to service a number of 

customers’ demand with a fleet of given vehicles under some specific constraints 

is known as a vehicle routing problem. Such a problem was first proposed by 

Dantzig and Ramser (1959), and it is currently well-known with many important 

applications in the field of logistics and supply chain management. An objective of 

the vehicle routing problem is to assign the vehicles to the customers and find the 

efficient routes of the vehicles so that the total travel distance or time is minimized. 

This problem may be formulated as an integer programming model. 

1.2 Nature Inspired Algorithms 

In this section, we show a classification of optimization methods for solving combinatorial 

optimization problems in Figure 1.1. The classification is based on the operational 

mechanism of optimization methods. Our focus is on nature-inspired algorithms, which 

[ ] [ ]
1 1

(1.1)min ( ) ,                  
n

n n

ij i j
i j

w f dπ ππ
π

∈Π
= =

= ∑∑
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can be considered as a type of meta-heuristic algorithms. Here the term “meta-” means 

“beyond” or “higher level”, while the term “heuristic” means “search” or “discover by 

trial or error” (Yang, 2008). Thus, meta-heuristic algorithms are known as optimization 

methods that search for optimal solutions of a problem by iteratively improving a 

candidate solution with regards to a given objective function. 

Meta-heuristic algorithms usually consist of two major processes, i.e., solution 

exploration and solution exploitation. These two processes are iteratively performed to 

search for optimal or near-optimal solutions in reasonable computation time. The 

exploration process not only increases the diversity of solutions found, but also helps to 

overcome local optimal solutions to obtain better or optimal ones due to its randomization. 

The exploitation process aims to improve the quality of solutions obtained from the 

exploration process in order to ensure that the solutions will converge to optimality. In 

some meta-heuristic algorithms, this exploitation process also helps to overcome local 

optimal solutions to search for better or optimal ones. The performance of meta-heuristic 

algorithms depends on the appropriate combination between these two processes. Because 

of the features of meta-heuristic algorithms, they can search for solutions of combinatorial 

optimization problems with good quality in realistic computation time. Some well-known 

applications can be found in Liao et al. (2007) and Yang (2008).         

We have classified meta-heuristic algorithms into two major types, i.e., nature-inspired 

algorithms and non-nature inspired algorithms. Nature has been evolving for millions of 

years and hence learning from the success of nature to design meta-heuristic algorithms is 

a creative idea (Yang, 2008). Nature-inspired algorithms can be further divided into 

biologically inspired  algorithms,  botanically inspired  algorithms and water flow inspired  
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techniques. A detailed description of these types of nature-inspired algorithms is given in 

Chapter 2. We also present the important applications of these algorithms in the same 

chapter. 

1.3 Motivation and Research Objectives 

Real-world problems that are formulated as combinatorial optimization problems often 

face the following difficulties: (a) their problem size or dimension is large, (b) they are 

computationally complex to solve, and (c) even after decomposing into simpler sub-

problems, they are still NP-hard problems. Although the search space of such problems is 

determined by a finite set of feasible solutions, it grows exponentially with the size of the 

problems. Hence, it is sometimes sufficient to obtain a near-optimal solution to such 

problems in practice. As such, there is a need for constructing good meta-heuristic 

algorithms that can search for solutions with good quality in realistic computation time.  

Over the last few decades, meta-heuristic algorithms inspired by natural phenomena 

have been extensively developed to become search and optimization tools in various 

optimization problems. Based on the inherent features of meta-heuristic algorithms, 

nature-inspired algorithms have been successful in solving many optimization problems. 

However, the algorithms are only efficient on specific problems, and there is a need to 

change their operational mechanism to solve other problems. There is thus a lack of such 

algorithms that are able to solve diverse combinatorial optimization problems.   

The success of nature-inspired algorithms for solving optimization problems has 

motivated us to learn about their potential capability in constructing an algorithm inspired 
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by other natural phenomena. Thus the main research objective of this thesis is to design a 

novel nature-inspired algorithm for solving combinatorial optimization problems. Also, 

the algorithm has to balance between solution exploration and exploitation capabilities to 

achieve optimal solutions in realistic computation time to real-world problems. Moreover, 

this thesis aims to develop a nature-inspired algorithm that can solve a variety of 

optimization problems with similar problem structure. Another objective of the thesis is to 

design the algorithm in such a way that it is able to solve both single-objective and multi-

objective optimization problems efficiently. Finally, the algorithm should not have 

difficulty hybridizing with other well-known algorithms to increase the algorithm’s 

solution efficiency. 

One of the well-known natural phenomena is the hydrological cycle in meteorology 

and the erosion process of water flow in nature. They possess features that are suitable for 

developing an efficient optimization algorithm. As such, this thesis is focused on utilizing 

such natural phenomena in developing a novel nature-inspired algorithm, and then testing 

the performance of the resulting algorithm with different types of NP-hard combinatorial 

optimization problems. 

1.4 Main Contributions of the Thesis 

In this section, we summarize the main contributions of this thesis as follows:    

Firstly, a novel nature-inspired algorithm, known as the water flow algorithm (WFA), 

for solving NP-hard optimization problems is proposed. The proposed algorithm has 

mostly imitated the characteristics of water flow in nature and the components of the 
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hydrological cycle in meteorology. This algorithm consists of two major phases, i.e., the 

solution exploration and exploitation phases, inspired by the hydrological cycle and the 

erosion phenomenon, respectively.   

Secondly, the WFA has been developed to successfully solve several NP-hard 

optimization problems, such as permutation flow shop scheduling problem (PFSP), 

flexible flow shop scheduling problem (FFSP) with intermediate buffers, quadratic 

assignment problem (QAP), and capacitated vehicle routing problem (CVRP). Almost all 

the best known solutions of the benchmark instances used can be found by the proposed 

algorithm. Moreover, this algorithm can obtain many new best known solutions for PFSP 

and FFSP. 

Thirdly, we have constructed a WFA which is able to solve multi-objective 

optimization problems by modifying and integrating some specialized components. It was 

applied to solve the multi-objective FFSP with intermediate buffers. In this algorithm, 

landscape analysis based on the ellipsoid approximation was integrated to help determine 

the weights of objective functions, which guide the WFA to exploit potential regions and 

move towards the optimal Pareto solution set. The results obtained demonstrate the 

effectiveness and efficiency of the WFA, and show that this is a promising approach to 

solve other multi-objective optimization problems. 

In addition, when WFA is developed to solve the FFSP with intermediate buffers, we 

also propose an efficient procedure of constructing a complete schedule from a job 

permutation at the first stage. The constructive procedure outperforms other procedures in 

the literature. This procedure may increase the performance of any algorithm when it is 
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integrated to solve the FFSP. Also for solving the FFSP, the WFA is applied to the 

maltose syrup production problem. The results obtained show the capability of the WFA 

for solving problems in complex real-world applications. 

Lastly, a constructive algorithm for generating initial solutions of the WFA when 

solving the CVRP is proposed in this thesis. The constructive algorithm is based on 

solving a relaxed CVRP. The results obtained show that this algorithm may generate good 

initial solutions for the CVRP. Furthermore, this approach of finding initial solutions may 

be applied to other optimization problems. 

1.5 Outline of the Thesis 

This thesis aims to develop a novel nature-inspired algorithm for combinatorial 

optimization problems and its content is organized into eight chapters. Figure 1.2 shows 

the organization and relationship among the chapters.    

A detailed review of nature-inspired algorithms that have emerged in recent years is 

provided in Chapter 2. There are three main groups in the literature review corresponding 

to the classification of nature-inspired algorithms shown in Section 1.2. The basic ideas of 

designing nature-inspired algorithms, the development of the algorithms, as well as their 

successful applications are also described in this chapter. 

Chapter 3 describes the phenomena of nature used to construct the WFA, i.e., the 

hydrological cycle in meteorology and the erosion process of water flow in nature. Also, 

the operational mechanism and the main operators of the proposed algorithm are 

explained in detail.  
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Chapters 4 and 5 describe the implementation of WFA for two single-objective 

combinatorial optimization problems, namely the permutation flow shop scheduling 

problem and the flexible flow shop scheduling problem, respectively. Computational 

results and comparisons carried out on benchmark problems are also presented and 

discussed. In addition, a practical example of maltose syrup production solved by the 

WFA is shown in Chapter 5. Chapter 6 presents on how the WFA can be developed to 

solve a multi-objective flexible flow shop scheduling problem, and computational results 

are also shown in this chapter. 

Some further applications of the WFA for other single-objective combinatorial 

optimization problems, such as the quadratic assignment problem and vehicle routing 

problem, are described in Chapter 7. The proposed algorithms are also tested with the 

benchmark instances from the literature, with the computational results and comparisons 

being shown in this chapter. Finally, some conclusions are provided in Chapter 8. The 

contributions of this research work are also discussed, together with some possible future 

research works. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

Nature-inspired algorithms have become useful optimization methods for solving a variety 

of real-world problems. Based on the appropriate balance between solution exploration 

and exploitation capabilities, the algorithms can obtain solutions with high quality in 

realistic computation time. In this chapter, we present several well-known nature-inspired 

algorithms in recent years. The basic ideas of constructing and developing the algorithms, 

as well as their most important applications are described in detail. Here, the nature-

inspired algorithms are classified into three main groups: biologically inspired algorithms, 

botanically inspired algorithms and water flow inspired techniques. A survey of these 

three groups of algorithms is presented in Section 2.1, Section 2.2 and Section 2.3 

respectively. Also, some findings from the literature review are presented in this section. 

Finally, a timeline of all the nature-inspired algorithms and the additional features of the 

proposed nature-inspired algorithm which help to overcome the drawbacks of existing 

algorithms are shown. 
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2.1 Biologically Inspired Algorithms 

In this section, we present some popular meta-heuristic algorithms inspired from biology. 

The biologically inspired algorithms are classified into three major groups: evolutionary 

algorithms, stigmergic optimization algorithms, and swarm-based optimization algorithms. 

The group of evolutionary algorithms consists of genetic algorithm, memetic algorithm, 

and shuffled frog-leaping algorithm. The group of stigmergic optimization algorithms 

includes termite algorithm, ant colony optimization and bee colony optimization. Finally, 

the group of swarm-based optimization algorithms includes particle swarm optimization, 

firefly algorithm, and bat algorithm. 

2.1.1 Evolutionary Algorithms 

Evolutionary algorithms are stochastic optimization methods based on the principles of 

natural evolution. Natural evolution is a complex process which operates on chromosomes, 

instead of organisms (Michalewicz, 1992). The chromosomes contain genetic information, 

called a gene, which is passed from one generation to next generation through 

reproduction. In reproduction, the most important operators are recombination and 

mutation. The recombination plays a role in the exchange of genetic information among 

parent individuals to produce an offspring, while the mutation aims to create 

diversification of genetic information in offspring. Organisms with good chromosomes 

have a higher chance to exist and develop in nature. According to Darwin’s natural 

selection theory (Darwin, 1859), natural selection prioritizes the proliferation of 

environment-adapted organisms, but causes the extinction of non-environment-adapted 

organisms. 
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A well-known evolutionary algorithm is genetic algorithm (GA) first introduced by 

Holland (1975). The idea of establishing GA originated from the evolutionism of Darwin 

(1859): “Survival of the genetically fittest”. Since the introduction of this algorithm, it has 

become a popular and useful optimization method for solving optimization problems. 

Although many variants of GA have been developed, the general framework of this 

algorithm does not have any significant change. The basic principles of GA are described 

in detail by Goldberg (1989). A flow chart of the general GA is shown in Figure 2.1. 

The solution exploration capability of GA increases because of the initial population. 

However, a certain degree of exploiting the regions with high quality solutions is missing. 

Hence, the GA is combined with a local search to overcome the drawback, which 

constitutes a memetic algorithm (MA). In particular, the MA allows all chromosomes as 

well as individuals to gain some experience through a local search process before they are 

evolved. The MA was first introduced by Moscato (1989). In this algorithm, the genetic 

information to form a chromosome is called memes and not genes. This is inspired by 

Dawkins’ notion of a meme (Dawkins, 1976). A detailed description of the algorithm can 

be found in Moscato and Cotta (2003). Here, a flow chart of the MA is shown in Figure 

2.2. 

Eusuff and Lansey (2003) proposed a shuffled frog-leaping algorithm which combines 

the advantages of MA and the social behavior of frogs. In this algorithm, a set of frogs 

similar to a population of individuals in GA is partitioned into subsets, called memeplexes. 

The memeplexes representing the different cultures of frogs are improved through a 

process of memetic evolution. Based on the social behavior of frogs, the good evolved 

knowledge obtained is passed among memeplexes to help the memeplexes evolve together. 
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The process continues to be performed until stopping criteria are satisfied. A flow chart of 

the shuffled frog-leaping algorithm is shown in Figure 2.3. 
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Figure 2.1   Flow Chart of Genetic Algorithm 
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Figure 2.2   Flow Chart of Memetic Algorithm 
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Figure 2.3   Flow Chart of Shuffled Frog-Leaping Algorithm 
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2.1.2 Stigmergic Optimization Algorithms 

According to (Abraham et al., 2006) on stigmergic optimization, Grasse´ quoted: “Self-

Organization in social insects often requires interactions among insects: such interactions 

can be direct or indirect. Direct interactions are the “obvious” interactions: antennation, 

trophallaxis (food or liquid exchange), mandibular contact, visual contact, chemical 

contact (the odor of nearby nestmates), etc. Indirect interactions are more subtle: two 

individuals interact indirectly when one of them modifies the environment and the other 

responds to the new environment at a later time. Such an interaction is an example of 

stigmergy”. 

We can observe such an indirect interaction from social insects, such as termites. In 

the process of nest reconstruction, termites interact through local pheromone 

concentrations on the nest structure. The state of nest structure coordinates tasks for 

termites. They work together until the nest construction is completed. Another example of 

stigmergy is pheromone communication in ant colony. Ants are able to leave a chemical 

trail on their path to guide other ants to the food source found. Deneubourg et al. (1987) 

carried out experimental studies to test the ability of ants in searching for the shortest path 

to the food source. Similar to ants, honey bees can communicate by pheromones. They can 

deliver a chemical message to encourage attack response to other bees. In addition, honey 

bees can communicate by “waggle dances”. The so-called waggle dances play a role as a 

signal system which is used to guide other bees to the path to a good food source. Seeley 

et al. (1991) carried out experimental studies about the ability of bees in allocating and 

collecting their flower patches.     
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Many meta-heuristic algorithms can be constructed by learning the behavior of these 

social insects. We present well-known nature-inspired algorithms in this stigmergic 

optimization group, such as termite algorithm, ant colony optimization and bee colony 

optimization. 

The first algorithm considered in this group is the termite algorithm proposed by Roth 

and Wicker (2006) for mobile wireless ad-hoc networks. The proposed algorithm is 

inspired by the hill building behavior of termites with four principles. Resnick (1997) 

described the principles as well as a detailed example of the hill building procedure. In the 

example, it is assumed that termites and pebbles are distributed on a flat surface. Since the 

hill of termites is built from the pebbles, the objective of termites is to collect all the 

pebbles into the same place. Termites move based on pheromone trails which are excreted 

by the others. Following the trails, termites complete their hill building together. To 

achieve success, a termite must conform to the rules described in Roth and Wicker (2006). 

A detailed description of matching the hill building procedure of termites and the 

principles of swarm intelligence to design the termite algorithm is also provided in Roth 

and Wicker (2006). 

The second algorithm considered in this group is the ant colony optimization (ACO) 

inspired by the foraging procedure of real ants in nature. Although an ant is very tiny and 

wanders aimlessly, a colony of ants expresses an extraordinarily intelligent behavior 

through their nest building and foraging. ACO was first introduced by Dorigo and his 

colleagues around 1991-1992. Since then, it is known as a useful nature-inspired 

algorithm for combinatorial optimization problems (Dorigo and Gambardella, 1997; and 

Dorigo, 1999). In the literature, there is a variety of ACO algorithms. However, all of 
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them have the same framework that is described in Grosan and Abraham (2006) in detail. 

Here, a flow chart of the basic ACO algorithm is shown in Figure 2.4. 

Start
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End
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Figure 2.4   Flow Chart of Ant Colony Optimization Algorithm 
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The third algorithm considered in this stigmergic optimization group is the bee 

algorithm. The bee algorithm is inspired by the foraging behavior of honey bees. The 

honey bee algorithm proposed by Nakrani and Tovey (2004) for allocating computers 

among different clients and web hosting server is one of the earliest bee algorithms. The 

idea of constructing this algorithm has originated from how forager bees can optimally 

collect an amount of nectar if they are allocated to different flower patches. On the other 

hand, Haddad et al. (2005) developed a honey-bee mating optimization algorithm for 

solving a reservoir operation problem. This algorithm originated from the behavior of 

queen bee in mating with other bees to form the bee colony. Farooq (2006) presented a 

bee algorithm for routing in telecommunication network. The algorithm is inspired by the 

way bees communicate.  

Although various bee algorithms have been developed based on the different behavior 

of honey bees in foraging and mating, they still keep to the same framework. A detailed 

survey of bee colony algorithms is presented in Bitam et al. (2010). A flow chart of the 

basic bee algorithm is shown in Figure 2.5.  

2.1.3 Swarm-Based Optimization Algorithms 

In this section, we present a group of swarm-based optimization algorithms. The 

algorithms are inspired by the social behavior of swarm-based animals or insects, 

especially those in which the property of historical information exchange among 

individuals is magnified. The well-known algorithms in this group include particle swarm 

optimization, firefly algorithm and bat algorithm. 
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Figure 2.5   Flow Chart of Bee Colony Optimization Algorithm 
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The first algorithm considered in this group is particle swarm optimization (PSO). This 

is a biologically inspired algorithm that simulates the social behavior of animals, such as a 

school of fish or a flock of birds. Here, the basic idea of this algorithm is to use many 

autonomous agents (particles) that act together in simple ways to produce seemingly 

complex behavior (Banks et al., 2007). The PSO was first formally introduced by 

Kennedy and Eberhart (1995). In the paper, the authors replaced the simple goal of the 

model proposed by Reynold (1987) with a more realistic goal to find food. With this new 

goal, they established a general model for PSO which is used by most researchers in PSO. 

Since PSO was developed from an original flocking system, various components were 

incorporated into the algorithm, such as inertia and constriction. Also, some unnecessary 

components were removed, such as velocity matching and collision avoidance. However, 

the standard structure of PSO has generally been preserved. A detailed description of the 

standard PSO structure is provided in Kennedy and Eberhart (1995). A flow chart of the 

standard PSO algorithm is shown in Figure 2.6.  

The second algorithm considered in this group is the firefly algorithm introduced by 

Yang (2008). This algorithm is a swarm-based optimization method for solving 

continuous optimization problem. The algorithm was motivated by simulating the social 

behavior of fireflies. The fireflies produce short and rhythmic flashes to attract mating 

partners and potential prey. Also, such flashes of the fireflies may be used to warn 

potential predators about their bitter taste. A signal system including the rhythmic flash, 

the rate of flashing and the amount of flashing time attracts both genders together. If 

female fireflies are attracted by a male firefly, they will respond to the male firefly’s 

pattern of flashing. A flow chart of the algorithm is shown in Figure 2.7. 
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Figure 2.6   Flow Chart of Particle Swarm Optimization Algorithm 
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Figure 2.7   Flow Chart of Firefly Algorithm 
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The third algorithm considered in the group of swarm-based optimization algorithm is 

the bat algorithm proposed by Yang (2010). The algorithm is an optimization method 

based on the echolocation behavior of bats. Among all the species of bats, the behavior of 

microbats motivated the bat algorithm, since they use echolocation extensively, unlike 

other bats (Richardson, 2008). Microbats’ echolocation capability helps them to detect 

preys, distinguish different kinds of insects, avoid obstacles, and locate their roosting 

crevices in the dark. A detailed description of the bat algorithm is provided in Yang 

(2010). Here, a flow chart of the algorithm is shown in Figure 2.8.  

2.2 Botanically Inspired Algorithms 

In this section, we describe two meta-heuristic algorithms inspired from botany. They 

consist of an invasive weed optimization algorithm and a grafting-inspired algorithm. 

2.2.1 An Invasive Weed Optimization Algorithm 

Invasive weed optimization (IWO) is a numerical stochastic optimization algorithm 

inspired by the ecological process of weed colonization and distribution. In biology, 

weeds are plants whose invasive habits of growth are vigorous. They threaten the growth 

of cultivated plants, which in turn poses a threat to agriculture. Weeds are also found to be 

very robust and adaptive to changes of environment. Hence, Mehrabian and Lucas (2006) 

used their prominent properties, such as robustness, adaptation and randomness, to design 

a simple but efficient optimization algorithm for real parameter optimization. A detailed 

description of the algorithm is provided in Mehrabian and Lucas (2006). A flow chart of 

the IWO is shown in Figure 2.9. 
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Figure 2.8   Flow Chart of Bat Algorithm 
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 Figure 2.9   Flow Chart of Invasive Weed Optimization 
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2.2.2 A Botany-Grafting Inspired Algorithm 

Li et al. (2010) proposed a hybrid algorithm that combines an improved genetic algorithm 

(IGA) and an improved particle swarm optimization (IPSO), called HIGAPSO. The 

combination is inspired by the idea of grafting in botany. Based on the principle that 

grafting in botany can integrate the strengths of two original branches, the hybrid 

algorithm combines the advantages of IGA and IPSO together. A flow chart of the 

proposed hybrid algorithm is shown in Figure 2.10. 

2.3 Water Flow Inspired Techniques 

In this section, we introduce some recent techniques inspired by certain factors or 

processes of nature that are related to water flow. The techniques consist of document 

image processing methods based on water flow model, intelligent water drops algorithm 

based on the dynamics of river systems, and water flow-like algorithm based on the 

behavior of fluid flows. These techniques have been successfully applied to a variety of 

optimization areas, such as pattern recognition, manufacturing and logistics. 

2.3.1 Image Processing Methods Based on Water Flow Model 

Kim et al. (2002) can be considered as one of the earliest authors who used the properties 

of water flow to solve optimization problems. In the paper, the authors used a water flow 

model to simulate an image processing problem. In particular, a grey level image is 

considered as a three dimensional terrain including mountains and valleys, which 

represent background and character regions in the image processing problem, respectively.  
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Figure 2.10   Flow Chart of Botany-Grafting Inspired Algorithm 
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  Based on the property of water flow always moving to lower regions, the authors 

simulated with the pouring of water onto the terrain surface. In the field of image 

processing, the objective often considered is to extract characters from backgrounds. Thus, 

a threshold process is proposed to extract the valleys by the amount of filled water. A flow 

chart of the whole method of Kim et al. (2002) is shown in Figure 2.11. 

 

Start

w = 0

w = wmax?

Yes

Label each pond based on 
connectivity

Rain drop for each 
pixel using a water 

flow model

Increase w by 1

No

1) Calculate average water 
level for each pond

2) Assign the average value 
for the water level

1) Extract the water from terrain
2)Threshold the water by Ostu’s 

method

Stop
 

Figure 2.11   Flow Chart of the Method Proposed by Kim et al. (2002) 
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However, the method of Kim et al. (2002) requires long processing time since it does 

not determine when to stop the iterative process. Also, characters on poor contrast 

backgrounds in document images are often not separated successfully. Hence, Oh et al. 

(2005) proposed an improved method which includes extraction of regions of interest 

(ROI), an automatic stopping criterion, and hierarchical threshold process, to overcome 

the drawbacks in the method of Kim et al. (2002). In the improved method, the input 

image, known as terrain, is divided into regions of interest and desert regions. Then, 

rainfall only occurs within the regions of interest. An automatic terminating criterion for 

the iterative rainfall process was then provided to reduce the computational time needed 

by the model. A flow chart of the method of Oh et al. (2005) is shown in Figure 2.12. 

 

Figure 2.12   Flow Chart of the Improved Method Proposed by Oh et al. (2005) 
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Basu et al. (2007) continued to use this idea to deal with the problem of text line 

extraction from optically scanned document images. Because of the appearance of multi-

skewed lines in text images, the problem becomes complex and difficult to solve 

completely. To solve this problem, Basu et al. (2007) proposed a text line extraction 

technique based on a water flow model. In this technique, hypothetical water flows, which 

are required to move from both left and right sides of the image frame, are stuck by the 

characters of text lines. Then, the boundaries of un-wetted areas on the image frame are 

labeled to extract text lines. Brodic and Milivojevic (2009a and 2009b) also adopted the 

method of Basu et al. (2007) for the problems of identifying and detecting reference text 

line, respectively. However, these methods limited hypothetical water flows under a few 

specified angles of document image frame. Thus, they failed in complex text examples in 

which multi-skewed lines with large skew angle exist in the text images. Brodic and 

Milivojevic (2010) proposed a modification of the water flow method for segmentation 

and text parameters extraction of sample text at almost any skew angle. The modification 

includes the extension of skew angles of the document image frame and the enlargement 

of un-wetted image regions. The procedure of document text image identification 

proposed by Brodic and Milivojevic (2010) is shown in Figure 2.13. 

 

Figure 2.13   Procedure of Text Image Identification (Brodic and Milivojevic, 2010) 
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     In summary, the works in this section only focus on combining the property of 

water flow always moving down to lower regions and filling up valleys into their model or 

technique for pattern recognition problems. For the document image processing problem 

in which the objective is to extract characters from backgrounds, the valleys with the 

amount of filled water are extracted. Otherwise for the problem of text line extraction 

from optically scanned document images, un-wetted areas on the image frame are labeled 

to be extracted. The models or techniques are simple and have not been established as 

algorithmic methods. 

2.3.2 Intelligent Water Drops Algorithm 

The idea of constructing an optimization algorithm based on certain factors or processes 

related to water flow was developed by Shah-Hosseini (2007). In this paper, the author 

proposed an intelligent-water-drops (IWD) algorithm based on the dynamics of river 

systems and the actions/reactions that happen between water drops and the environmental 

changes in the flowing river. In this algorithm, artificial water drops are designed with two 

properties of natural water drops, i.e., moving velocity and an amount of carrying soil. The 

values of both properties may change when the water drops travel in the river since an 

amount of removed soil from the river increases their velocity and volume. To travel from 

the source to the destination, the water drops choose the paths with minimal soil. A flow 

chart of the IWD algorithm is shown in Figure 2.14. 

The IWD algorithm has been applied to solve optimization problems, such as the 

traveling salesman problem (Shah-Hosseini, 2007), the multiple-knapsack problem (Shah-

Hosseini, 2008), and the n-queen puzzle (Shah-Hosseini, 2009). However, the properties 
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of water flow and meteorological phenomena related to water drops have not been 

explored fully in these papers. Also, this algorithm depends on the large number of 

parameters defined by users, which may affect the performance of the algorithm. 

Furthermore, the computational results obtained by the IWD algorithm for its applications 

have not been good when compared with other algorithms. 

 

Figure 2.14   Flow Chart of the IWD Algorithm (Shah-Hosseini, 2007) 
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2.3.3 Water Flow-Like Algorithm 

An optimization algorithm based on the behaviors of water flow was introduced by Yang 

and Wang (2007) for solving the bin packing problem, which is one of the well-known 

discrete optimization problems. This algorithm is a multiple-agent-based optimization 

method with an improvement idea of using a population of agents with size that is not 

fixed. This algorithm may be described as follows: solution agents are modeled as water 

flows which move on the terrain. Driven by the gravity and governed by the energy 

conservation law, water flows will automatically move to lower altitudes on the terrain. 

When moving from higher altitudes to lower ones on a rugged terrain, the water flow will 

split into multiple sub-flows. Fluid momentum helps water flows adjust their compositions 

and directions when they move through the rough terrains. When a number of water flows 

move to the same position, they will be merged into a single water flow. In addition, water 

flows may move upward to higher altitudes if their kinetic energy is larger than the 

potential energy required. Furthermore, to explore search space, some water flows may 

periodically evaporate and return to the terrain by precipitation.  

In general, this is an evolutionary algorithm involving four operations: splitting and 

moving, merging, evaporation, and precipitation. These operations are established and 

controlled by some fundamental laws of physics, such as the law of energy conservation, 

and the law of momentum conservation. Physics quantities such as mass, velocity, fluid 

momentum, energy, and gravitational acceleration are also used as basic parameters to 

construct this algorithm. A flow chart of the algorithm proposed by Yang and Wang 

(2007) is shown in Figure 2.15. 
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Figure 2.15   Flow Chart of the Water Flow-Like Algorithm (Yang and Wang, 2007) 

The experimental results and comparisons showed that this algorithm can perform well 

for solving the bin packing problem. However, Yang and Wang (2007) only used two test 

instances to evaluate and compare their algorithm with other algorithms, and may not be 

sufficient to conclude that their algorithm is efficient for the bin packing problem. Also, 

because of the dependence on the large number of controlled parameters defined by users, 

this algorithm may spend a considerable amount of computational time for evaluating and 

processing the operators.  

Wu et al. (2010) adopted the logic of the algorithm proposed by Yang and Wang 

(2007) to design a heuristic algorithm for solving the cell formation problem. This is one 
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of the important problems in cellular manufacturing when group technology is applied. 

The proposed algorithm consists of two stages. In the first stage, the algorithm generates 

initial feasible solutions in order to determine optimal cell size. In the second stage, the 

optimal cell size obtained is used as a lower bound to search for optimal solutions. Since 

the cell size may be a good lower bound for the solution process, the computational time 

needed by the algorithm is significantly reduced, especially for large-sized instances.  

The experimental results and comparisons for a set of 37 test instances from the 

literature showed that the proposed algorithm of Wu et al. (2010) has performed better 

than other algorithms, especially for large-sized problems. However, the large number of 

controlled parameters still present in this algorithm may limit the performance of the 

algorithm. 

From the success obtained for solving optimization problems, such as the traveling 

salesman problem, the bin packing problem, the multiple-knapsack problem, the n-queen 

puzzle and the cell formulation problem, we can see that the algorithms inspired by the 

behavior of water flows in nature indicate a promising optimization approach. 

2.4 Conclusions and Possible Nature-Inspired Algorithm 

A summary of the nature-inspired algorithms described in this chapter is shown in Table 

2.1. In addition to the introduction of the basic ideas of constructing the algorithms, we 

also provide the most important applications for which each algorithm has worked best. 

This helps researchers have a condensed but ample overall view of the real-world 

application capability of the nature-inspired algorithms.  
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Also, we present the timeline of all the nature-inspired algorithms presented in this 

chapter (see Figure 2.16). From this figure, we can see that the optimization approaches 

have recently developed significantly in terms of quantity as well as quality. Many 

problem-solving models from nature are inspired by the design of optimization algorithms. 

Successful applications of the algorithms for continuous and discrete optimization 

problems in engineering have demonstrated the efficiency of these algorithms. Although 

water flow inspired algorithms are developed recently, the algorithms have showed their 

efficiency and effectiveness for solving some well-known optimization problems, such as 

traveling salesman problem and bin packing problem. However, the potential of this 

algorithm has not been fully exploited since many characteristics as well as behaviors of 

water flow have not been considered. Hence, constructing an optimization algorithm based 

on water flow models is still a promising research area. 

A possible nature-inspired algorithm will be to integrate many additional features of 

water flow in nature. Natural phenomena, such as the hydrological cycle and erosion 

process, which have not been explored by other algorithms, will also be simulated in such 

a proposed algorithm. Two major phases of the algorithm, the solution exploration and 

exploitation phases which are inspired by the hydrological cycle and the erosion process 

respectively, help to achieve a balance between solution diversification and intensification 

capabilities to search for optimal solutions in reasonable computation time. 

Moreover, this algorithm has only a small number of parameters defined by users, 

which may limit the performance degradation of the algorithm due to the tuning of the 

parameters.  In  addition, this  algorithm  can  be  applied  to  solve  different  optimization  



Chapter 2   Literature Review 

41 
 

Table 2.1   Summary of Applications of the Nature-Inspired Algorithms 

Groups Sub-groups Algorithms Ideas Problems 

Biologically 
inspired 
algorithms 

Evolutionary 
algorithms 

Genetic algorithm  The evolutionism     
of Darwin 

Permutation flow shop 
scheduling         
(Reeves, 1995) 

  Memetic algorithm  Genetic algorithm     
+ local search 

Traveling salesman 
problem (Moscato & 
Norman, 1992) 

  Shuffled frog-
leaping algorithm  

Memetic algorithm   
+ the social    
behavior of frogs 

Water distribution 
network (Eusuff & 
Lansey, 2003) 

 Stigmergic 
optimization 
algorithms 

Termite algorithm  Process of nest 
reconstruction of 
termites 

Mobile wireless ad-hoc 
networks (Roth & 
Wicker, 2006) 

  Ant colony 
optimization  

The foraging 
procedure of ants 

Traveling salesman 
problem (Dorigo & 
Gambardella, 1997) 

  Bee colony 
optimization  

The behavior of 
honey bees in 
foraging/mating 

Telecommunication 
network (Farooq, 2006)

 Swarm-based 
optimization 
algorithms 

Particle swarm 
optimization  

The social behavior  
of a school of fish    
or a flock of bird 

Flow shop scheduling 
(Liao et al., 2007) 

  Firefly algorithm  The social behavior  
of fireflies 

Continuous constrained 
optimization (Lukasik 
& Zak, 2009)   

  Bat algorithm  The echolocation 
behavior of bats 

Continuous constrained 
optimization         
(Yang, 2010) 

Botanically 
inspired 
algorithms 

 An invasive weed 
optimization  

The ecological 
process of weed 
colonization and 
distribution 

Electromagnetic 
designing problem 
(Karimkashi & Kishk, 
2010) 

  A botany-grafting 
inspired algorithm  

The idea of grafting  
in botany  

Spherical conformal 
array (Li et al., 2010) 

Water flow 
inspired 
techniques 

 Intelligent water 
drops algorithm  

The dynamics and 
reactions of river 
systems 

Traveling salesman 
problem (Shah-
Hosseini, 2007) 

  Water flow-like 
algorithm  

The energy 
conservation law 

Cell formation problem 
(Wu et al., 2010) 
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problems without much change in the structure of the algorithm. These are features found 

lacking in most existing water flow inspired algorithm. 

   

Figure 2.16   Timeline of Nature-Inspired Algorithms 
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CHAPTER 3 

A GENERAL WATER FLOW ALGORITHM 

 

 

 

In this chapter, we introduce a novel nature-inspired algorithm for solving combinatorial 

optimization problems. This algorithm simulates the hydrological cycle in meteorology 

and the erosion phenomenon of water flow in nature, which represent the solution 

exploration and exploitation capabilities of the algorithm, respectively. Being inspired by 

the behaviors and characteristics of water flow in meteorology and nature, this algorithm 

is named water flow algorithm (WFA). A detailed description of the natural phenomena 

imitated to construct this algorithm is provided in the chapter. In Section 3.1, we present 

the hydrological cycle in meteorology together with the components that constitute the 

hydrological cycle, such as evaporation, condensation, transportation, precipitation, 

transpiration, groundwater and run-off. The erosion phenomenon of water flow in nature 

is described in Section 3.2. Finally, a detailed description of the general WFA for solving 

combinatorial optimization problems is presented in Section 3.3.   
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3.1 Hydrological Cycle in Meteorology 

Water is the source of all life on Earth. Hence, water plays an essential role in the living of 

creatures as well as human beings. In nature, water exists in three states: solid, liquid and 

gas. These states are affected by changes in the temperature of the environment. When 

temperature increases, water can change from the solid state to the liquid state due to 

melting, or from the liquid state to the gaseous state due to evaporation. Otherwise, when 

temperature decreases, water can change from the liquid state to the solid state due to 

freezing, or from the gaseous state to the liquid state due to condensation. When 

temperature drops below the freezing point, water molecules can change directly from the 

gaseous state to the solid state due to sublimation. Such changing of the states of water is a 

fundamental concept in the explanation of many meteorological phenomena. 

One of the well-known meteorological phenomena is the hydrological cycle. The 

hydrological cycle reflects the circulation and conservation of water on Earth. Though 

water in ocean, river, cloud and rain is often in a state of change, the total amount of water 

on Earth is not changed. Due to the conservation of water, the circulation of water is 

established. The hydrological cycle consists of the following main components. 

(1). Evaporation: a process that transfers water from the liquid state in ocean to the 

gaseous state in atmosphere. 

(2). Condensation: a process that transfers water in atmosphere from the gaseous 

state to the liquid state. 

(3). Transportation: a movement of water vapor from ocean to land through 

atmosphere due to wind. 
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(4). Precipitation: a process that transports water from atmosphere to the Earth’s 

surface, also called rain. 

(5). Transpiration: a process that transfers water from ground to atmosphere by the 

evaporation of plants and vegetation.  

(6). Groundwater: the amount of water that infiltrates through the Earth’s surface to 

return to the ocean. 

(7). Run-off: the rest of the amount of water on the Earth’s surface in rivers, lakes, 

ponds or streams, after the transpiration and infiltration processes occur. 

Figure 3.1 illustrates these seven basic components of the hydrological cycle. The 

exploration phase of WFA proposed in this thesis is inspired by the hydrological cycle. 

The phase is designed based on the basic components. 

 

 
(Source: http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/smry.rxml) 

Figure 3.1   Basic Components of the Hydrological Cycle 
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A detailed description of the meteorological phenomenon is provided in Goudie 

(1993). Here, we briefly present the relationship among the main components mentioned 

in the hydrological cycle.  

Firstly, sea water from the surface of the oceans is evaporated to become water vapor 

in the atmosphere. When the water vapor is lifted and encounters cool air, it is condensed 

to form clouds with moisture. Then, the moisture in clouds is transported around by wind 

until it returns to the Earth’s surface under drops of water through precipitation. When the 

drops of water fall down to the ground, they are subjected to two possible processes. In the 

first process, some of the drops of water may be evaporated back into the atmosphere 

through transpiration. In the second process, some of the drops of water may penetrate 

through the Earth’s surface to be groundwater. The drops of water returning to the 

atmosphere continue to join the clouds and move around, while the groundwater moves 

back to the oceans.  

The rest of the water on the Earth's surface is called runoff. Governed by the gravity 

force, the runoffs move from higher altitudes to lower ones on the ground. Lakes, rivers or 

streams are formed from the runoffs if they are held in valleys or depressions. When the 

amount of precipitation increases dramatically, water in the lakes, rivers or streams may 

flow over their barriers and move back to the oceans, where the hydrological cycle begins 

again. This overflowing phenomenon is known as erosion process of water flow in nature, 

which will be described in the next section. 
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3.2 Erosion Process of Water Flow in Nature 

In nature, there are many phenomena affecting and changing the Earth’s surface. Erosion 

process is one of such natural phenomena. In essence, erosion is a natural process of 

weathering to the Earth’s surface, which detaches solids from the surface and deposits 

them elsewhere (Holy 1982). This process is caused by movements of wind and water in 

natural environment. In addition, the gravity force of Earth and the operations of living 

creatures are the causes of the erosion process. However, since water covers over 70% of 

the Earth’s surface area (Michael, 2006), we can see that it is the major cause of the 

erosion process. Figure 3.2 shows an illustration of the erosion by water flow. 

 

Figure 3.2    

Erosion from Water Flow 

  
(Source: http://www.salomart.com/images/erosion-2.jpg)
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Normally, the consequence of erosion process caused by water is not serious to human 

beings since it occurs slowly and gently in rivers or streams. However, when an amount of 

water of the rivers or streams increases dramatically due to heavy precipitation or tide, the 

erosion process may cause a flood. The flood can sweep away everything on the path 

through which it passes.  

The most important property of the erosion process caused by water flow is erosion 

rate, or known as erosion capability, which is also a factor to recognize and control the 

flood. The erosion rate is determined by an amount of water in watercourse, the velocity 

of water streaming, as well as the state of land. In nature, an amount of water in 

watercourse is affected by the amount of precipitation, intensity of precipitation and flood-

tide; while the velocity of water streaming is mainly affected by the slope of landscape (or 

gravity force) and the amount of water in the watercourse. Here, the state of land merely 

means the hardness of land. On the other hand, the erosion rate depends on three major 

groups of factors, i.e., climatic factors, geologic factors and biological factors (Holy, 

1982). The climatic factors include the amount and intensity of precipitation as mentioned 

above. In addition, average temperature, wind speed, as well as storm frequency may be 

considered as climatic factors affecting the erosion rate. The geologic factors consist of 

the types of sediment or rock, their porosity and permeability, the slope of landscape, as 

well as the shape of rocks. The biological factors are the ground cover area of vegetation, 

the type of organisms living in the region, and the purpose of using land. 

A different classification of factors that involves the impact of erosion capability is 

provided in Figure 3.3. Here, these factors are divided into two main groups, i.e., natural 

factors and human factors. Despite the classifications, it can be seen that there are many 
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factors affecting the erosion capability. Hence, it is not easy to control the erosion 

rate/capability and flooding in general. 

 
(Source: http://www.dartmoor-npa.gov.uk/learningabout/lab-printableresources/lab-

factsheetshome/lab-erosion) 

Figure 3.3   Factors Affecting Erosion Capability 

There are also many studies on the relationship between erosion process and factors 

affecting this process. Such studies show that when the amount and intensity of 

precipitation increase, erosion rate will increase. On the other hand, erosion rate is also 

expected to adjust in response to climate changes due to many reasons. The most direct 

reason is the change in the erosive power of precipitation. Other direct reasons include:  

(1). Because of shifting precipitation regime and evaporation/transpiration rate, land 

moisture is also changed. It affects infiltration and runoff ratios.  

(2). Because of reducing concentration of land, land erodibility increases. Also, it 

leads to increase in the amount of runoff due to appearance of rifts on the surface. 
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(3). Due to increasing temperatures, winter precipitation is shifted from non-erosive 

snow to erosive rainfall. 

(4). Due to melting of permafrost, a non-erodible land state may be shifted to be an 

erodible land state. 

All these reasons help to understand clearly about the close relationships of erosion rate 

and other factors. We may then propose methods to control the erosion rate, or at least to 

limit the loss caused by increasing the erosion rate.  

In summary, erosion process is the displacement of solids usually caused by the water 

currents, as well as the down-slope movement of the solids in response to gravity. The 

erosion process is able to affect the Earth’s surface and change the direction of water 

current. In addition, erosion process is able to smooth out obstacles and keep a state of 

smoothed terrain for a long time period. Figure 3.4 shows an illustration of the terrain 

smoothed by the erosion of water flow. Erosion rate, an important parameter of the 

erosion process, is affected by many factors. The factors consist of the amount and the 

intensity of precipitation, the texture of soil, the gradient of slope, etc. However, only two 

major factors have been considered to design the capability of erosion process in the WFA. 

These factors are the amount of precipitation as well as the texture of soil, including the 

hardness of soil and the geographical shape of the surface. How to simulate the 

hydrological cycle as well as to integrate the erosion process of water flow in constructing 

an optimization algorithm is presented in the next section. 
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(Source: http://newscenter.lbl.gov/feature-stories/2007/04/22/damaged-land-buried-

carbon/) 

Figure 3.4   Illustration for Smoothed Terrain by Erosion Process 

 

3.3 General Water Flow Algorithm 

In this section, we present a general water flow algorithm for combinatorial optimization 

problems. The framework of the WFA can be customized and used to solve various types 

of optimization problems.  

The WFA mimics the hydrological cycle in meteorology and the erosion phenomenon 

in nature, representing a balance between solution exploration and exploitation capabilities 
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in an optimization algorithm, respectively. The proposed algorithm is based on the 

simulation of spreading raindrops into many places on the ground, the property of water 

flow always moving from higher positions to lower positions, and the erosion capability of 

water flow on the ground. The following descriptions further illustrate some of the 

relationships between the terms used in the WFA and the concepts often used in other 

well-known meta-heuristics, such as tabu search and genetic algorithm: 

(1). The hydrological cycle reflects the circulation and conservation of water on the 

Earth. It consists of many stages, i.e., evaporation, condensation, transportation, 

precipitation, transpiration, groundwater and run-off (Goudie 1993). In the WFA, 

we use the circulation of water to regenerate a population of new positions for 

drops of water (DOWs) after each cloud is generated. It is similar to the 

diversification procedure of restarting an initial solution in tabu search if the 

current solution is not improved after a maximum number of iterations. 

(2). The precipitation is the transfer of water from the atmosphere to land, usually 

called rain (Goudie 1993). When there is rain, an amount of raindrops is 

generated and it drops to the ground. In the WFA, the precipitation involves the 

number of DOWs generated. It can be considered as generating a population of 

solutions in a genetic algorithm. 

(3). The concept of erosion is the detachment of soil particles caused by the impact of 

water flow or raindrops (Holy 1982). The role of erosion in the WFA is to help 

the search to intensify the promising local optimal positions and overcome the 

obstacles to find better positions. It is similar to intensification in tabu search. 
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(4). The rate or intensity of erosion in nature depends on many factors, such as the 

amount of precipitation and the soil type, etc. (Holy 1982). In the WFA, this 

erosion capability is represented by the maximum number of iterations before 

erosion process stops eroding at the local optimal position being considered. It is 

similar to the concept of the maximum number of iterations without improvement 

used in tabu search.  

We now describe the general procedure of the WFA. Firstly, a cloud representing an 

iteration randomly generates a set of DOWs onto some positions on the ground, which 

represent solutions of the optimization problem. Next, due to the gravity force of the Earth 

represented by a heuristic algorithm, the DOWs automatically move to local optimal 

positions. They are held at these positions until the erosion condition is satisfied before 

performing the erosion process. Then, depending on the amount of precipitation, the 

falling force of precipitation and soil hardness at the local optimal positions, the erosion 

process helps the DOWs overcome the local optimal positions to find better or global ones. 

Almost all the ideas of constructing this procedure are novel, except for the idea of water 

flow always moving to lower positions, which is similar to the previous works. 

A flow chart of the general WFA for solving optimization problems is shown in Figure 

3.5, while the pseudocode of the WFA is presented in Figure 3.6. The detailed 

descriptions of the erosion condition, erosion capability, erosion process and other 

operations of the general WFA for optimization problems are provided in the next 

subsections. 
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Figure 3.5   Flow Chart of the General WFA 

3.3.1 Encoding Scheme 

For any optimization algorithm, encoding scheme, also known as solution representation, 

is  the first  important  step in the  implementation  of the  algorithm. In the WFA, we have  
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Step 1:  

Initialize the controlled parameters, i.e., the maximum number of clouds generated 

(MaxCloud), the maximum number of DOWs that each cloud is allowed to generate 

(MaxPop), the minimum number of DOWs in which the erosion process starts to 

perform (MinEro), the maximum iterations that the erosion process will move to next 

erosion direction if the position considering is not improved (MaxUIE); 

Step 2:  

For i = 1 to MaxCloud 

Randomly generate a population of MaxPop positions for DOWs; 

Determine the number of DOWs at each individual position; 

Find the local optimal position for each individual position; 

Update the best positions in P0-list; 

Update the local optimal positions found and the number of DOWs into UE-list; 

For each position in UE-list 

If (satisfying the erosion condition) Then 

Perform erosion process; 

Update UE-list, P0-list, and E-list; 

End if 

Next each 

Next i  

Step 3:  

       Return the best positions found in P0-list.    

Figure 3.6   Pseudocode of the General WFA 
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used DOWs to represent solutions of an optimization problem. Then, all the operators of 

the WFA are performed on the DOWs. Depending on the structure of a certain problem, 

DOWs are appropriately encoded to solve the problem efficiently. 

In nature, the positional information of a DOW is shown by its longitude, latitude and 

altitude on the ground. In an optimization problem, a DOW is associated with a feasible 

solution of the problem. We consider the feasible solution and its objective value as 

providing the longitude, latitude and altitude information for the position of the DOW on 

the ground. For example, when applied to solving flow shop scheduling problems, a job 

permutation will provide the longitude and latitude information for a DOW; while the 

objective value, i.e., the completion time of jobs obtained by the corresponding job 

permutation, will provide the altitude information for the DOW.  

3.3.2 Memory Lists 

In the WFA, three memory lists are used to support the search for global optimal positions 

of DOWs. Firstly, the best position list, called the P0-list, stores the best optimal positions 

found so far. This list is almost used in all optimization algorithms to output the best 

solutions obtained by the algorithms. Secondly, the un-eroded position list, called the UE-

list, is used to store the local optimal positions which have not been eroded because of not 

satisfying the erosion condition. Its purpose is to record the potential positions for the 

subsequent erosion process of the WFA. The reasons for using local optimal positions as 

potential positions/regions will be described and discussed later. Thirdly, the eroded 

position list, called the E-list, is used to store eroded local optimal positions. The E-list is 

inspired by terrain smoothing of erosion process. It plays an important role of preventing 
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DOWs from being regenerated to the eroded positions in the subsequent precipitations. It 

would help to reduce the computation time needed by the algorithm. 

3.3.3 Exploration Phase 

The exploration phase of the WFA is inspired by the hydrological cycle in meteorology 

presented in Section 3.1. The number of basic components of the hydrological cycle used 

in the WFA depends on the optimization problem to be solved. For example, when solving 

single-objective optimization problems, only transportation, precipitation and run-off of 

the hydrological cycle are utilized in the exploration phase. However, when solving multi-

objective optimization problems, the exploration phase may include  evaporation/ 

transpiration, condensation and groundwater. Despite the number of basic components 

that are completely used, the general procedure does not undergo much change.  

The exploration phase can be described as follows: at each cloud, we generate 

randomly a set of positions for DOWs with size MaxPop. This is to simulate the spreading 

of raindrops into many places on the ground. Based on the problem to be solved, we can 

use an efficient constructive method to generate a set of seed positions for DOWs at the 

first cloud, which may improve the performance of the WFA. After generating a 

population of positions for the DOWs, a steepest descent hill sliding algorithm is used to 

search for local optimal positions from these initial positions of the DOWs. In particular, 

the hill sliding algorithm searches for the best improved position within the initial 

position’s neighbors in terms of objective value. Then, this process is iteratively 

performed in the same manner until no other improved position is found. Depending on 

the problem, an appropriate neighborhood structure is proposed. The idea of determining 
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local optimal positions of DOWs is inspired by the property of water flow always moving 

to lower positions. 

In general, the exploration phase of the WFA results in a set of local optimal positions 

of DOWs. The local optimal positions and the number of DOWs at these positions are 

updated in the UE-list to be considered for performing the erosion process in the next 

exploitation phase. 

3.3.4 Exploitation Phase 

Exploitation phase of the WFA is inspired by the erosion phenomenon of water flow in 

nature presented in Section 3.2. The properties of the erosion phenomenon are simulated 

in this phase of the WFA to guide DOWs to overcome the local optimal positions and 

search for better or optimal positions. In the next subsection, we present the conditions to 

perform erosion process for the local optimal positions in the UE-list. Also, the 

calculations of erosion capability for the DOWs at the positions satisfying the conditions, 

as well as the basic operational mechanism of the erosion process are described. 

Depending on the nature of the problem, the corresponding operators of the erosion 

process will be implemented to solve the problem efficiently. 

3.3.4.1  Erosion Condition and Capability 

Although many factors have effects on the erosion process of water flow in nature as 

described in Section 3.2, only two major factors affect the erosion process significantly. 

They are the hardness of soil and the amount of precipitation. In nature, the hardness of 

soil varies according to the land area considered. However, when solving an optimization 
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problem representing the topography of the Earth, the landscape of the problem does not 

change over time and space. Thus, we assume that the soil hardness value at every 

position in the problem is the same. Thus, we are only concerned about the amount of 

precipitation for determining the erosion condition to perform the erosion process in the 

WFA. If the amount of precipitation at some local optimal position increases up to 

MinEro, the erosion process would happen at the local optimal position. 

Also, many factors affect the erosion rate/capability of water flow as presented in 

Section 3.2. However, for simplicity, we only consider the capability of erosion process 

based on two main factors: the amount of precipitation and its falling force. In 

optimization problems, the amount of precipitation is represented by the number of DOWs 

at the eroding local optimal position; while its falling force is represented by the objective 

value of the corresponding problem at the position. We will next explain why the 

objective value at the corresponding position is considered as the falling force of 

precipitation.  

In the WFA, the altitude information of a DOW is determined by the corresponding 

objective value of a solution in an optimization problem. For the problem of minimization, 

the DOW with the smaller altitude leads to the better quality solution. Moreover, the 

falling force of raindrops depends on the distance between the cloud and the position of 

the raindrops in which they fall on the ground. Hence, if we assume that the clouds move 

at the same altitude, the impact of falling force at the lower positions is larger than that at 

the higher positions. In other words, the erosion capability at the lower positions is larger 

than that at the higher positions. This is the reason why the falling force of precipitation is 

represented by the objective value at the corresponding position. Figure 3.7 illustrates the 
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erosion capability at two positions with two different altitudes. In Figure 3.7, the erosion 

capability at point B is larger than that at point A. 

 

Figure 3.7   Illustration for Effect of Altitude on Erosion Capability 

With the assumption that clouds are at the same altitude, the falling force of 

precipitation to lower local optimal positions will cause erosion more easily than that of 

higher ones. Then, we can infer that the erosion capability becomes stronger for local 

optimal positions with the larger amount of precipitation and the lower objective values. It 

may create a flexible operation scheme for the erosion capability of DOWs in the WFA. 

Also, it helps the erosion process focus on exploiting promising regions strongly while 

ignoring regions with poor performance. In particular, the relationship between these two 

factors and the control parameter of erosion capability, MaxUIE, is expressed as follows: 

                                                 * /
1 2( ) ,LB zMaxUIE Qϕ π ϕ= +                                          (3.1) 

  

hA hB 

A 

B 
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where 1ϕ  and 2ϕ  are parameters representing the effect of precipitation and its falling 

force, respectively. Also, *( )Q π  is the number of DOWs at the local optimal position *π , 

LB is a known lower bound, and z is the objective value at the eroding local optimal 

position. Here, LB can be any lower bound obtained from the literature, or by solving a 

relaxation of the problem in terms of the corresponding objective function. 

In addition, we also propose a simple determination of erosion capability for solving 

optimization problems with less complex structure. In this process, the erosion capability 

does not depend on the amount of precipitation and its falling force. Here, we use a 

constant value pre-specified for the erosion capability. When the amount of precipitation 

at some local optimal position increases up to MinEro, the erosion process with the pre-

specified erosion capability would happen at the local optimal position. It is helpful for 

optimization problems with less complex structure since the computation time may 

decrease without affecting the solution quality obtained. 

3.3.4.2  Erosion Process 

Erosion process will be performed when the erosion condition at some local optimal 

position is satisfied. Depending on the structure of the problem, the erosion capability at 

the local optimal position may either be constant or determined from equation (3.1). The 

strategy of erosion process is based on a topological parameter representing the 

geographical surface, and whether an erosion direction is blocked.  

The topological parameter dΔ  is defined as the difference between the objective value 

of local optimal position and that of its neighboring position. We first choose the smallest 
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dΔ  as the erosion direction. If the erosion process for that direction does not improve 

after MaxUIE iterations, we say that the direction is blocked. It means that water flow 

cannot move in that direction and searching in that direction stops. This is followed by 

backtracking, in which we restart the search from the local optimal position using the 

direction with the next smallest dΔ . If all directions for considering the local optimal 

position are blocked, we call that position fully blocked and move it into the E-list, i.e., we 

do not consider that position in the subsequent clouds/iterations. Otherwise, if there is a 

direction with improvement when compared with the current local optimal position, we 

will choose that direction to erode permanently for the local optimal position. Here, the 

improvement means that the erosion process finds a new local optimal position, whose 

objective value is smaller than that of the current local optimal position. This new local 

optimal position is updated in the UE-list to continue with performing the erosion process. 

The erosion process simulated in the WFA is thus close to the natural behavior of water 

flow in the erosion phenomenon. In nature, if no unexpected change occurs, water flow 

always moves by following a fixed stream. The entire erosion process can be presented in 

pseudocode in Figure 3.8. 

To perform the erosion process efficiently, we have used short-term memory in the 

process, called track-list. Since the nature of water flow is to never move upstream, the 

track-list is used to prevent the DOWs in the erosion process from moving back. The list 

only temporarily records the previously passed positions of the DOWs that are determined 

in the corresponding erosion direction. Thus, each erosion direction has a corresponding 

track-list. The track-list becomes empty immediately after the erosion direction is 

completely considered. 
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Procedure Erosion Process; 

Begin  

 Do loop 

 Choose an un-eroded direction with the smallest dΔ  to erode; 

 Do loop 

                    Apply steepest descent hill-sliding algorithm for the erosion direction chosen; 

 Until (new optimal position is found or no improvement after MaxUIE iterations) 

 If (the new optimal position is better than the eroding optimal position) Then      

                    Update it into the UE-list to continue performing the erosion process;  

                    Update the E-list; 

 End if 

 Until (all erosion directions are considered)  

End.  

Figure 3.8   Pseudocode for General Erosion Process of the WFA 

The entire process of both exploration and exploitation terminates when the maximum 

number of allowed iterations (MaxCloud) is reached. 

Finally, we present the reasons why the erosion process only happens at the local 

optimal positions with the large number of DOWs. The first reason is because the process 

is inspired by the erosion phenomenon of water flow in nature. This phenomenon occurs 

when the amount of water in watercourse increases dramatically as described in Section 

3.2. The second reason is because the local optimal positions are considered as very 
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promising positions to search for global optimal positions. Intuitively, we can see that 

because of using random number generation for the initial population of DOWs, the 

probability of the DOWs generated onto every position is the same. Then, the center 

positions of “big valleys” may be found more easily than the ones of “small valleys” (see 

Figure 3.9). Also, it means that the number of DOWs at the center positions of “big 

valleys” may increase faster than that at “small valleys”.  

 

 

    

 

 

 

  

 

 

 

Figure 3.9   Illustration for “Big Valley” and “Small Valley” 

Generally, good properties of a solution may appear many times throughout the 

iterations. Hence, local optimal positions found many times in the WFA can be considered 

as promising positions or regions to find better local optimal positions by the erosion 

process.  
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“Local optimal” 

“Big valley” 
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CHAPTER 4 

WFA FOR PERMUTATION FLOW SHOP SCHEDULING 

 

 

 

In this chapter, we present a water flow algorithm (WFA) for solving the permutation flow 

shop scheduling problem (PFSP), which is one of the well-known scheduling problems in 

production. The proposed algorithm has been developed based on the general framework 

of the WFA described in Chapter 3. The exploration phase of this algorithm is inspired by 

the following basic components of the hydrological cycle, i.e., transportation, precipitation 

and run-off; while the exploitation phase of this algorithm has used a pre-specified 

constant value for determining the erosion capability of erosion process.  

The structure of this chapter is organized as follows. In Section 4.1, we introduce the 

PFSP and briefly describe a literature review of solution methods for the scheduling 

problem. Then, the formulation of the PFSP is presented in Section 4.2. The customization 

of the WFA for solving this scheduling problem is described in Section 4.3. The 

computational results and comparisons among the WFA and other algorithms are shown 

in Section 4.4. Finally, some conclusions are presented in Section 4.5.  
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4.1 Introduction 

In production, the PFSP is one of the well-known scheduling problems in which n jobs 

have to be processed by m machines with the same order of jobs on machines. The most 

common objective of the scheduling problem is to minimize the completion time of jobs, 

also known as makespan (Cmax), by specifying the sequence of jobs. In addition to this 

objective, there are other desired measures of performance for this scheduling problem, 

such as minimizing total flow time of jobs or minimizing total tardiness time of jobs. 

Generally, the makespan criterion is often used because the minimization of makespan 

ensures that production gets a high throughput (Pinedo, 2002). 

The PFSP with makespan minimization has been proven to be an NP-hard problem 

when the number of machines m > 3 (Rinnooy Kan, 1976), and is thus considered a 

challenging optimization problem. Many research works in the literature have addressed 

this scheduling problem, and they also proposed various optimization methods to solve it. 

We can classify the methods according to two approaches: exact and heuristic algorithms. 

Exact techniques are computationally effective for problems with small size (often less 

than 20 jobs). However, for problems with large size, these techniques are 

computationally intensive. On the other hand, as heuristic algorithms often find a good 

solution rapidly, it is efficient to use them to solve problems with large size.  

The heuristic algorithms can be classified into three major categories: constructive 

algorithms, improvement algorithms and meta-heuristics. Some constructive algorithms 

for the PFSP include Johnson (1954), Nawaz et al. (1983) and Koulamas (1998). Among 

these algorithms, the algorithm by Nawaz et al. (1983) (NEH) is one of the effective 
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polynomial-time heuristic algorithms for the PFSP. Unlike constructive algorithms, 

improvement algorithms start from an initial solution, and try to improve it through some 

iterative procedures to obtain better solutions. Normally, the search for better solutions is 

based on a predetermined neighborhood structure. Taillard (1990), Ho and Chang (1991), 

and Suliman (2000) provide examples of improvement algorithms. Applying these 

algorithms for solving the PFSP has led to some success, but the quality of solutions 

obtained is not good for certain problems with large size. Recently, meta-heuristic 

algorithms, which are inspired by the behavior of natural systems, have been extensively 

developed and successfully applied to solve the PFSP. Some examples of the meta-

heuristic algorithms are ant colony optimization (Rajendran and Ziegler, 2004), particle 

swarm optimization (Tasgetiren et al., 2007), and genetic algorithm (Nagano et al., 2008). 

Hence, we propose a WFA for solving the PFSP. The proposed algorithm is developed 

based on the general WFA presented in Chapter 3. In this algorithm, the exploration phase 

simulates the basic components of the hydrological cycle, such as transportation, 

precipitation and run-off. The exploitation phase uses a pre-specified constant value for 

determining the erosion capability. Several well-known benchmark problem sets are used 

to evaluate the performance of this algorithm. The best known values of the benchmark 

problems in the literature are used to compare with the results obtained by the WFA. In 

addition, we also used these results to compare with that of other efficient algorithms, 

such as an adaptive learning approach combined with the NEH constructive heuristic 

(NEH-ALA) proposed by Agarwal et al. (2006), or a constructive GA combined with 

local search (CGALS) described by Nagano et al. (2008), etc. 
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4.2 Formulation of the PFSP 

In this section, we describe and present the formulation of the PFSP. In this scheduling 

problem, n jobs have to be processed by m machines with the same order of jobs on 

machines. Let pji denote the processing time of job j (j = 1, 2,..., n) on machine i (i = 1, 

2,..., m), and C(σj, m) denote the completion time of job σj on machine m. Then, the PFSP 

aims to search for the best permutation of jobs processed through all machines.  

Given the job permutation 1 2( , ,..., )nπ σ σ σ= , the completion time of the n-job m-

machine problem is calculated as follows: 
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Then, the makespan can be defined as: 

                 max ( ) ( , ).nC C mπ σ=     (4.5) 

Hence, the PFSP with the makespan criterion aims to search for an optimal job 

permutation π* in the set of all possible job permutations П, such that: 

                *
max ( ) ( , )     .nC C mπ σ π≤ ∀ ∈Π  (4.6) 
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4.3 WFA for the PFSP 

In this section, we present how the proposed WFA can be applied to solve the PFSP. The 

basic components of the WFA described are the encoding scheme, memory lists, 

exploration phase, and exploitation phase. 

4.3.1 Encoding Scheme 

In the PFSP, a DOW is associated with a job permutation. We consider the job 

permutation and its objective value as providing the longitude, latitude and altitude 

information for the position of DOW on the ground. Given a job permutation 

1 2( , ,..., )nπ σ σ σ= , we define: 

                                        

1
2

1
2

longitude( ) ( ,..., )    (4.7)

   latitude( ) ( ,..., ) ,         (4.8)
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where x⎢ ⎥⎣ ⎦  is the largest integer less than or equal to x. The altitude of DOW is defined as 

the corresponding makespan value of the given job permutation. The objective value is 

calculated by equation (4.5). Figure 4.1 shows an illustrative example of a DOW and its 

positional vector components for the PFSP with 6 jobs.  

 

Figure 4.1   An Example of Solution Representation in the WFA for the PFSP 

Objective value 
(makespan) 

Job permutation 

DOW  

Altitude  
Latitude  Longitude  

1 5 3 4 6 27 2 
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4.3.2 Memory Lists 

In the WFA, we use three memory lists to support the search for global optimal positions. 

Firstly, we use one memory list to store the best positions found so far, called the P0-list. 

For the PFSP, the P0-list stores the job permutations with minimum makespan. This list is 

updated when a new local optimal job permutation is found. Secondly, the un-eroded 

position list, called the UE-list, is used to store local optimal job permutations which have 

not been eroded due to not satisfying erosion condition. Its purpose is to record potential 

job permutations for the subsequent erosion process. Thirdly, the eroded position list, 

called the E-list, is used to store eroded local optimal job permutations. This list aims to 

prevent next clouds from regenerating DOWs to the eroded job permutations. It would 

help to save the computation time needed by the algorithm. Both UE-list and E-list are 

updated after performing the erosion process. In addition, the UE-list is updated when a 

new local optimal job permutation is found in the erosion process. 

4.3.3 Exploration Phase     

At each cloud (or iteration), after randomly generating a population of initial job 

permutations for DOWs, the steepest descent hill sliding algorithm is used to search for 

local optimal job permutations from the initial job permutations. In particular, the hill 

sliding algorithm searches for the best improved job permutation within the initial job 

permutation’s neighbors in terms of makespan value. Then, this process is performed 

iteratively in the same manner until no other improved job permutation is found. In this 

algorithm, a perturbation scheme based on a systematic pair-wise job exchange, a variant 

of 2-opt algorithm, is used to construct the neighboring job permutations. In general, the 
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exploration phase in the WFA for the PFSP will result in a set of local optimal job 

permutations. They will be updated in the UE-list to be considered for performing the 

erosion process in the exploitation phase. 

4.3.4 Exploitation Phase 

In the WFA for the PFSP, we perform the erosion process based only on the amount of 

precipitation. If the amount of precipitation at some local optimal job permutation in the 

UE-list increases up to MinEro, the erosion process will happen at the local optimal job 

permutation. 

In the current WFA, we consider the capability of erosion process based on a pre-

specified constant value. It means that the erosion capacity is independent of two factors, 

i.e., the amount of precipitation and its falling force. In particular, when the erosion 

process happens, the erosion capacity is determined by a constant MaxUIE, the maximum 

number of iterations for the erosion process to move to the next erosion direction if the job 

permutation is not improved. 

In the erosion process of the WFA for the PFSP, the topological parameter dΔ  

representing geographical surface is calculated as the difference between the makespan 

value of the local optimum job permutation and that of its neighboring job permutations. 

Here, we still use the same neighborhood structure as in the exploration phase. Firstly, we 

choose the smallest dΔ  to be the erosion direction. If the erosion process for that direction 

does not improve after MaxUIE iterations, we say that the direction is blocked. In other 

words, water flow cannot move in that direction and searching in that direction stops. This 

is followed by backtracking, in which we restart the search from the local optimal job 
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permutation using the direction with the next smallest dΔ . If all directions for considering 

the local optimal job permutation are blocked, we call that job permutation fully blocked 

and move it into the E-list. Then, we do not consider that job permutation in the following 

clouds or iterations. Otherwise, if there is a direction with improvement when compared 

with the current local optimal job permutation, we will choose that direction to erode 

permanently for the local optimal job permutation. The improved local optimal job 

permutation is updated in the UE-list to continue with performing the erosion process. 

The entire process of both exploration and exploitation terminates when the maximum 

number of allowed clouds or iterations (MaxCloud) is reached. 

A flow chart of the WFA for solving the PFSP is shown in Figure 4.2. This flow chart 

is a detailed extension of the flow chart presented in the Chapter 3. 

4.3.5 A Numerical Example for Erosion Mechanism  

In this section, a numerical example is used to illustrate for implementation of the erosion 

mechanism in the exploitation phase of WFA. Data of the PFSP instance consists of: 

The number of jobs: n = 5, and the number of machines: m = 5.  

The processing time matrix of jobs on machines: 

2 3 4 9 7
8 2 6 5 1

, for 1,..,   and  1,.., .4 2 7 8 5
2 4 5 6 3
2 1 3 6 5

ijP i n j m
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Figure 4.2   Flow Chart of the WFA for the PFSP 
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For the WFA, the initialization of the parameter values is given as follows:   

MaxCloud = 2, MaxPop =7, MinEro = 3, MaxUIE = 3.  

In this illustration, we do not mention to the exploration phase of the WFA, thus we 

assume that after doing the exploration phase, UE-list contains a set of two local optimal 

job permutations as follows: 

Table 4.1   UE-list of Local Optimal Job Permutations 

UE-list Job permutations maxC  The number of DOWs 

#1 [2, 1, 4, 3, 5] 47 5 

#2 [1, 4, 5, 2, 3] 46 2 

We see that only the first local optimal job permutation in the UE-list has satisfied the 

erosion condition (the number of DOWs at the local optimal job permutation is greater 

than or equals to MinEro). Hence, the erosion process will be performed at this job 

permutation. Firstly, the neighboring job permutations of this local optimal job 

permutation will be determined and ranked in the descend order with the objective 

function value Cmax. In the WFA, only the neighbors of the eroding local optimal job 

permutation are ranked to consider one after another. For the neighboring job 

permutations belonging to the search path of the direction chosen, we do not need to rank 

the job permutations. As a result, ranking neighbors of the eroding local optimal job 

permutation [2, 1, 4, 3, 5] is shown in Table 4.2. 

According to the erosion process of water flow described in the WFA, the smallest 

topology (or neighboring job permutation) around the eroding local optimal job 

permutation will be chosen to perform erosion first.  Here, we choose the erosion direction 
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with respect to the neighboring job permutation [1, 2, 4, 3, 5] to perform erosion since its 

objective value Cmax = 47 is smallest. In the case that there are many neighbors with the 

same best objective value, we can choose randomly one of them to perform erosion. 

Table 4.2   Possible Erosion Directions at the Local Optimal Job Permutation 

Direction Neighbors maxC  

1 [1, 2, 4, 3, 5] 47 

2 [2, 1, 4, 5, 3] 47 

3 [5, 1, 4, 3, 2] 48 

4 [2, 3, 4, 1, 5] 48 

5 [3, 1, 4, 2, 5] 49 

6 [2, 5, 4, 3, 1] 49 

7 [4, 1, 2, 3, 5] 50 

8 [2, 1, 5, 3, 4] 50 

9 [2, 4, 1, 3, 5] 51 

10 [2, 1, 3, 4, 5] 51 

Next, we update the eroding local optimal job permutation [2, 1, 4, 3, 5] into the track-

list to prevent the DOWs move back this position. For the erosion direction chosen, if we 

cannot find a better job permutation after MaxUIE = 3 iterations, we will consider the 

erosion direction with the next smallest objective value of the neighboring job 

permutations, i.e., job permutation [2, 1, 4, 5, 3] in Table 4.2. Then, the track-list will be 

refreshed, and the first erosion direction is known as blocked direction. This procedure is 

iterated until any improvement job permutation (i.e., the objective value of the job 

permutation just found is better than that of the eroding local optimal job permutation [2, 1, 



Chapter 4   WFA for Permutation Flow Shop Scheduling 

76 
 

4, 3, 5]) is found in a direction. If an improvement job permutation is found, the steepest 

hill-sliding algorithm is performed to obtain better new local optimal job permutation 

from the improvement job permutation just found. Otherwise, if there is no improvement 

through all erosion directions, the eroding local optimal job permutation is known as fully 

blocked position and recorded into the E-list. Then, the erosion process will consider to 

the next local optimal job permutation in the UE-list.  

In this example, since we may find an improvement job permutation with respect to 

the first erosion direction [1, 2, 4, 3, 5], this direction will be considered as the permanent 

erosion direction of the DOWs at the local optimal job permutation [2, 1, 4, 3, 5]. The 

steps to determine the improvement job permutation are shown in Table 4.3.  

Table 4.3   Steps of Finding Improvement Job Permutation 

 Step 2 Step 3 

No. Neighbors maxC  Remarks Neighbors maxC  Remarks 

1 [2, 1, 4, 3, 5] 47 in track-list [4, 1, 2, 3, 5] 50  

2 [4, 2, 1, 3, 5] 50  [2, 4, 1, 3, 5] 51  

3 [3, 2, 4, 1, 5] 48  [3, 4, 2, 1, 5] 46  

4 [5, 2, 4, 3, 1] 49  [5, 4, 2, 3, 1] 49  

5 [1, 4, 2, 3, 5] 47 chosen [1, 2, 4, 3, 5] 47 in track-list

6 [1, 3, 4, 2, 5] 49  [1, 3, 2, 4, 5] 50  

7 [1, 5, 4, 3, 2] 48  [1, 5, 2, 3, 4] 50  

8 [1, 2, 3, 4, 5] 50  [1, 4, 3, 2, 5] 48  

9 [1, 2, 5, 3, 4] 50  [1, 4, 5, 3, 2] 46 chosen 

10 [1, 2, 4, 5, 3] 47  [1, 4, 2, 5, 3] 46  
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In particular, we will determine the neighboring job permutations and choose the best 

job permutation among the neighbors without belonging to the track-list in order to 

continue searching improvement job permutation. Through steps 2 and 3 in Table 4.3, we 

find three improvement job permutations. Here, we choose randomly the job permutation 

[1, 4, 5, 3, 2] to start searching better new local optimal job permutation. When applying 

the steepest hill-sliding algorithm, we find the local optimal job permutation [1, 4, 3, 5, 2] 

whose objective value Cmax = 45. Then, we update it into the UE-list to continue 

performing the erosion process as shown in Table 4.4, and also update the eroded local 

optimal job permutation [2, 1, 4, 3, 5] into the E-list. 

Table 4.4   Updating the UE-list 

UE-list Job permutations maxC  The number of DOWs 

#1 [1, 4, 3, 5, 2] 45 5 

#2 [1, 4, 5, 2, 3] 46 2 

This erosion process only terminates when fully blocked state is reached. Then, the 

next job permutation in the UE-list will be considered to perform the erosion process. If 

all job permutations in the UE-list are considered, next cloud will be generated to explore 

new search space. In this example, the entire process of both exploration and exploitation 

terminates when MaxCloud = 2 is reached. Then, the best job permutation found in the P0-

list is displayed as the output of the WFA. 

As for the case that the local optimal job permutation is considered as a fully blocked 

position, we can intuitively observe as shown in Figure 4.3. Then, we cannot find any 

improvement job permutation through all erosion directions. 
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Figure 4.3   The Case of Fully Blocked Position 

4.4 Computational Experiments and Comparisons 

4.4.1 Benchmark Problem Sets 

To evaluate the performance of WFA for the PFSP, we performed experiments for four 

benchmark problem sets, i.e., that of Carlier, Heller, Reeves and Taillard. These are well-

known problem sets in the PFSP taken from the OR Library. In this chapter, a total of 121 

instances comprising of 8 instances of Carlier, 2 instances of Heller, 21 instances of 

Reeves (odd number instances) and 90 instances of Taillard are used. The best known 

upper bounds of these problem sets from the literature were used to compare with the 

results obtained by the WFA. Also, the results obtained by Agarwal et al. (2006) and 

meta-heuristic algorithms in Nagano et al. (2008) were used to compare with our results. 

Agarwal et al. (2006) performed empirically to select the best parameters, but they did not 

mention the number of runs of their algorithm for solving the instances; while Nagano et 

al. (2008) used the design-of-experiment method to tune their parameters and ran 5 

independent replicates for each instance.   

New “local optimal” 
Old “local optimal” 

3MaxUIE =
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4.4.2 Platform and Parameters 

The WFA has been coded using Visual Basic 6.0, and all experiments were performed on 

an Intel Centrino Duo 1.60 GHz CPU with 1.5 GB of RAM running on Windows XP 

Operating System. The computational complexity of the WFA for the PFSP is determined 

based on the neighborhood structure used and the erosion process of this algorithm. In 

particular, the WFA used 2-opt neighborhood structure, and the worst possibility of the 

erosion process is to find through all n directions. Thus, the computational complexity of 

the WFA may be estimated to be O(n3).  

The choice of reasonable parameters for the WFA was determined by design-of-

experiment methods and the values are shown in Table 4.5. With the parameter sets, 5 

independent replicates were used for each instance. The average or best results obtained 

were used to evaluate the performance of the WFA and to compare with other algorithms. 

4.4.3 Performance Measure  

For comparison of objective values, we used the following average relative percentage 

increase in objective value: 

                                          

( )

1 100

K
sol i sol

i sol

Heuristic BN
BN
K

=

−⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = ×

∑
 (4.9) 

where Heuristicsol(i) and BNsol denote the makespan value obtained by the algorithm for the 

ith replicate and the best known value from the literature, respectively; and K denotes the 

number of replicates. If we only use the replicate with the best objective value to compute 

the above Δ , then we denote the relative percentage increase in objective value by BestΔ . 
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Table 4.5   Parameter Sets for Benchmark Problem Sets 

Benchmark 
Problem Sets 

Value of Parameters 

MaxCloud MaxPop MinEro MaxUIE 

Carlier 5 5 2 5 
Heller 5 10 2 5 

R
ee

ve
s 

20J-05M 10 10 2 5 
20J-10M 20 20 2 10 
20J-15M 50 20 2 10 
30J-10M 20 20 2 10 
30J-15M 30 10 2 10 
50J-10M 10 10 2 10 
75J-20M 10 10 2 10 

T
ai

lla
rd

 

20J-05M 5 10 2 10 
20J-10M 20 20 2 10 
20J-20M 30 20 2 10 
50J-05M 20 10 2 10 
50J-10M 10 10 2 10 
50J-20M 15 10 2 10 
100J-05M 5 10 2 5 
100J-10M 5 10 2 5 
100J-20M 10 10 2 5 

 

The best known values from the literature are used to be the reference points for the 

evaluation and comparison of the WFA and other algorithms in this chapter. These values 

may be the objective values of the optimal solutions of the benchmark instances used, or 

those of the best solutions found by some algorithm so far. Hence, the comparison results 

obtained may be negative values if new algorithm finds a better solution. Since we have 

used the best known values published and summarized in the leading journal papers, the 

comparison results obtain a high reliability.   
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4.4.4 Computational Results  

From Table 4.6, it can be seen that the WFA outperforms the NEH-ALA although the 

CPU running time of the WFA in some instances is larger. In particular, 55 out of 90 

Taillard’s instances solved by the WFA have better results than that solved by the NEH-

ALA. In the rest of the instances, the NEH-ALA only performs better than the WFA in 11 

instances, which are mainly 100job-5machine instances. For the instances with smaller 

size, i.e., 20 jobs, we obtained results similar to that of the NEH-ALA, but the CPU 

running time is smaller. Similar results are also obtained by the WFA when solving 

Carlier’s, Heller’s, and Reeves’ benchmark problem sets. The WFA obtained the best 

known upper bound for 10 out of 21 instances of Reeves, while the NEH-ALA only  

obtained  the  best  known  upper  bound  for  2 instances. Moreover, the WFA has the 

average relative percentage increase of 0.77%, while it is 1.51% for the NEH-ALA. For 

the Heller benchmark problem sets, the best known results for these instances are provided 

in Agarwal et al. (2006), which showed the best makespan value of 136 for the 20job-

10machine instance and 516 for the 100job-10machine instance. When applying the WFA 

to solve the 20job-10machine problem, a new upper bound value of 135 was found. 

Also, we compared the results obtained by the WFA with other efficient meta-

heuristic algorithms in Nagano et al. (2008) in Table 4.7 and Figure 4.4. From the table 

and figure, it can be seen that the WFA dominates the performance of the simulated 

annealing algorithm of Osman and Potts (SAOP), tabu search of Widmer and Hertz 

(SPIRIT), differential evolutionary method of Onwubolu and Davendra (DE), NEH-ALA 

of Agarwal et al., and constructive genetic algorithm of Nagano et al. (CGA). When 

compared  with  the  robust  genetic  algorithm  of  Ruiz et  al.  (GARMA) and  CGALS of   
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Table 4.6   Comparison Results between the WFA and the NEH-ALA 

Benchmarks No. of 
instances

WFA NEH-ALA 

BestΔ  (%) Time (s) BestΔ  (%) Time (s) 

Car11J-5M 1 0 0.17 0 6.6
Car13J-4M 1 0 0.22 0 2.6
Car12J-5M 1 0 0.25 0 8.6
Car14J-4M 1 0 0.23 0 10.7
Car10J-6M 1 0 0.66 0 6.0
Car8J-9M 1 0 0.25 0 6.4
Car7J-7M 1 0 0.11 0 2.8
Car8J-8M 1 0 0.19 0 4.5
Average 0 0 
Hel20J-10M 1 -0.74 23 0 94
Hel100J-10M 1 0 2752 0 2565
Average -0.37 0 
Rec20J-5M 3 0 81 0.11 16.5
Rec20J-10M 3 0 218 0.41 34.6
Rec20J-15M 3 0 3732 0.78 49.6
Rec30J-10M 3 0.23 5024 1.54 94.9
Rec30J-15M 3 0.34 4661 1.78 144.3
Rec50J-10M 3 0.27 5223 1.13 423.7
Rec75J-20M 3 4.56 5714 4.81 2876
Average 0.77 1.51 
Tai20J-5M 10 0 30 0 34.2
Tai20J-10M 10 0 150 0.39 74.1
Tai20J-20M 10 0 854 0.38 152.3
Tai50J-5M 10 0 2173 -0.01 487.8
Tai50J-10M 10 1.42 2837 2.58 983
Tai50J-20M 10 4.30 3877 5.29 2750.3
Tai100J-5M 10 0.29 6842 0.11 3736
Tai100J-10M 10 0.98 7538 1.03 3837
Tai100J-20M 10 4.22 6836 4.97 8853.5
Average  1.25 1.64  
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Table 4.7   Average Relative Percentage Increase over the Best Known Solution for 

Taillard’s Benchmarks Obtained by Meta-heuristic Algorithms 

Instances WFA SAOP SPIRIT GARMA DE NEH-ALA CGA CGALS

20x5 0.00 0.93 4.01 0.29 3.98 1.38 1.33 0.05 

20x10 0.00 2.59 5.65 0.63 5.86 2.22 2.42 0.19 

20x20 0.00 2.33 4.84 0.41 4.53 1.78 2.08 0.08 

50x5 0.00 0.48 1.90 0.06 4.28 0.46 0.32 0.02 

50x10 1.49 3.34 5.84 1.76 11.48 3.44 3.72 1.65 

50x20 4.35 4.47 7.46 2.62 14.73 4.66 4.98 2.67 

100x5 0.37 0.28 0.93 0.07 4.27 0.46 0.21 0.02 

100x10 1.11 1.53 2.96 0.60 10.42 1.54 1.46 0.60 

100x20 4.38 4.68 6.26 2.52 16.08 4.49 4.52 2.84 

Average 1.30 2.29 4.43 1.00 8.40 2.27 2.34 0.90 
 

 

 

Figure 4.4   Means Plot for Comparing the WFA and Meta-heuristic Algorithms 
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Nagano et al., the WFA performs best on the small and medium instances (from 20job-

5machine to 50job-10machine problems), but for the large instances it performs closer to 

the average of the group of algorithms, and the SAOP, NEH-ALA and CGA methods than 

CGALS and GARMA. 

4.5 Conclusions 

In this chapter, we developed the WFA for solving the PFSP. In the algorithm, only three 

basic components of the hydrological cycle, i.e., transportation, precipitation, and run-off, 

were used in the exploration phase. For the exploitation phase, the erosion process with a 

constant erosion capability was used. The WFA is tested and compared with other meta-

heuristic algorithms on the PFSP benchmark problem sets taken from the literature. The 

results show that the algorithm is able to obtain good solutions to the benchmark problem 

sets. Also, a new best known solution of a Heller benchmark instance is found by the 

WFA. 
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CHAPTER 5 

WFA FOR FLEXIBLE FLOW SHOP SCHEDULING 

 

 

 

 

In this chapter, we construct the WFA for solving the flexible flow shop scheduling 

problem (FFSP), which is one of the NP-hard scheduling problems often encountered in 

production environment. Here, we investigate the FFSP with limited or unlimited 

intermediate buffers. A common objective of this problem is to find a production schedule 

that minimizes the completion time of jobs. Other objectives that we have also considered 

are minimizing the total weighted flow time of jobs and minimizing the total weighted 

tardiness time of jobs.  

While the proposed WFA is inspired by the hydrological cycle in meteorology and the 

erosion phenomenon in nature, we have also combined the amount of precipitation and its 

falling force to form a flexible erosion capability in this algorithm. This helps the erosion 

process of the WFA to focus on exploiting promising regions strongly. Moreover, to 

initiate the algorithm, we have used a constructive procedure to obtain a seed job 

permutation. We have also proposed an improvement procedure for constructing a 

complete schedule from a job permutation that represents the sequence of jobs in the first 
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stage of the FFSP. To evaluate the WFA for this scheduling problem, we have used 

benchmark instances taken from the literature and randomly generated instances of the 

problem. The computational results demonstrate the efficacy of this algorithm. Also, we 

have obtained several improved solutions for the benchmark instances using the proposed 

algorithm. We further illustrate the algorithm’s capability for solving problems in practical 

applications by applying it to a maltose syrup production problem. 

The structure of this chapter is organized as follows. In Section 5.1, we introduce the 

FFSP and its important applications in modern production. A brief literature review of 

problem classification and solution methods for the problem is also provided in this 

section. Next, the details of the FFSP with limited or unlimited buffers are described in 

Section 5.2. A full description of the proposed WFA for the FFSP with intermediate 

buffers is provided in Section 5.3. An example of the FFSP with limited buffers in maltose 

syrup production is presented in Section 5.4. Computational experiments and comparisons 

based on benchmark instances of the FFSP with limited or unlimited buffers, randomly 

generated instances, and the maltose syrup production problem are shown in Section 5.5. 

Finally, some conclusions of this chapter are presented in Section 5.6. 

5.1 Introduction 

In production, flexible flow shop scheduling is one of the well-known NP-hard scheduling 

problems. In this chapter, we focus on the FFSP with limited intermediate buffers. The 

problem involves a set of jobs processed through several consecutive operation stages 

with parallel identical machines in each stage, and there are limited intermediate buffers 

between consecutive stages. The primary objective of this problem is to find a production 
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schedule to minimize the completion time of jobs, known as makespan (Cmax). There are 

also other important objectives of this problem, such as to minimize the total weighted 

flow time of jobs and to minimize the total weighted tardiness time of jobs. These 

objectives help to achieve a high throughput for production. The FFSP with limited 

buffers has been encountered in both traditional and modern manufacturing systems, such 

as the electrics manufacturing (Wittrock, 1988), the paper production industry (Sherali et 

al., 1990), the building industry (Grabowski and Pempera, 2000), the printed circuit board 

assembly line in electronics industry (Sawik, 2001), and the continuous casting-hot charge 

rolling production in steel industry (Tang and Xuan, 2006). It is also a special case of the 

FFSP with unlimited intermediate buffers (Wardono, 2001). 

Although many researchers have developed optimization techniques for solving a 

variety of flow shop scheduling problems, only a few of them dealt with the FFSP with 

limited buffers. A detailed review of the development of scheduling algorithms, as well as 

the classification of FFSP, is given in Quadt and Kuhn (2007) and Ribas et al. (2010). 

Quadt and Kuhn (2007) proposed the taxonomy of l-stage flexible flow line scheduling 

procedures. The taxonomy focuses mainly on heuristic procedures that are split into 

holistic and decomposition approaches. The decomposition approaches are further 

classified into stage-oriented decomposition, job-oriented decomposition, and problem-

oriented decomposition approaches. Ribas et al. (2010) introduced a new classification for 

published papers on FFSP. From a production perspective, this classification is based on 

machine and job characteristics, relevant constraints, and objective functions. From a 

solution perspective, this classification involves grouping the references into exact 

approaches, heuristic procedures, hybrid approaches, and simulation/decision support 
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system procedures. Among these approaches, heuristic and hybrid approaches have 

recently received considerable attention by many researchers (Ruiz and Vazquez-

Rodriguez, 2010). Wardono and Fathi (2004) developed a tabu search algorithm together 

with a procedure for constructing a complete schedule to solve the FFSP with limited 

buffers that minimizes job completion time. This algorithm is based on the stage-oriented 

decomposition approach. Tavakkoli-Moghaddam et al. (2009) proposed a memetic 

algorithm (MA), which involves a combination of genetic algorithm and nested variable 

neighborhood search, for solving the flexible flow line scheduling problem with processor 

blocking and without intermediate buffers. The MA obtained some promising results and 

it can be considered as an efficient algorithm for solving the FFSP with no available 

buffer space. However, there is no formal procedure for constructing a complete schedule 

in the MA. Also, the quality of solutions obtained by these algorithms may not be good for 

problems with large size.    

In this chapter, we construct a water flow algorithm for solving the FFSP with limited 

or unlimited intermediate buffers. To evaluate the performance of the WFA, we have 

tested it on many instances of FFSP with intermediate buffers from the literature. 

Moreover, we also compare the performance of the WFA with that of the tabu search 

algorithm of Wardono and Fathi (2004) and MA of Tavakkoli-Moghaddam et al. (2009). 

In addition, we introduce a problem encountered in the maltose syrup production industry 

and use it to evaluate the efficiency of the WFA for solving problems arising in practical 

applications. 
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5.2 FFSP with Intermediate Buffers 

The FFSP with limited intermediate buffers is an NP-hard combinatorial optimization 

problem (Wardono and Fathi, 2004) that may be formulated as follows. A set of N jobs is 

processed on S consecutive production stages with ml parallel identical machines in each 

stage l (l = 1,…,S). There are limited buffers between these consecutive stages (refer to 

Figure 5.1) and we denote Bl as the capacity of the buffer at stage l. In this problem, jobs 

have to be processed successively through all S stages. One machine in each stage can 

only process one job at a time, and each job can only be processed on at most one machine 

in each stage at the same time. In addition, each job is processed without preemption on 

one machine in each stage. Moreover, a job can skip one or more stages but is unable to 

go back to a previous stage. Here, we only consider processing time, weight, and due date 

of jobs in this problem. Thus, we do not consider other characteristics, such as the 

breakdown time of machines and set-up time of jobs in this model.  

 

Figure 5.1   The Schematic of FFSP with Limited Intermediate Buffers 

For the FFSP with limited buffers, we can divide it into two cases. The first one is the 

case of no available buffer space for completed jobs between consecutive stages. It means 
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that after job j is finished by machine i in stage l, if there is no idle machine in the 

subsequent stage l+1, then job j must wait on machine i in stage l until there is at least an 

idle machine in stage l+1 to start processing job j in this stage. The job j is known as a 

blocked job, and the corresponding machine i is known as a blocked machine. This case is 

often encountered in maltose syrup production for the confectionery and sugar industries 

(Hull, 2010), and the continuous casting-hot charge rolling production for the steel 

industry (Tang and Xuan, 2006). The second case is the FFSP with finite buffer capacities 

between consecutive stages. In this second case, after a job j is completed on machine i in 

stage l, it can either be processed on an available machine in stage l+1 or wait in a 

following buffer if there is no available machine in stage l+1. If there is no available 

capacity in the following buffer, job j remains on blocked machine i in stage l until there is 

available capacity in the following buffer or an available machine in stage l+1. In addition 

to the two cases mentioned above, we also consider the FFSP with unlimited buffer 

capacities between consecutive stages. In the FFSP with unlimited intermediate buffers, 

after a job j is completed by machine i in stage l, the machine i is immediately available to 

process awaiting jobs in the buffers of previous stage l-1 even though there is no available 

machine in stage l+1. 

A Gantt chart illustration of the FFSP with intermediate buffers is shown in Figure 5.2. 

The data for this example is displayed in Table 5.1. In this example, we consider the FFSP 

with 3 stages in which there is a machine in stage 1 and stage 3, and 3 machines in stage 2. 

5 jobs are processed through these stages, in the order of job 1 to job 5 at stage 1. In the 

first case of the FFSP with limited buffers (Figure 5.2a), when job 4 is completed on 

machine 1 in stage 1, it has to wait in machine 1 until there is at least an idle machine in 
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stage 2. Thus, machine 1 in stage 1 is blocked. Hence, job 5 can only be processed on 

machine 1 in stage 1 from time 5 when machine 1 in stage 2 is available. In the second 

case of the FFSP with limited buffers (Figure 5.2b), there are buffers with capacity 1 after 

stage 1 and stage 2, and they are denoted by B1 and B2 respectively. With B1, we can see 

that machine 1 in stage 1 is not blocked from time 4 to 5 as in the first case. This is 

because after job 4 is completed on machine 1 in stage 1, it is delivered to buffer 1. Then, 

job 5 can be processed on machine 1 in stage 1 from time 4.  Also, in Figure 5.2b, job 5 is 

blocked on machine 2 in stage 2 from time 10 to 11, since buffer 2 is full and there is no 

available machine in stage 3. However, for the FFSP with unlimited buffers (Figure 5.2c), 

job 5 is not blocked on machine 2 in stage 2 from time 10 to 11 because it is delivered to 

buffer 2 with infinite capacity. This shows a typical difference between the FFSP with 

limited buffers and unlimited buffers. With infinite buffer capacities, blocked jobs or 

machines do not exist in the problem.  

To solve the FFSP with intermediate buffers, we first construct a WFA for solving the 

FFSP with no available buffer space. Then, we apply the WFA with a modification of the 

input data to solve the FFSP with finite buffer capacities between consecutive stages. The 

aim of this modification is to convert the FFSP with finite buffers to one with no available 

buffer space (McCormick et al., 1989). To do so, we consider a buffer with a capacity of C 

as a stage with C parallel identical machines in which the processing time of jobs through 

the machines is zero. We also assume that every job must be processed through all stages, 

including the buffer stages. We illustrate the conversion process by an example in Table 

5.1. As for the FFSP with unlimited buffers, we also perform a modification procedure of 

constructing a complete schedule that is appropriate with the structure of the problem. 
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Stage Machine                  
                   

1 1 1 2 3 4 b 5 b          
                   

2 1  1 4 b       
 2   2 5 b      
 3    3 b    
                   

3 1      1  2 4 5 3   
                   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

                                time, t

(a) The FFSP with no available buffer space between consecutive stages 

b Blocked Job/Machine

Stage Machine Buffer                 
                 Job at 

Buffer 
    

1 1  1 2 3 4 5                 
                        
  B1= 1     4  5               
                        

2 1   1 4              
 2    2 5 b            
 3     3          
                         
  B2 = 1          4 5  3         
                         

3 1       1  2 4 5 3        
                         

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  

                                                   time, t  

(b) The FFSP with finite buffer capacities between consecutive stages 

Stage Machine Buffer                  
                    

1 1  1 2 3 4 5            
                    
  B1= ∞     4  5          
                    

2 1   1 4         
 2    2 5        
 3     3     
                    
  B2 = ∞          4   3    
             5      
                    

3 1       1  2 4 5 3   
                    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

                                                   time, t

(c) The FFSP with unlimited buffer capacities between consecutive stages 

Figure 5.2   A Gantt Chart Illustration of the FFSP with Intermediate Buffers 
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Table 5.1   An Example of Converting FFSP with Finite Buffers to FFSP with No 
Available Buffer 

Processing 
time 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
 (buffer stage)  (buffer stage)  

Job 1 1 0 4 0 2 
Job 2 1 0 6 0 3 
Job 3 1 0 10 0 1 
Job 4 1 0 4 0 1 
Job 5 2 0 2 0 2 

5.3 WFA for the FFSP with Intermediate Buffers 

In this section, we present the operational mechanism of the WFA for solving the FFSP 

with intermediate buffers. The proposed algorithm is based on the simulation of spreading 

of raindrops into many places on the ground, as well as the property of water flow always 

moving from higher positions to lower positions, and the erosion capability of water flow 

on the ground. 

Firstly, a cloud representing an iteration randomly generates a set of drops of water 

(DOWs) onto some positions on the ground, which represent solutions of the FFSP. Next, 

due to the gravity force of Earth represented by a heuristic algorithm, the DOWs 

automatically move to local optimal positions. They are held at these positions until the 

erosion condition is satisfied before performing the erosion process. Then, depending on 

the amount of precipitation, the falling force of precipitation and soil hardness at the local 

optimal positions, the erosion process helps the DOWs overcome the local optimal 

positions to find better or global positions. A flow chart of the WFA for the FFSP with 

intermediate buffers is shown in Figure 5.3. The details of the erosion condition, erosion 

capability, erosion process, and other operations of the WFA for the FFSP with 

intermediate buffers are described in the following subsections. 
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Figure 5.3   Flow Chart of the WFA for the FFSP with Intermediate Buffers 

5.3.1 Encoding Scheme 

In the FFSP with intermediate buffers, a DOW is associated with a job permutation. We 

consider the job permutations and their single objective value as providing the longitude, 
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latitude, and altitude information for the position of the DOWs on the ground. Given a job 

permutation 1( ,..., )Nπ σ σ= , we define: 

                                        

1
2

1
2

(5.1)

(5.2)

longitude( ) ( ,..., )    

   latitude( ) ( ,..., ) ,        

N

NN

π σ σ

π σ σ

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥+⎢ ⎥⎣ ⎦

=

=
 

where x⎢ ⎥⎣ ⎦  is the largest integer less than or equal to x. The objective value could be the 

makespan, total weighted flow time of jobs, or total weighted tardiness time of jobs. 

However, we do not use all the possible objectives at the same time. Depending on the 

single objective function adopted, the altitude of DOW is defined as the corresponding 

objective value of the given job permutation. Figure 5.4 shows an illustrative example of a 

DOW and its positional vector components for the FFSP with 6 jobs.  

 

Figure 5.4   An Example of Solution Representation in the WFA for the FFSP 

Note that the job permutations considered here are denoted by vectors of size N, which 

represent the sequence of the given set of jobs performed in the first stage. As such vectors 

cannot fully determine the schedule of the jobs through all the stages, a procedure for 

constructing a complete schedule from such vectors is required to obtain the objective 

value. Here, we propose an improvement over the procedure H1 of Wardono and Fathi 

Objective value 
(makespan) 

Job permutation 

DOW  

Altitude  
Latitude  Longitude  

2 5 3 4 6 127 1 
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(2004), called the H1-variant procedure, to construct a complete schedule associated with 

a given job permutation. Our proposed procedure starts from stage 2 and involves 

choosing a job waiting in the preceding buffer for an available machine in the current 

stage. The criteria for choosing the job, in order of priority, are job weight, due date, total 

remaining processing time, processing time at current stage, and length of time at the 

buffer. Thus, the job with the largest weight has the highest priority to be chosen. If two or 

more jobs have the same largest weight, then the job with the earliest due date will be 

chosen first. If there are jobs having the same maximum weight and earliest due date, then 

the job with maximum total remaining processing time will be chosen. If there is still a tie, 

the job whose processing time at the current stage is largest will be chosen. Any further 

ties will be broken by choosing the job that is at the buffer for the longest time. This 

procedure is unlike the procedure H1 of Wardono and Fathi (2004), in which only the last 

criterion is used to choose the job to be processed. Moreover, the proposed improvement 

is applicable to the FFSP with no available buffer space and the FFSP with unlimited 

buffers. In the former case, we consider the completed jobs which are blocked at the 

preceding stage as the available jobs waiting in buffer. In the latter case, as the buffer 

capacities are infinite, the completed jobs are immediately transferred to the buffers to 

wait for an available machine in the next stage by following the above mentioned rules of 

choosing the jobs. 

In addition, another improvement for assigning available machines based on the job 

schedule is proposed. The assignment is mainly based on the first available machine 

(FAM) rule of Wardono and Fathi (2004). However, for the available machines, we give 

higher priority to the machines that have been used before. An example is shown in Figure 
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5.5. According to the modified FAM rule, job 1 is processed on machine 1 instead of 

machine 2 at stage 2, even though machine 2 is available earlier and would have been 

chosen based on the original FAM rule. This modified FAM rule will help to reduce the 

number of machines used. Consequently, it has the advantage of possibly reducing the 

resources used in the design problem. 

Stage Machine            
             
1 1  1 1       
 2  2 3 2 3      
             
2 1    2 3 2 1 3   
 2      1       
             
  1 2 3 4 5 6 7 8 9 1011 1 2 3 4 5 6 7 8 9 1011  
   time, t    time, t 
   (a) Procedure H1 (b) Proposed Procedure 

Figure 5.5   A Comparison Between the FAM Rule and the Modified FAM Rule 

Figure 5.6 shows a comparison of the overall performance between the two procedures 

for an example taken from Wardono and Fathi (2004). In this example, since the weight 

and due date of jobs are not given, we assume that they are the same for all jobs. Then, 

choosing the appropriate job for the idle machines is based mainly on the total remaining 

processing time of available jobs. From Figure 5.6, the completion time of all jobs is at 

time 31 for the proposed procedure, while the completion time for the schedule of 

Wardono and Fathi (2004) is at time 32. This shows a better performance of our proposed 

constructive procedure over that of Wardono and Fathi (2004). 
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   Vector representation: {2,6,9,8,7,10,3,4,1,5}           

   B1 = B2 = 2                  

Stage Machine                       b = Machine is blocked 
                                  

1 1 2 9 8 10 b 4 5 b                 
 2 6 7 3 b 1 b                 
                                  

2 1  2 6 8 3 b 5            
 2    9 7 10 4 b 1          
                                  

3 1       2 7 10 5 
 2          9 8 4     
 3             6 3 1  
                                  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
time, t

 
(a) Complete schedule obtained by the procedure H1 

 
Stage Machine             

                                  
1 1 2 9 8 10 b 4 b 5 b                 
 2 6 7 3 b 1                  
                                  
2 1  2 6 10 1 4 b         
 2    9 8 3 7 b 5 b           
                                  
3 1       2 3 1 7  
 2          9 10 4   
 3             6 8 5   
                                  
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

time, t 
 

(b) Complete schedule obtained by the proposed H1-variant procedure 

Figure 5.6   A Comparison Between the Procedure H1 and the H1-Variant Procedure 

Based on the constructed complete schedule, the corresponding objective value can 

then be determined. We thus incorporate the H1-variant procedure of constructing the 

complete schedule in the determination of the objective value to simplify the 

computational procedure of the WFA. This simplification is significant because the search 

space of the problem is now limited to a set of possible permutations of N jobs and we do 
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not need to look at the number of machines in each stage. Although using the job 

permutation representation may not cover the global optimal job permutation of the 

scheduling problem, the best job permutation obtained by the WFA or any algorithm with 

this representation is very near the global optimal job permutation. Furthermore, the job 

permutation representation can be more easily integrated into metaheuristic algorithms 

than the matrix representation, which cover the entire solution space but need expensive 

computation time to determine whether a solution given in this representation is feasible 

or not (Wardono and Fathi, 2004). 

5.3.2 Memory Lists 

Three memory lists of the WFA to support the search for global optimal positions are used 

in the FFSP with intermediate buffers. Firstly, the best positions list, called the P0-list, 

stores the job permutations with minimum makespan, minimum total weighted flow time 

of jobs, or minimum total weighted tardiness time of jobs. Secondly, the un-eroded list, 

called the UE-list, is used to store local optimal job permutations which have not been 

eroded because of not satisfying the erosion condition. Its purpose is to record the 

potential job permutations for the subsequent erosion process. Thirdly, the eroded list, 

called the E-list, is used to store eroded local optimal job permutations. Among these lists, 

the E-list plays an important role of preventing DOWs from being regenerated to the 

eroded job permutations in the subsequent iterations. It would help to reduce the 

computation time needed by the algorithm. The lists are updated in a similar manner as 

that in Section 4.3.2.   
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5.3.3 Exploration Phase   

In the first iteration of this phase, we generate a seed job permutation using the flexible 

flow line loading (FFLL) algorithm (Pinedo, 2005). This is an efficient constructive 

algorithm for flexible manufacturing systems with cyclic paths. It consists of three phases: 

the machine allocation phase, the sequencing phase, and the release timing phase. The 

objective of this algorithm is to minimize the work-in-process so as to reduce blocking 

probabilities. Then, we use an insertion scheme to generate a set of job permutations for 

the subsequent erosion process. Here, the insertion scheme is based on the seed job 

permutation. This scheme is performed by removing a job from its present position and 

inserting it at a different position, and then shifting the position of jobs between these two 

positions by a unit accordingly. Although the exploration phase of the WFA is mainly 

used to explore job permutation search space, the major objective of this phase is to 

determine potential regions for performing erosion process in the exploitation phase. 

Hence, we have used the generation of the set of initial seed job permutations to improve 

the computation time of determining the potential regions. This may also improve the 

convergence rate of the WFA, although the best job permutations may not come directly 

from these initial seed job permutations.  

In the following iterations of this phase, we no longer use the FFLL algorithm. Instead, 

only randomly generated job permutations with population size MaxPop are used. In all 

the iterations, after generating a population of job permutations for DOWs, a steepest 

descent hill sliding algorithm is used to search for local optimal job permutations from 

these initial job permutations. The hill sliding algorithm is similar as that described in 

Section 4.3.3. In the hill sliding algorithm, a perturbation scheme based on a variant of 2-
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opt algorithm is used to construct the neighboring job permutations. The 2-opt 

neighborhood structure determines the set of all neighboring job permutations that can be 

obtained from a current job permutation by exchanging positions of two jobs in the current 

job permutation. In particular, if 'π  is the job permutation obtained by swapping the 

positions of two jobs iσ  and jσ  in a job permutation π , we can determine 'π  by: 

                                            

[ ] [ ]
[ ] [ ] { }

' '

'

,  ,

 for  \ , ,
i j j i

k k k N i j

π σ π σ π σ π σ

π σ π σ

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
= ∈                                    (5.3)  

where π[σ] and π’[σ] denote the positions of job σ in the job permutation π and its 

neighboring job permutation π’ respectively. The number of neighboring job permutations 

obtained by the neighborhood structure is N(N-1)/2. The hill sliding algorithm with this 2-

opt neighborhood structure is used for all three objective functions considered here.  

In general, the exploration phase in the WFA for the FFSP results in a set of local 

optimal job permutations. They are updated in the UE-list to be considered for performing 

the erosion process in the next exploitation phase. 

5.3.4 Exploitation Phase   

5.3.4.1 Erosion Condition and Capability 

In the WFA for the FFSP with intermediate buffers, we perform the erosion process based 

on the amount of precipitation. If the amount of precipitation at some local optimal job 

permutation increases up to MinEro (the minimum number of DOWs allowed to start the 

erosion process), the erosion process would happen at the local optimal job permutation. 
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In the current WFA, we consider the capability of erosion process based on two main 

factors, the amount of precipitation and its falling force. In the FFSP with intermediate 

buffers, the amount of precipitation is represented by the number of DOWs at the eroding 

local optimal job permutation, while its falling force is represented by the objective value 

at the job permutation. We assume that clouds are at the same altitude, and the falling 

force of precipitation to lower local optimal positions will cause erosion more easily than 

that of higher ones, i.e., the erosion capability becomes stronger for local optimal job 

permutations with larger amount of precipitation and lower objective values. It creates a 

flexible operation scheme for the erosion capability of DOWs in the algorithm, and helps 

the erosion process focus on exploiting promising regions strongly while ignoring regions 

with poor performance. In particular, the relationship between these two factors and the 

control parameter of erosion capability, MaxUIE (the maximum number of iterations for 

the erosion process to move to the next erosion direction if the job permutation is not 

improved), is expressed as: 

                                                  
* /

1 2( ) ,LB zMaxUIE Qϕ π ϕ= +                                      (5.4) 

where 1ϕ  and 2ϕ  are parameters representing the effect of precipitation and its falling 

force respectively. Also, *( )Q π  is the number of DOWs at the local optimal job 

permutation *π , LB is a known lower bound, and z is the objective value at the eroding 

local optimal job permutation. Here, LB can be any lower bound obtained from the 

literature, or by solving a relaxation of the problem. For the case of makespan 

minimization, we have used the lower bound proposed by Sawik (2000) and Wardono and 

Fathi (2004) for LB. As for the cases of minimizing the total weighted flow time of jobs 
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and total weighted tardiness time of jobs, we have used the lower bounds in Azizoglu et al. 

(2001) and Akturk and Yildirim (1998) respectively.  

In real-life, the falling force of precipitation does not affect the erosion capability as 

much as the amount of precipitation. Hence, we formulate the relationship between these 

two factors and the erosion capability as shown in equation (5.4). While there could be 

other functions to express the property, from the computational experiments, this has 

worked well on the scheduling problem. In particular, the effect of the falling force of 

precipitation is in the range [1, 2ϕ ] by using the function /
2

LB zϕ , due to 1LB
z
≤ . In 

addition, when running experiments we set 2ϕ  to vary in [1, 4]. As for the effect of the 

amount of precipitation, we set 1ϕ  to vary in [2, 4], since the erosion process is often 

performed at the local optimal job permutation with *( ) 2Q π ≥ . Then, the falling force of 

precipitation will have less effect on MaxUIE than the amount of precipitation. Although 

parameters 1ϕ  and 2ϕ  may be considered as relative weights, we do not require the sum of 

the weights to be equal to one.  

Based on the preliminary computational experiments by using the design-of-

experiment method and setting other parameters to be constant, i.e., MaxCloud = 10, 

MaxPop = 20, and MinEro = 3, the best values for 1ϕ  and 2ϕ  are determined to be 2 and 3 

respectively when the WFA is applied to solve the FFSP with intermediate buffers. 
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5.3.4.2 Erosion Process 

The erosion process will be performed when the erosion condition is satisfied. The erosion 

capability in this process at local optimal job permutations depends on equation (5.4). The 

strategy of erosion process is based on a topological parameter representing the 

geographical surface, and whether an erosion direction is blocked.  

For the FFSP, the topological parameter dΔ  is calculated in the same manner as that 

shown in Section 4.3.4. The backtracking strategy of the erosion process presented in 

Section 4.3.4 is also used for solving the FFSP by the WFA. Here, we still use the 2-opt 

neighborhood structure as in the exploration phase of the algorithm.  

The entire process for both exploration and exploitation terminates when the 

maximum number of allowed iterations (MaxCloud) is reached. 

5.4 An Example of the FFSP in Maltose Syrup Production 

In developing countries, confectionery and sugar industries are of great economic 

importance. The main raw material used for such industries is maltose syrup, and its 

production is thus crucial for these industries (Pedersen and Vang-Hendriksen, 2001). The 

production of maltose syrup can be modeled as a FFSP with no available buffer space 

between consecutive stages for completed jobs. An example of this problem involves nine 

jobs, with each job handling one type of maltose syrup. They are processed through six 

consecutive stages representing the six phases in the maltose syrup production process 

(see Figure 5.7). Here, the process is continuous with connections through pipes and tanks. 
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The number of parallel identical machines in each stage, processing time of the jobs at 

these stages, weight of the jobs, and due date of the jobs are shown in Table 5.2. 

The jobs processed at the various stages of maltose syrup production not only depend 

on the busy/idle state of consecutive machines as in the standard FFSP with limited 

buffers, but also depend on the status of other machines. For example, jobs cannot go to 

stage 1 until there is at least one idle machine in stage 2, even if the machine in stage 1 is 

idle. Moreover, since the product is a liquid and stages 2 and 3 are connected directly, the 

completion time of the jobs in stages 2 and 3 would be the same. As an example, Figure 

5.8 illustrates a Gantt chart of the production problem with its data from Table 5.1. Note 

that job 4 could have been processed at time 3 for the standard FFSP with no available 

buffer space. However, due to some special requirement in maltose syrup production, job 

4 can only be processed from time 7 when there is an idle machine in stage 2. As such, we 

can consider this as a FFSP with controlled and limited buffers. 

Table 5.2   Problem Data for Maltose Syrup Production 

Stage No. of 
machines 

Processing time of jobs (hours) 
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9

1 1 6 6 6 6 6 6 6 8 8 
2 4 49 49 49 49 49 23 23 11 11 
3 1 7 7 7 7 7 7 7 7 7 
4 1 2 2 2 2 2 2 2 2 2 
5 1 7 5 5 5 5 5 5 7 5 
6 1 1 1 1 1 1 1 1 1 1 

Due date  120 87 87 172 172 72 72 120 72 
Weight  0.10 0.10 0.10 0.05 0.05 0.20 0.20 0.05 0.15 
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Figure 5.7   Maltose Syrup Production Process 

Stage Machine                  
                   
1 1 1 2 3 b 4 b 5     
                   
2 1  1  4     
 2   2   5 
 3    3    
                   
3 1      1  2  4 3  5 
                   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
                               time, t 

Figure 5.8   Illustration of the FFSP with Controlled and Limited Buffers 
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Since the special restrictions in the production model only affect the H1-variant 

procedure of constructing a complete schedule, we do not need to adjust the WFA to solve 

the maltose syrup production problem. Thus, we consider the restrictions as constraints in 

the H1-variant procedure for releasing the selected jobs to stage 1 and freeing the 

machines at stage 2. For the former constraint, the selected jobs can only be processed at 

stage 1 when at least one machine in stage 1 and one machine in stage 2 are idle. For the 

latter constraint, the machine finishing a job at stage 2 is free only if the job at stage 3 is 

also finished. The other rules of selecting and assigning jobs/machines in the H1-variant 

procedure, as well as the procedure of determining the objective value are unchanged. 

5.5 Computational Experiments and Comparisons 

In this section, we present the results of computational experiments carried out on the 

benchmark instances of Wittrock (1988), the randomly generated instances based on 

Wardono and Fathi (2004), the randomly generated instances based on Tavakkoli-

Moghaddam et al. (2009), and an instance of the maltose syrup production problem 

mentioned in the previous section. These experiments are used to evaluate the 

performance of the WFA for solving the FFSP with limited and unlimited buffers. 

5.5.1 Benchmark Instances and Randomly Generated Instances   

Here, the benchmark instances of Wittrock (1988) shown in Table 5.3 are modified in a 

similar manner as Wardono and Fathi (2004). Thus, where applicable, the transport time 

(one minute) for the Wittrock instances is added to the processing time of the jobs at 

stages 2 and 3 respectively. In these instances, the number of machines at stages 1, 2, and 
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3 are 2, 3, and 3 respectively. When solving the instances with finite buffers, we set the 

buffer capacity to 3 for all stages. 

For the instances generated based on Wardono and Fathi (2004), we use the procedure 

of generating the type II dataset in that paper. These instances, called the TS instances, 

were constructed with the number of jobs N = 20, 30, 40, 50; the number of stages S = 2, 3, 

4; and the number of machines ml = 2, 4, 6 for all stages l. For each job, its processing 

time is generated randomly as an integer from a uniform distribution [1, 100]. For each set 

of parameter values, we construct and solve five instances. When solving the instances 

with finite buffers, we set the buffer capacity to 1 for all stages. We compare the results 

obtained by the WFA to the lower bounds proposed by Wardono and Fathi (2004). The 

results for the Wittrock benchmark instances and the type II dataset obtained by the tabu 

search algorithm of Wardono and Fathi (2004) are used to compare against the results 

obtained by the WFA. In the comparison, the tabu search algorithms are called TS-H1 and 

TS-Z3 for the FFSP with limited and unlimited buffers respectively.  

Table 5.3   Problem Data for the Instances in Wittrock (1988) 

Job 
type 

Processing time (min) Production requirement of each instance 
Stage 1 Stage 2 Stage 3 1 2 3 4 5 6

A 39 11 14 12 - - - - -
B 13 28 54 1 - - - - -
C 22 56 60 26 - - 14 23 20
D 234 39 0 - - - 2 - -
E 39 25 80 - 6 7 4 - 1
F 13 70 54 - 14 20 16 - -
G 143 66 0 1 4 - - 3 1
H 0 28 14 7 - - - - -
I 26 39 74 - 6 - - - 5
J 18 59 34 - 4 - - - -
K 22 70 40 4 - - - - -
L 13 70 54 - 4 - - - -
M 61 46 34 - - 11 - 14 3

 Total number of jobs 51 38 38 36 40 30
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The instances generated based on Tavakkoli-Moghaddam et al. (2009) are called the 

MA instances. They are constructed with the number of jobs N = 10, 20, 30, 40; and the 

number of stages S = 2, 3, 4, 5, 6. Here, the number of machines in every stage is the same, 

and the total number of machines in all stages is equal to twice the number of stages. For 

each job, its integer processing time is generated by a uniform distribution [1, 10]. With 

the combination of the above parameter values, we generate 20 different problem 

instances. We compare the results obtained by the WFA to the lower bounds proposed by 

Sawik (2000), as well as to the results obtained by Tavakkoli-Moghaddam et al. (2009), 

which describes an algorithm for solving the FFSP with no available buffer space. 

In addition to comparing with the results reported in Wardono and Fathi (2004) and 

Tavakkoli-Moghaddam et al. (2009), we perform computational experiments on the TS 

and MA instances with the same CPU and platform for all algorithms, i.e. WFA, TS-

H1/Z3, and MA. As the instances used in Wardono and Fathi (2004) and Tavakkoli-

Moghaddam et al. (2009) do not include the weight and due date of jobs, we also do not 

consider these job characteristics in the randomly generated instances, even though the 

WFA is capable of solving the FFSP with given weight and due date of jobs. 

5.5.2 Platform and Parameters  

The WFA has been coded using Visual Basic 6.0, and all experiments have been 

performed on an Intel Centrino Duo 1.60 GHz CPU with 1.5 GB of RAM running on 

Windows XP Operating System. The computational complexity of the WFA for the FFSP 

is determined based on the neighborhood structure used and the erosion process of this 

algorithm. In particular, the WFA used 2-opt neighborhood structure, and the worst 
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possibility of the erosion process is to find for all n directions. Hence, the computational 

complexity of the WFA is estimated to be O(n3). 

The choice of reasonable parameters for the WFA is determined by design-of-

experiment methods. When implementing the design-of-experiment method, we may use 

the independent level of values for the parameters, or the dependent ratio among the 

parameters, e.g., the ratio of MaxPop and MinEro, to determine which values are best for 

solving the scheduling problem. Here, we used the independent level of values for the 

parameters since we have solved many types of FFSP data structures this way. The 

independent levels of values for parameters were used as follows: MaxCloud = 5, 10, 15, 

20; MaxPop = 5, 10, 15, 20; and MinEro = 2, 3, 4, 5. From the preliminary results, the 

best parameter sets are summarized in Table 5.4. With these parameter sets, 20 

independent replicates are used for each instance of Wittrock (1988), the maltose syrup 

production example, and the MA instances as in the case of Tavakkoli-Moghaddam et al. 

(2009). However, we only use 1 replicate for the TS instances as in the case of Wardono 

and Fathi (2004). Here, Wardono and Fathi (2004), and Tavakkoli-Moghaddam et al. 

(2009) performed a preliminary study to determine the best parameter values for TS-

H1/Z3, and MA respectively.  

Table 5.4   Parameter Sets for Benchmark Instances 

Instances Value of parameters 
MaxCloud MaxPop MinEro 

Modified Wittrock    
          Instance 1 10 20 3 
          Instance 2, 3, 5 10 15 3 
          Instance 4, 6 10 10 4 
Wardono & Fathi  10 20 3 
Tavakkoli-Moghaddam 10 20 3 
Maltose syrup production 5 10 5 
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5.5.3 Performance Measures   

For a comparison of objective values, we have used the following average relative 

percentage increase in objective value: 

                                         

( )

1 100.

K
sol i sol

i sol

Heuristic LB
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K

=

−⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = ×

∑
            (5.5) 

Here, Heuristicsol(i) and LBsol denote the objective value obtained by the algorithm for 

the ith replicate and the lower bound value or the best known objective value from the 

literature respectively, while K denotes the number of replicates. If we only use the 

replicate with the best objective value to compute Δ , the relative percentage increase in 

objective value is denoted by BestΔ . The smaller the value of Δ , the better the performance 

of the algorithm. In this chapter, the lower bounds are used in all instances and the optimal 

solution is only used in the maltose syrup production problem, so that 0Δ =  implies that 

the algorithm has obtained the optimal solution. 

The lower bound value or the best known objective value from the literature is used as 

the reference values for the evaluation and comparison of the WFA and other algorithms 

in this chapter. The best known objective value may be obtained from the optimal 

solutions of the benchmark instances used, or the best solutions found by some algorithm 

so far. Hence, the comparison results may be negative values if the proposed algorithm 

finds a better solution.  

For demonstrating the effect of problem size on the speed of different algorithms, we 

use a CPU time ratio measure, denoted simply as ratio. This is the ratio of CPU time for 
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solving an instance under consideration to CPU time for solving the instance with the 

smallest size, using the same number of iterations. If the value of ratio of an algorithm 

increases quickly with respect to an increase in the problem size, it means that the speed of 

the algorithm depends significantly on the problem size. 

5.5.4 Computational Results  

To compare the algorithms, we performed computational experiments on two sets of 

generated TS and MA instances, using the same CPU and platform mentioned in Section 

5.5.2 for all the algorithms, i.e., WFA, TS-H1/Z3, and MA. Instead of using the maximum 

number of iterations in the experiments, CPU time limits with respect to the number of 

jobs in the instances are imposed on all the algorithms. Table 5.5 shows the results of the 

WFA, TS-H1/Z3, and MA on the TS instances. Here, we use the lower bound obtained by 

Wardono and Fathi (2004) for LBsol in equation (5.5). The CPU time limits for the case of 

FFSP with unlimited buffers are equal to one-sixth of the CPU time limits for the other 

cases. This is because the procedure for constructing a complete schedule in the FFSP 

with unlimited buffers requires a shorter computation time. As the MA is only designed 

for the FFSP with no available buffer, we only run experiments for MA on TS instances 

with Bl = 0. Table 5.6 shows the results of the WFA, TS-H1, and MA on the MA instances 

for the case of FFSP with no available buffer. In this table, SD (Cmax) and SDOFV 

represent the standard deviation of objective values obtained by the WFA/TS-H1 and the 

MA respectively.  Here, we use the lower bound obtained by Sawik (2000) for LBsol in 

equation (5.5). From the results in Tables 5.5 and 5.6, we can see that the solution quality 

obtained  by  the  WFA  outperforms  the  other  algorithms  for  most  instances. In a  few 
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Table 5.5   Comparison Results of WFA, TS-H1/Z3, and MA with CPU Time Limit 
for the TS Instances 

Test problem 
CPU 
time 
limit  
(s) 

WFA TS-H1/Z3            MA 

Δ  Δ  Δ  

No. N × S × ml Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞ Bl = 0 

1 20× 2 × 2 

300 if  
Bl = 0, 1; 
50 if 
Bl = ∞ 

0.16 0.04 0.04 0.52 0.04 0.10 5.09 
2 20 × 2 × 4 1.14 0.71 1.11 2.51 1.79 2.69 18.58 
3 20 × 2 × 6 4.02 4.01 5.39 7.49 6.49 8.11 26.74 
4 20 × 3 × 2 0.57 0.25 0.21 2.49 0.29 0.67 8.75 
5 20 × 3 × 4 2.04 1.37 1.71 6.37 4.04 2.81 14.94 
6 20 × 3 × 6 1.15 0.99 1.61 4.74 2.27 2.96 19.25 
7 20 × 4 × 2 4.25 1.99 1.89 4.80 1.94 1.29 17.45 
8 20 × 4 × 4 7.48 7.10 6.82 11.81 8.96 7.03 24.77 
9 20 × 4 × 6 8.00 6.36 7.60 12.29 10.33 9.09 22.32 

10 30 × 2 × 2 

600 if  
Bl = 0, 1; 
100 if 
Bl = ∞ 

0.83 0.07 0.15 1.63 0.27 0.09 5.57 
11 30 × 2 × 4 1.77 0.78 0.94 2.69 2.38 1.30 9.28 
12 30 × 2 × 6 3.16 2.49 2.52 6.67 3.10 3.78 17.69 
13 30 × 3 × 2 1.95 0.09 0.06 2.03 0.04 0.09 15.33 
14 30 × 3 × 4 3.72 1.56 1.35 5.19 2.33 1.49 22.79 
15 30 × 3 × 6 5.36 5.00 4.16 11.16 8.34 5.97 24.65 
16 30 × 4 × 2 4.48 1.57 1.42 4.77 1.97 1.42 21.00 
17 30 × 4 × 4 7.18 6.10 6.27 9.01 7.34 6.17 31.51 
18 30 × 4 × 6 10.69 9.88 9.61 10.63 9.01 8.68 30.34 

19 40 × 2 × 2 

1200 if  
Bl = 0, 1; 
200 if 
Bl = ∞ 

0.68 0.05 0.15 1.04 0.12 0.13 4.44 
20 40 × 2 × 4 2.04 0.71 0.71 2.24 0.95 1.12 11.79 
21 40 × 2 × 6 2.90 1.68 2.04 3.67 2.74 2.02 18.81 
22 40 × 3 × 2 5.22 0.37 0.31 6.62 0.29 0.27 22.02 
23 40 × 3 × 4 4.57 1.68 1.94 4.64 1.93 1.42 26.49 
24 40 × 3 × 6 6.35 4.86 4.51 6.95 5.86 4.24 32.24 
25 40 × 4 × 2 6.57 1.51 1.34 7.27 1.67 0.95 32.09 
26 40 × 4 × 4 6.17 4.11 2.92 7.84 4.69 2.53 44.95 
27 40 × 4 × 6 8.27 7.36 7.68 8.71 7.34 6.09 40.84 

28 50 × 2 × 2 

1800 if  
Bl = 0, 1; 
300 if 
Bl = ∞ 

0.32 0.02 0.04 1.49 0.02 0.07 10.52 
29 50 × 2 × 4 0.99 0.29 0.26 1.58 0.86 0.42 14.23 
30 50 × 2 × 6 2.07 0.98 0.98 3.06 1.07 2.10 19.76 
31 50 × 3 × 2 4.36 0.43 0.34 4.69 0.38 0.31 19.87 
32 50 × 3 × 4 3.68 1.64 0.86 3.37 1.39 1.06 27.98 
33 50 × 3 × 6 6.39 3.78 3.40 7.72 4.26 3.71 34.31 
34 50 × 4 × 2 9.39 1.71 0.69 10.01 2.04 0.68 33.63 
35 50 × 4 × 4 7.46 3.97 2.26 9.10 4.12 2.43 47.71 
36 50 × 4 × 6 6.91 5.04 3.02 7.39 6.26 3.20 48.98 

 Average  4.23 2.51 2.40 5.67 3.25 2.68 22.96 
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Table 5.6   Comparison Results of WFA, TS-H1, and MA with CPU Time Limit for 
the MA Instances 

Test problem CPU time 
limit (s) 

WFA TS-H1 MA 

No.   N × S × ml Δ  SD (Cmax) Δ  SD (Cmax) Δ  SDOFV 

1 10 × 2 × 2 

120 

0.00 0.00 0.00 0.00 0.00 0.00
2 10 × 3 × 2 5.00 0.00 5.00 0.00 8.87 0.60
3 10 × 4 × 2 21.35 0.00 21.35 0.00 24.83 0.83
4 10 × 5 × 2 25.30 0.00 25.30 0.00 33.98 0.82
5 10 × 6 × 2 33.33 0.00 33.33 0.00 40.25 1.51

6 20 × 2 × 2 

300 

0.00 0.00 0.00 0.00 4.15 0.69
7 20 × 3 × 2 6.75 0.37 6.67 0.41 20.44 1.09
8 20 × 4 × 2 17.26 0.44 17.61 0.51 32.39 0.52
9 20 × 5 × 2 17.90 0.64 18.23 0.66 34.11 2.62

10 20 × 6 × 2 21.97 0.51 22.55 0.51 43.65 2.01

11 30 × 2 × 2 

600 

1.92 0.44 3.90 0.60 11.98 0.45
12 30 × 3 × 2 1.95 0.47 3.30 0.60 17.62 0.62
13 30 × 4 × 2 11.80 1.03 13.33 1.03 32.08 1.04
14 30 × 5 × 2 20.22 0.68 21.09 0.75 45.76 3.51
15 30 × 6 × 2 22.30 0.79 23.55 0.89 53.11 1.94

16 40 × 2 × 2 

1200 

0.42 0.00 0.46 0.22 7.85 0.83
17 40 × 3 × 2 5.10 0.67 6.91 1.02 20.60 1.84
18 40 × 4 × 2 11.12 1.00 13.18 1.15 38.26 1.42
19 40 × 5 × 2 15.85 0.83 17.67 0.93 47.71 1.04
20 40 × 6 × 2 13.90 1.09 15.51 1.13 45.20 2.01

 Average  12.67 0.45 13.45 0.52 28.14 1.27

 
 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Problem Number

St
an

da
rd

 D
ev

ia
tio

n

WFA
TS-H1
MA

 

Figure 5.9   Standard Deviation of the Objective Values Obtained by the WFA, TS-

H1 and MA 
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instances, TS-H1/Z3 obtained slightly better results than WFA, especially in the case of 

FFSP with unlimited buffers. However, from Figure 5.9, we can see that the standard 

deviation values of WFA are smaller than that of the other algorithms in all instances. This 

shows the robustness of the WFA when compared to the other algorithms.  

In addition, we also investigate the tendency of the algorithms, i.e., WFA, TS-H1 and 

MA, to find better solutions over computation time. The computational experiments are 

carried out on the MA instance with 40 jobs, 6 stages, and 2 machines at each stage, as 

well as CPU time limit of 1200 seconds for all algorithms. From Figure 5.10, we see that 

the WFA may find a very good solution more quickly than TS-H1 and MA. Then, the 

WFA improves this solution slowly to obtain a better solution or global optimal solution. 

The final best solution obtained by the WFA is better than that of TS-H1 and MA. 

 

 

Figure 5.10   Trajectory of Solution Improvement of the WFA, TS-H1, and MA 
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A further comparison between the results of the WFA using the maximum number of 

allowed iterations and the results of the tabu search algorithms reported in Wardono and 

Fathi (2004) on the randomly generated TS instances is performed in Table 5.7. We use 

the lower bound obtained by Wardono and Fathi (2004) for LBsol in equation (5.5). From 

Table 5.7, we can see that the WFA is more efficient than TS-H1/Z3 when solving all 

three FFSP models. For the FFSP with no available buffer, the average relative percentage 

increase of the WFA is 3.9% less than that of TS-H1. For the FFSP with finite buffers, the 

average relative percentage increase of the WFA is 2.22% less than that of TS-H1. For the 

FFSP with unlimited buffers, the average relative percentage increase of the WFA is 1.7% 

less than that of TS-Z3. However, for some of the generated instances, the CPU time ratio 

of the WFA is more than that of TS-H1/Z3. 

A further comparison between the results of the WFA using the maximum number of 

allowed iterations and the MA’s results reported in Tavakkoli-Moghaddam et al. (2009) 

for solving the randomly generated MA instances is performed in Table 5.8. We use the 

lower bound obtained by Sawik (2000) for LBsol in equation (5.5). From the results in 

Table 5.8, we can see that the WFA outperforms MA in solution quality for all the 

instances. The overall average relative percentage increase of the WFA is 14.63% less 

than that of MA. The WFA is also more robust than MA as its average standard deviation 

is less than that of MA. However, the CPU time ratio of WFA is larger than that of MA 

from instance 12 onwards. 
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Table 5.7   Comparison Results between WFA and TS-H1/Z3 on the Randomly 

Generated TS Instances 

Test Problem 
WFA TS-H1/Z3 

Δ  ratio Δ ratio 

No. N×S×ml Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞

1 20× 2 × 2 0.31 0.10 0.10 1.00 1.00 1.00 1.45 0.47 0.15 1.00 1.00 1.00
2 20 × 2 × 4 1.00 0.20 0.20 1.54 1.76 1.58 4.78 2.41 1.99 1.09 1.50 1.91
3 20 × 2 × 6 6.56 5.40 4.82 2.16 2.47 2.56 8.72 7.79 8.00 1.59 1.43 2.18
4 20 × 3 × 2 0.08 0.08 0.08 2.57 2.64 2.68 5.85 0.79 0.49 2.62 1.81 2.67
5 20 × 3 × 4 0.43 0.14 0.14 2.91 3.65 2.61 10.24 9.16 8.11 2.67 2.12 2.55
6 20 × 3 × 6 0.00 0.00 0.00 3.46 5.04 3.53 1.52 1.58 1.44 2.23 2.13 2.39
7 20 × 4 × 2 3.91 0.00 0.00 4.08 6.95 5.05 10.56 3.18 2.81 3.04 4.84 3.85
8 20 × 4 × 4 2.27 1.20 1.20 4.68 6.64 4.37 11.88 10.26 10.24 3.41 4.87 5.03
9 20 × 4 × 6 5.29 5.29 5.29 5.27 8.06 5.97 10.35 10.04 9.17 3.80 3.00 4.33

10 30 × 2 × 2 0.15 0.00 0.00 4.55 3.84 3.26 3.84 0.33 0.19 3.34 3.04 2.61
11 30 × 2 × 4 0.43 0.43 0.14 4.93 4.22 4.91 3.09 1.30 0.66 3.46 3.05 3.70
12 30 × 2 × 6 1.21 1.21 0.78 5.22 5.41 8.75 5.13 3.37 2.76 4.23 4.13 6.91
13 30 × 3 × 2 2.29 0.00 0.00 6.13 7.14 9.69 7.93 0.80 0.46 4.86 5.71 5.39
14 30 × 3 × 4 3.86 1.49 0.53 9.72 10.25 12.41 6.38 4.68 3.23 8.03 6.86 8.12
15 30 × 3 × 6 4.95 4.26 4.26 10.55 14.49 15.78 7.30 6.01 4.95 7.89 8.99 9.82
16 30 × 4 × 2 1.31 0.24 0.00 11.03 11.64 11.51 11.51 3.38 2.31 10.15 11.29 8.76
17 30 × 4 × 4 5.73 5.73 5.53 12.44 13.90 15.19 10.33 7.58 5.70 12.10 11.51 13.76
18 30 × 4 × 6 7.55 7.55 6.09 15.69 17.82 18.21 8.97 9.08 8.05 13.52 12.57 12.85
19 40 × 2 × 2 0.76 0.10 0.00 6.20 6.72 8.57 3.30 0.28 0.07 5.07 5.10 5.21
20 40 × 2 × 4 1.18 0.43 0.30 7.97 8.57 10.81 2.69 0.96 0.33 7.16 6.79 8.33
21 40 × 2 × 6 2.09 0.98 0.98 9.48 13.66 12.40 2.94 1.79 1.16 10.57 10.32 11.15
22 40 × 3 × 2 5.19 0.05 0.05 17.50 17.09 15.71 6.41 1.18 0.14 13.93 12.44 11.15
23 40 × 3 × 4 5.21 1.51 0.34 19.93 21.81 23.20 6.12 2.46 1.28 14.80 13.88 15.82
24 40 × 3 × 6 2.40 2.40 2.40 22.89 22.84 25.71 5.72 5.86 2.86 20.44 16.36 26.64
25 40 × 4 × 2 6.42 0.74 0.65 22.65 29.14 25.43 12.63 2.32 1.05 25.48 29.47 18.94
26 40 × 4 × 4 2.82 1.35 1.02 24.70 30.45 31.11 9.90 5.20 2.97 23.86 33.02 30.00
27 40 × 4 × 6 3.89 3.43 3.43 29.63 33.51 31.39 9.06 7.06 6.49 35.04 28.37 26.85
28 50 × 2 × 2 0.81 0.00 0.00 7.34 11.63 11.94 3.39 0.59 0.12 9.96 9.03 7.97
29 50 × 2 × 4 1.65 0.52 0.20 9.11 15.16 12.94 3.73 1.01 1.23 12.56 13.57 13.00
30 50 × 2 × 6 2.04 1.32 1.08 10.07 14.19 14.80 3.71 1.89 1.39 13.58 12.62 19.73
31 50 × 3 × 2 1.84 0.03 0.03 22.66 31.38 22.49 8.30 1.78 0.88 25.04 21.02 12.55
32 50 × 3 × 4 2.08 0.31 0.03 26.03 37.71 32.29 6.93 2.27 1.40 28.71 31.48 25.64
33 50 × 3 × 6 3.90 2.50 1.90 34.29 43.93 44.29 6.88 3.95 3.24 33.67 30.41 36.61
34 50 × 4 × 2 8.76 1.84 0.49 34.99 57.14 35.71 12.80 3.64 1.22 36.50 50.00 25.97
35 50 × 4 × 4 6.75 2.07 0.87 43.49 58.57 58.74 9.39 5.49 3.89 55.44 49.99 51.39
36 50 × 4 × 6 5.49 3.22 1.70 42.22 59.43 61.43 7.04 6.24 5.31 55.42 51.05 55.18

              

 Average 3.07 1.56 1.24 6.97 3.78 2.94  
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Table 5.8   Comparison Results between WFA and MA on the Randomly Generated 

MA Instances 

Test problem WFA MA 
No.    N × S × ml Δ  SD (Cmax) ratio Δ SDOFV ratio 
1 10 × 2 × 2 0.00 0.00 1.00 0.00 0.00 1.00
2 10 × 3 × 2 5.00 0.00 8.91 11.76 0.00 18.92
3 10 × 4 × 2 21.35 0.00 18.36 39.20 0.60 206.25
4 10 × 5 × 2 25.30 0.00 29.55 44.38 0.90 254.17
5 10 × 6 × 2 33.33 0.00 40.27 55.53 1.30 504.17
6 20 × 2 × 2 0.00 0.00 56.36 13.78 0.56 102.08
7 20 × 3 × 2 6.67 0.16 303.64 14.29 0.94 631.25
8 20 × 4 × 2 16.99 0.09 535.45 20.16 1.40 958.33
9 20 × 5 × 2 16.53 0.39 812.73 29.85 1.30 1650.00
10 20 × 6 × 2 21.02 0.09 1269.09 45.33 2.10 1887.50
11 30 × 2 × 2 1.76 0.24 233.64 5.13 0.90 256.25
12 30 × 3 × 2 1.35 0.19 829.09 15.34 2.30 583.33
13 30 × 4 × 2 10.66 0.19 1426.36 30.83 1.96 702.08
14 30 × 5 × 2 18.80 0.21 2806.36 41.15 3.00 1477.08
15 30 × 6 × 2 20.71 0.75 6539.09 44.36 1.80 2997.92
16 40 × 2 × 2 0.42 0.00 613.64 0.95 0.00 270.83
17 40 × 3 × 2 5.22 0.50 1677.27 14.61 1.30 1250.00
18 40 × 4 × 2 10.83 0.69 3523.64 34.07 2.20 2777.08
19 40 × 5 × 2 14.43 0.69 6541.82 34.40 2.20 2908.33
20 40 × 6 × 2 12.80 1.19 9286.36 40.73 2.50 6995.83
 Average 12.16 0.27  26.79 1.36  

The results of comparison between the WFA and the tabu search algorithms of 

Wardono and Fathi (2004) on the modified Wittrock benchmark problems are shown in 

Tables 5.9, 5.10, and 5.11. We use the lower bound obtained by Wardono and Fathi 

(2004) for LBsol in equation (5.5). From these tables, it can be seen that the WFA 

outperforms TS-H1 and TS-Z3 both in solution quality and CPU time ratio for most 

benchmark instances. Thus, the WFA has obtained improved solutions than that reported 

in Wardono and Fathi (2004), except for instance 1 in Table 5.11. For the FFSP with no 

available buffer space, the average relative percentage increase in objective value of the 

WFA is 0.95% less than that of TS-H1 (see Table 5.9). For the FFSP with finite buffers, 
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the average relative percentage increase of the WFA is 0.94% less than that of TS-H1 (see 

Table 5.10). For the FFSP with unlimited buffers, the average relative percentage increase 

of the WFA is 0.81% less than that of TS-Z3 (see Table 5.11). When solving instances 

with different sizes, it is also observed that the CPU time ratio of the WFA is less than that 

of TS-H1 and TS-Z3 for most instances. 

Table 5.9   Comparison Results between WFA and TS-H1 for the FFSP with No 

Available Buffer Space 

Problem Instance LB 
WFA TS-H1 

Cmax BestΔ  ratio Cmax BestΔ  ratio
Modified Wittrock 1 746.3 811 8.67 5.73 822 10.14 6.47
 2 758.0 826 8.97 2.89 839 10.69 3.29
 3 758.7 815 7.42 2.25 822 8.35 2.29
 4 755.3 820 8.57 1.46 825 9.22 4.30
 5 961.5 971 0.99 2.51 974 1.30 2.69
 6 666.7 682 2.29 1.00 686 2.90 1.00
Average   6.15  7.10 

 

Table 5.10   Comparison Results between WFA and TS-H1 for the FFSP with Finite 

Buffer Capacities 

Problem Instance LB 
WFA TS-H1 

Cmax BestΔ  ratio Cmax BestΔ  ratio 
Modified Wittrock 1 746.3 763 2.24 6.78 776 3.98 8.83
 2 758.0 767 1.19 2.82 774 2.11 3.26
 3 758.7 770 1.49 2.25 777 2.42 2.37
 4 755.3 772 2.21 1.62 775 2.60  1.80
 5 961.5 962 0.05 1.45 969 0.78 1.40
 6 666.7 669 0.34 1.00 675 1.25 1.00
Average   1.25  2.19 
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Table 5.11   Comparison Results between WFA and TS-Z3 for the FFSP with 

Unlimited Buffers 

Problem Instance LB 
WFA TS-Z3 

Cmax BestΔ  ratio Cmax BestΔ  ratio 
Modified Wittrock 1 746.3 760 1.83 6.70 760 1.83 6.99
 2 758.0 764 0.79 2.88 773 1.98 2.82
 3 758.7 770 1.49 2.05 776 2.28 1.86
 4 755.3 769 1.81 1.98 776 2.74 2.40
 5 961.5 962 0.05 1.43 969 0.78 1.45
 6 666.7 669 0.34 1.00 677 1.55 1.00
Average   1.05  1.86 

In addition, we also compared the results obtained by the WFA for the maltose syrup 

production problem to the optimal values obtained by using enumeration. The results are 

shown in Table 5.12 with two different LB values being used for the WFA. The first LB is 

based on using the optimal objective value, while the second LB is based on using the 

lower bounds derived from Wardono and Fathi (2004), Azizoglu et al. (2001) and Akturk 

and Yildirim (1998) respectively for the three different objective functions. As for LBsol in 

equation (5.5), we only use the optimal objective value. Note that the objective values 

obtained by both the WFA and the enumeration method in Table 5.12 correspond to three 

different solutions according to the three respective objective functions. The results in this 

table show that the WFA is able to obtain the optimal solutions regardless of the two LB 

values used. Moreover, the WFA obtained these optimal solutions with significantly 

smaller computation time than that of the enumeration method.   

From the experimental results for the benchmark instances, the randomly generated 

instances, and the instance from maltose syrup production, we conclude that the WFA is 

an efficient meta-heuristic algorithm for solving the FFSP with limited as well as 

unlimited buffers. 
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Table 5.12   Computational Results of WFA for Maltose Syrup Production Problem 

Objectives 
used 

Optimal solution 
obtained by 
enumeration 

Solution obtained by 
WFA when optimal 
value is used for LB 

Solution obtained by WFA 
when lower bound from 
literature is used for LB 

Optimal 
value Time (s) Δ  Time (s) LB Δ  Time (s)

Makespan 139.00 130 0.00 1.6 109.00a 0.00 1.8 

Total weighted flow time 75.95 106 0.00 1.8 63.10b 0.00 2.1 

Total weighted tardiness 0.10 105 0.00 1.9 0.00c 0.00 1.9 
a Lower bound derived from Wardono and Fathi (2004).  
b Lower bound derived from Azizoglu et al. (2001).  
c Lower bound derived from Akturk and Yildirim (1998). 

5.6 Conclusions 

In this chapter, we propose a WFA for solving the FFSP. It involves using an erosion 

capability relationship function between the amount of precipitation and its falling force to 

create a flexible operation scheme for the erosion process. This helps the erosion process 

to focus on exploiting promising regions strongly. We show how this algorithm can be 

applied to solve the FFSP with limited as well as unlimited buffers. In addition, we also 

propose an improved procedure from that of Wardono and Fathi (2004) for constructing a 

complete schedule of the FFSP problem. Computational experiments and comparisons 

were carried out to show the performance of the proposed algorithm. The results show that 

the WFA is a promising algorithm not only for solving benchmark instances and randomly 

generated instances but also for solving problems arising in practical applications. 

Improved solutions to benchmark problems are also found by our proposed algorithm. 

Some preliminary results were first reported in Tran and Ng (2009), and the full results of 

this chapter were then reported in Tran and Ng (2010).  



Chapter 6   MOWFA for Multi-Objective Scheduling 

122 

 

CHAPTER 6 

MOWFA FOR MULTI-OBJECTIVE SCHEDULING 

 

 

 

In this chapter, we construct a multi-objective water flow algorithm (MOWFA) for 

solving multi-objective scheduling problems. In particular, we investigate the multi-

objective flexible flow shop scheduling problem (MOFFSP) with limited intermediate 

buffers. Two objectives of this scheduling problem are the minimization of the 

completion time of jobs and the minimization of the total tardiness time of jobs. In the 

MOWFA, landscape analysis is performed to determine the weights of objective 

functions, which guide the drops of water to exploit potential regions and move 

towards the optimal Pareto optimal solution set. We also include the evaporation and 

precipitation processes in this algorithm to enhance the solution exploitation capability 

of the algorithm in potential neighboring regions. In addition, we propose an 

improvement process for reinforcing the final Pareto solution set obtained. The 

performance of the MOWFA is tested with benchmark instances taken from the 

literature and randomly generated instances. The computational results and 

comparisons demonstrate the effectiveness and efficiency of the proposed algorithm. 

Chapter 6 is organized as follows. In Section 6.1, we introduce the MOFFSP with 

limited intermediate buffers and describe its applications. A brief literature review of 
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research works on the multi-objective scheduling problem is also presented in this 

section. Section 6.2 describes the details of the MOFFSP with limited intermediate 

buffers. Then, the proposed MOWFA for solving the multi-objective scheduling 

problem is discussed in detail in Section 6.3. Computational results and comparisons 

based on the benchmark instances taken from the literature and randomly generated 

instances are shown in Section 6.4. Finally, some conclusions of this chapter are 

presented in Section 6.5. 

6.1 Introduction 

Flexible flow shop scheduling (FFSP) with limited buffers is one of the well-known 

scheduling problems due to its important applications in both traditional and modern 

manufacturing systems. A brief description of the practical applications of this 

scheduling problem can be found in Section 5.1. The FFSP with limited buffers is 

known to be an NP-hard problem (Wardono and Fathi, 2004). It becomes even more 

complex when we need to solve the problem in real-life production environment where 

several conflicting objectives are simultaneously considered. Two primary objectives 

of the problem investigated in this chapter are minimization of the completion time of 

jobs (makespan or Cmax) and minimization of the total tardiness time of jobs. 

Quadt and Kuhn (2007) and Ribas et al. (2010) presented a detailed review of 

single-objective scheduling algorithms and the classification of FFSP. Although there 

have been a lot of research works on the FFSP, only a few of them dealt with the FFSP 

with limited buffers. There are also limited research works on the multi-objective 

scheduling problem. An extensive review of multi-objective scheduling problems in 

the past 13 years is presented by Lei (2009). From this review, only Wei et al. (2006) 
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proposed an evolutionary algorithm for solving the MOFFSP. However, the authors 

did not consider the FFSP with limited buffers. Qian et al. (2009) presented a hybrid 

differential evolution algorithm for solving the multi-objective permutation flow shop 

scheduling problem with limited buffers, in which there is one machine at each stage.  

Recently, Rashidi et al. (2010) proposed a hybrid parallel genetic algorithm for the 

MOFFSP. In their paper, the authors investigated the FFSP with unrelated parallel 

machines, sequence-dependent setup times, and processor blocking to minimize the 

makespan and the maximum tardiness. The proposed solution procedure consists of 

independent parallel genetic algorithms in which each genetic algorithm searches for 

optimal solutions in different directions based on different assigned weights for each 

subpopulation. The computational results show that it is an efficient algorithm for the 

MOFFSP that was considered. However, assigning different weights to subpopulations 

may not be efficient as one individual chromosome could be assigned with more than a 

pair of weights. Moreover, the algorithm is dependent on a large parameter set defined 

by the user. In addition, the solution representation is based on random keys, which 

increases the computation time due to the need for decoding.                   

In this chapter, we propose the MOWFA for solving the MOFFSP with limited 

intermediate buffers. This algorithm integrates several search procedures for solving 

the multi-objective scheduling problem efficiently. In particular, in the exploration 

phase of the MOWFA, the FFSP is divided into many scheduling sub-problems. Drops 

of water (DOWs) in the sub-problems are assigned suitable weights based on landscape 

analysis to search for optimal solutions in the corresponding directions. In the 

exploitation phase of the MOWFA, the erosion process with local and global 

neighborhood structures guides DOWs to overcome obstacles to search for better 
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optimal solutions in the region in which they are generated, and in the neighboring 

regions, respectively. Also, we include an evaporation process in the algorithm to 

enhance the solution exploitation capability of this algorithm in potential neighboring 

regions. In addition, we propose an improvement search process for reinforcing the 

final Pareto solution set obtained. The Wittrock benchmark instances taken from the 

literature, as well as randomly generated instances, are used to evaluate the 

performance of the proposed algorithm. The computational results and comparisons 

show that the MOWFA is an efficient nature-inspired algorithm for solving the 

MOFFSP with limited intermediate buffers. 

6.2 MOFFSP with Intermediate Buffers 

A detailed description of the FFSP with intermediate buffers has been provided in 

Section 5.2. In this chapter, we only consider two cases of the FFSP with intermediate 

buffers. The first case is the FFSP with no buffer between consecutive stages. Thus, if 

there is no idle machine in the subsequent stage l + 1, a job completed on a machine in 

stage l must then wait until at least a machine in stage l + 1 is available. The second 

case is the FFSP with finite buffer capacities between consecutive stages. In this case, 

if there is no available machine in the subsequent stage l + 1, then a job completed on a 

machine in the previous stage l may wait in a following buffer l. If there is no available 

buffer space, it remains on the blocked machine in stage l until there is an available 

buffer space or an idle machine in stage l + 1. 

Since intermediate buffers can be considered as machines with zero processing 

time, the FFSP with finite buffers can be converted to one with no available buffer 

space (McCormick et al., 1989). As a result, we only need to construct an MOWFA for 
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solving the MOFFSP with no buffer. Then, we can apply the MOWFA for solving the 

MOFFSP with finite buffers by a modification of the input data described in Section 

5.2. In the transformed problem, a buffer at stage l with a storage capacity Bl is 

considered as a stage with Bl identical parallel machines (see Figure 6.1). The 

processing time of jobs on the machines in the buffer stages is zero. Then, the total 

number of stages in this problem becomes 2S – 1. Every job must be processed 

through all stages, including the buffer stages.  

 

Figure 6.1   FFSP with Operation Stages Including Intermediate Buffers  

Let π denote a job permutation, Cjl denote the completion time of job j at stage l, dj 

denote the deadline of job j, and Tj denote the tardiness time of job j. The tardiness 

time of job j can be defined as { }max ,0j jS jT C d= − . Then, two objective functions 

used in the multi-objective scheduling problem, namely minimizing the completion 

time of jobs f1(π) and minimizing the total tardiness time of jobs f2(π), can be 

determined by: 

                                                { }1min ( ) max ,jSj N
f Cπ

∈
=                                       (6.1) 

                                                2
1

min  ( ) .
N

j
j

f Tπ
=

=∑                                               (6.2) 

These objectives help to achieve a high throughput for production. 
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The general MOFFSP with the two objectives mentioned earlier can be described as 

follows: 

                                        min            f(π) = [f1(π), f2(π)], (6.3) 

                                        subject to   π ∈Π ,  (6.4) 

where Π  denotes the set of possible job permutations. 

To solve the multi-objective optimization problem, we use the concepts of Pareto 

optimality described below in terms of a minimization problem: 

(a). Pareto dominance: a job permutation π1 dominates another job permutation π2, 

denoted as 1 2π πf , if and only if we have: 

  1 2( ) ( ),  {1,2}h hf f hπ π≤ ∀ ∈  and 1 2{1, 2},   ( ) ( )k kk f fπ π∃ ∈ < . 

(b). Pareto optimal job permutation: a job permutation π1 is considered to be a 

Pareto optimal job permutation if and only if there is no job permutation 

2π ∈Π  that dominates π1. 

(c). Pareto optimal set: Pareto optimal set is a set of all Pareto optimal job 

permutations. 

(d). Pareto optimal front: Pareto optimal front is the set of all objective values 

corresponding to the job permutations in the Pareto optimal set. 

(e). Non-dominated job permutation: a job permutation π is said to be non-

dominated with respect to a given set of job permutations if and only if π is not 

dominated by any job permutation in the given set. 
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In the Pareto optimal set, the job permutations cannot be improved in any objective 

function without degrading the value in at least one other objective function. Hence, 

there is no job permutation that is the best for all objectives. As a result, multi-

objective optimization algorithms often need to find a set of good non-dominated job 

permutations. To compare the performance of multi-objective optimization algorithms, 

three main aspects are considered: the number of non-dominated job permutations in 

the Pareto set obtained, the distance of the Pareto front obtained to the Pareto optimal 

front, and the spread of non-dominated job permutations in the Pareto set obtained 

(Silva et al., 2004).  

In addition, we use a single-objective optimization approach to solve the multi-

objective scheduling problem. In this approach, the multi-objective optimization 

problem is transformed to a single-objective optimization problem by combining 

objective functions and their weights linearly. The main drawback of this approach is 

that the weights of the objective functions are subjectively provided. To overcome this 

drawback, we have performed landscape analysis of the multi-objective optimization 

problem to determine correlation among objective functions. Then, weights are 

automatically updated and assigned to corresponding objective functions. The single-

objective optimization approach is used to search for local optimal job permutations of 

the multi-objective problem in the MOWFA. The details of performing the procedure 

will be described in the next section.  

6.3 MOWFA for the MOFFSP with Intermediate Buffers 

In this section, we describe the procedure of MOWFA for solving the MOFFSP with 

intermediate buffers, including the solution representation, procedure for constructing 
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a complete schedule, erosion condition, erosion capability, and erosion process. Other 

important operators of the MOWFA for this problem, such as landscape analysis, 

evaporation process, and improvement process, are also described. 

6.3.1 Encoding Scheme 

In the MOFFSP with intermediate buffers, a DOW is associated with a job 

permutation. The job permutation provides the longitude and latitude information for 

the position of DOW on the ground. Its corresponding objective values provide the 

altitude information for the position of the DOW. Given a job permutation 

1( ,..., )Nπ δ δ= , we define: 

                 1
1

2 2

longitude( ) ( ,..., ),    and   latitude( ) ( ,..., ),NN Nπ δ δ π δ δ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= =  (6.5) 

where q⎢ ⎥⎣ ⎦  is the largest integer less than or equal to q. We also define the altitude of 

the DOW as comprising of the two objective functions, makespan and total tardiness 

time of the job permutation π. In Figure 6.2, we illustrate an example of a DOW and its 

positional vector components for the MOFFSP with 8 jobs. 

 

Figure 6.2   An Example of Solution Representation in MOWFA for the MOFFSP 
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In the MOWFA, the job permutations providing the longitude and latitude 

information represent the sequence of N jobs processed in the first stage. However, the 

job permutation cannot fully determine a complete schedule for the jobs going through 

all the stages, and thus the corresponding objective values are also not determined. As 

such, we use the H1-variant procedure described in Section 5.3.1 to construct a 

complete schedule associated with a given job permutation. This procedure has the 

advantage that it is applicable to the FFSP with no buffer and the FFSP with unlimited 

buffers. Also, with this procedure, the search space of the problem is limited to a set of 

possible permutations of N jobs. Then, we do not need to monitor the number of 

machines in each stage, and the computational procedure of the MOWFA becomes 

simplified. As in the case of the single-objective FFSP in Chapter 5, although using the 

job permutation representation for the multi-objective scheduling problem may not 

include the global optimal job permutation of this problem, the best job permutation 

found by the WFA or any algorithm with this representation is very near the global 

optimal job permutation. Moreover, the job permutation representation is more easily 

integrated into metaheuristic algorithms than the matrix representation, which can 

cover the entire solution space but requires computation time to determine whether a 

solution given in this representation is feasible (Wardono and Fathi, 2004).    

6.3.2 Memory Lists 

In the MOWFA, we use three memory lists in the search for the Pareto optimal set. 

The first list, denoted as the Pareto-list, stores the best non-dominated job 

permutations. The second list, denoted as the UE-list, is used to store local optimal job 

permutations which have not been eroded due to the erosion condition not being 

satisfied. The list aims to record the potential job permutations to be considered for 
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performing the erosion process. The final list, denoted as the E-list, is used to store 

local optimal job permutations eroded. The E-list aims to prevent regenerating DOWs 

into the job permutations that are eroded in the next iterations and would thus help to 

save the computational time of the algorithm. 

In our approach, multiple objective functions are linearly combined into a single 

objective function so that the search for the local optimal job permutations is based on 

a scalar objective function. Updating the UE-list and the E-list is also based on the 

local optimal job permutations with respect to the scalar objective function. However, 

updating the Pareto-list is based on the property of Pareto dominance in multi-

objective optimization. 

6.3.3 Exploration Phase 

Here, we describe the operational mechanism of the components in the exploration 

phase of MOWFA. This phase aims to spread the DOWs to many places on the ground 

to increase the solution diversification capability of the algorithm. It also helps the 

DOWs to select suitable directions to search for the Pareto optimal set by analyzing the 

landscape, which represents a set of objective values of feasible solutions. 

6.3.3.1 Distinct Regions 

In the exploration phase of this algorithm, we divide the MOFFSP with intermediate 

buffers into multiple scheduling sub-problems so that the solution space of the problem 

is divided into N distinct regions, where N is the instance size. This is achieved by 

fixing the first position of a job in a job permutation from 1 to N when generating the 
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job permutations of DOWs. The rest of the positions in a job permutation are assigned 

randomly. This can be represented with the following notation: 

         1 2 { , ,..., },  with {  |  [1]  }  for  1,2,.., ,N i i i Nπ πΩ = Ω Ω Ω Ω = = =    (6.6) 

where Ω  denotes the solution space of MOFFSP, and iΩ  denotes ith distinct region. 

6.3.3.2 Landscape Analysis 

Landscape analysis for the distinct regions is performed to determine suitable 

searching directions for the DOWs generated in the regions. Here, the searching 

direction is defined by a pair of weights (c1, c2) that is used to combine the multiple 

objective functions into a single objective function. Thus, the scalar objective function 

f(π) is defined as: 

                                            1 1 2 2( ) ( ) ( )f c f c fπ π π= + ,   (6.7) 

where c1 and c2 are the weights of objective function f1(π) and f2(π), respectively. 

Based on the pair of weights, DOWs will search for local optimal job permutations in 

the corresponding direction.  

In this chapter, we use the landscape analysis approach proposed by Tantar et al. 

(2008). At an iteration, we randomly generate a sample of MaxPop job permutations 

for each distinct region iΩ . An approximation of the enclosing ellipse for the feasible 

solution space in the distinct region is then obtained by such a sampling as described in 

Tantar et al. (2008). Here, a complete ellipse is defined by the center coordinates (x0, 

y0), the orientation angle α, and the major axis a and minor axis b. The orientation 

angle provides the correlation degree that exists between the objective functions (see 

Figure 6.3). Hence, finding non-dominated job permutations with an appropriate 
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orientation angle will lead to the Pareto optimal set. Given the orientation angle α, a 

pair of corresponding weights (c1, c2) is determined by: 

                                                    2
1 cos ( ),c α=    (6.8) 

                                                    2
2 sin ( ).c α=    (6.9) 

In the subsequent iterations, the approximation of the enclosing ellipse for region i 

is determined based on the cumulative sample set of job permutations generated in the 

region. When the sample size increases up to 100, we use the pair of weights (c1, c2) 

obtained at the iteration for the corresponding region in the remaining iterations. We 

do not need to recalculate the enclosing ellipse since the difference between the 100-

sample set and any larger sample set is almost unnoticeable (Tantar et al., 2008). This 

will help to reduce computation time for performing the MOWFA. 

 

Figure 6.3   An Illustration for Finding the Pareto Set Based on the Orientation 

Angle in MOWFA       
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6.3.3.3 Seed Job Permutations 

To improve the performance of the MOWFA, we generate a seed job permutation in 

the initial iteration by using the flexible flow line loading (FFLL) algorithm (Pinedo, 

2005). A brief description of this algorithm is provided in Section 5.3.3. In order to 

generate a set of N job permutations corresponding to N distinct regions, we use a 

swap scheme based on the seed job permutation. This scheme is performed by 

interchanging only the job at the first position with a job at a different position in the 

seed job permutation. The FFLL algorithm is only used in the initial iteration. For 

subsequent iterations, the FFLL algorithm is no longer used and instead, we use 

randomly generated job permutations for each distinct region. 

6.3.3.4 Hill-Sliding Algorithm 

For the sample set of job permutations generated, including the seed job permutations 

obtained by the swap scheme, we apply the single-objective optimization approach to 

search for local optimal job permutations. Here, the steepest descent hill-sliding 

algorithm described in Section 4.3.3 is used to guide DOWs to reach the local optimal 

positions corresponding to the scalar objective function. Note that the pair of weights 

(c1, c2), determined by approximating an enclosing ellipse for feasible solution space in 

the corresponding distinct region, is used for transforming the multi-objective FFSP 

into a single-objective FFSP.  

These local optimal job permutations and the number of DOWs at the job 

permutations are updated in the UE-list to be considered for performing the erosion 

process in the subsequent exploitation phase.  
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6.3.4 Neighborhood Structures 

In this chapter, the neighborhood structures used consist of the swap scheme described 

earlier and the 2-opt neighborhood structure. The 2-opt neighborhood structure 

determines all neighboring job permutations that can be obtained from a current job 

permutation by exchanging positions of two jobs in the current job permutation. For 

example, if π′ denotes the job permutation obtained by exchanging the positions of two 

jobs δi and δj in a job permutation π, then π′ can be expressed as: 

                                 [ ] [ ]
[ ] [ ] { }

' '

'

,  ,

  for  \ , ,                             (6.10)
i j j i

k k k N i j

π δ π δ π δ π δ

π δ π δ

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
= ∈

                       

where π[δ] and π′[δ] denote the position of job δ in the job permutation π and its 

neighboring job permutation π′, respectively.  

In the MOWFA, we divide the 2-opt neighborhood structure into two types, 

namely, local and global 2-opt neighborhood. In the local 2-opt neighborhood, we do 

not exchange the job in the first position with a job in any other positions in a job 

permutation. The neighborhood structure is used for finding local optimal job 

permutations in distinct regions at the exploration phase. It is also used in the erosion 

process. The neighborhood structure aims to find the Pareto solution set in a specific 

distinct region. With the local 2-opt neighborhood, DOWs only move in the distinct 

region in which they are generated. The number of neighboring job permutations 

obtained by the neighborhood structure is (N–1)(N–2)/2. Otherwise for the global 2-opt 

neighborhood, we can exchange the job in the first position with a job in any other 

position of a job permutation. Thus, the global 2-opt neighborhood aims to guide the 

DOWs to explore and exploit potential neighboring regions (see Figure 6.4). The 
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number of neighboring job permutations obtained by the neighborhood structure is 

N(N–1)/2. It is used in the erosion process and the improvement phase. 

 

  Figure 6.4   An Illustration of the Search Direction of DOWs on Two Types of    

2-opt Neighborhood 

6.3.5 Exploitation Phase 

In this section, we present the conditions to perform erosion process for the job 

permutations in the UE-list, the determination of erosion capability of DOWs at the job 

permutations satisfying the conditions, and two schemes of erosion process. The 

erosion process is the main operator of the exploitation phase which guides the DOWs 

to overcome the local optimal positions and obtain better or optimal positions.  

6.3.5.1 Erosion Condition and Capability 

In the MOWFA for the MOFFSP with intermediate buffers, the condition to perform 

erosion process is determined based on the amount of precipitation as described in 
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Section 4.3.4. Let MinEro denote the minimum amount of precipitation allowed to 

start the erosion process. Then, the erosion process will happen at a local optimal job 

permutation in the UE-list in which the amount of precipitation reaches MinEro. In the 

MOWFA, the amount of precipitation is represented by the number of DOWs at the 

eroding local optimal job permutation. 

In the MOWFA, the erosion capability is based on two main factors, the amount of 

precipitation and its falling force. The amount of precipitation is represented by the 

number of DOWs as mentioned earlier, while its falling force depends on the altitude 

of positions of DOWs. The falling force of precipitation to lower positions is stronger 

than that of higher positions and would thus erode more easily for lower positions. 

Hence, the erosion capability becomes stronger for local optimal job permutations with 

larger number of DOWs and lower objective values.  

Let MaxUIE denote the maximum number of iterations for the erosion process. We 

use the following relationship between the erosion capability and the above two factors 

as in Section 5.3.4.1: 

                                    
** / ( )

1 2( ) ,LB fMaxUIE Q πϕ π ϕ= +                              (6.11) 

where 1ϕ  and 2ϕ  represent the impact of precipitation and its falling force, 

respectively. Based on preliminary experimentation, we set the values for 1ϕ  and 2ϕ  to 

2 and 3, respectively. Here, *( )Q π  is the number of DOWs at the local optimal job 

permutation *π , f(π*) is the scalar objective value of the local optimal job permutation, 

LB is the scalar lower bound that is defined as: 

                                                    1 1 2 2 ,LB c LB c LB= +  (6.12) 

where (c1, c2) is the corresponding pair of weights used to determine f(π*), and LB1 and 

LB2 represent the lower bounds of makespan and total tardiness time of jobs, 
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respectively. We have used the lower bound proposed by Wardono and Fathi (2004) 

for LB1 and the lower bound proposed by Akturk and Yildirim (1998) for LB2. 

6.3.5.2 Erosion Process 

In the MOWFA, when the erosion condition at some local optimal job permutation is 

satisfied, the erosion process will be carried out. Before performing the erosion 

process, the erosion capability of DOWs at the local optimal job permutation is 

determined using equation (6.11). Then, the erosion process is performed following an 

erosion strategy based on a topological parameter representing the geographical 

surface of the optimization problem. For the MOFFSP, the topological parameter hdΔ  

is defined as the difference between the scalar objective value of the local optimal job 

permutation π* and that of its neighboring job permutation *
hπ : 

                                              
( ) ( )* * .h hd f fπ πΔ = −   (6.13) 

In the MOWFA for the MOFFSP, we use the two neighborhood structures 

described in Section 6.3.4, i.e., the local and global 2-opt neighborhoods. With each 

neighborhood structure, we have a specific erosion scheme for finding better local 

optimal job permutations. The erosion scheme I, based on the local 2-opt 

neighborhood, only searches for better local optimal job permutations in a given 

distinct region, so that the DOWs only exploit a distinct region from which they are 

generated (see Figure 6.5). The erosion scheme II, based on the global 2-opt 

neighborhood, can search for better local optimal job permutations in other regions, so 

that the DOWs can move and exploit neighboring regions different from the region that 

they are generated (see Figure 6.6). 
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Figure 6.5   An Illustration for Scheme I of the Erosion Process with the Local    

2-Opt Neighborhood 

 

Figure 6.6   An Illustration for Scheme II of the Erosion Process with the Global 

2-Opt Neighborhood 
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In this erosion process, the E-list will also prevent the DOWs from moving to 

eroded job permutations in other regions. Hence, the DOWs will only move to un-

eroded regions where their scalar objective value is improved. 

6.3.6 Evaporation and Precipitation 

In the MOWFA, we include an evaporation process in the algorithm to remove poor 

local optimal job permutations in the UE-list. A precipitation process is also used to 

regenerate the evaporated DOWs into neighboring regions, which reinforces the 

erosion possibility in the regions. 

In the evaporation process, the local optimal job permutations with one DOW, held 

in the UE-list for a pre-specified number of iterations T, will be deleted from the list. 

Then, in the next iteration, a precipitation process will generate the number of deleted 

DOWs into new positions in neighboring regions. For example, if we remove one 

DOW in region i from the UE-list, we will randomly generate DOWs in regions i – 1 

and i + 1. In the case of the DOW being deleted from region 1 or N, it will be randomly 

generated in regions N and 2, or regions N – 1 and 1, respectively. 

6.3.7 Improvement Phase 

The two schemes in the erosion process can be applied to a scalar objective function 

and they aim to exploit strongly promising regions as well as potential neighboring 

regions. However, since such an approach has been restricted to a scalar objective 

function, its performance may be limited. Hence, we propose an improvement process 

for the Pareto set obtained. This process is still based on the global 2-opt 

neighborhood. However, it is performed by directly comparing two job permutations 
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based on the original objective functions in a similar manner as Ravindran et al. 

(2005), which used the difference between the objective values obtained. To illustrate, 

suppose we have two job permutations π and π′. The makespan and total tardiness time 

of jobs for these two job permutations are denoted by Cmax, ST, and C′max, ST′, 

respectively. Then, we define the following comparison values R and R′ to determine 

which job permutation is better: 

R = [(Cmax–Min(Cmax,C′max))/Min(Cmax,C′max)]+[(ST–Min(ST,ST′))/Min(ST,ST′)] 
 (6.14)       

R′= [(C′max–Min(Cmax,C′max))/Min(Cmax,C′max)]+[(ST′–Min(ST,ST′))/Min(ST,ST′)] 
 (6.15) 

If R is less then R′, then the best job permutation is π. Otherwise, the best job 

permutation is π′.  

In summary, after the maximum number of allowed iterations (MaxCloud) has been 

reached, the exploration and exploitation phases terminate. Then, the final Pareto set 

obtained will be improved by the improvement process described above. The 

improvement process will terminate after / 3N⎢ ⎥⎣ ⎦  iterations.  

A flow chart of the MOWFA for the MOFFSP with intermediate buffers is shown 

in Figure 6.7. 

6.4 Computational Experiments and Comparisons  

6.4.1 Generation of Test Problems and Benchmark Problem Set 

Computational experiments have been conducted to evaluate the performance of the 

proposed  MOWFA. The  data  required for the  MOFFSP  with intermediate  buffers  
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Figure 6.7   Flow Chart of the MOWFA for the MOFFSP 
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consist of the number of jobs, the number of stages, the number of machines at each 

stage, the  number of buffers  between consecutive stages, the processing times of jobs, 

and the due date of jobs. We generated the data of the test problems based on the 

procedure of generating datasets in Rashidi et al. (2010). We constructed the instances 

with the number of jobs N = 20, 40, 60, 80, 100; the number of stages S = 2, 4; and the 

number of machines in each stage is uniformly distributed in the interval [1, 4]. For 

each job, its processing time is uniformly distributed in the interval [10, 100]. When 

solving the instances with finite buffers, the buffer capacity for all stages in all 

instances is set to be 3.The due date of a job is set as follows: 

                                      1

1

max ,
10

S

j jlj N l

LBd p U
∈

=

⎧ ⎫
= + ×⎨ ⎬

⎩ ⎭
∑   (6.16) 

where pjl denotes the processing time of job j in stage l, and LB1 denotes the lower 

bound of makespan obtained by Wardono and Fathi (2004). Here, U denotes a uniform 

random number between 0 and 1. This results in a tight due date for the jobs. For each 

combination of jobs and stages, we have generated five different instances. 

The benchmark problem set of Wittrock (1988), modified by Wardono and Fathi 

(2004), was also used to test the performance of the MOWFA. In these instances, the 

transport time (one minute) for the Wittrock instances is added to the processing time 

of jobs at stages 2 and 3, respectively, where applicable. The number of machines at 

stages 1, 2, and 3 are 2, 3, and 3, respectively. When solving the instances with finite 

buffers, we set the buffer capacity to be 3 for all stages. 

In this chapter, we have compared the results obtained by the MOWFA with those 

obtained by the improved hybrid multi-objective parallel genetic algorithm 

(IHMOPGA) of Rashidi et al. (2010) for the generated test problems and the 



Chapter 6   MOWFA for Multi-Objective Scheduling 

144 

 

benchmark instances. The IHMOPGA is designed for solving the FFSP with unrelated 

parallel machines, sequence-dependent setup times, and processor blocking, which is 

one specific scenario of the general FFSP with intermediate buffers that is considered 

in this chapter. Hence when compared with the MOWFA in the multi-objective 

problem, the procedure of IHMOPGA is still the same as in Rashidi et al. (2010). The 

only change in the IHMOPGA is in the input data. In particular, parallel machines at 

each stage are identical, and the setup time is zero for all jobs at all machines in each 

stage. Moreover, we also use the approach of converting the FFSP with finite buffers 

to one with no available buffer space as described in the MOWFA for the IHMOPGA, 

as the algorithm is used to solve the FFSP with finite buffers. 

6.4.2 Platform and Parameters 

All the computational experiments described in this chapter were performed on an 

Intel Centrino Duo 1.60 GHz CPU with 1.5 GB of RAM running on Windows XP 

Operating System. The MOWFA and IHMOPGA have been coded using Microsoft 

Visual Basic 6.0. Here, the computational complexity of the MOWFA for MOFFSP is 

determined based on the neighborhood structure used and the erosion process of this 

algorithm. In particular, the MOWFA used 2-opt neighborhood structure, and the 

worst possibility of the erosion process is to find for all n directions. Thus, the 

computational complexity of the MOWFA is estimated to be O(n3).  

The choice of parameters for the MOWFA was determined by design-of-experiment 

methods. In particular, we carried out several simulations that test the MOWFA on 

instances with various values for the controlled parameters, MaxCloud, MaxPop, 

MinEro, and T, and we chose the best values for each instance. These best parameter 
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values are shown in Table 6.1. For the IHMOPGA, we used the same parameter values 

as Rashidi et al. (2010). In their paper, the authors did not mention exactly what 

method is used to choose their parameters.  

When comparing with the IHMOPGA, we used the CPU time limit stopping 

criterion of 25N M S× × ×  as presented in Rashidi et al. (2010). Here, M  denotes the 

average number of machines in S stages. For the Wittrock instances, we ran the 

MOWFA and IHMOPFA with 5 independent replicates for each instance. The best 

results obtained from these replicates were used to compare the performance of 

MOWFA and IHMOPGA. For the randomly generated instances, we have used the 

average results of 5 different instances corresponding to a combination of jobs and 

stages to compare the performance of MOWFA and IHMOPGA. Rashidi et al. (2010) 

also used 5 different replicates for each experiment when they ran the IHMOPGA. 

Table 6.1   Parameter Sets of the MOWFA for Instances of the MOFFSP 

Instances 
Parameter values 

MaxCloud MaxPop MinEro T 

Modified Wittrock 10 5 3 3 

Generated Dataset 10 10 3 3 

6.4.3 Performance Metrics 

In multi-objective optimization problems, proper comparison of algorithms is complex 

and is often based on the non-dominated solution set obtained by the algorithms. Three 

main aspects that are usually considered for evaluating the non-dominated solution set 

obtained by the algorithms are the number of non-dominated solutions in the Pareto set 

obtained, the distance of the Pareto front obtained to the Pareto optimal front, and the 



Chapter 6   MOWFA for Multi-Objective Scheduling 

146 

 

diversity of non-dominated solutions in the Pareto set obtained (Silva et al., 2004). 

Comparison metrics can also be based on other aspects, such as a direct comparison 

between two algorithms based on the number of non-dominated solutions obtained by 

the algorithms or a comparison based on a union of non-dominated solutions obtained 

by the algorithms. 

In this chapter, we use four comparison metrics representing all the above aspects. 

The first metric, denoted by 1Ψ , is the number of distinct non-dominated solutions 

obtained by each algorithm. The second metric, denoted by 2Ψ , is the fraction of the 

number of solutions in a non-dominated set obtained by an algorithm that are 

dominated by the non-dominated solutions obtained by another algorithm. The third 

metric, denoted by 3Ψ , is the percentage of non-dominated solutions obtained by each 

algorithm in the Pareto optimal set. The fourth metric, denoted by 4Ψ , is the distance 

of the non-dominated front obtained to the Pareto optimal front. As the Pareto optimal 

set and Pareto optimal front are usually not known in advance, we would choose 

distinct non-dominated solutions from a union of the non-dominated solutions obtained 

by all the compared algorithms to form the Pareto optimal set and Pareto optimal 

front, which are also the reference points in this comparison. This choice of the 

reference points may affect the reliability of the comparison results if the algorithm 

used to compare with the WFA has poor performance. Hence, to obtain reliable 

comparison results we only choose the IHMOPGA which has been evaluated to have 

good performance for solving the multi-objective FFSP.    

Let P denote the union of non-dominated solutions obtained by the algorithms. 

Since we only compare the MOWFA with the IHMOPGA, P is thus a non-dominated 

solution set combined by P1 and P2, which denote the non-dominated solution sets 
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obtained by the MOWFA and the IHMOPGA, respectively. According to Van 

Veldhuizen (1999), the first metric is defined as |P1| for the MOWFA and |P2| for the 

IHMOPGA, respectively. Let D1 and D2 denote the number of solutions in the non-

dominated solution set obtained by the MOWFA and the IHMOPGA that are 

dominated by the solutions in the IHMOPGA and the MOWFA, respectively. Then, 

the second metric is defined as: 

                                                 2   for   1, 2.i i

i

D i
P

Ψ = =    (6.17) 

Let ND1 and ND2 denote the number of solutions in P1 and P2 which are not dominated 

by any other solutions in P, respectively. In particular, ND1 and ND2 are determined as 

follows: 

                              { }| :    for  1, 2.i i i i iND P P P iπ π π π= − ∈ ∃ ∈ =f  (6.18) 

Then, the third metric is defined as: 

                                                    3    for   1,2.i iND i
P

Ψ = =   (6.19) 

For the fourth metric, we use the following distance metric from Knowles and Corne 

(2002):  

                                { }4 ,
1  min |    for   1, 2,

i

i
i i

P
d P i

P π π
π

π
∈

Ψ = ∈ =∑  (6.20) 

where ,i
dπ π  denotes the distance between a solution πi in the corresponding non-

dominated solution set Pi and a reference solution π in the non-dominated solution set 

P. This is determined by: 

                * * 2 * * 2
, 1 1 2 2( ( ) ( )) ( ( ) ( ))    for  1,2,

i i id f f f f iπ π π π π π= − + − =  (6.21) 
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where *( )if π  denotes the ith objective normalized by using the reference solution set 

P in Ishibuchi et al. (2003). 

Among the performance metrics, the first and third ones focus on the diversity of 

the non-dominated solution sets obtained, while the second and fourth ones focus on 

the closeness of the non-dominated set to the Pareto optimal set. Here, we want to 

maximize the diversity and minimize the closeness of the non-dominated solution set. 

6.4.4 Computational Results 

In this section, we provide the comparison results between the MOWFA and the 

IHMOPGA for the MOFFSP with intermediate buffers. Table 6.2 shows the results of 

MOWFA and IHMOPGA for the Wittrock instances with no available buffer capacity, 

while Table 6.3 shows the results for the instances with finite buffers.  

From Tables 6.2 and 6.3, we see that the MOWFA outperforms IHMOPGA in all 

instances when we consider the metrics Ψ2, Ψ3, and Ψ4. For metric Ψ1, MOWFA is 

worse than IHMOPGA in instance 1 for the case of no buffer (Table 6.2), and in 

instances 1 and 6 for the case of finite buffer (Table 6.3). However, metric Ψ1 is not 

significant when it is evaluated alone. It can be seen that at least 87.5% of the non-

dominated solutions obtained by the IHMOPGA in instances 1 and 6 are dominated by 

the MOWFA (see the Ψ2 metric column of IHMOPGA in Tables 6.2 and 6.3). 

Moreover, in instances 1 and 6, 100% of the non-dominated solutions obtained by the 

MOWFA cover the final Pareto set (see the corresponding instances in the Ψ3 metric 

column of MOWFA in Tables 6.2 and 6.3). From the average values of metrics Ψ1, Ψ2, 

Ψ3, and Ψ4 in Tables 6.2 and 6.3, it can also be seen that the MOWFA obtained more 
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diversified and competitive Pareto sets than IHMOPGA in both cases of no buffer and 

finite buffers.  

Table 6.2   Comparison of MOWFA and IHMOPGA for the Wittrock 

Benchmarks with No Buffer 

Instance   N×S MOWFA IHMOPGA 

  Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4 

1   51×3 8.00 0.00 100.00 0.00 9.00 100.00 0.00 13.67

2   38×3 6.00 0.00 100.00 0.00 5.00 100.00 0.00 24.79

3   38×3 7.00 0.00 100.00 0.00 6.00 100.00 0.00 25.85

4   36×3 6.00 0.00 100.00 0.00 5.00 80.00 16.67 18.26

5   40×3 9.00 0.00 100.00 0.00 9.00 100.00 0.00 10.17

6   30×3 8.00 12.50 87.50 2.24 7.00 85.71 12.50 10.87

Average  7.33 2.08 97.92 0.37 6.83 94.29 4.86 17.27

 

Table 6.3   Comparison of MOWFA and IHMOPGA for the Wittrock 

Benchmarks with Finite Buffers 

Instance   N×S MOWFA IHMOPGA 

  Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4 

1   51×3 7.00 0.00 100.00 0.00 8.00 87.50 14.29 16.46

2   38×3 14.00 28.57 76.92 0.86 11.00 72.73 23.08 6.65

3   38×3 8.00 12.50 70.00 1.78 8.00 62.50 30.00 5.23

4   36×3 9.00 0.00 90.00 1.43 9.00 88.89 10.00 8.36

5   40×3 4.00 0.00 100.00 0.00 4.00 75.00 25.00 12.5

6   30×3 7.00 0.00 100.00 0.00 8.00 87.50 14.29 9.38

Average  8.17 6.85 89.49 0.68 8.00 79.02 19.44 9.76

We further illustrate the comparison results between MOWFA and IHMOPGA for 

Wittrock instances with no buffer and finite buffers in Figures 6.8 and 6.9, 

respectively. It can be seen that the solutions obtained by the MOWFA cover more 

area of the Pareto set than those obtained by the IHMOPGA. Also, the solutions of the 

MOWFA are closer to the Pareto set than that of IHMOPGA. 
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Figure 6.8   Plot of Pareto Fronts Obtained by MOWFA and IHMOPGA on Wittrock Instances with No Buffer 
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Figure 6.9   Plot of Pareto Fronts Obtained by MOWFA and IHMOPGA on Wittrock Instances with Finite Buffers 
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The comparison results for the randomly generated instances are shown in Tables 

6.4 and 6.5. Here, Table 6.4 shows the results of MOWFA and IHMOPGA for the 

generated instances with no available buffer capacity, while Table 6.5 shows the 

results for the generated instances with finite buffers.  

From Tables 6.4 and 6.5, we can see that the MOWFA still outperforms IHMOPGA 

in all instances. The average values of the metrics Ψ1, Ψ2, Ψ3 and Ψ4 in Tables 6.4 and 

6.5 show that the MOWFA can obtain more diversified and competitive Pareto sets 

than the IHMOPGA. For the case of no buffer in Table 6.4, although the number of 

non-dominated solutions of MOWFA is less than that of IHMOPGA, they cover 

96.8% of the area of the Pareto set, while the solutions of IHMOPGA only cover 9.6% 

of the area of the Pareto set. Moreover, 88.72% of the solutions obtained by the 

IHMOPGA are dominated by that of MOWFA, while the metric value of MOWFA is 

only 2.55%. In addition, the distance of the solutions obtained by MOWFA to the 

Pareto set is much closer than that of IHMOPGA, i.e., 0.48 and 11.93 for MOWFA 

and IHMOPGA, respectively. 

For the case of finite buffer in Table 6.5, although the quality of non-dominated 

solutions obtained by the IHMOPGA has improved, they are still outperformed by the 

non-dominated solutions obtained by the MOWFA. In particular, the dominated 

solutions of the IHMOPGA have reduced to 75.72%, and they covered 17.66% of the 

area of the Pareto set. They are thus worse than the non-dominated solutions obtained 

by the MOWFA. 

Through these comparison results, it can be concluded that the MOWFA 

outperforms IHMOPGA for the instances tested, and the MOWFA is thus an efficient 

algorithm for solving the MOFFSP with intermediate buffers. 
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Table 6.4   Comparison of MOWFA and IHMOPGA for the Randomly 

Generated Instances with No Buffer 

Instance    N×S MOWFA IHMOPGA 

  Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4 

1   20×2 8.80 0.00 100.00 0.00 10.80 86.91 11.16 4.56

2   40×2 13.80 0.00 100.00 0.00 13.20 88.02 11.65 5.66

3   60×2 3.40 0.00 100.00 0.00 4.80 96.00 5.00 11.22

4   80×2 4.80 0.00 100.00 0.00 4.80 96.00 5.00 13.23

5 100×2 5.20 0.00 100.00 0.00 4.40 96.00 4.00 27.88

6   20×4 11.20 0.00 100.00 0.00 12.40 90.23 10.76 8.06

7   40×4 11.00 25.45 82.00 1.66 11.80 74.55 18.00 6.41

8   60×4 12.20 0.00 100.00 0.00 11.20 82.12 16.41 10.31

9   80×4 7.20 0.00 86.00 3.13 5.20 77.33 14.00 22.71

10 100×4 5.20 0.00 100.00 0.00 6.80 100.00 0.00 9.26

Average  8.28 2.55 96.80 0.48 8.54 88.72 9.60 11.93
 

Table 6.5   Comparison of MOWFA and IHMOPGA for the Randomly 

Generated Instances with Finite Buffers 

Instance    N×S MOWFA IHMOPGA 

  Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4 

1   20×2 7.80 0.00 100.00 0.00 7.20 60.15 22.86 15.45

2   40×2 7.80 0.00 100.00 0.00 6.20 100.00 0.00 7.66

3   60×2 3.20 0.00 100.00 0.00 3.00 33.33 63.34 0.55

4   80×2 4.80 0.00 100.00 0.00 2.40 93.33 5.00 49.35

5 100×2 2.20 0.00 100.00 0.00 2.00 100.00 0.00 74.79

6   20×4 6.20 0.00 86.07 0.69 7.20 68.72 13.93 12.08

7   40×4 7.20 13.93 75.56 1.64 5.00 60.00 24.44 17.32

8   60×4 7.80 0.00 78.00 1.30 6.00 66.67 22.00 10.98

9   80×4 4.00 0.00 100.00 0.00 4.00 75.00 25.00 20.20

10 100×4 3.00 0.00 100.00 0.00 4.00 100.00 0.00 51.95

Average  5.40 1.39 93.96 0.36 4.70 75.72 17.66 26.03
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6.5 Conclusions 

In this chapter, a MOWFA is proposed for solving the MOFFSP with intermediate 

buffers. To solve the problem by the proposed algorithm, we divide the feasible 

solution set into multiple distinct regions. Then landscape analysis is performed for 

each region to determine the weights for the objectives, which guide the DOWs to 

search for local optimal solutions in the corresponding region. Two erosion schemes 

are proposed in the MOWFA. The first scheme focuses on exploiting the current 

region, while the second scheme helps DOWs exploit other potential regions. We also 

incorporate an evaporation process in the MOWFA to enhance the exploitation 

capability in potential neighboring regions. The Pareto solution set obtained is 

reinforced by an improvement process.  

We used the Wittrock benchmark instances and the randomly generated instances to 

evaluate the performance of the MOWFA. The proposed algorithm is compared with 

other algorithms that can be applied to solve the MOFFSP problem. The comparison 

results show that the MOWFA outperforms the other algorithms for the test instances. 

These results have been reported in Tran and Ng (2011a). 

The MOWFA can be applied to solve the MOFFSP with a large number of 

objectives. However, if we use the ellipsoid approximation method to determine the 

relative weights of the objectives, the MOWFA can only successfully solve the 

MOFFSP with at most three objectives. For the MOFFSP in which the number of 

objectives is greater than three, we need to use a linear regression method to determine 

the weights.  
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CHAPTER 7 

WFA FOR OTHER COMBINATORIAL         

OPTIMIZATION PROBLEMS 

 

 

 

In this chapter, WFA is used to solve two other well-known combinatorial optimization 

problems which are the quadratic assignment problem (QAP) and vehicle routing problem 

(VRP). The QAP and VRP are NP-hard optimization problems often encountered in 

facility layout design (Sahni, 1976) and the field of logistics and supply chain 

management (Toth and Vigo, 2002), respectively. 

For the QAP, a systematic precipitation generating scheme is included in the WFA for 

spreading raindrop positions on the ground to increase the solution exploration capability 

of the algorithm. Efficient local search methods are also used to enhance the solution 

exploitation capability of this algorithm. The performance of the proposed algorithm is 

tested with the benchmark instances taken from the QAPLIB (Burkard et al., 1997). 

Computational results and comparisons show that the WFA is able to obtain good quality 

or optimal solutions to the QAP instances in reasonable computation time.  

For the VRP, we have developed a two-level WFA (2LWFA). The first level of the 

proposed algorithm is to solve the mathematical programming model of the VRP with the 
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relaxation of the integrality constraints. At the second level, a modified WFA is then 

applied to search for optimal solutions from the initial solutions obtained from the first 

level. Here, we illustrate the performance of the 2LWFA with the capacitated vehicle 

routing problem (CVRP). Some preliminary computational results show the efficiency of 

this algorithm for the VRP.  

Chapter 7 is organized as follows. In Section 7.1, we present the WFA proposed for 

solving the QAP. In particular, we introduce the QAP and its important applications. A 

literature review of solution methods for the problem is also described. Then, the 

implementation of WFA for solving the QAP is presented. Computational experiments 

and comparisons based on the QAP benchmark instances are shown in this section. In 

Section 7.2, we present the 2LWFA proposed for solving the CVRP. The CVRP is first 

introduced and a description of the 2LWFA is then provided. The results of preliminary 

experiments carried out on the CVRP benchmark instances from the literature are also 

shown. Finally, some conclusions of this chapter are provided in Section 7.3. 

7.1 Quadratic Assignment Problem 

7.1.1 Introduction 

The QAP is one of the well-known NP-hard optimization problems (Sahni, 1976) due to 

its important applications in practice, such as parallel and distributed computing (Bokhari, 

1987), statistical data analysis (Hubert, 1987), testing of electronic devices (Eschermann 

and Wunderlich, 1990), plant layout design (Rossin et al., 1999), data visualization 

(Abbiw-Jackson et al, 2006), printed circuit board assembly process (Duman and Or, 
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2007), and website structure improvement (Qahri Saremi et al., 2008). The problem is 

often described as follows: Given a set of facilities and a set of locations with the same 

size n, assign the facilities to the locations such that the total cost of assignment is 

minimized. The total cost w is calculated using the distance between locations and the 

flow between facilities. The QAP can then be expressed as the problem of finding a 

permutation π of n facilities as follows: 

 

 

where nΠ  denotes  the  set  of  possible  permutations  of N = {1, 2, …, n}, while [ ]iπ  

and [ ]jπ  denote the location of facilities i and j in the permutation π, respectively. 

Furthermore, ijf  is the flow between facilities i and j, and [ ] [ ]i jdπ π  is the distance between 

locations [ ]iπ  and [ ]jπ . 

While there are some well solved special cases of the QAP (see for example, 

Demidenko et al. (2006)), the QAP is generally difficult to solve (Taillard, 1995), and so 

researchers have explored various possible solution methods. These solution methods can 

be broadly classified into exact methods and heuristic methods. Exact methods aim to find 

the optimal solution to the QAP but they often run into computational difficulties with 

large QAP instances (Burkard et al., 1996; Cela, 1998; Hahn et al., 2001; Blanchard et al., 

2003; and Gasimov and Ustun, 2007). Heuristic methods on the other hand can be further 

divided into constructive heuristics and improvement heuristics. Constructive heuristics 

often construct a feasible solution for the QAP by assigning each facility to a location 

according to some principles. Such constructive methods for solving the QAP can be seen 

[ ] [ ]
1 1

(7.1)min ( ) ,
n

n n

ij i j
i j

w f dπ ππ
π

∈Π
= =

= ∑∑



Chapter 7   WFA for Other Combinatorial Optimization Problems 

158 
 

in Buffa et al. (1964), Arkin et al. (2001), and Gutin and Yeo (2002). Unlike constructive 

heuristics, improvement heuristics attempt to improve an existing solution through some 

iterative procedures. Some of the well-known algorithms belonging to this category are 

the meta-heuristic algorithms, such as genetic algorithms (Ahuja et al., 2000; and Lim et 

al., 2002), ant colony optimization algorithms (Maniezzo and Colorni , 1999; Ramkumar 

et al., 2009; and Wong and See, 2010), greedy randomized adaptive search procedure (Li 

et al., 1994), memetic algorithm (Merz and Freisleben, 2000), iterated fast local search 

algorithm (Ramkumar et al., 2008), simulated annealing algorithm (Singh and Sharma, 

2008), and DNA algorithm (Yang et al., 2008). 

In this chapter, we develop the WFA for solving the QAP. It uses distributed drops of 

water (DOWs) to represent the permutations in the QAP. Benchmark problem instances 

drawn from the QAPLIB (Burkard et al., 1997) are used to evaluate the performance of 

the proposed algorithm. The computational results and comparisons show that the WFA is 

able to obtain good quality or optimal solutions to these instances and is a promising 

nature-inspired algorithm for solving QAP problem instances. 

7.1.2 WFA for the QAP 

In this section, we describe the procedure of solving the QAP by the WFA in detail. The 

main phases in the WFA include the exploration phase, the exploitation phase, and the 

improvement phase, as well as a systematic precipitation generating scheme. We first 

begin with a description of the basic components for the WFA. 



Chapter 7   WFA for Other Combinatorial Optimization Problems 

159 
 

7.1.2.1 Encoding Scheme and Memory Lists 

For the QAP, we consider the permutation π of n facilities in the problem as the longitude 

and latitude in the position of DOW on the ground, while the total cost of flow between 

the facilities is encoded as the altitude. Given a permutation of n facilities 1( ,..., )nπ σ σ= , 

we thus define: 

                                        
1

2

1
2

longitude( ) ( ,..., ),                       (7.2)

   latitude( ) ( ,..., ),                          (7.3)

n

nn

π σ σ

π σ σ

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥+⎢ ⎥⎣ ⎦

=

=
 

where q⎢ ⎥⎣ ⎦  is the largest integer less than or equal to q. Figure 7.1 shows an illustrative 

example of a DOW and its positional vector components for the QAP with 8n =  facilities.  

 
Figure 7.1   An Example of Solution Representation in the WFA for the QAP 

With this encoding scheme, the neighborhood structure used in the WFA for the QAP 

is mainly based on exchanging elements in a permutation. An example is the 2-opt 

neighborhood structure used in the traveling salesman problem as well as in the QAP 

Total cost 
Permutation π  

DOW  

Altitude
Latitude  Longitude  

3 1 2 5 6 4 9428 8 7 

σ4 σ5 σ6 σ3 σ7 σ8 w σ2 σ1 
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(Merz and Freisleben, 2000). Thus if π' is the permutation obtained by exchanging 

positions of two facilities i and j in the permutation π, we can determine π' by: 

                                          

[ ] [ ] { }
[ ] [ ]
[ ] [ ]

'

'

'

for \ , ,

,

.

k k k N i j

i j

j i

π π

π π

π π

= ∈

=

=                                  (7.4) 

In addition, we also consider the neighborhood structure of an extended 2-opt 

algorithm called the 2-opt mirror. In this 2-opt mirror algorithm, other than the usual 2-opt 

neighboring permutations, we also consider the reflected permutation and its 

corresponding 2-opt neighboring permutations. The reflected permutation rπ  of a 

permutation π can be determined as follows: 

                                      [ ] [ ]1 for =1,.., .r i n i i nπ π= − +                                       (7.5) 

The neighborhood structures are used for both exploration and exploitation phases.  

To support the search for global optimal permutations, three sets of memory lists, 

namely the best permutations list (P0-list), the un-eroded permutations list (UE-list), and 

the eroded permutations list (E-list), have been adopted to solve the QAP. Here the 

functions of the lists and the procedure of updating these lists are similar as that described 

in Chapter 4.    

Let Best
cπ  be the best optimal permutation found so far by the WFA at cloud c. Assume 

that we have found a local optimal permutation *
1cπ +  at cloud c + 1. Updating the P0-list at 

the cloud can then be described as follows: 
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* *
1 1

0
if ( ) ( ),

P -list
otherwise.

Best
c c c
Best
c

w wπ π π
π

+ +⎧ <
= ⎨
⎩                                (7.6) 

Updating of the UE-list includes two phases, the phase of removing the local optimal 

permutations eroded and the phase of adding the ones just found, which are done in 

succession. Updating of the E-list is only to add the local optimal permutations eroded. 

They are shown as follows: 

                                           ( )2 1
1UE-list UE-list \ ,c c c c+ = ∪Π Π                                         (7.7) 

                                        
1

1E-list E-list .c c c+ = ∪Π                                                      (7.8) 

where 1
cΠ  and 2

cΠ  denote the set of local optimal permutations eroded and the set of local 

optimal permutations just found from initial permutations generated at each iteration, 

respectively. 

7.1.2.2 Exploration Phase 

Two schemes for generating the initial population of DOW positions in the exploration 

phase are proposed below. 

The first scheme is the random permutation generator scheme. In this scheme, a 

population Ω  of permutations of DOWs is generated randomly for each cloud and the 

number of such permutations is the maximum population size allowed (MaxPop). Since 

the WFA mimics the property of water flow always moving from higher positions to 

lower positions due to Earth’s gravity, a steepest descent hill sliding algorithm is then 
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applied to search for local optimal permutations from these initial permutations. In 

particular, from an initial solution, the hill sliding algorithm searches for the best 

improved solution within the initial solution’s neighbors in terms of objective value. Then, 

this process continues to be performed iteratively for the improved solution obtained until 

no other improved solution is found.  

Due to the random nature of this scheme, the efficiency of WFA for solving the QAP 

may fluctuate in instances with large size. To resolve this drawback of the first scheme as 

well as to improve the solution exploration capability of WFA for QAP instances with 

large size, a second scheme is proposed. This scheme is a systematic DOW generator 

scheme that aims to distribute DOWs evenly into divided regions of the solution space. 

We first divide the solution space into n regions, where n is the instance size. Then at each 

cloud, the WFA generates n DOWs and each DOW is assigned to only one distinct region. 

This means that a cloud would consist of n different permutations, which is achieved by 

fixing the first position of a facility in a permutation from 1 to n when generating the 

permutations of DOW. The rest of the positions in a permutation are assigned randomly. 

This can be represented with the following notation: 

 

A steepest descent hill sliding algorithm is also used in the second scheme to search for 

local optimal permutations from these initial permutations. 

At each cloud, the number of DOWs at the initial permutations is updated as follows: 

 

{ }T1 , ..., , ..., [1] , ( 1, ..., ) , ( 1,..., ).   (7.9)i n i
c c c c c i i n c MaxCloudπ π π π⎡ ⎤Ω = = = =⎣ ⎦
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where cQπ  is the number of DOWs in permutation π at cloud c, and 1
i
cπ +  denotes the 

permutation of the ith DOW generated at cloud c + 1, while the set of initial permutations 

generated or local optimal permutations found through clouds 1 to c is denoted by 3
cΠ . 

After the steepest descent hill sliding algorithm has been applied to find the local 

optimal permutation *
1cπ +  from the initial permutation 1

i
cπ + , we also update the number of 

DOWs at the optimal permutation according to the following equation. 
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In general, the solution exploration phase of the WFA for the QAP results in a set of 

local optimal permutations. They are updated in the UE-list to be considered for the 

erosion process in the next exploitation phase. 

7.1.2.3 Exploitation Phase 

The exploitation phase involves applying the erosion process to overcome the local 

optimal permutations found in the exploration phase. Before describing the erosion 

process, the erosion condition and capability are first described below: 
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7.1.2.3.1 Erosion Condition and Capability 

The erosion process is triggered by the amount of precipitation and so if the number of 

DOWs at a local optimal permutation increases to the threshold MinEro, the erosion 

process is performed at this local optimal permutation. 

Next, we consider the capability L of the erosion process. For the QAP, the erosion 

capability is based on a factor, which is the number of DOWs at the eroding local optimal 

permutation. In particular, the relationship between the erosion capability and this factor is 

a nonlinear function. However, to simplify the computations in the WFA, we have set the 

erosion capability to a constant value MaxUIE, so that the relationship can be described as 

follows: 

                            ( )
*

* if ,
0 otherwise.

c
c c

c
MaxUIE Q MinEroL Q

π
π ⎧ ≥⎪= ⎨

⎪⎩
                            (7.12) 

If the erosion process cannot find any improved permutation after MaxUIE search 

steps, the erosion process stops and other permutations in the UE-list are considered for 

performing the next erosion process. 

7.1.2.3.2 Erosion Process 

The erosion process is the main operator in the exploitation phase of WFA for solving the 

QAP. Its task is to help the DOWs overcome local optimal permutations and obtain better 

local optimal or global optimal permutations. In the QAP, the erosion process depends on 

a topological parameter hdΔ  representing the geographical shape of the surface. It is 
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defined as the difference of total cost between the local optimal permutation and its hth 

neighboring permutation: 

( ) ( ) [ ] [ ] [ ] [ ]( )* * * *
* *

1 1

( 1)for 1,..., ,
2h h

n n

h h ij i j i j
i j

n nd w w f d d h
π π π π

π π
= =

−
Δ = − = − =∑∑

 

 
(7.13) 

where *π  and *
hπ  denote the local optimal permutations and its hth neighboring 

permutation respectively. In the case of the 2-opt mirror neighborhood, the number of 

directions is ( 1) 1n n− + . 

The aim of computing hdΔ  is to help the erosion process choose the most suitable 

direction to perform erosion. The erosion process will choose the smallest hdΔ  to be the 

first erosion direction. Searching for this direction will stop if the erosion process for the 

erosion direction cannot find a better permutation after MaxUIE steps. Then, the erosion 

process will be restarted with another erosion direction with the next smallest hdΔ . If the 

erosion process cannot find a better permutation for all the directions, we move the eroded 

local optimal permutation into the E-list so that it will not be considered for erosion 

process in the next clouds. On the other hand, if the erosion process is able to find a better 

permutation than the eroding local optimal permutation, that erosion direction is chosen to 

erode the local optimal permutation permanently. Then the new local optimal permutation 

is updated in the UE-list to continue with performing the erosion process. 
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7.1.2.4 Improvement Phase 

The exploration and exploitation phases of the WFA for the QAP terminate when the 

maximum number of clouds (MaxCloud) has been generated. To improve the solutions 

obtained by the WFA, we can apply the 3-opt algorithm at a final improvement phase. 

This 3-opt algorithm would still use the steepest descent hill sliding method mentioned in 

the previous section. A 3-opt list is also used to save the solutions obtained by this 

improvement algorithm. 

In summary, we have the following variants of WFA: 

(1). Random 2-opt WFA: WFA with the random permutation generator scheme and 

the 2-opt neighborhood structure. 

(2). Systematic generator 2-opt WFA: WFA with the systematic DOW generator 

scheme and the 2-opt neighborhood structure. 

(3). Random 2-opt mirror WFA: WFA with the random permutation generator 

scheme and the 2-opt mirror neighborhood structure. 

A flow chart of the WFA for solving the QAP is shown in Figure 7.2. 

7.1.3 Computational Experiments and Comparisons  

To test the performance of the proposed WFA, we have used the random 2-opt WFA for 

solving all the benchmark instances from the QAPLIB (Burkard et al., 1997). The 

systematic generator 2-opt WFA and the random 2-opt mirror WFA are used to solve the 

benchmark instances when the random 2-opt WFA has not obtained the best known value. 
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Figure 7.2   Flow Chart of the WFA for the QAP 
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7.1.3.1 Benchmark Problem Sets 

The 134 instances drawn from the QAPLIB (Burkard et al., 1997) are well-known 

benchmark problem sets in QAP with size ranging from 12 to 256. The best known upper 

bounds of these problem sets obtained from the literature were used to compare with the 

best results obtained by the WFA. In addition, we also compared these results with those 

obtained by greedy randomized adaptive search procedure (GRASP) of Li et al. (1994), by 

ant system (ANT) of Maniezzo and Colorni (1999), by greedy genetic algorithm (GGA) of  

Ahuja et al. (2000), by  hybrid  genetic  algorithm  with  partial  local search (PGA) of 

Lim et al. (2002), by iterated fast local search algorithm (IFLS) of Ramkumar et al. (2008), 

by two-level modified simulated annealing based approach (MSA) of Singh and Sharma 

(2008), and by population-based hybrid ant system (PHAS) of Ramkumar et al. (2009), all 

of which are some of the most efficient meta-heuristic algorithms for solving the QAP 

instances. Almost all the algorithms used the design-of-experiment method or trial runs to 

select their best parameter values. However, the number of runs of each algorithm can be 

different, such as 5 runs used for the GRASP, ANT, and PHAS, 7 runs used for GGA, and 

10 runs for PGA. Also, some algorithms did not provide information on the number of 

runs used, such as IFLS and MSA. Thus, to have a fair comparison, we used the smallest 

number of runs that several algorithms have used, i.e., 5 runs.   

7.1.3.2 Platform and Parameters 

All the computational experiments were performed on an Intel Centrino Duo 1.60 GHz 

CPU with 1.5 GB of RAM. The WFA has been coded using Microsoft Visual Basic 6.0. 

Here, the computational complexity of the WFA for the QAP is determined based on the 
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neighborhood structures used and the erosion process of this algorithm. In particular, the 

WFA used 2-opt neighborhood structure, and the worst possibility of the erosion process 

is to find for all n directions. Hence, the computational complexity of the WFA is 

estimated to be O(n3). Although the WFA for the QAP used 3-opt neighborhood structure 

at the improvement phase, since the 3-opt algorithm is only used once, the computational 

complexity of the WFA for the QAP is still O(n3). 

The choice of parameters for WFA was determined by the design-of-experiment 

method. In particular, we have carried out several simulations that test the WFA on all 

types of QAP with various values for the controlled parameters, i.e., the exploration 

parameters MaxCloud and MaxPop, and the exploitation parameters MaxUIE and MinEro. 

The aim is to determine the best parameters of WFA for QAP that would achieve a 

balance between solution exploration and exploitation capabilities in finding the best 

solutions within reasonable computation time. Thus, smaller values may be used by the 

parameters for larger problem instances. The values that were used are as follows: 

MaxCloud = 2, 5, 10, 15, 20; MaxPop = 5, 10, 15, 20; MaxUIE = 5, 10, 15, 20; and 

MinEro = 2, 3. From preliminary simulation results, the best parameter sets are shown in 

Table 7.1. These parameter sets are then used for the random 2-opt WFA and the random 

2-opt mirror WFA. For the systematic generator 2-opt WFA, we have used the parameter 

sets (MaxCloud, MaxPop, MaxUIE, MinEro) = (50, n, 20, 2), (20, n, 10, 2), and (5, n, 5, 2) 

for instances with size at most 50, more than 50 but at most 100, and more than 100 

respectively, in order to allow a reasonable amount of erosion process to occur. With these 

parameter sets, 5 independent replicates were used for each instance and the best results 

were used to compare the WFA with other meta-heuristic algorithms. 
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Table 7.1   Parameter Sets of WFA for the QAP Benchmark Instances 

Benchmarks n 
Parameter values 

MaxCloud MaxPop MaxUIE MinEro 

Burkard 26 5 10 10 2 
Christofides 12 – 20  10 10 10 2 

22 15 10 10 2 
25 20 10 10 2 

Elshafei 19 10 10 10 2 
Eschermann 16, 64 2 5 5 2 

32 (a, b) 5 10 10 2 
32 (c, e, g) 2 5 5 2 
32 (d, h) 2 10 10 2 
128 5 10 5 3 

Hadley 12 – 20 10 10 10 2 
Krarup 30, 32 20 10 10 2 
Li & Pardalos 20, 30 10 10 10 2 

40, 50, 60 10 20 10 2 
70 10 20 15 2 
80, 90 20 20 10 2 

Nugent 12 – 28 10 10 5 2 
30 20 10 10 2 

Roucairol 12, 15 5 10 10 2 
20 10 20 10 2 

Scriabin 12, 15, 20 5 15 10 2 
Skorin-Kapov 42 – 64   15 10 10 2 

72, 81, 90 10 20 15 2 
100 10 10 10 2 

Steinberg 36 20 10 10 2 
Taillard   

(Taixxxa) 12 5 10 10 2 
15, 17 5 20 10 2 
20 – 35   20 20 10 2 
40, 50 20 20 15 2 
60, 80, 100 10 20 10 2 

(Taixxxb) 12 – 20   5 5 10 2 
25 10 10 10 2 
30, 35, 40 20 10 10 2 
50, 60, 80  10 10 15 2 
100 5 20 10 2 
150 5 10 5 2 

(Taixxxc) 64 10 20 10 2 
256 2 5 5 2 

Thonemann 30 10 20 10 2 
40 20 10 10 2 
150 5 10 10 2 

Wilhelm 50 15 20 10 2 
100 10 10 10 2 
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7.1.3.3 Performance Measures 

For comparison of objective values, we have used the following relative percentage 

difference in objective value: 

 

                                                                                                                                  

                                                                                                                                 (7.14) 

 

 

where Heuristicsol and Optsol denote the best objective function value obtained by the 

WFA and the best known value in the literature, respectively. 

The best known values from the literature are used as the reference values for the 

evaluation and comparison of the WFA and other algorithms for solving the QAP. These 

values may be obtained from the optimal solutions of the benchmark instances used, or the 

best solutions found by some algorithm so far. Thus, the comparison results may be 

negative values if the WFA finds a better solution.  

For evaluation and comparison of the overall performance of algorithms, we have used 

criteria such as the average relative percentage difference for all instances solved and the 

number of the best known solutions obtained in all instances solved. Thus, the algorithm 

with a smaller average relative percentage difference and a larger number of the best 

known solutions obtained would be considered to be a more effective optimization method. 
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7.1.3.4 Computational Results 

The computational results and comparisons with other meta-heuristic algorithms, such as 

GRASP, ANT, GGA, PGA, IFLS, MSA, and PHAS, are shown in Tables 7.2a to 7.2e, 

while the improvement results obtained by the variants of WFA for the QAP benchmark 

instances that have not been solved optimally by the 2-opt WFA are displayed in Table 7.3. 

In Tables 7.2a to 7.2e, the column with the best results of WFA shows the best solutions 

obtained by the random 2-opt WFA and the variants of WFA. Since the details of the 

computation time of applying PHAS to the QAP instances were not shown in Ramkumar 

et al. (2009), we did not include this information in Tables 7.2a to 7.2e. In addition, the 

symbol “—” in the entries of these tables is used to indicate that the compared algorithms 

have not solved the respective benchmark instances. For Table 7.3, the entries displayed in 

italic font highlight the best results obtained by the respective variant of the WFA. 

From Table 7.3, we can see that the systematic generator 2-opt WFA, the random 2-

opt mirror WFA and the WFA-3-opt have obtained better results than the random 2-opt 

WFA for some of the instances when the random 2-opt WFA was unable to obtain the best 

known solution. In particular, these variants improved the solution quality for 25 instances. 

From the best results obtained by the WFA in Tables 7.2a to 7.2e, it can be seen that 

out of the 134 instances from the QAPLIB (Burkard et al., 1997), the best known solutions 

for 99 instances have been obtained by the WFA within reasonable computation time. The 

WFA is also able to obtain solutions with a relative percentage difference of less than 2% 

for all the remaining instances. The average relative percentage difference of WFA for all 

the 134 instances is found to be 0.20%. 
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Table 7.2a   Comparison Results of the WFA with Other Algorithms for Burkard’s and Christofides’ Instances 

Instances 
Best 

known 
value 

Random 2-opt WFA Best results of 
WFA GRASP ANT GGA PGA IFLS MSA PHAS 

Best 
solution 

Time 
(s) BestΔ Time (s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ  

Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ  
Bur26a 5426670 5426670 140.0 0 140.0 0 11.38 0 21.07 0 235 0 125 0 61.27 — — 0
Bur26b 3817852 3817852 108.0 0 108.0 0 59.45 0 35.03 0 225 0 9.5 0 60.27 — — 0
Bur26c 5426795 5426795 80.0 0 80.0 0 5.16 0 19.09 0 227 0 7.42 0 57.78 — — 0
Bur26d 3821225 3821225 126.0 0 126.0 0 15.12 0 19.4 0 213 0 8.42 0 61.27 — — 0
Bur26e 5386879 5386879 145.0 0 145 0 17.63 0 20.53 0 218 0 10.03 0 57.83 — — 0
Bur26f 3782044 3782044 197.0 0 197 0 5.05 0 11.23 0 204 0 6.68 0 59.19 — — 0
Bur26g 10117172 10117172 129.0 0 129 0 22.58 0 18.67 0 194 0 9.99 0 57.72 — — 0
Bur26h 7098658 7098658 97.0 0 97 0 37.58 0 5.67 0 204 0 6.82 0 57.47 — — 0
Chr12a 9552 9552 2.1 0 2.1 — — — — 0 19.6 0 0.54 0 1.09 0 40 0
Chr12b 9742 9742 1.8 0 1.8 — — — — 0 18.4 0 0.42 0 1.11 0 41 0
Chr12c 11156 11156 2.2 0 2.2 — — — — 0 20.2 0 1.29 0 1.02 0.26 38 0.27
Chr15a 9896 9896 11.4 0 11.4 — — — — 0.4 40.6 0 1.5 0 2.97 0 69 0
Chr15b 7990 7990 15.4 0 15.4 — — — — 0 41.8 0 1.31 0 3.08 2.7 72 0
Chr15c 9504 9504 14.3 0 14.3 — — — — 0 44 0 1.30 0 2.64 11.5 69 6.36
Chr18a 11098 11098 40.0 0 40 — — — — 0.4 79 0 2.11 5.14 7.23 1.71 103 14.25
Chr18b 1534 1534 37.0 0 37 — — — — 0 78.8 0 2.62 0 5.30 0 105 0
Chr20a 2192 2192 149.0 0 149 1.82 509 0 331 0 94.6 0.18 3.61 4.38 10.95 0 131 1.82
Chr20b 2298 2298 127.0 0 127 5.92 195 2.79 375 5.13 96.4 3.12 3.32 5.40 8.61 0 127 4.96
Chr20c 14142 14142 72.0 0 72 0.00 9.23 0 29.49 0 97.8 4.51 1.77 0 13.55 0 140 0
Chr22a 6156 6156 285.0 0 285 2.31 201 0 315 0.75 146 0 4.52 0.88 19.11 5.7 164 0.32
Chr22b 6194 6194 283.0 0 283 2.58 213 0.97 162 0 152 1.46 5.26 1.68 17.00 8.5 163 0
Chr25a 3796 3796 455.0 0 455 2.32 115 0 236 0 194 2.27 5.97 11.17 33.59 0 591 0
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Table 7.2b   Comparison Results of the WFA with Other Algorithms for Elshafei’s, Eschermann’s, Hadley’s, and Krarup’s 

Instances 

Instances 
Best 

known 
value 

Random 2-opt WFA Best results 
of WFA GRASP ANT GGA PGA IFLS MSA PHAS 

Best solution Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ  
Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ  

Els19 17212548 17212548 67 0 67 — — — — 0 80.6 0 44.46 — — — — 0
Esc16a 68 68 0.1 0 0.1 — — — — 0 47.4 0 5.13 0 3.17 0 61 0
Esc16b 292 292 0.1 0 0.1 — — — — 0 48.2 0 0.19 0 2.75 0 60 0
Esc16c 160 160 0.1 0 0.1 — — — — 0 53.4 0 0.44 0 4.03 0 68 0
Esc16d 16 16 0.1 0 0.1 — — — — 0 53.2 0 0.5 0 3.98 — — 0
Esc16e 28 28 0.1 0 0.1 — — — — 0 46.8 0 0.32 0 2.28 — — 0
Esc16f 0 0 0.1 0 0.1 — — — — 0 46.0 — — 0 1.11 — — 0
Esc16g 26 26 0.1 0 0.1 — — — — 0 49.8 0 0.29 0 2.77 — — 0
Esc16h 996 996 0.1 0 0.1 — — — — 0 48.0 0 0.22 0 2.13 0 65 0
Esc16i 14 14 0.1 0 0.1 — — — — 0 51.6 0 0.16 0 2.05 — — 0
Esc16j 8 8 0.1 0 0.1 — — — — 0 402 0 0.32 0 2.91 — — 0
Esc32a 130 130 866 0 866 1.54 7.03 0 226 0 382 1.52 97.04 0 137 — — 0
Esc32b 168 168 258 0 258 0 2.80 0 40.59 0 400 0 33.61 0 110 — — 0
Esc32c 642 642 2.6 0 2.6 0 0.00 0 0.08 0 389 0 2.01 0 54.7 — — 0
Esc32d 200 200 39 0 39 0 1.92 0 2.13 0 353 0 2.76 0 74.3 — — 0
Esc32e 2 2 1 0 1 0 0.00 0 0.05 0 370 0 0.66 0 46.09 — — 0
Esc32g 6 6 1 0 1 0 0.00 0 0.07 0 371 0 1.27 0 28.41 — — 0
Esc32h 438 438 141 0 141 0 3.41 0 2.64 0 349 0 6.54 0 85.75 — — 0
Esc64a 116 116 47 0 47 — — — — 0 2631 0 194 0 1522 — — 0
Esc128 64 64 6976 0 6976 — — — — — — 0 1631 — — — — 0
Had12 1652 1652 1.1 0 1.1 — — — — — — 0 4.27 0 0.97 0 41 0
Had14 2724 2724 2.7 0 2.7 — — — — — — 0 10.25 0 1.97 0 64 0
Had16 3720 3720 7.4 0 7.4 — — — — — — 0 5.38 0.05 3.64 0 88 0
Had18 5358 5358 23 0 23 — — — — — — 0 18.54 0 6.52 0 118 0
Had20 6922 6922 48 0 48 0 2.8 0 159 — — 0 15.26 0 10.58 0 148 0
Kra30a 88900 88900 2040 0 2040 0.00 292 0 199 0 301 0.89 71 1.34 106 — — 0
Kra30b 91420 91420 2095 0 2095 0.32 268 0 140 0 331 0 123 0.13 102 — — 0.08
Kra32 88700 88700 2052 0 2052 — — — — — — — — 0 172 — — 0
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Table 7.2c   Comparison Results of the WFA with Other Algorithms for Li & Pardalos’ and Skorin-Kapov’s Instances 

Instances 
Best 

known 
value 

Random 2-opt WFA Best results of 
WFA GRASP ANT GGA PGA IFLS MSA PHAS

Best solution Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ  
Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ  

Lipa20a 3683 3683 65 0 65 0 0.99 0 107 0 74.8 0 0.59 0 16.11 — — 0
Lipa20b 27076 27076 76 0 76 0 0.66 0 0.00 0 74.4 0 0.39 0 16.78 — — 0
Lipa30a 13178 13178 352 0 352 0 46.43 0 54.85 0 345 0 5.66 0 120 — — 0.99
Lipa30b 151426 151426 349 0 349 0 7.31 0 0.00 0 337 0 2.78 0 122 — — 0
Lipa40a 31538 31538 3065 0 3065 1.13 306.00 1.02 281 0.96 1022 0 19.46 0 490 — — —
Lipa40b 476581 476581 1981 0 1981 0 6.21 0 0 0 1026 0 9.52 0 486 — — —
Lipa50a 62093 62619 4099 0.80 4568 — — — — 0.95 1486 0.82 57.32 1.02 1556 — — 0
Lipa50b 1210244 1210244 3578 0 3578 — — — — 0 1509 0 39.96 0 1462 — — 0
Lipa60a 107218 108103 6025 0.79 12396 — — — — 0.77 3057 0.64 137 0.84 3668 — — 0.81
Lipa60b 2520135 2520135 4112 0 4112 — — — — 0 3047 0 86.13 0 3724 — — 0
Lipa70a 169755 170956 8057 0.71 8057 — — — — 0.71 6148 0.62 233 0.77 8067 — — —
Lipa70b 4603200 4603200 8503 0 8503 — — — — 0 6123 15.9 196 0 7762 — — —
Lipa80a 253195 254853 10144 0.63 17685 — — — — 0.61 9519 0.61 373 0.67 15220 — — —
Lipa80b 7763962 7763962 10800 0 10800 — — — — 0 9499 16.56 332 20.33 15965 — — —
Lipa90a 360630 362854 12812 0.57 26123 — — — — 0.58 12358 0.54 592 0.63 27909 — — —
Lipa90b 12490441 12490441 25677 0 25677 — — — — 0 12319 0 503 0 27788 — — —
Sko42 15812 15836 4691 0.03 6961 — — — — 0.25 1006 0.35 365 0.30 614 — — 0
Sko49 23386 23510 5051 0.32 8158 — — — — 0.21 1252 0.19 714 0.45 1318 — — 0.05
Sko56 34458 34568 4792 0.20 8537 — — — — 0.02 2976 0.06 907 0.47 2613 — — 0.12
Sko64 48498 48796 5624 0.31 14405 — — — — 0.22 3788 0.09 1399 0.25 4936 — — 0
Sko72 66256 66660 7454 0.47 19254 — — — — 0.29 5078 0.21 1987 0.73 8663 — — 0.03
Sko81 90998 91452 7449 0.50 7449 — — — — 0.20 10964 0.12 2680 0.43 16960 — — 0.05
Sko90 115534 116922 7640 0.91 21076 — — — — 0.27 12698 0.43 3822 0.45 28787 — — 0.02
Sko100a 152002 153426 8767 0.94 8767 — — — — 0.21 16608 0.22 1486 1.30 309 — — 0.19
Sko100b 153890 155288 6724 0.85 7574 — — — — 0.14 14729 0.30 1405 2.34 274 — — —
Sko100c 147862 149628 7476 1.15 8576 — — — — 0.20 20314 0.06 873 1.50 284 — — —
Sko100d 149576 151196 8335 0.97 19097 — — — — 0.17 20302 0.27 863 1.03 293 — — —
Sko100e 149150 151056 11632 0.90 26534 — — — — 0.24 21127 0.33 745 1.55 301 — — —
Sko100f 149036 150510 9172 0.91 10200 — — — — 0.29 21479 0.41 781 1.73 285 — — —
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Table 7.2d   Comparison Results of the WFA with Other Algorithms for Nugent’s, Roucairol’s, Scriabin’s, Steinberg’s, 

Thonemann’s, and Wilhelm’s Instances 

Instances 
Best 

known 
value 

Random 2-opt 
WFA 

Best results of 
WFA GRASP ANT GGA PGA IFLS MSA PHAS 

Best 
solution 

Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ  
Nug12 578 578 1.6 0 1.6 — — — — 0 19 0 6.84 0 1.41 0 36 0
Nug14 1014 1014 2.0 0 2.0 — — — — — — 0 7.71 0.39 3.11 — — 0.2
Nug15 1150 1150 5.8 0 5.8 — — — — 0 41.4 0 8.3 0 4.02 0 73 0
Nug16a 1610 1610 16.3 0 16.3 — — — — — — 0 11.24 0 5.59 — — 0
Nug16b 1240 1240 18.1 0 18.1 — — — — — — 0 11.02 0 5.59 — — 0
Nug17 1732 1732 22.3 0 22.3 — — — — — — 0 11.95 0 7.31 — — 0
Nug18 1930 1930 31.1 0 31.1 — — — — — — 0.31 13.56 0 9.55 — — 0
Nug20 2570 2570 74.6 0 74.6 0 2.53 0 119 0 97.8 0 20.73 0 16.06 0 132 0
Nug21 2438 2438 135 0 135 — — — — — — 0 29.80 0 20.63 — — 0
Nug22 3596 3596 119 0 119 — — — — — — 0 43.82 0 25.84 — — 0
Nug24 3488 3488 183 0 183 — — — — — — 0 33.83 0 39.75 — — 0.06
Nug25 3744 3744 181 0 181 — — — — — — 0 42.10 0 47.66 — — 0
Nug27 5234 5234 225 0 225 — — — — — — — — 0 80.56 — — 0
Nug28 5166 5166 276 0 276 — — — — — — — — 0.12 98.33 — — 0
Nug30 6124 6124 644 0 644 0.42 523 0 181 0.07 354 0.42 109 2.12 117 0.06 887 0.07
Rou12 235528 235528 1.2 0 1.2 — — — — 0 19.6 0 0.30 0 1.06 0 35 0
Rou15 354210 354210 3.4 0 3.4 — — — — 0 34.6 0 0.56 0 2.95 0.71 71 0
Rou20 725522 725522 57.8 0 57.8 0 165 0 245 0.16 75.2 0 1.43 0.02 11.73 0.06 127 0
Scr12 31410 31410 1.3 0 1.3 — — — — 0 18.8 0 0.44 0 1.11 0 38 0
Scr15 51140 51140 4.6 0 4.6 — — — — 0 35.2 0 0.42 0 3.09 0 78 0
Scr20 110030 110030 23.4 0 23.4 0 157 0 46.1 0 79.6 0 1.57 0 12.69 2.13 137 0
Ste36a 9526 9526 3057 0 3057 1.81 276 0.76 295 0.27 710 0 221 0 204 — — —
Ste36b 15852 15852 3425 0 3425 0.92 180 0.25 213 — — 0 235 3.43 222 — — —
Ste36c 8239110 8239110 3696 0 3696 0.89 142 0.33 321 — — 0 24.07 — — — — —
Tho30 149936 149936 1379 0 1379 0.00 216 0 288 0 396 0 132 0.29 119 — — —
Tho40 240516 240620 3704 0.04 3704 1.17 184 0.66 312 0.32 958 0.05 344 0.53 502 — — —
Tho150 8133398 8238058 21600 1.29 21600 — — — — — — 0.41 729 — — — — —
Wil50 48816 48916 3933 0.06 11856 — — — — 0.07 2115 0 695 0.28 1499 — — —
Wil100 273038 274446 15320 0.34 23725 — — — — 0.2 20544 0.15 1252 0.27 51121 — — —
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Table 7.2e   Comparison Results of the WFA with Other Algorithms for Taillard’s Instances 

Instances Best known 
value 

Random 2-opt WFA Best results of 
WFA GRASP ANT GGA PGA IFLS MSA PHAS 

Best 
solution 

Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ  
Time 

(s) BestΔ Time 
(s) BestΔ Time 

(s) BestΔ Time 
(s) BestΔ  

Tai12a 224416 224416 0.7 0 0.7 — — — — — — 0 0.18 0 1.05 0 35 0
Tai12b 39464925 39464925 0.5 0 0.5 — — — — — — 0 0.62 0 1.03 0.03 53 0
Tai15a 388214 388214 8.1 0 8.1 — — — — — — 0 0.69 0 2.99 0.39 73 0.01
Tai15b 51765268 51765268 4.2 0 4.2 — — — — — — 0 0.7 0 3.05 0.47 77 0
Tai17a 491812 491812 18 0 18 — — — — — — 0.55 0.96 0.38 5.55 0 86 0.56
Tai20a 703482 703482 860 0 860 0 484 0 160 — — 0.84 1.38 0.47 11.42 0.21 124 0.8
Tai20b 122455319 122455319 22 0 22 — — — — — — 0 2.70 0 12.52 5.6 167 0
Tai25a 1167256 1169030 1157 0 7268 1.43 355 0.55 206 — — 0.77 3.27 2.00 33.03 — — 1.57
Tai25b 344355646 344355646 332 0 332 — — — — — — 0 3.77 5.59 35 — — 0
Tai30a 1818146 1832590 1969 0.57 2623 1.58 265 1.46 332 — — 1.34 6.72 1.11 83.06 — — 1.37
Tai30b 637117113 637117113 3169 0 3169 — — — — — — 0 14.11 2.22 81 — — 0
Tai35a 2422002 2436540 2477 0.59 6185 1.90 531 1.64 232 — — 1.29 12.09 1.24 177 — — 1.3
Tai35b 283315445 283315445 4749 0 4749 — — — — — — 0 23.9 3.54 186 — — 0.19
Tai40a 3139370 3160484 4612 0.67 4612 2.20 325 2.05 253 — — 1.08 18.37 1.85 354 — — 1.7
Tai40b 637250948 637250948 5355 0 5355 — — — — — — 0 36.95 5.60 328 — — 0
Tai50a 4938796 5031472 5354 1.46 11342 — — — — — — 1.31 58.21 2.25 1104 — — 2.48
Tai50b 458821517 458926056 7166 0.02 7166 — — — — — — 0 64.77 0.42 1032 — — 0
Tai60a 7205962 7342990 9962 1.55 14450 — — — — — — 1.79 104 2.75 2740 — — 2.37
Tai60b 608215054 612153786 8584 0.65 8584 — — — — — — 0 148 0.47 2621 — — 0.02
Tai64c 1855928 1855928 5834 0 5834 — — — — — — 0 28.96 0.03 237 — — 0
Tai80a 13511780 13821180 10084 1.87 27967 — — — — — — 1.41 360 2.46 11333 — — 2.37
Tai80b 818415043 827982667 15800 1.17 15800 — — — — — — 0.03 424 2.79 10533 — — 0
Tai100a 21052466 21538854 11274 1.76 36544 — — — — — — 1.29 785 2.33 35781 — — —
Tai100b 1185996137 1198498100 20268 1.05 20268 — — — — — — 0.32 855 0.52 34336 — — —
Tai150b 498896643 508566248 44677 1.94 44677 — — — — — — 0.2 3414 0.38 290186 — — —
Tai256c 44759294 44896638 35434 0.27 367250 — — — — — — 0.16 1956 0.27 73180 — — —
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Table 7.3   Improved Results of the WFA Variants for the QAP Instances Not Optimally Solved by 2-Opt WFA 

Instances 
Best 

known 
value 

Random 2-opt WFA Systematic generator 
2-opt WFA 

Random 2-opt  
mirror WFA WFA-3-opt 

Best  
solution Time (s) Best  

solution Time (s) Best  
solution Time (s) Best  

solution Time (s)

Lipa50a 62093 62619 4099 62703 5099 62666 6481 62593 4568
Lipa60a 107218 108103 6025 108172 10534 108070 12396 108070 12396
Lipa80a 253195 254853 10144 254840 17053 254800 17685 254800 17685
Lipa90a 360630 362854 12812 362906 19905 362673 26123 362673 26123
Sko42 15812 15836 4691 15816 6961 15830 8252 15816 6961
Sko49 23386 23510 5051 23460 8158 23474 8971 23460 8158
Sko56 34458 34568 4792 34528 8537 34558 11047 34528 8537
Sko64 48498 48796 5624 48648 14405 48758 13885 48648 14405
Sko72 66256 66660 7454 66570 19254 66820 15072 66570 19254
Sko90 115534 116922 7640 116968 18859 116632 20212 116590 21076
Sko100b 153890 155288 6724 155728 18431 155398 21747 155204 7574
Sko100c 147862 149628 7476 149862 17480 149990 19819 149564 8576
Sko100d 149576 151196 8335 151186 19884 151022 19097 151022 19097
Sko100e 149150 151056 11632 151140 19147 150588 25371 150498 26534
Sko100f 149036 150510 9172 151032 18680 150794 21531 150390 10200
Tai25a 1167256 1169030 1157 1169030 2453 1167256 7268 1167256 7268
Tai30a 1818146 1832590 1969 1828576 2623 1830918 10287 1828576 2623
Tai35a 2422002 2436540 2477 2436458 6185 2443826 9234 2436458 6185
Tai50a 4938796 5031472 5354 5010798 11342 5026322 15100 5010798 11342
Tai60a 7205962 7342990 9962 7317694 14450 7353798 19163 7317694 14450
Tai80a 13511780 13821180 10084 13790286 12708 13764720 27967 13764720 27967
Tai100a 21052466 21538854 11274 21577638 17538 21422344 36544 21422344 36544
Tai256c 44759294 44896638 35434 44879868 367250 44881948 103680 44879868 367250
Wil50 48816 48916 3933 48856 13800 48846 11856 48846 11856
Wil100 273038 274446 15320 274244 18825 274608 27522 273980 23725
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When compared with other meta-heuristic algorithms, namely GRASP, ANT, GGA, 

PGA, IFLS, MSA, and PHAS, it can be seen from Tables 7.2a to 7.2e that WFA 

outperforms  GRASP,  ANT, and  MSA in all  the  instances, and  also  outperforms  

GGA,PGA, IFLS, and PHAS in many of the instances. When comparing the overall 

performance using the average relative percentage difference, as well as the number of the 

best known solutions obtained, the WFA dominates these meta-heuristic algorithms as 

shown in Figure 7.3, especially when compared with the GRASP, the ANT, the IFLS, and 

the MSA. This shows that the WFA is able to obtain good results when compared to other 

efficient meta-heuristic algorithms. 

7.2 Vehicle Routing Problem 

In this section, we present the two-level WFA for solving VRP. In this algorithm, the first 

level focuses on solving the VRP with relaxation of integrality constraints. Then at the 

second level, a modified WFA uses the initial solutions obtained by the first level to 

search for the optimal solutions. Here, we illustrate the performance of the 2LWFA with 

the CVRP. The performance of the 2LWFA has been tested on some CVRP benchmark 

instances obtained from the literature. The experimental results obtained are compared 

with the best known solutions found from the literature, and they demonstrate the 

efficiency of the 2LWFA for solving the CVRP. 

7.2.1 Capacitated Vehicle Routing Problem 

In the field of logistics and supply chain management, how to arrange an appropriate 

supplier-to-customer assignment and determine an efficient distribution routing is very 
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important. A good solution can not only improve the efficiency in operation, but also 

significantly reduce operating costs. Many problems that originate from these concerns are 

classified as VRPs, which are NP-hard problems (Toth and Vigo, 2002).  

The CVRP can be considered as one of the typical VRPs. This problem consists of a 

fleet of vehicles with pre-specified limited capacity, which has to serve a set of customers 

with specific demands. In this thesis, we have focused on the CVRP with one depot. 

Hence, the vehicles must start and end at the same depot. The CVRP aims to assign the 

vehicles to the customers and to find the efficient routes of the vehicles so that total travel 

distance (or time) is minimized. The problem has some important constraints, such as (1) 

total demand of the customers served by a vehicle should not exceed the capacity of the 

vehicle, (2) one customer can only be served by one vehicle, (3) all customers must be 

served, (4) the number of vehicles used cannot exceed the number of given vehicles. In 

this problem, the distance between the depot and customers, as well as between a 

customer and other customers, are also given.   

There are many research works related to the CVRP. Among them, the works that 

formulate the CVRP as an integer linear programming problem have generally led to 

effective exact solution approaches for this problem. In this research work, we have used 

the integer linear programming formulation presented in Kulkarni and Bhave (1985) and 

corrected in Imdat et al. (2004). The integrality constraints of the formulation are relaxed 

to allow the first level of the 2LWFA to find good initial solutions.  
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7.2.2 Two-level WFA for the CVRP 

A 2LWFA has been proposed for solving the CVRP. The first level of this algorithm is to 

solve the mathematical programming model of the CVRP with the relaxation of the 

integrality constraints. This is to reduce the computation time of obtaining good initial 

solutions for the 2LWFA. Then, the obtained optimal solution is adjusted by a check-and-

fit procedure, and a perturbation scheme is applied to generate a set of initial feasible 

solutions for the second level of this algorithm. At the second level, a modified WFA is 

applied to search for optimal solutions from the initial seed solutions. 

7.2.2.1 First Level 

The efficiency and effectiveness of solving the CVRP based on the mathematical 

programming formulation depends on the solvers used. Most solvers require large 

amounts of computation time and may fail to return solutions for problems with large size. 

To avoid this problem and reduce the computation effort required, we relax the integrality 

constraints of the CVRP. In particular, we focus on the decision variable Xij in the 

mathematical programming formulation of the CVRP. It is a binary variable that is equal 

to 1 if and only if customers (or depot) i and j are connected. We relax these variables to 

real numbers in [0, 1] and solve the resulting relaxed model with the commercial 

optimization package LINGO 5.0. This relaxed CVRP model can be described by the 

equations from (7.15) to (7.23). In these equations, n is the number of customers, m is the 

number of routes, and Cij represents the cost or distance between customers i and j. 

Variables Xij or Xji exist only if i jq q Q+ ≤ , where qi and qj represent the demand of 

customers i and j respectively, and Q is the maximum capacity of the vehicle. A variable 
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ui is associated with each customer i, which is used to formulate equation (7.20) to ensure 

that the solution contains no sub-tours disconnected from the depot. Other equations 

represent the common constraints of the CVRP described in Section 7.2.1. 
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For the resulting optimal solution, we arrange the values of decision variables in a 

descending order. Those Xij variables with large values can be considered to be potential 

connections of customers (or depot) i and j. As such, we will assign these Xij to be 1. Also, 

we check the feasibility of the assignment based on the constraints of the CVRP, and fit in 

the most appropriate assignment. This check-and-fit procedure is performed iteratively 

until a feasible solution of the CVRP is determined. Then, a perturbation scheme based on 

the cross-exchange procedure in Taillard et al. (1997) is used to generate a set of seed 

solutions from the feasible solution. This cross-exchange procedure can be illustrated by 
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Figure 7.4. In this figure, the square and circles represent the depot and the customers 

respectively. Each route begins and ends at the same depot (or square). Firstly, we remove 

two edges (A1, A1’) and (B1, B1’) from route 1, and two edges (A2, A2’) and (B2, B2’) 

from route 2. Next, the segments (A1’, B1) and (A2’, B2) which may include some 

customers are swapped to formulate the new routes, i.e., new route 1 contains the new 

edges (A1, A2’) and (B2, B1’), while new route 2 contains (A2, A1’) and (B1, B2’). 

These new routes are accepted only when they satisfy all constraints of the CVRP. 

 

 

 

 

 

 

 

  

 

Figure 7.4   The Cross-Exchange Procedure (Taillard et al., 1997) 
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E-n13-k4, which has 12 customers served by 4 vehicles. Firstly, we use LINGO 5.0 to 

solve the problem, and the values of the decision variables obtained are as follows: X0,1 = 

X0,2 = X0,6 = X0,9 = X1,0 = X2,0 = X3,0 = X6,0 = X9,12 = X12,3 = 1; X4,7 = X4,11 = X7,8 = X5,10 = X7,4 

= X7,10 = X8,5 = X8,11 = X10,5 = X10,7 = X11,4 = X11,8 = 0.5; X2,7 = 0.28; and all the rest of the 

variables Xi,j = 0. Here, index 0 denotes the depot. Secondly, we apply the check-and-fit 

procedure to obtain a feasible solution. In particular, we consider the decision variables 

whose value is 1. The corresponding customers in the decision variables are assigned in 

the same route. For example, we have X0,1 = X1,0 = 1, and also we assign customer 1 into 

route 1. Similarly, we obtain 4 partial routes, i.e., route 1: (1), route 2: (2), route 3: (6), 

and route 4: (9, 12, 3). Route 4 consists of 3 customers since X0,9 = X9,12 = X12,3 = X3,0 = 1. 

Next, we consider whether any customer is connected with a customer assigned in the 

partial routes. In this case, we see that only X2,7 = 0.28, and thus we assign customer 7 into 

route 2. In addition, since X7,4 = X4,11 = 0.5, we also assign customers 4 and 11 into route 2, 

i.e., route 2: (2, 7, 4, 11). Although we still have X11,8 = 0.5, we do not assign customer 8 

into route 2, since including customer 8 would violate the constraint of maximum capacity 

of each vehicle. Moreover, we chose the customer 4 instead of customer 8 to assign into 

route 2 after assigning customer 7. This is because we choose based on the minimum 

distance between customers. Here, the distance between customers 7 and 4 is shorter than 

the distance between customers 7 and 8. Since we do not have any nonzero decision 

variable that may connect the unassigned customers with the last customer in the partial 

routes, we consider and choose the customer with minimum distance between it and the 

last customer in partial routes. Here, we will assign customer 10 into route 3. Because of 

X10,5 = 0.5, we also assign customer 5 right after customer 10 in route 3. After applying the 

check-and-fit procedure, we construct a feasible solution with 4 complete routes, i.e., route 



Chapter 7   WFA for Other Combinatorial Optimization Problems 

186 
 

1: (1, 8), route 2: (2, 7, 4, 11), route 3: (6, 10, 5), and route 4: (9, 12, 3). The total 

corresponding travel distance is 307. Based on the cross-exchange procedure described 

above, the feasible solution is used to generate a set of seed solutions that are then used as 

initial solutions in the modified WFA. 

A flow chart of the first level of the 2LWFA for the CVRP is shown in Figure 7.5. 

Relax the integrality constraints of the 
mathematical programming  
formulation of the CVRP

Solve the relaxed formulation of the 
CVRP

Apply the check-and-fit procedure to 
obtain a feasible solution for the CVRP

Use a perturbation scheme to construct 
a set of initial seed solutions from the 

feasible solution obtained

Assign the number of DOWs  
corresponding to the number of initial 

seed solutions generated

Start the first level

End the first level

 

Figure 7.5   Flow Chart of the First Level of the 2LWFA for the CVRP 
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7.2.2.2 Second Level 

After constructing a set of seed solutions, a modified WFA is applied to search for optimal 

solutions from the seed solutions. Basically, this algorithm is similar to the WFA 

described in Chapter 3. However, a new solution representation for the CVRP is being 

used in the modified WFA. Also, a variable neighborhood structure based on the k-opt 

algorithm is used in the erosion process to enhance the flexibility and efficiency of this 

process. From the literature, the k-opt algorithm with 5k ≥  has obtained solutions with 

insignificant improved quality compared to the  k-opt  algorithm with other smaller values 

of k, and yet requires a large amount of computation time. Hence, we chose the value of k 

to be 3 and 4 for the variable neighborhood structure in the erosion process of the 

modified WFA. The implementation of this variable neighborhood search is similar to the 

method in Hansen and Mladenovic (2001). For the neighborhood structure in the 

exploration phase of the modified WFA, the 2-opt algorithm is used. 

The WFA encodes a feasible solution of an optimization problem and its objective 

value into a DOW, which is a component of a cloud representing a pool of solutions. For 

the CVRP, we consider the values of the coordinates (X, Y) as the longitude and latitude 

in the position of DOW on the ground, while the total traveling distance/time is encoded as 

the altitude. In some instances when the values of coordinates (X, Y) for the depot and 

customers are not known, we use the solution representation of the CVRP with specific 

routes for vehicles. Actually, this solution can also be expressed by the values of 

coordinates (X, Y) with the corresponding sequences.    
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We use an example to illustrate the solution representation of the CVRP. Here, we 

denote integer 0 to be the depot, and other integers from {1, 2,…, n} to be the customers. 

For example, a solution representation may then be shown as [0, 2, 1, 3, 0, 5, 4, 6]. This 

solution includes two vehicles: a vehicle starts from the depot to serve the customers with 

routing 2, 1, and 3, and goes back to the depot; another vehicle starts from the depot to 

serve the customers with routing 5, 4, and 6, and goes back to the depot. With this solution 

representation, integer 0 can appear many times in the solution depending on the number 

of vehicles given, but other integers can only appear once in the solution. This is suitable 

for the constraints of the VRP presented in this chapter. Figure 7.6 shows an example of a 

DOW and its positional vector components for the CVRP with n = 6 customers and 2 

vehicles.   

 

Figure 7.6   An Example of Solution Representation in the 2LWFA for the CVRP 

A flow chart of the modified WFA of 2LWFA for the CVRP is shown in Figure 7.7. 
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Update the E-list
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No

Yes

End the second level

Start the second level

 
 

           Figure 7.7   Flow Chart of the Modified WFA for the CVRP 

7.2.3 Preliminary Experiments 

The 2LWFA has been coded using Visual Basic 6.0 and linked with LINGO 5.0. All 

preliminary experiments have been performed on an Intel Centrino Duo 1.60 GHz CPU 

with 1.5 GB of RAM. Here, the computational complexity of the 2LWFA for the CVRP is 

determined  based  on  the  neighborhood  structure  used  and the  erosion  process of  this 
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algorithm. In particular, the 2LWFA used k-opt neighborhood structure (k = 3 or 4), and 

the worst possibility of the erosion process is to find for all n directions. Thus, the 

computational complexity of the 2LWFA is estimated to be O(n5). 

These experiments are carried out on the benchmark instances of Christofides and 

Eilon (1969) and Fisher (1994) taken from the literature for the CVRP. The best known 

values of the benchmark instances from the literature are also used as reference values for 

the evaluation of the WFA for solving the CVRP. These values may be obtained from the 

optimal solutions of the benchmark instances used, or the best solutions found by some 

algorithm so far. The results obtained are shown in Table 7.4. The choice of parameters 

for the 2LWFA was determined by design-of-experiment methods and the best values of 

the parameters include MaxCloud = 20, MaxPop = 10, MinEro = 3, and MaxUIE = 5. 

From Table 7.4, we see that the 2LWFA can obtain optimal solutions for the instances 

with small and medium size within reasonable computation time. For instances with larger 

size, i.e., F-n72-k4, E-n76-k7, and E-n101-k8, the proposed algorithm can also find 

solutions with a relative deviation of 1.7%, 0.6%, and 4.4% over the optimal/best known 

solution, respectively. The average relative percentage difference for all instances is only 

0.6%. 

The results from Table 7.4 also show that the solution obtained by 2LWFA achieved 

an average improvement of 20.97% over the initial solution obtained by applying the 

check-and-fit procedure to the solution found using LINGO. We find that these 

improvements are more significant for the instances with larger size. 
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Table 7.4   Experimental Results for the CVRP 

Instance Optimal/Best 
known value 

Initial solution 
after applying 
check-and-fit 

procedure 

2LWFA 

CPU time (secs) 

Lingo WFA

E-n13-k4 247 307 247    0.2       0.50

E-n22-k4 375 390 375    0.5       1.75

E-n23-k3 569 623 569    0.6       4.47

E-n30-k3 534 582 534    1.0       7.50

E-n33-k4 835 910 835    1.5     35.25

E-n51-k5 521 627 521    3.0   120.15

E-n76-k7 683 843 687  18.0 1261.72

E-n101-k8 817 1012 853  50.0 4840.14

F-n45-k4 724 839 724 2.6 102.66

F-n72-k4 237 425 241 20.5 1435.72

 

7.3 Conclusions 

In this chapter, the WFA has been developed for solving other combinatorial optimization 

problems, such as the QAP and the VRP. To solve the QAP by the proposed algorithm 

with enhanced solution diversification and intensification capabilities, a systematic DOW 

generator scheme to distribute the positions of DOW is applied, while neighborhood 

structures, such as the 2-opt mirror and 3-opt, are used to focus on strong searching of 
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promising regions. The benchmark problem sets from the QAPLIB (Burkard et al., 1997) 

are used to evaluate the performance of the WFA. The computational results show that the 

WFA is able to generate optimal solutions for many benchmark problems of QAP, and 

near-optimal solutions for the remaining problems. The proposed algorithm is also 

compared with other meta-heuristic algorithms from the literature. The results of the 

comparison show that the WFA compares favorably with other meta-heuristic algorithms 

used to solve the QAP. These results have been reported in Ng and Tran (2011). 

To solve the CVRP efficiently, we developed a two-level WFA. The first level of the 

proposed algorithm is to solve the mathematical programming model of the CVRP with 

the relaxation of the integrality constraints. At the second level, a modified WFA is 

applied to search for optimal solutions from the initial solutions obtained from the first 

level. The results of the preliminary experimentations show the potential of the 2LWFA to 

solve the CVRP, as well as other types of VRPs. These results have been reported in Tran 

and Ng (2011b). 
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH WORK 

 

 

 

 

In this thesis, we have introduced a novel nature-inspired algorithm, known as the water 

flow algorithm, for solving combinatorial optimization problems. The proposed algorithm 

has simulated the hydrological cycle in meteorology and the erosion phenomenon in 

nature, which represent the solution exploration and exploitation capabilities of the 

algorithm, respectively. Many characteristics of water flow in nature, such as water always 

moving to lower positions, distributing onto many places on the ground, and eroding 

terrain, are imitated to design the operators of this algorithm. The WFA has been applied 

to solve a variety of NP-hard combinatorial optimization problems, i.e., flow shop 

scheduling problem, flexible flow shop scheduling problem with intermediate buffers, 

quadratic assignment problem, and capacitated vehicle routing problem. Also, this 

algorithm has been developed to solve multi-objective scheduling problem, which is an 

NP-hard optimization problem with many practical applications in modern production 

environment. 
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According to the literature review, there are limited meta-heuristic algorithms inspired 

by the behaviors of water flow in nature. These works have not demonstrated the 

efficiency of the algorithms for solving various optimization problems. Hence, with the 

success of the WFAs for solving such single-objective and multi-objective problems as 

illustrated in this thesis, we have put forth a new and effective nature-inspired 

optimization approach. This approach may be applied to solve other optimization 

problems by adjusting the components of the algorithms appropriately.  

Chapter 8 is organized as follows. In Section 8.1, we present some conclusions of the 

thesis. The contributions of this thesis are also highlighted in this section. Section 8.2 

provides some possible future research works. 

8.1 Conclusions 

This thesis focuses on constructing the general WFA and the implementation of this 

algorithm for solving NP-hard combinatorial optimization problems, such as the flow shop 

scheduling problem, flexible flow shop scheduling problem with intermediate buffers, 

quadratic assignment problem, and vehicle routing problem. Both single-objective and 

multi-objective optimization approaches of the WFA were also developed to solve such 

optimization problems. From the experimental results, we can conclude that the WFA is a 

promising method that is able to obtain good quality solutions to the optimization 

problems within reasonable computation time.  

The main contributions of this thesis consist of six parts, and they can be outlined as 

follows: 
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(1). A novel nature-inspired algorithm, known as the water flow algorithm, for solving 

NP-hard optimization problems was constructed. The WFA has mostly simulated 

the characteristics of water flow in nature and the components of the hydrological 

cycle in meteorology. This algorithm consists of two major phases, the solution 

exploration and exploitation phases, which are inspired by the hydrological cycle 

and the erosion phenomenon, respectively. The WFA has achieved a balance 

between the solution exploration and exploitation capabilities to search for optimal 

solutions in reasonable computation time. In the algorithm, the number of 

controlled parameters defined by users is small. Hence, the computation time 

needed by this algorithm is significantly reduced, which helps to increase the 

performance of the WFAs.   

(2). With some modifications, the WFA could be developed to solve several single-

objective NP-hard optimization problems, such as the permutation flow shop 

scheduling problem, flexible flow shop scheduling problem with intermediate 

buffers, quadratic assignment problem, and capacitated vehicle routing problem. 

For the PFSP, we have used a basic version of the WFA to solve this problem. The 

algorithm obtained the best known solutions for almost all the benchmark 

instances used, and a new best known solution of a Heller benchmark instance was 

found by this algorithm. In addition, the WFA outperforms several meta-heuristic 

algorithms used in the computational comparisons.  

(3). For the FFSP with intermediate buffers, some components of the WFA were 

modified to solve this scheduling problem. In particular, an improved procedure 

for constructing a complete schedule of the FFSP was integrated into the algorithm. 
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The procedure helps the WFA to ignore the number of machines at each stage, 

which decreases the computational complexity of the algorithm for this problem. 

Moreover, we combined the amount of precipitation and its falling force to form a 

flexible erosion capability in this algorithm. This helps the erosion process to focus 

on exploiting promising regions strongly. The experimental results show that the 

WFA is an efficient algorithm for solving benchmark instances from the literature 

and randomly generated instances. Many improved solutions to the benchmark 

problems were found by this algorithm. Also, the results demonstrate the potential 

of the algorithm to solve real-world problems, such as in maltose syrup production. 

Moreover, the comparison results show that the WFA outperforms other meta-

heuristic algorithms, such as the tabu search and memetic algorithm, for solving 

the FFSP with intermediate buffers. 

(4). The WFA is able to solve the QAP effectively. In this version of the WFA, a 

systematic DOW generator scheme to distribute the positions of DOWs was 

proposed to increase the exploration capability of the algorithm, while the 

neighborhood structures, such as the 2-opt mirror and 3-opt, were integrated to 

focus on strong searching of promising regions. The WFA obtained the best known 

solutions for 99 out of the 134 instances from the QAPLIB within reasonable 

computation time. The average relative percentage difference of the algorithm for 

all the 134 instances was found to be 0.20%. In addition, the WFA outperforms all 

the algorithms when compared in terms of average percentage difference and 

number of the best known solutions obtained. 
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(5). A two-level WFA was developed to solve vehicle routing problems. The first level 

of this algorithm is to solve the mathematical programming model of the VRPs 

with the relaxation of the integrality constraints. At the second level, a modified 

WFA is then applied to search for optimal solutions from the initial solutions 

obtained from the first level. In the modified WFA, a variable neighborhood 

structure based on the k-opt algorithm was used to enhance the flexibility and 

efficiency of the erosion process. In this thesis we illustrated the performance of 

the 2LWFA for solving the capacitated vehicle routing problem. The experimental 

results show the potential of the 2LWFA to solve this problem as well as other 

types of VRPs. 

(6). In addition to the capability of solving single-objective optimization problems, the 

WFA is also able to solve multi-objective optimization problems by modifying and 

integrating some specialized components. In this thesis, the WFA was developed 

to solve the multi-objective FFSP with intermediate buffers. In this algorithm, 

landscape analysis was performed to determine the weights of objective functions, 

which guide DOWs to exploit potential regions and move towards the optimal 

Pareto solution set. Also, the evaporation and precipitation processes were 

included into this algorithm to enhance the solution exploitation capability of the 

algorithm in potential neighboring regions. Moreover, an improvement process for 

reinforcing the final Pareto solution set obtained was proposed. The experimental 

results, based on benchmark instances taken from the literature and randomly 

generated instances, demonstrate the effectiveness and efficiency of the MOWFA. 



Chapter 8   Conclusions and Future Research Work 

198 
 

The comparison results also show that the MOWFA outperforms other algorithms 

for the test instances. 

8.2 Future Research Work 

In this section, we present some possible future research work and directions for the WFA. 

These consist of improvement and application of the algorithms.  

Firstly, the choice of parameters for the WFAs can be improved. While the current 

choice of parameters used in the WFAs for single-objective and multi-objective 

optimization problems has obtained good computational performance, further research on 

how to improve the choice of parameters used in the WFAs can still be performed. This 

would lead to greater efficiency for the WFAs when solving the optimization problems, as 

well as the possibility of obtaining solutions with better quality by the algorithms.  

Secondly, when we use the erosion process based on the lower bound of the 

optimization problem, i.e. for the flexible flow shop scheduling problem with intermediate 

buffers, the performance of this process depends on the quality of lower bound used. In 

this thesis, we only used the lower bounds from the literature. Hence, obtaining a good 

lower bound for the scheduling problem to be used in the WFA may be considered as 

possible future research work.   

Thirdly, we have illustrated the potential of the WFAs for solving other optimization 

problems in this thesis. The WFA and the MOWFA can be used to solve other types of 

single-objective and multi-objective optimization problems respectively, that are similar to 

the optimization problems investigated in this thesis, by adapting some components of the 
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algorithms appropriately. Depending on the specific structure of optimization problems 

considered, we can customize the WFAs to solve the problems efficiently and this would 

certainly be part of future research work. Some examples of such potential optimization 

problems include the job shop scheduling problem and traveling salesman problem. 

In addition, we can apply the WFA to solve the scheduling problems with other 

important objective functions, such as minimizing total flow time of jobs, minimax 

tardiness, or minimizing total idle time of machines. This helps to allow a more 

comprehensive evaluation of the performance of the WFA. We can even develop the 

WFA for solving scheduling problems with data noise and uncertainty which are 

commonly found in most practical single-objective and multi- objective problems. 

Stochastic techniques for dealing with such problems can then be integrated into the 

WFA.   

Lastly, we can extend the WFA for solving continuous optimization problems by 

designing appropriate neighborhood structures for continuous variables. Furthermore, 

some smoothing functions or methods in the field of continuous optimization may be 

integrated into the erosion process of the WFA to enhance the performance of the 

algorithm. 
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