

A WATER FLOW ALGORITHM FOR

OPTIMIZATION PROBLEMS

TRAN TRUNG HIEU

NATIONAL UNIVERSITY OF SINGAPORE

2011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48649151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A WATER FLOW ALGORITHM FOR

OPTIMIZATION PROBLEMS

TRAN TRUNG HIEU

(B.Eng. (Hons.), HCMUT)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

i

ACKNOWLEDGEMENTS

First of all, I would like to express my sincerest gratitude to my supervisor, Associate

Professor Ng Kien Ming, at the Department of Industrial and Systems Engineering,

National University of Singapore, for his encouragement and guidance throughout my

PhD studying process. His invaluable advices have helped me to successfully complete

my research work as well as thesis.

Next, I would like to thank all the lecturers of the Department of Industrial and

Systems Engineering, National University of Singapore, for their lessons which helped me

to achieve necessary and useful knowledge for my research work. I would also like to

extend my acknowledgement to the officers of the department for their assistance in

handling my administrative matters.

Finally, I would like to take this chance to express my special gratitude to my beloved

girlfriend, Ms. Ry, for her constant love and continuous support throughout my PhD

studying process.

 Tran Trung Hieu

 November 2011

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. i

TABLE OF CONTENTS .. ii

ABSTRACT ... viii

LIST OF TABLES ... x

LIST OF FIGURES .. xiii

GLOSSARY ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Combinatorial Optimization Problems ... 2

1.2 Nature Inspired Algotithms ... 4

1.3 Motivation and Research Objectives .. 7

1.4 Main Contributions of the Thesis ... 8

1.5 Outline of the Thesis ... 10

CHAPTER 2 LITERATURE REVIEW .. 13

2.1 Biologically Inspired Algorithms ... 14

2.1.1 Evolutionary Algorithms .. 14

2.1.2 Stigmergic Optimization Algorithms .. 19

2.1.3 Swarm-Based Optimization Algorithms ... 22

2.2 Botanically Inspired Algorithms ... 27

iii

2.2.1 An Invasive Weed Optimization Algorithm ... 27

2.2.2 A Botany-Grafting Inspired Algorithm .. 30

2.3 Water Flow Inspired Techniques .. 30

2.3.1 Image Processing Methods Based on Water Flow Model 30

2.3.2 Intelligent Water Drops Algorithm ... 35

2.3.3 Water Flow-Like Algorithm ... 37

2.4 Conclusions and Possible Nature-Inspired Algorithm .. 39

CHAPTER 3 A GENERAL WATER FLOW ALGORITHM 43

3.1 Hydrological Cycle in Meteorology ... 44

3.2 Erosion Process of Water Flow in Nature ... 47

3.3 General Water Flow Algorithm .. 51

3.3.1 Encoding Scheme .. 54

3.3.2 Memory Lists .. 56

3.3.3 Exploration Phase ... 57

3.3.4 Exploitation Phase .. 58

3.3.4.1 Erosion Condition and Capability .. 58

3.3.4.2 Erosion Process .. 61

CHAPTER 4 WFA FOR PERMUTATION FLOW SHOP SCHEDULING 65

4.1 Introduction .. 66

4.2 Formulation of the PFSP ... 68

4.3 WFA for the PFSP .. 69

iv

4.3.1 Encoding Scheme .. 69

4.3.2 Memory Lists .. 70

4.3.3 Exploration Phase ... 70

4.3.4 Exploitation Phase .. 71

4.3.5 A Numerical Example for Erosion Machenism .. 72

4.4 Computational Experiments and Comparisons ... 78

4.4.1 Benchmark Problem Sets .. 78

4.4.2 Platform and Parameters ... 79

4.4.3 Performance Measure ... 79

4.4.4 Computational Results .. 81

4.5 Conclusions ... 84

CHAPTER 5 WFA FOR FLEXIBLE FLOW SHOP SCHEDULING 85

5.1 Introduction .. 86

5.2 FFSP with Intermediate Buffers ... 89

5.3 WFA for the FFSP with Intermediate Buffers .. 93

5.3.1 Encoding Scheme .. 94

5.3.2 Memory Lists .. 99

5.3.3 Exploration Phase ... 100

5.3.4 Exploitation Phase .. 101

5.3.4.1 Erosion Condition and Capability .. 101

5.3.4.2 Erosion Process .. 104

5.4 An Example of the FFSP in Maltose Syrup Production 104

v

5.5 Computational Experiments and Comparisons ... 107

5.5.1 Benchmark Instances and Randomly Generated Instances 107

5.5.2 Platform and Parameters ... 109

5.5.3 Performance Measures .. 111

5.5.4 Computational Results .. 112

5.6 Conclusions ... 121

CHAPTER 6 MOWFA FOR MULTI-OBJECTIVE SCHEDULING 122

6.1 Introduction .. 123

6.2 MOFFSP with Intermediate Buffers ... 125

6.3 MOWFA for the MOFFSP with Intermediate Buffers 128

6.3.1 Encoding Scheme .. 129

6.3.2 Memory Lists .. 130

6.3.3 Exploration Phase ... 131

6.3.3.1 Distinct Regions ... 131

6.3.3.2 Landscape Analysis ... 132

6.3.3.3 Seed Job Permutations ... 134

6.3.3.4 Hill-Sliding Algorithm ... 134

6.3.4 Neighborhood Structures .. 135

6.3.5 Exploitation Phase .. 136

6.3.5.1 Erosion Condition and Capability .. 136

6.3.5.2 Erosion Process .. 138

6.3.6 Evaporation and Precipitation ... 140

vi

6.3.7 Improvement Phase ... 140

6.4 Computational Experiments and Comparisons ... 141

6.4.1 Generation of Test Problems and Benchmark Problem Set 141

6.4.2 Platform and Parameters ... 144

6.4.3 Performance Metrics ... 145

6.4.4 Computational Results .. 148

6.5 Conclusions ... 154

CHAPTER 7 WFA FOR OTHER COMBINATORIAL OPTIMIZATION

PROBLEMS ... 155

7.1 Quadratic Assignment Problem .. 156

7.1.1 Introduction .. 156

7.1.2 WFA for the QAP ... 158

7.1.2.1 Encoding Scheme and Memory Lists .. 159

7.1.2.2 Exploration Phase .. 161

7.1.2.3 Exploitation Phase ... 163

7.1.2.3.1 Erosion Condition and Capability 164

7.1.2.3.2 Erosion Process ... 164

7.1.2.4 Improvement Phase .. 166

7.1.3 Computational Experiments and Comparisons ... 166

7.1.3.1 Benchmark Problem Sets ... 168

7.1.3.2 Platform and Parameters .. 168

7.1.3.3 Performance Measures ... 171

vii

7.1.3.4 Computational Results ... 172

7.2 Vehicle Routing Problem .. 180

7.2.1 Capacitated Vehicle Routing Problem .. 180

7.2.2 Two-Level WFA for the CVRP .. 182

7.2.2.1 First Level .. 182

7.2.2.2 Second Level .. 187

7.2.3 Preliminary Experiments .. 189

7.3 Conclusions ... 191

CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH WORK 193

8.1 Conclusions ... 194

8.2 Future Research Work .. 198

REFERENCES .. 200

viii

ABSTRACT

A novel natured-inspired algorithm, called the water flow algorithm (WFA), for solving

optimization problems has been proposed in this research work. The proposed algorithm is

designed by simulating the hydrological cycle in meteorology and the erosion

phenomenon in nature. Basic operators of this algorithm are based on the raindrops

distribution simulation, the property of water flow always moving to lower positions, and

the erosion process to overcome obstacles. Depending on the structure of a specific

problem, the WFA can be appropriately customized to solve the problem efficiently.

In this thesis, we focus on solving well-known combinatorial optimization problems,

such as the permutation flow shop scheduling problem (PFSP) in production planning,

quadratic assignment problem (QAP) in facility layout design, and vehicle routing

problem (VRP) in logistics and supply chain management. The general WFA has been

customized and implemented successfully for solving these problems. For the PFSP, the

proposed algorithm obtained not only optimal solutions for several PFSP benchmark

instances taken from OR Library, but also a new best known solution for the benchmark

instance of Heller. For the QAP, the algorithm solved most QAP benchmark instances

drawn from the QAPLIB. The comparison results also show that the WFA outperforms

other algorithms in terms of solution quality for both the PFSP and the QAP. For the VRP,

the WFA is combined with solving the relaxed mathematical programming model of the

VRP to search for optimal solutions to this problem. Preliminary results show that this

ix

algorithm is able to obtain optimal solutions for some of the VRP benchmark instances

taken from the literature.

Also, the WFA has been developed to solve flexible flow shop scheduling problem

(FFSP) with intermediate buffers, which is a general case of the PFSP. The FFSP is more

complex than the PFSP since there are a number of parallel identical machines at each

stage and intermediate buffers between consecutive stages. To solve the problem, an

efficient procedure for constructing a complete schedule is required. Hence, we proposed

a procedure for constructing a complete schedule as well as determining corresponding

objective values for the FFSP. The procedure is included in the WFA to increase the

efficiency of this algorithm. The experimental results and comparisons show that the

proposed algorithm outperforms other algorithms in terms of solution quality as well as

computation time. Moreover, the WFA has obtained new upper bound solutions for

several Wittrock benchmark instances.

The WFA can also be modified to solve multi-objective optimization problems. In this

thesis, we have designed the WFA for solving multi-objective scheduling problems, called

the MOWFA. Landscape analysis as well as evaporation and precipitation processes are

integrated into the MOWFA to solve the multi-objective FFSP with limited buffers

efficiently. Experimental results show that the MOWFA outperforms an improved hybrid

multi-objective parallel genetic algorithm for the multi-objective scheduling problem.

In conclusion, the WFA is able to obtain optimal or good quality solutions to several

well-known combinatorial optimization problems within reasonable computation time. It

is thus a promising algorithm to solve other types of optimization problems as well.

x

 LIST OF TABLES

 Table 2.1 Summary of Applications of the Nature-Inspired Algorithms 41

 Table 4.1 UE-list of Local Optimal Job Permutations .. 74

 Table 4.2 Possible Erosion Directions at the Local Optimal Job Permutation 75

 Table 4.3 Steps of Finding Improvement Job Permutation .. 76

 Table 4.4 Updating the UE-list ... 77

 Table 4.5 Parameter Sets for Benchmark Problem Sets ... 80

 Table 4.6 Comparison Results between the WFA and the NEH-ALA 82

 Table 4.7 Average Relative Percentage Increase over the Best Known Solution for

Taillard’s Benchmarks Obtained by Meta-heuristic Algorithms 83

 Table 5.1 An Example of Converting FFSP with Finite Buffers to FFSP with No

Available Buffer .. 93

 Table 5.2 Problem Data for Maltose Syrup Production .. 105

 Table 5.3 Problem Data for the Instances in Wittrock (1988) 108

 Table 5.4 Parameter Sets for Benchmark Instances ... 110

 Table 5.5 Comparison Results of WFA, TS-H1/Z3, and MA with CPU Time Limit for

the TS Instances .. 113

 Table 5.6 Comparison Results of WFA, TS-H1, and MA with CPU Time Limit for

the MA Instances .. 114

 Table 5.7 Comparison Results between WFA and TS-H1/Z3 on the Randomly

Generated TS Instances ... 117

xi

 Table 5.8 Comparison Results between WFA and MA on the Randomly Generated

MA Instances .. 118

 Table 5.9 Comparison Results between WFA and TS-H1 for the FFSP with No

Available Buffer Space ... 119

 Table 5.10 Comparison Results between WFA and TS-H1 for the FFSP with Finite

Buffer Capacities .. 119

 Table 5.11 Comparison Results between WFA and TS-Z3 for the FFSP with Unlimited

Buffers ... 120

 Table 5.12 Computational Results of WFA for Maltose Syrup Production Problem .. 121

 Table 6.1 Parameter Sets of the MOWFA for Instances of the MOFFSP 145

 Table 6.2 Comparison of MOWFA and IHMOPGA for the Wittrock Benchmarks

with No Buffer .. 149

 Table 6.3 Comparison of MOWFA and IHMOPGA for the Wittrock Benchmarks

with Finite Buffers .. 149

 Table 6.4 Comparison of MOWFA and IHMOPGA for the Randomly Generated

Instances with No Buffer .. 153

 Table 6.5 Comparison of MOWFA and IHMOPGA for the Randomly Generated

Instances with Finite Buffers .. 153

 Table 7.1 Parameter Sets of WFA for the QAP Benchmark Instances 170

 Table 7.2a Comparison Results of the WFA with Other Algorithms for Burkard’s and

Christofides’ Instances .. 173

 Table 7.2b Comparison Results of the WFA with Other Algorithms for Elshafei’s,

Eschermann’s, Hadley’s, and Krarup’s Instances 174

xii

 Table 7.2c Comparison Results of the WFA with Other Algorithms for Li & Pardalos’

and Skorin-Kapov’s Instances .. 175

 Table 7.2d Comparison Results of the WFA with Other Algorithms for Nugent’s,

Roucairol’s, Scriabin’s, Steinberg’s, Thonemann’s, Wilhelm’s Instances . 176

 Table 7.2e Comparison Results of the WFA with Other Algorithms for Taillard’s

Instances .. 177

 Table 7.3 Improved Results of the WFA Variants for the QAP Instances Not

Optimally Solved by 2-Opt WFA ... 178

 Table 7.4 Experimental Results for the CVRP ... 191

xiii

LIST OF FIGURES

 Figure 1.1 A Classification of Algorithms for Combinatorial Optimization Problems ... 6

 Figure 1.2 Organization of the Thesis .. 12

 Figure 2.1 Flow Chart of Genetic Algorithm ... 16

 Figure 2.2 Flow Chart of Memetic Algorithm ... 17

 Figure 2.3 Flow Chart of Shuffled Frog-Leaping Algorithm ... 18

 Figure 2.4 Flow Chart of Ant Colony Optimization Algorithm 21

 Figure 2.5 Flow Chart of Bee Colony Optimization Algorithm 23

 Figure 2.6 Flow Chart of Particle Swarm Optimization Algorithm 25

 Figure 2.7 Flow Chart of Firefly Algorithm ... 26

 Figure 2.8 Flow Chart of Bat Algorithm .. 28

 Figure 2.9 Flow Chart of Invasive Weed Optimization ... 29

 Figure 2.10 Flow Chart of Botany-Grafting Inspired Algorithm 31

 Figure 2.11 Flow Chart of the Method Proposed by Kim et al. (2002) 32

 Figure 2.12 Flow Chart of the Improved Method Proposed by Oh et al. (2005) 33

 Figure 2.13 Procedure of Text Image Identification (Brodic and Milivojevic, 2010) 34

 Figure 2.14 Flow Chart of the IWD Algorithm (Shah-Hosseini, 2007) 36

 Figure 2.15 Flow Chart of the Water Flow-Like Algorithm (Yang and Wang, 2007) 38

 Figure 2.16 Time Line of Nature-Inspired Algorithms ... 42

 Figure 3.1 Basic Components of the Hydrological Cycle .. 45

 Figure 3.2 Erosion from Water Flow .. 47

 Figure 3.3 Factors Affecting Erosion Capability .. 49

xiv

 Figure 3.4 Illustration for Smoothed Terrain by Erosion Process 51

 Figure 3.5 Flow Chart of the General WFA ... 54

 Figure 3.6 Pseudocode of the General WFA .. 55

 Figure 3.7 Illustration for Effect of Altitude on Erosion Capability 60

 Figure 3.8 Pseudocode for General Erosion Process of the WFA 63

 Figure 3.9 Illustration for “Big Valley” and “Small Valley” ... 64

 Figure 4.1 An Example of Solution Representation in the WFA for the PFSP 69

 Figure 4.2 Flow Chart of the WFA for the PFSP ... 73

 Figure 4.3 The Case of Fully Blocked Position ... 78

 Figure 4.4 Means Plot for Comparing the WFA and Meta-heuristic Algorithms 83

 Figure 5.1 The Schematic of FFSP with Limited Intermediate Buffers 89

 Figure 5.2 A Gantt Chart Illustration of the FFSP with Intermediate Buffers 92

 Figure 5.3 Flow Chart of the WFA for the FFSP with Intermediate Buffers 94

 Figure 5.4 An Example of Solution Representation in the WFA for the FFSP 95

 Figure 5.5 A Comparison Between the FAM Rule and the Modified FAM Rule 97

 Figure 5.6 A Comparison Between the Procedure H1 and the H1-Variant Procedure .. 98

 Figure 5.7 Maltose Syrup Production Process ... 106

 Figure 5.8 Illustration of the FFSP with Controlled and Limited Buffers 106

 Figure 5.9 Standard Deviation of the Objective Values Obtained by the WFA, TS-H1

and MA ... 114

 Figure 5.10 Trajectory of Solution Improvement of the WFA, TS-H1, and MA 115

 Figure 6.1 FFSP with Operation Stages Including Intermediate Buffers 126

 Figure 6.2 An Example of Solution Representation in MOWFA for the MOFFSP 129

xv

 Figure 6.3 An Illustration for Finding the Pareto Set Based on the Orientation Angle in

MOWFA ... 133

 Figure 6.4 An Illustration of the Search Direction of DOWs on Two Types of 2-opt

Neighborhood ... 136

 Figure 6.5 An Illustration for Scheme I of the Erosion Process with the Local 2-Opt

Neighborhood ... 139

 Figure 6.6 An Illustration for Scheme II of the Erosion Process with the Global 2-Opt

Neighborhood ... 139

 Figure 6.7 Flow Chart of the MOWFA for the MOFFSP .. 142

 Figure 6.8 Plot of Pareto Fronts Obtained by MOWFA and IHMOPGA on Wittrock

Instances with No Buffer .. 150

 Figure 6.9 Plot of Pareto Fronts Obtained by MOWFA and IHMOPGA on Wittrock

Instances with Finite Buffers .. 151

 Figure 7.1 An Example of Solution Representation in the WFA for the QAP 159

 Figure 7.2 Flow Chart of the WFA for the QAP .. 167

 Figure 7.3 Comparison of the WFA with Other Algorithms on (a) Average Percentage

Difference; and (b) Number of Best Known Solutions Obtained 179

 Figure 7.4 The Cross-Exchange Procedure (Taillard et al., 1997) 184

 Figure 7.5 Flow Chart of the First Level of the 2LWFA for the CVRP 186

 Figure 7.6 An Example of Solution Representation in the 2LWFA for the CVRP 188

 Figure 7.7 Flow Chart of the Modified WFA for the CVRP 189

xvi

GLOSSARY

WFA Water flow algorithm

MOWFA Multi-objective water flow algorithm

2LWFA Two-level water flow algorithm

PFSP Permutation flow shop scheduling problem

FFSP Flexible flow shop scheduling problem

MOFFSP Multi-objective flexible flow shop scheduling problem

QAP Quadratic assignment problem

VRP Vehicle routing problem

CVRP Capacitated vehicle routing problem

P0-list The best position list

UE-list Un-eroded position list

E-list Eroded position list

DOW Drop of water

MaxCloud The maximum number of clouds generated

MaxPop The maximum number of DOWs generated in each cloud

MinEro The minimum amount of precipitation allowed to star

erosion process

MaxUIE The maximum number of iterations for erosion process

Chapter 1 Introduction

1

CHAPTER 1

INTRODUCTION

Combinatorial optimization problems are considered as a category of general optimization

problems in which the values of decision variables are subjected to integrality constraints.

Such problems are commonly encountered in the real world, especially in the field of

industrial systems (Yu, 1998). Because of the integrality constraints, their set of feasible

solutions is finite and an enumeration method may be applied to find an optimal solution

for these problems. However, the solution search space of combinatorial optimization

problems can grow exponentially according to the size of the problems, and many of them

are classified as NP-hard problems (Papadimitriou and Steiglitz, 1982). Thus when

solving combinatorial optimization problems with large size, exact optimization methods,

such as the branch and bound method, may not obtain optimal solutions to these problems

within acceptable computation time; even heuristic algorithms may face difficulties

finding good quality solutions. Recently, meta-heuristics, especially nature-inspired

algorithms, have achieved some success with solving certain combinatorial optimization

problems in reasonable computation time (Shah-Hosseini, 2007; and Yang, 2008). The

results show the potential of such approaches in solving other types of combinatorial

optimization problems.

Chapter 1 Introduction

2

In this thesis, we propose a novel nature-inspired meta-heuristic algorithm that is able

to solve different types of combinatorial optimization problems. A brief description of

such problems that can be solved by the proposed algorithm is provided in the next section.

We also present an overview of the practical applications of combinatorial optimization

problems in this section. As meta-heuristic algorithms are able to obtain solutions for

certain combinatorial optimization problems effectively, we describe the features of meta-

heuristic algorithms, especially nature-inspired ones, as well as give a classification of the

algorithms in Section 1.2. Next, we present the motivation and research objectives of the

thesis in Section 1.3. Then, the main contributions of the thesis are summarized in Section

1.4. Finally, the organization of this thesis is provided in Section 1.5.

1.1 Combinatorial Optimization Problems

Many real-world optimization problems can be formulated as mathematical programming

models with integrality constraints. The modeling and solving of such real-world

problems are related to “Combinatorial Optimization” (Christofides et al., 1979). In a

combinatorial optimization problem, the set of feasible solutions is discrete, or can be

reduced to a discrete set. Some examples of classical combinatorial optimization problems

consist of the knapsack problem that arises in resource allocation with financial

constraints or electronic transfer of funds (Martello and Toth, 1990), traveling salesman

problem that is applied to product distribution or the production of printed circuit boards

(Applegate et al., 1994), and the multi-commodity flow problem that has applications in

production planning or warehousing (Ahuja et al., 1993). In addition, other well-known

examples of combinatorial optimization problems in production and logistics include the

Chapter 1 Introduction

3

permutation flow shop scheduling problem, flexible flow shop scheduling problem,

quadratic assignment problem and vehicle routing problem, which are described below:

1. Permutation Flow Shop Scheduling Problem: This problem involves

determining a sequence of n jobs to be processed through m machines with the

same order of jobs on the machines. Because of the same order of jobs through all

machines, the sequence of jobs processed on the first machine is considered as a

feasible solution of the problem. The most popular objective of this problem is to

minimize the completion time of jobs, also known as makespan (Cmax). An integer

programming model for the scheduling problem was presented in Pinedo (2005).

2. Flexible Flow Shop Scheduling Problem: This problem involves a set of jobs

processed through several consecutive operation stages with parallel identical

machines in each stage. A job can be processed on any idle machine at the stage

into which the job is going. In some cases, there are limited intermediate buffers

between consecutive stages. The primary objective of this problem is to find a

production schedule to minimize the completion time of jobs. There are also other

important objectives of this problem, such as to minimize the total weighted flow

time of jobs and to minimize the total weighted tardiness time of jobs. This

problem can be formulated as a mixed-integer programming model (Sawik, 2000).

3. Quadratic Assignment Problem: This problem is first stated by Koopmans and

Beckmann (1957). Given a set of facilities and a set of locations with the same size

n, the aim is to assign the facilities to the locations such that the total cost is

minimized. The total cost w is calculated using the distance between locations and

Chapter 1 Introduction

4

the flow between facilities. This problem can then be expressed as the problem of

finding a permutation π of n facilities as follows:

where nΠ denotes the set of possible permutations of N = {1, 2, …, n}, while

[]iπ and []jπ denote the location of facilities i and j in the permutation π

respectively. Furthermore, ijf is the flow between facilities i and j, and [] []i jdπ π is

the distance between locations []iπ and []jπ .

4. Vehicle Routing Problem: The problem on how to service a number of

customers’ demand with a fleet of given vehicles under some specific constraints

is known as a vehicle routing problem. Such a problem was first proposed by

Dantzig and Ramser (1959), and it is currently well-known with many important

applications in the field of logistics and supply chain management. An objective of

the vehicle routing problem is to assign the vehicles to the customers and find the

efficient routes of the vehicles so that the total travel distance or time is minimized.

This problem may be formulated as an integer programming model.

1.2 Nature Inspired Algorithms

In this section, we show a classification of optimization methods for solving combinatorial

optimization problems in Figure 1.1. The classification is based on the operational

mechanism of optimization methods. Our focus is on nature-inspired algorithms, which

[] []
1 1

(1.1)min () ,
n

n n

ij i j
i j

w f dπ ππ
π

∈Π
= =

= ∑∑

Chapter 1 Introduction

5

can be considered as a type of meta-heuristic algorithms. Here the term “meta-” means

“beyond” or “higher level”, while the term “heuristic” means “search” or “discover by

trial or error” (Yang, 2008). Thus, meta-heuristic algorithms are known as optimization

methods that search for optimal solutions of a problem by iteratively improving a

candidate solution with regards to a given objective function.

Meta-heuristic algorithms usually consist of two major processes, i.e., solution

exploration and solution exploitation. These two processes are iteratively performed to

search for optimal or near-optimal solutions in reasonable computation time. The

exploration process not only increases the diversity of solutions found, but also helps to

overcome local optimal solutions to obtain better or optimal ones due to its randomization.

The exploitation process aims to improve the quality of solutions obtained from the

exploration process in order to ensure that the solutions will converge to optimality. In

some meta-heuristic algorithms, this exploitation process also helps to overcome local

optimal solutions to search for better or optimal ones. The performance of meta-heuristic

algorithms depends on the appropriate combination between these two processes. Because

of the features of meta-heuristic algorithms, they can search for solutions of combinatorial

optimization problems with good quality in realistic computation time. Some well-known

applications can be found in Liao et al. (2007) and Yang (2008).

We have classified meta-heuristic algorithms into two major types, i.e., nature-inspired

algorithms and non-nature inspired algorithms. Nature has been evolving for millions of

years and hence learning from the success of nature to design meta-heuristic algorithms is

a creative idea (Yang, 2008). Nature-inspired algorithms can be further divided into

biologically inspired algorithms, botanically inspired algorithms and water flow inspired

Chapter 1 Introduction

6

O
pt

im
iz

at
io

n

C
on

tin
uo

us

O
pt

im
iz

at
io

n
D

is
cr

et
e

O
pt

im
iz

at
io

n

Ex
ac

t
A

lg
or

ith
m

s
A

pp
ro

xi
m

at
io

n
A

lg
or

ith
m

s

C
on

st
ru

ct
iv

e
H

eu
ris

tic
s

Lo
ca

l s
ea

rc
h

M
et

ho
ds

M
et

a-
he

ur
is

tic

A
lg

or
ith

m
s

N
on

-n
at

ur
e

In
sp

ire
d

A
lg

or
ith

m
s

N
at

ur
e-

in
sp

ire
d

A
lg

or
ith

m
s

B
ot

an
ic

al
ly

In

sp
ire

d
A

lg
or

ith
m

s

W
at

er
 F

lo
w

In

sp
ire

d
Te

ch
ni

qu
es

B
io

lo
gi

ca
lly

In

sp
ire

d
A

lg
or

ith
m

s

Fi
gu

re
 1

.1

A
 C

la
ss

ifi
ca

tio
n

of
 A

lg
or

ith
m

s f
or

 C
om

bi
na

to
ri

al
 O

pt
im

iz
at

io
n

Pr
ob

le
m

s

Chapter 1 Introduction

7

techniques. A detailed description of these types of nature-inspired algorithms is given in

Chapter 2. We also present the important applications of these algorithms in the same

chapter.

1.3 Motivation and Research Objectives

Real-world problems that are formulated as combinatorial optimization problems often

face the following difficulties: (a) their problem size or dimension is large, (b) they are

computationally complex to solve, and (c) even after decomposing into simpler sub-

problems, they are still NP-hard problems. Although the search space of such problems is

determined by a finite set of feasible solutions, it grows exponentially with the size of the

problems. Hence, it is sometimes sufficient to obtain a near-optimal solution to such

problems in practice. As such, there is a need for constructing good meta-heuristic

algorithms that can search for solutions with good quality in realistic computation time.

Over the last few decades, meta-heuristic algorithms inspired by natural phenomena

have been extensively developed to become search and optimization tools in various

optimization problems. Based on the inherent features of meta-heuristic algorithms,

nature-inspired algorithms have been successful in solving many optimization problems.

However, the algorithms are only efficient on specific problems, and there is a need to

change their operational mechanism to solve other problems. There is thus a lack of such

algorithms that are able to solve diverse combinatorial optimization problems.

The success of nature-inspired algorithms for solving optimization problems has

motivated us to learn about their potential capability in constructing an algorithm inspired

Chapter 1 Introduction

8

by other natural phenomena. Thus the main research objective of this thesis is to design a

novel nature-inspired algorithm for solving combinatorial optimization problems. Also,

the algorithm has to balance between solution exploration and exploitation capabilities to

achieve optimal solutions in realistic computation time to real-world problems. Moreover,

this thesis aims to develop a nature-inspired algorithm that can solve a variety of

optimization problems with similar problem structure. Another objective of the thesis is to

design the algorithm in such a way that it is able to solve both single-objective and multi-

objective optimization problems efficiently. Finally, the algorithm should not have

difficulty hybridizing with other well-known algorithms to increase the algorithm’s

solution efficiency.

One of the well-known natural phenomena is the hydrological cycle in meteorology

and the erosion process of water flow in nature. They possess features that are suitable for

developing an efficient optimization algorithm. As such, this thesis is focused on utilizing

such natural phenomena in developing a novel nature-inspired algorithm, and then testing

the performance of the resulting algorithm with different types of NP-hard combinatorial

optimization problems.

1.4 Main Contributions of the Thesis

In this section, we summarize the main contributions of this thesis as follows:

Firstly, a novel nature-inspired algorithm, known as the water flow algorithm (WFA),

for solving NP-hard optimization problems is proposed. The proposed algorithm has

mostly imitated the characteristics of water flow in nature and the components of the

Chapter 1 Introduction

9

hydrological cycle in meteorology. This algorithm consists of two major phases, i.e., the

solution exploration and exploitation phases, inspired by the hydrological cycle and the

erosion phenomenon, respectively.

Secondly, the WFA has been developed to successfully solve several NP-hard

optimization problems, such as permutation flow shop scheduling problem (PFSP),

flexible flow shop scheduling problem (FFSP) with intermediate buffers, quadratic

assignment problem (QAP), and capacitated vehicle routing problem (CVRP). Almost all

the best known solutions of the benchmark instances used can be found by the proposed

algorithm. Moreover, this algorithm can obtain many new best known solutions for PFSP

and FFSP.

Thirdly, we have constructed a WFA which is able to solve multi-objective

optimization problems by modifying and integrating some specialized components. It was

applied to solve the multi-objective FFSP with intermediate buffers. In this algorithm,

landscape analysis based on the ellipsoid approximation was integrated to help determine

the weights of objective functions, which guide the WFA to exploit potential regions and

move towards the optimal Pareto solution set. The results obtained demonstrate the

effectiveness and efficiency of the WFA, and show that this is a promising approach to

solve other multi-objective optimization problems.

In addition, when WFA is developed to solve the FFSP with intermediate buffers, we

also propose an efficient procedure of constructing a complete schedule from a job

permutation at the first stage. The constructive procedure outperforms other procedures in

the literature. This procedure may increase the performance of any algorithm when it is

Chapter 1 Introduction

10

integrated to solve the FFSP. Also for solving the FFSP, the WFA is applied to the

maltose syrup production problem. The results obtained show the capability of the WFA

for solving problems in complex real-world applications.

Lastly, a constructive algorithm for generating initial solutions of the WFA when

solving the CVRP is proposed in this thesis. The constructive algorithm is based on

solving a relaxed CVRP. The results obtained show that this algorithm may generate good

initial solutions for the CVRP. Furthermore, this approach of finding initial solutions may

be applied to other optimization problems.

1.5 Outline of the Thesis

This thesis aims to develop a novel nature-inspired algorithm for combinatorial

optimization problems and its content is organized into eight chapters. Figure 1.2 shows

the organization and relationship among the chapters.

A detailed review of nature-inspired algorithms that have emerged in recent years is

provided in Chapter 2. There are three main groups in the literature review corresponding

to the classification of nature-inspired algorithms shown in Section 1.2. The basic ideas of

designing nature-inspired algorithms, the development of the algorithms, as well as their

successful applications are also described in this chapter.

Chapter 3 describes the phenomena of nature used to construct the WFA, i.e., the

hydrological cycle in meteorology and the erosion process of water flow in nature. Also,

the operational mechanism and the main operators of the proposed algorithm are

explained in detail.

Chapter 1 Introduction

11

Chapters 4 and 5 describe the implementation of WFA for two single-objective

combinatorial optimization problems, namely the permutation flow shop scheduling

problem and the flexible flow shop scheduling problem, respectively. Computational

results and comparisons carried out on benchmark problems are also presented and

discussed. In addition, a practical example of maltose syrup production solved by the

WFA is shown in Chapter 5. Chapter 6 presents on how the WFA can be developed to

solve a multi-objective flexible flow shop scheduling problem, and computational results

are also shown in this chapter.

Some further applications of the WFA for other single-objective combinatorial

optimization problems, such as the quadratic assignment problem and vehicle routing

problem, are described in Chapter 7. The proposed algorithms are also tested with the

benchmark instances from the literature, with the computational results and comparisons

being shown in this chapter. Finally, some conclusions are provided in Chapter 8. The

contributions of this research work are also discussed, together with some possible future

research works.

Chapter 1 Introduction

12

In
tro

du
ct

io
n

(C
ha

pt
er

 1
)

Li
te

ra
tu

re
 R

ev
ie

w
(C

ha
pt

er
 2

)

W
at

er
 F

lo
w

 A
lg

or
ith

m
(C

ha
pt

er
 3

)

Si
ng

le
-O

bj
ec

tiv
e

O
pt

im
iz

at
io

n
Pr

ob
le

m
s

M
ul

ti-
O

bj
ec

tiv
e

O
pt

im
iz

at
io

n
Pr

ob
le

m

Q
ua

dr
at

ic
 A

ss
ig

nm
en

t
Pr

ob
le

m

Fl
ow

 S
ho

p
Sc

he
du

lin
g

Fl
ex

ib
le

 F
lo

w
 S

ho
p

Sc
he

du
lin

g

(C
ha

pt
er

 7
)

(C
ha

pt
er

 4
)

(C
ha

pt
er

 5
)

(C
ha

pt
er

 6
)

C
on

cl
us

io
ns

 &
Fu

tu
re

 R
es

ea
rc

h
(C

ha
pt

er
 8

)

V
eh

ic
le

 R
ou

tin
g

Pr
ob

le
m

Fi
gu

re
 1

.2

O
rg

an
iz

at
io

n
of

 th
e

T
he

si
s

Chapter 2 Literature Review

13

CHAPTER 2

LITERATURE REVIEW

Nature-inspired algorithms have become useful optimization methods for solving a variety

of real-world problems. Based on the appropriate balance between solution exploration

and exploitation capabilities, the algorithms can obtain solutions with high quality in

realistic computation time. In this chapter, we present several well-known nature-inspired

algorithms in recent years. The basic ideas of constructing and developing the algorithms,

as well as their most important applications are described in detail. Here, the nature-

inspired algorithms are classified into three main groups: biologically inspired algorithms,

botanically inspired algorithms and water flow inspired techniques. A survey of these

three groups of algorithms is presented in Section 2.1, Section 2.2 and Section 2.3

respectively. Also, some findings from the literature review are presented in this section.

Finally, a timeline of all the nature-inspired algorithms and the additional features of the

proposed nature-inspired algorithm which help to overcome the drawbacks of existing

algorithms are shown.

Chapter 2 Literature Review

14

2.1 Biologically Inspired Algorithms

In this section, we present some popular meta-heuristic algorithms inspired from biology.

The biologically inspired algorithms are classified into three major groups: evolutionary

algorithms, stigmergic optimization algorithms, and swarm-based optimization algorithms.

The group of evolutionary algorithms consists of genetic algorithm, memetic algorithm,

and shuffled frog-leaping algorithm. The group of stigmergic optimization algorithms

includes termite algorithm, ant colony optimization and bee colony optimization. Finally,

the group of swarm-based optimization algorithms includes particle swarm optimization,

firefly algorithm, and bat algorithm.

2.1.1 Evolutionary Algorithms

Evolutionary algorithms are stochastic optimization methods based on the principles of

natural evolution. Natural evolution is a complex process which operates on chromosomes,

instead of organisms (Michalewicz, 1992). The chromosomes contain genetic information,

called a gene, which is passed from one generation to next generation through

reproduction. In reproduction, the most important operators are recombination and

mutation. The recombination plays a role in the exchange of genetic information among

parent individuals to produce an offspring, while the mutation aims to create

diversification of genetic information in offspring. Organisms with good chromosomes

have a higher chance to exist and develop in nature. According to Darwin’s natural

selection theory (Darwin, 1859), natural selection prioritizes the proliferation of

environment-adapted organisms, but causes the extinction of non-environment-adapted

organisms.

Chapter 2 Literature Review

15

A well-known evolutionary algorithm is genetic algorithm (GA) first introduced by

Holland (1975). The idea of establishing GA originated from the evolutionism of Darwin

(1859): “Survival of the genetically fittest”. Since the introduction of this algorithm, it has

become a popular and useful optimization method for solving optimization problems.

Although many variants of GA have been developed, the general framework of this

algorithm does not have any significant change. The basic principles of GA are described

in detail by Goldberg (1989). A flow chart of the general GA is shown in Figure 2.1.

The solution exploration capability of GA increases because of the initial population.

However, a certain degree of exploiting the regions with high quality solutions is missing.

Hence, the GA is combined with a local search to overcome the drawback, which

constitutes a memetic algorithm (MA). In particular, the MA allows all chromosomes as

well as individuals to gain some experience through a local search process before they are

evolved. The MA was first introduced by Moscato (1989). In this algorithm, the genetic

information to form a chromosome is called memes and not genes. This is inspired by

Dawkins’ notion of a meme (Dawkins, 1976). A detailed description of the algorithm can

be found in Moscato and Cotta (2003). Here, a flow chart of the MA is shown in Figure

2.2.

Eusuff and Lansey (2003) proposed a shuffled frog-leaping algorithm which combines

the advantages of MA and the social behavior of frogs. In this algorithm, a set of frogs

similar to a population of individuals in GA is partitioned into subsets, called memeplexes.

The memeplexes representing the different cultures of frogs are improved through a

process of memetic evolution. Based on the social behavior of frogs, the good evolved

knowledge obtained is passed among memeplexes to help the memeplexes evolve together.

Chapter 2 Literature Review

16

The process continues to be performed until stopping criteria are satisfied. A flow chart of

the shuffled frog-leaping algorithm is shown in Figure 2.3.

Start

Initial population

Fitness evaluation

Reproduction

Recombination

Terminate?

No

End

Yes

Output the best
individual

 Parameter
Initialization

Figure 2.1 Flow Chart of Genetic Algorithm

Chapter 2 Literature Review

17

Start

Initial population

Fitness evaluation

Reproduction

Recombination

Terminate?

No

End

Yes

Output the best
individual

 Parameter
Initialization

Local search

Local search

Figure 2.2 Flow Chart of Memetic Algorithm

Chapter 2 Literature Review

18

Start

Initial population of
frogs

Fitness evaluation

Terminate?

No

End

Yes

Output the best frog

Parameter
Initialization

Based on descending order of
the fitness to divide the

population into memeplexes

Based on the memetic evolution
process to improve the position of
the worst frog in each memeplex

Update the evolved memeplexes
into the population

Figure 2.3 Flow Chart of Shuffled Frog-Leaping Algorithm

Chapter 2 Literature Review

19

2.1.2 Stigmergic Optimization Algorithms

According to (Abraham et al., 2006) on stigmergic optimization, Grasse´ quoted: “Self-

Organization in social insects often requires interactions among insects: such interactions

can be direct or indirect. Direct interactions are the “obvious” interactions: antennation,

trophallaxis (food or liquid exchange), mandibular contact, visual contact, chemical

contact (the odor of nearby nestmates), etc. Indirect interactions are more subtle: two

individuals interact indirectly when one of them modifies the environment and the other

responds to the new environment at a later time. Such an interaction is an example of

stigmergy”.

We can observe such an indirect interaction from social insects, such as termites. In

the process of nest reconstruction, termites interact through local pheromone

concentrations on the nest structure. The state of nest structure coordinates tasks for

termites. They work together until the nest construction is completed. Another example of

stigmergy is pheromone communication in ant colony. Ants are able to leave a chemical

trail on their path to guide other ants to the food source found. Deneubourg et al. (1987)

carried out experimental studies to test the ability of ants in searching for the shortest path

to the food source. Similar to ants, honey bees can communicate by pheromones. They can

deliver a chemical message to encourage attack response to other bees. In addition, honey

bees can communicate by “waggle dances”. The so-called waggle dances play a role as a

signal system which is used to guide other bees to the path to a good food source. Seeley

et al. (1991) carried out experimental studies about the ability of bees in allocating and

collecting their flower patches.

Chapter 2 Literature Review

20

Many meta-heuristic algorithms can be constructed by learning the behavior of these

social insects. We present well-known nature-inspired algorithms in this stigmergic

optimization group, such as termite algorithm, ant colony optimization and bee colony

optimization.

The first algorithm considered in this group is the termite algorithm proposed by Roth

and Wicker (2006) for mobile wireless ad-hoc networks. The proposed algorithm is

inspired by the hill building behavior of termites with four principles. Resnick (1997)

described the principles as well as a detailed example of the hill building procedure. In the

example, it is assumed that termites and pebbles are distributed on a flat surface. Since the

hill of termites is built from the pebbles, the objective of termites is to collect all the

pebbles into the same place. Termites move based on pheromone trails which are excreted

by the others. Following the trails, termites complete their hill building together. To

achieve success, a termite must conform to the rules described in Roth and Wicker (2006).

A detailed description of matching the hill building procedure of termites and the

principles of swarm intelligence to design the termite algorithm is also provided in Roth

and Wicker (2006).

The second algorithm considered in this group is the ant colony optimization (ACO)

inspired by the foraging procedure of real ants in nature. Although an ant is very tiny and

wanders aimlessly, a colony of ants expresses an extraordinarily intelligent behavior

through their nest building and foraging. ACO was first introduced by Dorigo and his

colleagues around 1991-1992. Since then, it is known as a useful nature-inspired

algorithm for combinatorial optimization problems (Dorigo and Gambardella, 1997; and

Dorigo, 1999). In the literature, there is a variety of ACO algorithms. However, all of

Chapter 2 Literature Review

21

them have the same framework that is described in Grosan and Abraham (2006) in detail.

Here, a flow chart of the basic ACO algorithm is shown in Figure 2.4.

Start

Generate population
of ants

Calculate fitness
value for each ant

Terminate?

No

End

Yes

Output the best
global ant

Initialize pheromone
trails and parameters

Determine the best
position for each ant

Determine the best
global ant

Update pheromone
trails

Figure 2.4 Flow Chart of Ant Colony Optimization Algorithm

Chapter 2 Literature Review

22

The third algorithm considered in this stigmergic optimization group is the bee

algorithm. The bee algorithm is inspired by the foraging behavior of honey bees. The

honey bee algorithm proposed by Nakrani and Tovey (2004) for allocating computers

among different clients and web hosting server is one of the earliest bee algorithms. The

idea of constructing this algorithm has originated from how forager bees can optimally

collect an amount of nectar if they are allocated to different flower patches. On the other

hand, Haddad et al. (2005) developed a honey-bee mating optimization algorithm for

solving a reservoir operation problem. This algorithm originated from the behavior of

queen bee in mating with other bees to form the bee colony. Farooq (2006) presented a

bee algorithm for routing in telecommunication network. The algorithm is inspired by the

way bees communicate.

Although various bee algorithms have been developed based on the different behavior

of honey bees in foraging and mating, they still keep to the same framework. A detailed

survey of bee colony algorithms is presented in Bitam et al. (2010). A flow chart of the

basic bee algorithm is shown in Figure 2.5.

2.1.3 Swarm-Based Optimization Algorithms

In this section, we present a group of swarm-based optimization algorithms. The

algorithms are inspired by the social behavior of swarm-based animals or insects,

especially those in which the property of historical information exchange among

individuals is magnified. The well-known algorithms in this group include particle swarm

optimization, firefly algorithm and bat algorithm.

Chapter 2 Literature Review

23

Start

Encode the objective
function into virtual

nectar level

Define dance routine

Terminate?

No

End

Yes

Decode and output
the best solution

Initialize parameters

Generate new
solutions for bees

Evaluate the new
solutions of bees

Communicate and update
the optimal solution set

Consider all
dimensions?

No

Yes

Figure 2.5 Flow Chart of Bee Colony Optimization Algorithm

Chapter 2 Literature Review

24

The first algorithm considered in this group is particle swarm optimization (PSO). This

is a biologically inspired algorithm that simulates the social behavior of animals, such as a

school of fish or a flock of birds. Here, the basic idea of this algorithm is to use many

autonomous agents (particles) that act together in simple ways to produce seemingly

complex behavior (Banks et al., 2007). The PSO was first formally introduced by

Kennedy and Eberhart (1995). In the paper, the authors replaced the simple goal of the

model proposed by Reynold (1987) with a more realistic goal to find food. With this new

goal, they established a general model for PSO which is used by most researchers in PSO.

Since PSO was developed from an original flocking system, various components were

incorporated into the algorithm, such as inertia and constriction. Also, some unnecessary

components were removed, such as velocity matching and collision avoidance. However,

the standard structure of PSO has generally been preserved. A detailed description of the

standard PSO structure is provided in Kennedy and Eberhart (1995). A flow chart of the

standard PSO algorithm is shown in Figure 2.6.

The second algorithm considered in this group is the firefly algorithm introduced by

Yang (2008). This algorithm is a swarm-based optimization method for solving

continuous optimization problem. The algorithm was motivated by simulating the social

behavior of fireflies. The fireflies produce short and rhythmic flashes to attract mating

partners and potential prey. Also, such flashes of the fireflies may be used to warn

potential predators about their bitter taste. A signal system including the rhythmic flash,

the rate of flashing and the amount of flashing time attracts both genders together. If

female fireflies are attracted by a male firefly, they will respond to the male firefly’s

pattern of flashing. A flow chart of the algorithm is shown in Figure 2.7.

Chapter 2 Literature Review

25

Figure 2.6 Flow Chart of Particle Swarm Optimization Algorithm

Chapter 2 Literature Review

26

Start

Initialize parameters

Generate the initial
population of fireflies

Determine the light
intensity of fireflies

Based on the light intensity of
firefly, update the light intensity at

all dimensions

Recalculate the
attractiveness

Evaluate new solutions
and update the light
intensity for fireflies

Rank the fireflies and determine
the best one so far

MaxGeneration?

Output the best fireflies

Yes

No

End

Figure 2.7 Flow Chart of Firefly Algorithm

Chapter 2 Literature Review

27

The third algorithm considered in the group of swarm-based optimization algorithm is

the bat algorithm proposed by Yang (2010). The algorithm is an optimization method

based on the echolocation behavior of bats. Among all the species of bats, the behavior of

microbats motivated the bat algorithm, since they use echolocation extensively, unlike

other bats (Richardson, 2008). Microbats’ echolocation capability helps them to detect

preys, distinguish different kinds of insects, avoid obstacles, and locate their roosting

crevices in the dark. A detailed description of the bat algorithm is provided in Yang

(2010). Here, a flow chart of the algorithm is shown in Figure 2.8.

2.2 Botanically Inspired Algorithms

In this section, we describe two meta-heuristic algorithms inspired from botany. They

consist of an invasive weed optimization algorithm and a grafting-inspired algorithm.

2.2.1 An Invasive Weed Optimization Algorithm

Invasive weed optimization (IWO) is a numerical stochastic optimization algorithm

inspired by the ecological process of weed colonization and distribution. In biology,

weeds are plants whose invasive habits of growth are vigorous. They threaten the growth

of cultivated plants, which in turn poses a threat to agriculture. Weeds are also found to be

very robust and adaptive to changes of environment. Hence, Mehrabian and Lucas (2006)

used their prominent properties, such as robustness, adaptation and randomness, to design

a simple but efficient optimization algorithm for real parameter optimization. A detailed

description of the algorithm is provided in Mehrabian and Lucas (2006). A flow chart of

the IWO is shown in Figure 2.9.

Chapter 2 Literature Review

28

Start

Initialize parameters

Generate the position and
velocity for the initial bats

Determine the pulse
frequency for each bat

Generate new positions for bats by
adjusting frequency, and updating

velocities and positions

Select the bat with the best position,
and generate a local position around
the selected best position of the bat

Randomly generate a new position
for a bat chosen

Rank the bats and determine
the best one so far

Maximum
Iterations?

Output the best bats

Yes

No

End

Accept the position if it satisfies the
conditions, and then increase pulse

rate and reduce loudness

Figure 2.8 Flow Chart of Bat Algorithm

Chapter 2 Literature Review

29

Generate a population of initial plants
(initializing a population)

Is the maximum number
of plants reached?

Determine the fitness value of each
plant in the population

Based on the fitness value, the plants
produce the corresponding number of seeds

(reproduction)

Randomly disperse the produced seeds over
the search area and grow new plants

(spatial dispersal)

Only the plants with lower fitness
are used to produce seeds
(competitive exclusion)

Yes

No

Is the maximum number
of iterations reached?

Output the plant with the best
fitness

Yes

i = i + 1

Start

(i = 1)

End

No

 Figure 2.9 Flow Chart of Invasive Weed Optimization

Chapter 2 Literature Review

30

2.2.2 A Botany-Grafting Inspired Algorithm

Li et al. (2010) proposed a hybrid algorithm that combines an improved genetic algorithm

(IGA) and an improved particle swarm optimization (IPSO), called HIGAPSO. The

combination is inspired by the idea of grafting in botany. Based on the principle that

grafting in botany can integrate the strengths of two original branches, the hybrid

algorithm combines the advantages of IGA and IPSO together. A flow chart of the

proposed hybrid algorithm is shown in Figure 2.10.

2.3 Water Flow Inspired Techniques

In this section, we introduce some recent techniques inspired by certain factors or

processes of nature that are related to water flow. The techniques consist of document

image processing methods based on water flow model, intelligent water drops algorithm

based on the dynamics of river systems, and water flow-like algorithm based on the

behavior of fluid flows. These techniques have been successfully applied to a variety of

optimization areas, such as pattern recognition, manufacturing and logistics.

2.3.1 Image Processing Methods Based on Water Flow Model

Kim et al. (2002) can be considered as one of the earliest authors who used the properties

of water flow to solve optimization problems. In the paper, the authors used a water flow

model to simulate an image processing problem. In particular, a grey level image is

considered as a three dimensional terrain including mountains and valleys, which

represent background and character regions in the image processing problem, respectively.

Chapter 2 Literature Review

31

Start

Calculate the fitness for each
individual in the initial population

Randomly generate a population of
P individuals

Sort the individuals in ascending
order based on their fitness values

Select the top H individuals as the
elites to reproduce in next generation

Apply IPSO strategy for the S
better individuals and put the enhanced
individuals into the grafting population

Apply IGA for the remaining P-H-S
individuals together with the

individuals enhanced by IPSO

Choose the best P-H-S individuals
obtained by the IGA to complete the

population of next generation.

Update the best individual
from the population obtained

Satisfy stopping criteria?

Yes

No

End

Figure 2.10 Flow Chart of Botany-Grafting Inspired Algorithm

Chapter 2 Literature Review

32

 Based on the property of water flow always moving to lower regions, the authors

simulated with the pouring of water onto the terrain surface. In the field of image

processing, the objective often considered is to extract characters from backgrounds. Thus,

a threshold process is proposed to extract the valleys by the amount of filled water. A flow

chart of the whole method of Kim et al. (2002) is shown in Figure 2.11.

Start

w = 0

w = wmax?

Yes

Label each pond based on
connectivity

Rain drop for each
pixel using a water

flow model

Increase w by 1

No

1) Calculate average water
level for each pond

2) Assign the average value
for the water level

1) Extract the water from terrain
2)Threshold the water by Ostu’s

method

Stop

Figure 2.11 Flow Chart of the Method Proposed by Kim et al. (2002)

Chapter 2 Literature Review

33

However, the method of Kim et al. (2002) requires long processing time since it does

not determine when to stop the iterative process. Also, characters on poor contrast

backgrounds in document images are often not separated successfully. Hence, Oh et al.

(2005) proposed an improved method which includes extraction of regions of interest

(ROI), an automatic stopping criterion, and hierarchical threshold process, to overcome

the drawbacks in the method of Kim et al. (2002). In the improved method, the input

image, known as terrain, is divided into regions of interest and desert regions. Then,

rainfall only occurs within the regions of interest. An automatic terminating criterion for

the iterative rainfall process was then provided to reduce the computational time needed

by the model. A flow chart of the method of Oh et al. (2005) is shown in Figure 2.12.

Figure 2.12 Flow Chart of the Improved Method Proposed by Oh et al. (2005)

Chapter 2 Literature Review

34

Basu et al. (2007) continued to use this idea to deal with the problem of text line

extraction from optically scanned document images. Because of the appearance of multi-

skewed lines in text images, the problem becomes complex and difficult to solve

completely. To solve this problem, Basu et al. (2007) proposed a text line extraction

technique based on a water flow model. In this technique, hypothetical water flows, which

are required to move from both left and right sides of the image frame, are stuck by the

characters of text lines. Then, the boundaries of un-wetted areas on the image frame are

labeled to extract text lines. Brodic and Milivojevic (2009a and 2009b) also adopted the

method of Basu et al. (2007) for the problems of identifying and detecting reference text

line, respectively. However, these methods limited hypothetical water flows under a few

specified angles of document image frame. Thus, they failed in complex text examples in

which multi-skewed lines with large skew angle exist in the text images. Brodic and

Milivojevic (2010) proposed a modification of the water flow method for segmentation

and text parameters extraction of sample text at almost any skew angle. The modification

includes the extension of skew angles of the document image frame and the enlargement

of un-wetted image regions. The procedure of document text image identification

proposed by Brodic and Milivojevic (2010) is shown in Figure 2.13.

Figure 2.13 Procedure of Text Image Identification (Brodic and Milivojevic, 2010)

Chapter 2 Literature Review

35

 In summary, the works in this section only focus on combining the property of

water flow always moving down to lower regions and filling up valleys into their model or

technique for pattern recognition problems. For the document image processing problem

in which the objective is to extract characters from backgrounds, the valleys with the

amount of filled water are extracted. Otherwise for the problem of text line extraction

from optically scanned document images, un-wetted areas on the image frame are labeled

to be extracted. The models or techniques are simple and have not been established as

algorithmic methods.

2.3.2 Intelligent Water Drops Algorithm

The idea of constructing an optimization algorithm based on certain factors or processes

related to water flow was developed by Shah-Hosseini (2007). In this paper, the author

proposed an intelligent-water-drops (IWD) algorithm based on the dynamics of river

systems and the actions/reactions that happen between water drops and the environmental

changes in the flowing river. In this algorithm, artificial water drops are designed with two

properties of natural water drops, i.e., moving velocity and an amount of carrying soil. The

values of both properties may change when the water drops travel in the river since an

amount of removed soil from the river increases their velocity and volume. To travel from

the source to the destination, the water drops choose the paths with minimal soil. A flow

chart of the IWD algorithm is shown in Figure 2.14.

The IWD algorithm has been applied to solve optimization problems, such as the

traveling salesman problem (Shah-Hosseini, 2007), the multiple-knapsack problem (Shah-

Hosseini, 2008), and the n-queen puzzle (Shah-Hosseini, 2009). However, the properties

Chapter 2 Literature Review

36

of water flow and meteorological phenomena related to water drops have not been

explored fully in these papers. Also, this algorithm depends on the large number of

parameters defined by users, which may affect the performance of the algorithm.

Furthermore, the computational results obtained by the IWD algorithm for its applications

have not been good when compared with other algorithms.

Figure 2.14 Flow Chart of the IWD Algorithm (Shah-Hosseini, 2007)

TRAN TRUNG HIEU
Rectangle

TRAN TRUNG HIEU
Text Box
step

TRAN TRUNG HIEU
Rectangle

TRAN TRUNG HIEU
Text Box
add

TRAN TRUNG HIEU
Text Box

Edited by Foxit Reader
Copyright(C) by Foxit Software Company,2005-2007
For Evaluation Only.

TRAN TRUNG HIEU
Rectangle

TRAN TRUNG HIEU
Line

Chapter 2 Literature Review

37

2.3.3 Water Flow-Like Algorithm

An optimization algorithm based on the behaviors of water flow was introduced by Yang

and Wang (2007) for solving the bin packing problem, which is one of the well-known

discrete optimization problems. This algorithm is a multiple-agent-based optimization

method with an improvement idea of using a population of agents with size that is not

fixed. This algorithm may be described as follows: solution agents are modeled as water

flows which move on the terrain. Driven by the gravity and governed by the energy

conservation law, water flows will automatically move to lower altitudes on the terrain.

When moving from higher altitudes to lower ones on a rugged terrain, the water flow will

split into multiple sub-flows. Fluid momentum helps water flows adjust their compositions

and directions when they move through the rough terrains. When a number of water flows

move to the same position, they will be merged into a single water flow. In addition, water

flows may move upward to higher altitudes if their kinetic energy is larger than the

potential energy required. Furthermore, to explore search space, some water flows may

periodically evaporate and return to the terrain by precipitation.

In general, this is an evolutionary algorithm involving four operations: splitting and

moving, merging, evaporation, and precipitation. These operations are established and

controlled by some fundamental laws of physics, such as the law of energy conservation,

and the law of momentum conservation. Physics quantities such as mass, velocity, fluid

momentum, energy, and gravitational acceleration are also used as basic parameters to

construct this algorithm. A flow chart of the algorithm proposed by Yang and Wang

(2007) is shown in Figure 2.15.

Chapter 2 Literature Review

38

Figure 2.15 Flow Chart of the Water Flow-Like Algorithm (Yang and Wang, 2007)

The experimental results and comparisons showed that this algorithm can perform well

for solving the bin packing problem. However, Yang and Wang (2007) only used two test

instances to evaluate and compare their algorithm with other algorithms, and may not be

sufficient to conclude that their algorithm is efficient for the bin packing problem. Also,

because of the dependence on the large number of controlled parameters defined by users,

this algorithm may spend a considerable amount of computational time for evaluating and

processing the operators.

Wu et al. (2010) adopted the logic of the algorithm proposed by Yang and Wang

(2007) to design a heuristic algorithm for solving the cell formation problem. This is one

Chapter 2 Literature Review

39

of the important problems in cellular manufacturing when group technology is applied.

The proposed algorithm consists of two stages. In the first stage, the algorithm generates

initial feasible solutions in order to determine optimal cell size. In the second stage, the

optimal cell size obtained is used as a lower bound to search for optimal solutions. Since

the cell size may be a good lower bound for the solution process, the computational time

needed by the algorithm is significantly reduced, especially for large-sized instances.

The experimental results and comparisons for a set of 37 test instances from the

literature showed that the proposed algorithm of Wu et al. (2010) has performed better

than other algorithms, especially for large-sized problems. However, the large number of

controlled parameters still present in this algorithm may limit the performance of the

algorithm.

From the success obtained for solving optimization problems, such as the traveling

salesman problem, the bin packing problem, the multiple-knapsack problem, the n-queen

puzzle and the cell formulation problem, we can see that the algorithms inspired by the

behavior of water flows in nature indicate a promising optimization approach.

2.4 Conclusions and Possible Nature-Inspired Algorithm

A summary of the nature-inspired algorithms described in this chapter is shown in Table

2.1. In addition to the introduction of the basic ideas of constructing the algorithms, we

also provide the most important applications for which each algorithm has worked best.

This helps researchers have a condensed but ample overall view of the real-world

application capability of the nature-inspired algorithms.

Chapter 2 Literature Review

40

Also, we present the timeline of all the nature-inspired algorithms presented in this

chapter (see Figure 2.16). From this figure, we can see that the optimization approaches

have recently developed significantly in terms of quantity as well as quality. Many

problem-solving models from nature are inspired by the design of optimization algorithms.

Successful applications of the algorithms for continuous and discrete optimization

problems in engineering have demonstrated the efficiency of these algorithms. Although

water flow inspired algorithms are developed recently, the algorithms have showed their

efficiency and effectiveness for solving some well-known optimization problems, such as

traveling salesman problem and bin packing problem. However, the potential of this

algorithm has not been fully exploited since many characteristics as well as behaviors of

water flow have not been considered. Hence, constructing an optimization algorithm based

on water flow models is still a promising research area.

A possible nature-inspired algorithm will be to integrate many additional features of

water flow in nature. Natural phenomena, such as the hydrological cycle and erosion

process, which have not been explored by other algorithms, will also be simulated in such

a proposed algorithm. Two major phases of the algorithm, the solution exploration and

exploitation phases which are inspired by the hydrological cycle and the erosion process

respectively, help to achieve a balance between solution diversification and intensification

capabilities to search for optimal solutions in reasonable computation time.

Moreover, this algorithm has only a small number of parameters defined by users,

which may limit the performance degradation of the algorithm due to the tuning of the

parameters. In addition, this algorithm can be applied to solve different optimization

Chapter 2 Literature Review

41

Table 2.1 Summary of Applications of the Nature-Inspired Algorithms

Groups Sub-groups Algorithms Ideas Problems

Biologically
inspired
algorithms

Evolutionary
algorithms

Genetic algorithm The evolutionism
of Darwin

Permutation flow shop
scheduling
(Reeves, 1995)

 Memetic algorithm Genetic algorithm
+ local search

Traveling salesman
problem (Moscato &
Norman, 1992)

 Shuffled frog-
leaping algorithm

Memetic algorithm
+ the social
behavior of frogs

Water distribution
network (Eusuff &
Lansey, 2003)

 Stigmergic
optimization
algorithms

Termite algorithm Process of nest
reconstruction of
termites

Mobile wireless ad-hoc
networks (Roth &
Wicker, 2006)

 Ant colony
optimization

The foraging
procedure of ants

Traveling salesman
problem (Dorigo &
Gambardella, 1997)

 Bee colony
optimization

The behavior of
honey bees in
foraging/mating

Telecommunication
network (Farooq, 2006)

 Swarm-based
optimization
algorithms

Particle swarm
optimization

The social behavior
of a school of fish
or a flock of bird

Flow shop scheduling
(Liao et al., 2007)

 Firefly algorithm The social behavior
of fireflies

Continuous constrained
optimization (Lukasik
& Zak, 2009)

 Bat algorithm The echolocation
behavior of bats

Continuous constrained
optimization
(Yang, 2010)

Botanically
inspired
algorithms

 An invasive weed
optimization

The ecological
process of weed
colonization and
distribution

Electromagnetic
designing problem
(Karimkashi & Kishk,
2010)

 A botany-grafting
inspired algorithm

The idea of grafting
in botany

Spherical conformal
array (Li et al., 2010)

Water flow
inspired
techniques

 Intelligent water
drops algorithm

The dynamics and
reactions of river
systems

Traveling salesman
problem (Shah-
Hosseini, 2007)

 Water flow-like
algorithm

The energy
conservation law

Cell formation problem
(Wu et al., 2010)

Chapter 2 Literature Review

42

problems without much change in the structure of the algorithm. These are features found

lacking in most existing water flow inspired algorithm.

Figure 2.16 Timeline of Nature-Inspired Algorithms

Chapter 3 A General Water Flow Algorithm

43

CHAPTER 3

A GENERAL WATER FLOW ALGORITHM

In this chapter, we introduce a novel nature-inspired algorithm for solving combinatorial

optimization problems. This algorithm simulates the hydrological cycle in meteorology

and the erosion phenomenon of water flow in nature, which represent the solution

exploration and exploitation capabilities of the algorithm, respectively. Being inspired by

the behaviors and characteristics of water flow in meteorology and nature, this algorithm

is named water flow algorithm (WFA). A detailed description of the natural phenomena

imitated to construct this algorithm is provided in the chapter. In Section 3.1, we present

the hydrological cycle in meteorology together with the components that constitute the

hydrological cycle, such as evaporation, condensation, transportation, precipitation,

transpiration, groundwater and run-off. The erosion phenomenon of water flow in nature

is described in Section 3.2. Finally, a detailed description of the general WFA for solving

combinatorial optimization problems is presented in Section 3.3.

Chapter 3 A General Water Flow Algorithm

44

3.1 Hydrological Cycle in Meteorology

Water is the source of all life on Earth. Hence, water plays an essential role in the living of

creatures as well as human beings. In nature, water exists in three states: solid, liquid and

gas. These states are affected by changes in the temperature of the environment. When

temperature increases, water can change from the solid state to the liquid state due to

melting, or from the liquid state to the gaseous state due to evaporation. Otherwise, when

temperature decreases, water can change from the liquid state to the solid state due to

freezing, or from the gaseous state to the liquid state due to condensation. When

temperature drops below the freezing point, water molecules can change directly from the

gaseous state to the solid state due to sublimation. Such changing of the states of water is a

fundamental concept in the explanation of many meteorological phenomena.

One of the well-known meteorological phenomena is the hydrological cycle. The

hydrological cycle reflects the circulation and conservation of water on Earth. Though

water in ocean, river, cloud and rain is often in a state of change, the total amount of water

on Earth is not changed. Due to the conservation of water, the circulation of water is

established. The hydrological cycle consists of the following main components.

(1). Evaporation: a process that transfers water from the liquid state in ocean to the

gaseous state in atmosphere.

(2). Condensation: a process that transfers water in atmosphere from the gaseous

state to the liquid state.

(3). Transportation: a movement of water vapor from ocean to land through

atmosphere due to wind.

Chapter 3 A General Water Flow Algorithm

45

(4). Precipitation: a process that transports water from atmosphere to the Earth’s

surface, also called rain.

(5). Transpiration: a process that transfers water from ground to atmosphere by the

evaporation of plants and vegetation.

(6). Groundwater: the amount of water that infiltrates through the Earth’s surface to

return to the ocean.

(7). Run-off: the rest of the amount of water on the Earth’s surface in rivers, lakes,

ponds or streams, after the transpiration and infiltration processes occur.

Figure 3.1 illustrates these seven basic components of the hydrological cycle. The

exploration phase of WFA proposed in this thesis is inspired by the hydrological cycle.

The phase is designed based on the basic components.

(Source: http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/smry.rxml)

Figure 3.1 Basic Components of the Hydrological Cycle

(1) Evaporation

(2) Condensation
 {Cloud}

(3) Transportation
 {Wind}

(4) Precipitation

(5) Transpiration

(6) Groundwater

(7) Run-off

Chapter 3 A General Water Flow Algorithm

46

A detailed description of the meteorological phenomenon is provided in Goudie

(1993). Here, we briefly present the relationship among the main components mentioned

in the hydrological cycle.

Firstly, sea water from the surface of the oceans is evaporated to become water vapor

in the atmosphere. When the water vapor is lifted and encounters cool air, it is condensed

to form clouds with moisture. Then, the moisture in clouds is transported around by wind

until it returns to the Earth’s surface under drops of water through precipitation. When the

drops of water fall down to the ground, they are subjected to two possible processes. In the

first process, some of the drops of water may be evaporated back into the atmosphere

through transpiration. In the second process, some of the drops of water may penetrate

through the Earth’s surface to be groundwater. The drops of water returning to the

atmosphere continue to join the clouds and move around, while the groundwater moves

back to the oceans.

The rest of the water on the Earth's surface is called runoff. Governed by the gravity

force, the runoffs move from higher altitudes to lower ones on the ground. Lakes, rivers or

streams are formed from the runoffs if they are held in valleys or depressions. When the

amount of precipitation increases dramatically, water in the lakes, rivers or streams may

flow over their barriers and move back to the oceans, where the hydrological cycle begins

again. This overflowing phenomenon is known as erosion process of water flow in nature,

which will be described in the next section.

Chapter 3 A General Water Flow Algorithm

47

3.2 Erosion Process of Water Flow in Nature

In nature, there are many phenomena affecting and changing the Earth’s surface. Erosion

process is one of such natural phenomena. In essence, erosion is a natural process of

weathering to the Earth’s surface, which detaches solids from the surface and deposits

them elsewhere (Holy 1982). This process is caused by movements of wind and water in

natural environment. In addition, the gravity force of Earth and the operations of living

creatures are the causes of the erosion process. However, since water covers over 70% of

the Earth’s surface area (Michael, 2006), we can see that it is the major cause of the

erosion process. Figure 3.2 shows an illustration of the erosion by water flow.

Figure 3.2

Erosion from Water Flow

(Source: http://www.salomart.com/images/erosion-2.jpg)

Chapter 3 A General Water Flow Algorithm

48

Normally, the consequence of erosion process caused by water is not serious to human

beings since it occurs slowly and gently in rivers or streams. However, when an amount of

water of the rivers or streams increases dramatically due to heavy precipitation or tide, the

erosion process may cause a flood. The flood can sweep away everything on the path

through which it passes.

The most important property of the erosion process caused by water flow is erosion

rate, or known as erosion capability, which is also a factor to recognize and control the

flood. The erosion rate is determined by an amount of water in watercourse, the velocity

of water streaming, as well as the state of land. In nature, an amount of water in

watercourse is affected by the amount of precipitation, intensity of precipitation and flood-

tide; while the velocity of water streaming is mainly affected by the slope of landscape (or

gravity force) and the amount of water in the watercourse. Here, the state of land merely

means the hardness of land. On the other hand, the erosion rate depends on three major

groups of factors, i.e., climatic factors, geologic factors and biological factors (Holy,

1982). The climatic factors include the amount and intensity of precipitation as mentioned

above. In addition, average temperature, wind speed, as well as storm frequency may be

considered as climatic factors affecting the erosion rate. The geologic factors consist of

the types of sediment or rock, their porosity and permeability, the slope of landscape, as

well as the shape of rocks. The biological factors are the ground cover area of vegetation,

the type of organisms living in the region, and the purpose of using land.

A different classification of factors that involves the impact of erosion capability is

provided in Figure 3.3. Here, these factors are divided into two main groups, i.e., natural

factors and human factors. Despite the classifications, it can be seen that there are many

Chapter 3 A General Water Flow Algorithm

49

factors affecting the erosion capability. Hence, it is not easy to control the erosion

rate/capability and flooding in general.

(Source: http://www.dartmoor-npa.gov.uk/learningabout/lab-printableresources/lab-

factsheetshome/lab-erosion)

Figure 3.3 Factors Affecting Erosion Capability

There are also many studies on the relationship between erosion process and factors

affecting this process. Such studies show that when the amount and intensity of

precipitation increase, erosion rate will increase. On the other hand, erosion rate is also

expected to adjust in response to climate changes due to many reasons. The most direct

reason is the change in the erosive power of precipitation. Other direct reasons include:

(1). Because of shifting precipitation regime and evaporation/transpiration rate, land

moisture is also changed. It affects infiltration and runoff ratios.

(2). Because of reducing concentration of land, land erodibility increases. Also, it

leads to increase in the amount of runoff due to appearance of rifts on the surface.

Chapter 3 A General Water Flow Algorithm

50

(3). Due to increasing temperatures, winter precipitation is shifted from non-erosive

snow to erosive rainfall.

(4). Due to melting of permafrost, a non-erodible land state may be shifted to be an

erodible land state.

All these reasons help to understand clearly about the close relationships of erosion rate

and other factors. We may then propose methods to control the erosion rate, or at least to

limit the loss caused by increasing the erosion rate.

In summary, erosion process is the displacement of solids usually caused by the water

currents, as well as the down-slope movement of the solids in response to gravity. The

erosion process is able to affect the Earth’s surface and change the direction of water

current. In addition, erosion process is able to smooth out obstacles and keep a state of

smoothed terrain for a long time period. Figure 3.4 shows an illustration of the terrain

smoothed by the erosion of water flow. Erosion rate, an important parameter of the

erosion process, is affected by many factors. The factors consist of the amount and the

intensity of precipitation, the texture of soil, the gradient of slope, etc. However, only two

major factors have been considered to design the capability of erosion process in the WFA.

These factors are the amount of precipitation as well as the texture of soil, including the

hardness of soil and the geographical shape of the surface. How to simulate the

hydrological cycle as well as to integrate the erosion process of water flow in constructing

an optimization algorithm is presented in the next section.

Chapter 3 A General Water Flow Algorithm

51

(Source: http://newscenter.lbl.gov/feature-stories/2007/04/22/damaged-land-buried-

carbon/)

Figure 3.4 Illustration for Smoothed Terrain by Erosion Process

3.3 General Water Flow Algorithm

In this section, we present a general water flow algorithm for combinatorial optimization

problems. The framework of the WFA can be customized and used to solve various types

of optimization problems.

The WFA mimics the hydrological cycle in meteorology and the erosion phenomenon

in nature, representing a balance between solution exploration and exploitation capabilities

Chapter 3 A General Water Flow Algorithm

52

in an optimization algorithm, respectively. The proposed algorithm is based on the

simulation of spreading raindrops into many places on the ground, the property of water

flow always moving from higher positions to lower positions, and the erosion capability of

water flow on the ground. The following descriptions further illustrate some of the

relationships between the terms used in the WFA and the concepts often used in other

well-known meta-heuristics, such as tabu search and genetic algorithm:

(1). The hydrological cycle reflects the circulation and conservation of water on the

Earth. It consists of many stages, i.e., evaporation, condensation, transportation,

precipitation, transpiration, groundwater and run-off (Goudie 1993). In the WFA,

we use the circulation of water to regenerate a population of new positions for

drops of water (DOWs) after each cloud is generated. It is similar to the

diversification procedure of restarting an initial solution in tabu search if the

current solution is not improved after a maximum number of iterations.

(2). The precipitation is the transfer of water from the atmosphere to land, usually

called rain (Goudie 1993). When there is rain, an amount of raindrops is

generated and it drops to the ground. In the WFA, the precipitation involves the

number of DOWs generated. It can be considered as generating a population of

solutions in a genetic algorithm.

(3). The concept of erosion is the detachment of soil particles caused by the impact of

water flow or raindrops (Holy 1982). The role of erosion in the WFA is to help

the search to intensify the promising local optimal positions and overcome the

obstacles to find better positions. It is similar to intensification in tabu search.

Chapter 3 A General Water Flow Algorithm

53

(4). The rate or intensity of erosion in nature depends on many factors, such as the

amount of precipitation and the soil type, etc. (Holy 1982). In the WFA, this

erosion capability is represented by the maximum number of iterations before

erosion process stops eroding at the local optimal position being considered. It is

similar to the concept of the maximum number of iterations without improvement

used in tabu search.

We now describe the general procedure of the WFA. Firstly, a cloud representing an

iteration randomly generates a set of DOWs onto some positions on the ground, which

represent solutions of the optimization problem. Next, due to the gravity force of the Earth

represented by a heuristic algorithm, the DOWs automatically move to local optimal

positions. They are held at these positions until the erosion condition is satisfied before

performing the erosion process. Then, depending on the amount of precipitation, the

falling force of precipitation and soil hardness at the local optimal positions, the erosion

process helps the DOWs overcome the local optimal positions to find better or global ones.

Almost all the ideas of constructing this procedure are novel, except for the idea of water

flow always moving to lower positions, which is similar to the previous works.

A flow chart of the general WFA for solving optimization problems is shown in Figure

3.5, while the pseudocode of the WFA is presented in Figure 3.6. The detailed

descriptions of the erosion condition, erosion capability, erosion process and other

operations of the general WFA for optimization problems are provided in the next

subsections.

Chapter 3 A General Water Flow Algorithm

54

Hydrological cycle processAlgorithm representation

Initialization

Generate a new cloud

Randomly generate a population of
MaxPop DOWs with the positions

out of E-list

Apply a local search algorithm to
the generated DOWs to find their

local optimal positions

Evaluate the soil hardness based on the
objective value of the problem and identify the
number of DOWs at the local optimal positions

Update P0-list and UE-list

Pick one position in UE-list

Satisfy erosion
condition? Yes

Have all positions in
UE-list been considered?

No

No

Is MaxCloud reached?

Yes

Output the best positions in P0-list

Yes

No

Update UE-list and E-list to
continue with performing

erosion process

E
xp

lo
ra

tio
n

ph
as

e
h

E
xp

lo
ita

tio
n

ph
as

e
h

When it rains, the
DOWs are generated
and they fall to the

ground

Due to gravity force, the
DOWs automatically move

from higher positions to
lower positions (local

optimal positions) and they
are held there

Erosion process happens
when the erosion

condition is satisfied at
the local optimal

positions

The terrain at eroded
positions is smoothed
by the erosion process

Start

End

Perform erosion process
based on erosion capability

and topology parameter
determined

Figure 3.5 Flow Chart of the General WFA

3.3.1 Encoding Scheme

For any optimization algorithm, encoding scheme, also known as solution representation,

is the first important step in the implementation of the algorithm. In the WFA, we have

Chapter 3 A General Water Flow Algorithm

55

Step 1:

Initialize the controlled parameters, i.e., the maximum number of clouds generated

(MaxCloud), the maximum number of DOWs that each cloud is allowed to generate

(MaxPop), the minimum number of DOWs in which the erosion process starts to

perform (MinEro), the maximum iterations that the erosion process will move to next

erosion direction if the position considering is not improved (MaxUIE);

Step 2:

For i = 1 to MaxCloud

Randomly generate a population of MaxPop positions for DOWs;

Determine the number of DOWs at each individual position;

Find the local optimal position for each individual position;

Update the best positions in P0-list;

Update the local optimal positions found and the number of DOWs into UE-list;

For each position in UE-list

If (satisfying the erosion condition) Then

Perform erosion process;

Update UE-list, P0-list, and E-list;

End if

Next each

Next i

Step 3:

 Return the best positions found in P0-list.

Figure 3.6 Pseudocode of the General WFA

Chapter 3 A General Water Flow Algorithm

56

used DOWs to represent solutions of an optimization problem. Then, all the operators of

the WFA are performed on the DOWs. Depending on the structure of a certain problem,

DOWs are appropriately encoded to solve the problem efficiently.

In nature, the positional information of a DOW is shown by its longitude, latitude and

altitude on the ground. In an optimization problem, a DOW is associated with a feasible

solution of the problem. We consider the feasible solution and its objective value as

providing the longitude, latitude and altitude information for the position of the DOW on

the ground. For example, when applied to solving flow shop scheduling problems, a job

permutation will provide the longitude and latitude information for a DOW; while the

objective value, i.e., the completion time of jobs obtained by the corresponding job

permutation, will provide the altitude information for the DOW.

3.3.2 Memory Lists

In the WFA, three memory lists are used to support the search for global optimal positions

of DOWs. Firstly, the best position list, called the P0-list, stores the best optimal positions

found so far. This list is almost used in all optimization algorithms to output the best

solutions obtained by the algorithms. Secondly, the un-eroded position list, called the UE-

list, is used to store the local optimal positions which have not been eroded because of not

satisfying the erosion condition. Its purpose is to record the potential positions for the

subsequent erosion process of the WFA. The reasons for using local optimal positions as

potential positions/regions will be described and discussed later. Thirdly, the eroded

position list, called the E-list, is used to store eroded local optimal positions. The E-list is

inspired by terrain smoothing of erosion process. It plays an important role of preventing

Chapter 3 A General Water Flow Algorithm

57

DOWs from being regenerated to the eroded positions in the subsequent precipitations. It

would help to reduce the computation time needed by the algorithm.

3.3.3 Exploration Phase

The exploration phase of the WFA is inspired by the hydrological cycle in meteorology

presented in Section 3.1. The number of basic components of the hydrological cycle used

in the WFA depends on the optimization problem to be solved. For example, when solving

single-objective optimization problems, only transportation, precipitation and run-off of

the hydrological cycle are utilized in the exploration phase. However, when solving multi-

objective optimization problems, the exploration phase may include evaporation/

transpiration, condensation and groundwater. Despite the number of basic components

that are completely used, the general procedure does not undergo much change.

The exploration phase can be described as follows: at each cloud, we generate

randomly a set of positions for DOWs with size MaxPop. This is to simulate the spreading

of raindrops into many places on the ground. Based on the problem to be solved, we can

use an efficient constructive method to generate a set of seed positions for DOWs at the

first cloud, which may improve the performance of the WFA. After generating a

population of positions for the DOWs, a steepest descent hill sliding algorithm is used to

search for local optimal positions from these initial positions of the DOWs. In particular,

the hill sliding algorithm searches for the best improved position within the initial

position’s neighbors in terms of objective value. Then, this process is iteratively

performed in the same manner until no other improved position is found. Depending on

the problem, an appropriate neighborhood structure is proposed. The idea of determining

Chapter 3 A General Water Flow Algorithm

58

local optimal positions of DOWs is inspired by the property of water flow always moving

to lower positions.

In general, the exploration phase of the WFA results in a set of local optimal positions

of DOWs. The local optimal positions and the number of DOWs at these positions are

updated in the UE-list to be considered for performing the erosion process in the next

exploitation phase.

3.3.4 Exploitation Phase

Exploitation phase of the WFA is inspired by the erosion phenomenon of water flow in

nature presented in Section 3.2. The properties of the erosion phenomenon are simulated

in this phase of the WFA to guide DOWs to overcome the local optimal positions and

search for better or optimal positions. In the next subsection, we present the conditions to

perform erosion process for the local optimal positions in the UE-list. Also, the

calculations of erosion capability for the DOWs at the positions satisfying the conditions,

as well as the basic operational mechanism of the erosion process are described.

Depending on the nature of the problem, the corresponding operators of the erosion

process will be implemented to solve the problem efficiently.

3.3.4.1 Erosion Condition and Capability

Although many factors have effects on the erosion process of water flow in nature as

described in Section 3.2, only two major factors affect the erosion process significantly.

They are the hardness of soil and the amount of precipitation. In nature, the hardness of

soil varies according to the land area considered. However, when solving an optimization

Chapter 3 A General Water Flow Algorithm

59

problem representing the topography of the Earth, the landscape of the problem does not

change over time and space. Thus, we assume that the soil hardness value at every

position in the problem is the same. Thus, we are only concerned about the amount of

precipitation for determining the erosion condition to perform the erosion process in the

WFA. If the amount of precipitation at some local optimal position increases up to

MinEro, the erosion process would happen at the local optimal position.

Also, many factors affect the erosion rate/capability of water flow as presented in

Section 3.2. However, for simplicity, we only consider the capability of erosion process

based on two main factors: the amount of precipitation and its falling force. In

optimization problems, the amount of precipitation is represented by the number of DOWs

at the eroding local optimal position; while its falling force is represented by the objective

value of the corresponding problem at the position. We will next explain why the

objective value at the corresponding position is considered as the falling force of

precipitation.

In the WFA, the altitude information of a DOW is determined by the corresponding

objective value of a solution in an optimization problem. For the problem of minimization,

the DOW with the smaller altitude leads to the better quality solution. Moreover, the

falling force of raindrops depends on the distance between the cloud and the position of

the raindrops in which they fall on the ground. Hence, if we assume that the clouds move

at the same altitude, the impact of falling force at the lower positions is larger than that at

the higher positions. In other words, the erosion capability at the lower positions is larger

than that at the higher positions. This is the reason why the falling force of precipitation is

represented by the objective value at the corresponding position. Figure 3.7 illustrates the

Chapter 3 A General Water Flow Algorithm

60

erosion capability at two positions with two different altitudes. In Figure 3.7, the erosion

capability at point B is larger than that at point A.

Figure 3.7 Illustration for Effect of Altitude on Erosion Capability

With the assumption that clouds are at the same altitude, the falling force of

precipitation to lower local optimal positions will cause erosion more easily than that of

higher ones. Then, we can infer that the erosion capability becomes stronger for local

optimal positions with the larger amount of precipitation and the lower objective values. It

may create a flexible operation scheme for the erosion capability of DOWs in the WFA.

Also, it helps the erosion process focus on exploiting promising regions strongly while

ignoring regions with poor performance. In particular, the relationship between these two

factors and the control parameter of erosion capability, MaxUIE, is expressed as follows:

 * /
1 2() ,LB zMaxUIE Qϕ π ϕ= + (3.1)

hA hB

A

B

Chapter 3 A General Water Flow Algorithm

61

where 1ϕ and 2ϕ are parameters representing the effect of precipitation and its falling

force, respectively. Also, *()Q π is the number of DOWs at the local optimal position *π ,

LB is a known lower bound, and z is the objective value at the eroding local optimal

position. Here, LB can be any lower bound obtained from the literature, or by solving a

relaxation of the problem in terms of the corresponding objective function.

In addition, we also propose a simple determination of erosion capability for solving

optimization problems with less complex structure. In this process, the erosion capability

does not depend on the amount of precipitation and its falling force. Here, we use a

constant value pre-specified for the erosion capability. When the amount of precipitation

at some local optimal position increases up to MinEro, the erosion process with the pre-

specified erosion capability would happen at the local optimal position. It is helpful for

optimization problems with less complex structure since the computation time may

decrease without affecting the solution quality obtained.

3.3.4.2 Erosion Process

Erosion process will be performed when the erosion condition at some local optimal

position is satisfied. Depending on the structure of the problem, the erosion capability at

the local optimal position may either be constant or determined from equation (3.1). The

strategy of erosion process is based on a topological parameter representing the

geographical surface, and whether an erosion direction is blocked.

The topological parameter dΔ is defined as the difference between the objective value

of local optimal position and that of its neighboring position. We first choose the smallest

Chapter 3 A General Water Flow Algorithm

62

dΔ as the erosion direction. If the erosion process for that direction does not improve

after MaxUIE iterations, we say that the direction is blocked. It means that water flow

cannot move in that direction and searching in that direction stops. This is followed by

backtracking, in which we restart the search from the local optimal position using the

direction with the next smallest dΔ . If all directions for considering the local optimal

position are blocked, we call that position fully blocked and move it into the E-list, i.e., we

do not consider that position in the subsequent clouds/iterations. Otherwise, if there is a

direction with improvement when compared with the current local optimal position, we

will choose that direction to erode permanently for the local optimal position. Here, the

improvement means that the erosion process finds a new local optimal position, whose

objective value is smaller than that of the current local optimal position. This new local

optimal position is updated in the UE-list to continue with performing the erosion process.

The erosion process simulated in the WFA is thus close to the natural behavior of water

flow in the erosion phenomenon. In nature, if no unexpected change occurs, water flow

always moves by following a fixed stream. The entire erosion process can be presented in

pseudocode in Figure 3.8.

To perform the erosion process efficiently, we have used short-term memory in the

process, called track-list. Since the nature of water flow is to never move upstream, the

track-list is used to prevent the DOWs in the erosion process from moving back. The list

only temporarily records the previously passed positions of the DOWs that are determined

in the corresponding erosion direction. Thus, each erosion direction has a corresponding

track-list. The track-list becomes empty immediately after the erosion direction is

completely considered.

Chapter 3 A General Water Flow Algorithm

63

Procedure Erosion Process;

Begin

 Do loop

 Choose an un-eroded direction with the smallest dΔ to erode;

 Do loop

 Apply steepest descent hill-sliding algorithm for the erosion direction chosen;

 Until (new optimal position is found or no improvement after MaxUIE iterations)

 If (the new optimal position is better than the eroding optimal position) Then

 Update it into the UE-list to continue performing the erosion process;

 Update the E-list;

 End if

 Until (all erosion directions are considered)

End.

Figure 3.8 Pseudocode for General Erosion Process of the WFA

The entire process of both exploration and exploitation terminates when the maximum

number of allowed iterations (MaxCloud) is reached.

Finally, we present the reasons why the erosion process only happens at the local

optimal positions with the large number of DOWs. The first reason is because the process

is inspired by the erosion phenomenon of water flow in nature. This phenomenon occurs

when the amount of water in watercourse increases dramatically as described in Section

3.2. The second reason is because the local optimal positions are considered as very

Chapter 3 A General Water Flow Algorithm

64

promising positions to search for global optimal positions. Intuitively, we can see that

because of using random number generation for the initial population of DOWs, the

probability of the DOWs generated onto every position is the same. Then, the center

positions of “big valleys” may be found more easily than the ones of “small valleys” (see

Figure 3.9). Also, it means that the number of DOWs at the center positions of “big

valleys” may increase faster than that at “small valleys”.

Figure 3.9 Illustration for “Big Valley” and “Small Valley”

Generally, good properties of a solution may appear many times throughout the

iterations. Hence, local optimal positions found many times in the WFA can be considered

as promising positions or regions to find better local optimal positions by the erosion

process.

“Small valley”

“Local optimal”

“Big valley”

30% 10% 10% 50%

Whole search space 100%

Chapter 4 WFA for Permutation Flow Shop Scheduling

65

CHAPTER 4

WFA FOR PERMUTATION FLOW SHOP SCHEDULING

In this chapter, we present a water flow algorithm (WFA) for solving the permutation flow

shop scheduling problem (PFSP), which is one of the well-known scheduling problems in

production. The proposed algorithm has been developed based on the general framework

of the WFA described in Chapter 3. The exploration phase of this algorithm is inspired by

the following basic components of the hydrological cycle, i.e., transportation, precipitation

and run-off; while the exploitation phase of this algorithm has used a pre-specified

constant value for determining the erosion capability of erosion process.

The structure of this chapter is organized as follows. In Section 4.1, we introduce the

PFSP and briefly describe a literature review of solution methods for the scheduling

problem. Then, the formulation of the PFSP is presented in Section 4.2. The customization

of the WFA for solving this scheduling problem is described in Section 4.3. The

computational results and comparisons among the WFA and other algorithms are shown

in Section 4.4. Finally, some conclusions are presented in Section 4.5.

Chapter 4 WFA for Permutation Flow Shop Scheduling

66

4.1 Introduction

In production, the PFSP is one of the well-known scheduling problems in which n jobs

have to be processed by m machines with the same order of jobs on machines. The most

common objective of the scheduling problem is to minimize the completion time of jobs,

also known as makespan (Cmax), by specifying the sequence of jobs. In addition to this

objective, there are other desired measures of performance for this scheduling problem,

such as minimizing total flow time of jobs or minimizing total tardiness time of jobs.

Generally, the makespan criterion is often used because the minimization of makespan

ensures that production gets a high throughput (Pinedo, 2002).

The PFSP with makespan minimization has been proven to be an NP-hard problem

when the number of machines m > 3 (Rinnooy Kan, 1976), and is thus considered a

challenging optimization problem. Many research works in the literature have addressed

this scheduling problem, and they also proposed various optimization methods to solve it.

We can classify the methods according to two approaches: exact and heuristic algorithms.

Exact techniques are computationally effective for problems with small size (often less

than 20 jobs). However, for problems with large size, these techniques are

computationally intensive. On the other hand, as heuristic algorithms often find a good

solution rapidly, it is efficient to use them to solve problems with large size.

The heuristic algorithms can be classified into three major categories: constructive

algorithms, improvement algorithms and meta-heuristics. Some constructive algorithms

for the PFSP include Johnson (1954), Nawaz et al. (1983) and Koulamas (1998). Among

these algorithms, the algorithm by Nawaz et al. (1983) (NEH) is one of the effective

Chapter 4 WFA for Permutation Flow Shop Scheduling

67

polynomial-time heuristic algorithms for the PFSP. Unlike constructive algorithms,

improvement algorithms start from an initial solution, and try to improve it through some

iterative procedures to obtain better solutions. Normally, the search for better solutions is

based on a predetermined neighborhood structure. Taillard (1990), Ho and Chang (1991),

and Suliman (2000) provide examples of improvement algorithms. Applying these

algorithms for solving the PFSP has led to some success, but the quality of solutions

obtained is not good for certain problems with large size. Recently, meta-heuristic

algorithms, which are inspired by the behavior of natural systems, have been extensively

developed and successfully applied to solve the PFSP. Some examples of the meta-

heuristic algorithms are ant colony optimization (Rajendran and Ziegler, 2004), particle

swarm optimization (Tasgetiren et al., 2007), and genetic algorithm (Nagano et al., 2008).

Hence, we propose a WFA for solving the PFSP. The proposed algorithm is developed

based on the general WFA presented in Chapter 3. In this algorithm, the exploration phase

simulates the basic components of the hydrological cycle, such as transportation,

precipitation and run-off. The exploitation phase uses a pre-specified constant value for

determining the erosion capability. Several well-known benchmark problem sets are used

to evaluate the performance of this algorithm. The best known values of the benchmark

problems in the literature are used to compare with the results obtained by the WFA. In

addition, we also used these results to compare with that of other efficient algorithms,

such as an adaptive learning approach combined with the NEH constructive heuristic

(NEH-ALA) proposed by Agarwal et al. (2006), or a constructive GA combined with

local search (CGALS) described by Nagano et al. (2008), etc.

Chapter 4 WFA for Permutation Flow Shop Scheduling

68

4.2 Formulation of the PFSP

In this section, we describe and present the formulation of the PFSP. In this scheduling

problem, n jobs have to be processed by m machines with the same order of jobs on

machines. Let pji denote the processing time of job j (j = 1, 2,..., n) on machine i (i = 1,

2,..., m), and C(σj, m) denote the completion time of job σj on machine m. Then, the PFSP

aims to search for the best permutation of jobs processed through all machines.

Given the job permutation 1 2(, ,...,)nπ σ σ σ= , the completion time of the n-job m-

machine problem is calculated as follows:

11 ,1

1 ,1

(,1) , (4.1)

(,1) (,1) , 2,..., ,
jj j

C p

C C p j n

σ

σ

σ

σ σ −

=

= + =

{ }

11 1 ,

1 ,

 (4.2)

(,) (, 1) , 2,..., , (4.3)

(,) max (,), (, 1) , 2,..., ; 2,..., . (4.4)
j

i

j j j i

C i C i p i m

C i C i C i p j n i m

σ

σ

σ σ

σ σ σ−

= − + =

= − + = =

Then, the makespan can be defined as:

 max () (,).nC C mπ σ= (4.5)

Hence, the PFSP with the makespan criterion aims to search for an optimal job

permutation π* in the set of all possible job permutations П, such that:

 *
max () (,) .nC C mπ σ π≤ ∀ ∈Π (4.6)

Chapter 4 WFA for Permutation Flow Shop Scheduling

69

4.3 WFA for the PFSP

In this section, we present how the proposed WFA can be applied to solve the PFSP. The

basic components of the WFA described are the encoding scheme, memory lists,

exploration phase, and exploitation phase.

4.3.1 Encoding Scheme

In the PFSP, a DOW is associated with a job permutation. We consider the job

permutation and its objective value as providing the longitude, latitude and altitude

information for the position of DOW on the ground. Given a job permutation

1 2(, ,...,)nπ σ σ σ= , we define:

1
2

1
2

longitude() (,...,) (4.7)

 latitude() (,...,) , (4.8)

n

nn

π σ σ

π σ σ

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥+⎢ ⎥⎣ ⎦

=

=

where x⎢ ⎥⎣ ⎦ is the largest integer less than or equal to x. The altitude of DOW is defined as

the corresponding makespan value of the given job permutation. The objective value is

calculated by equation (4.5). Figure 4.1 shows an illustrative example of a DOW and its

positional vector components for the PFSP with 6 jobs.

Figure 4.1 An Example of Solution Representation in the WFA for the PFSP

Objective value
(makespan)

Job permutation

DOW

Altitude
Latitude Longitude

1 5 3 4 6 27 2

Chapter 4 WFA for Permutation Flow Shop Scheduling

70

4.3.2 Memory Lists

In the WFA, we use three memory lists to support the search for global optimal positions.

Firstly, we use one memory list to store the best positions found so far, called the P0-list.

For the PFSP, the P0-list stores the job permutations with minimum makespan. This list is

updated when a new local optimal job permutation is found. Secondly, the un-eroded

position list, called the UE-list, is used to store local optimal job permutations which have

not been eroded due to not satisfying erosion condition. Its purpose is to record potential

job permutations for the subsequent erosion process. Thirdly, the eroded position list,

called the E-list, is used to store eroded local optimal job permutations. This list aims to

prevent next clouds from regenerating DOWs to the eroded job permutations. It would

help to save the computation time needed by the algorithm. Both UE-list and E-list are

updated after performing the erosion process. In addition, the UE-list is updated when a

new local optimal job permutation is found in the erosion process.

4.3.3 Exploration Phase

At each cloud (or iteration), after randomly generating a population of initial job

permutations for DOWs, the steepest descent hill sliding algorithm is used to search for

local optimal job permutations from the initial job permutations. In particular, the hill

sliding algorithm searches for the best improved job permutation within the initial job

permutation’s neighbors in terms of makespan value. Then, this process is performed

iteratively in the same manner until no other improved job permutation is found. In this

algorithm, a perturbation scheme based on a systematic pair-wise job exchange, a variant

of 2-opt algorithm, is used to construct the neighboring job permutations. In general, the

Chapter 4 WFA for Permutation Flow Shop Scheduling

71

exploration phase in the WFA for the PFSP will result in a set of local optimal job

permutations. They will be updated in the UE-list to be considered for performing the

erosion process in the exploitation phase.

4.3.4 Exploitation Phase

In the WFA for the PFSP, we perform the erosion process based only on the amount of

precipitation. If the amount of precipitation at some local optimal job permutation in the

UE-list increases up to MinEro, the erosion process will happen at the local optimal job

permutation.

In the current WFA, we consider the capability of erosion process based on a pre-

specified constant value. It means that the erosion capacity is independent of two factors,

i.e., the amount of precipitation and its falling force. In particular, when the erosion

process happens, the erosion capacity is determined by a constant MaxUIE, the maximum

number of iterations for the erosion process to move to the next erosion direction if the job

permutation is not improved.

In the erosion process of the WFA for the PFSP, the topological parameter dΔ

representing geographical surface is calculated as the difference between the makespan

value of the local optimum job permutation and that of its neighboring job permutations.

Here, we still use the same neighborhood structure as in the exploration phase. Firstly, we

choose the smallest dΔ to be the erosion direction. If the erosion process for that direction

does not improve after MaxUIE iterations, we say that the direction is blocked. In other

words, water flow cannot move in that direction and searching in that direction stops. This

is followed by backtracking, in which we restart the search from the local optimal job

Chapter 4 WFA for Permutation Flow Shop Scheduling

72

permutation using the direction with the next smallest dΔ . If all directions for considering

the local optimal job permutation are blocked, we call that job permutation fully blocked

and move it into the E-list. Then, we do not consider that job permutation in the following

clouds or iterations. Otherwise, if there is a direction with improvement when compared

with the current local optimal job permutation, we will choose that direction to erode

permanently for the local optimal job permutation. The improved local optimal job

permutation is updated in the UE-list to continue with performing the erosion process.

The entire process of both exploration and exploitation terminates when the maximum

number of allowed clouds or iterations (MaxCloud) is reached.

A flow chart of the WFA for solving the PFSP is shown in Figure 4.2. This flow chart

is a detailed extension of the flow chart presented in the Chapter 3.

4.3.5 A Numerical Example for Erosion Mechanism

In this section, a numerical example is used to illustrate for implementation of the erosion

mechanism in the exploitation phase of WFA. Data of the PFSP instance consists of:

The number of jobs: n = 5, and the number of machines: m = 5.

The processing time matrix of jobs on machines:

2 3 4 9 7
8 2 6 5 1

, for 1,.., and 1,.., .4 2 7 8 5
2 4 5 6 3
2 1 3 6 5

ijP i n j m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Chapter 4 WFA for Permutation Flow Shop Scheduling

73

Hydrological cycle processAlgorithm representation

Initialization

Generate a new cloud

Generate a new DOW with a
random job permutation

Apply a local search algorithm to
the generated DOWs to find their

local optimal positions

Identify the number of DOWs at the
local optimal positions

Update P0-list and UE-list

Pick one job permutation
in UE-list

Satisfy erosion
condition? Yes

Have all job permutations
in UE-list been considered?

No

No

Is MaxCloud reached?

Yes

Output the best job permutations in P0-list

Yes

No

Update UE-list and E-list to
continue with performing

erosion process

E

xp
lo

ra
tio

n
ph

as
e

h

E
xp

lo
ita

tio
n

ph
as

e
h

When it rains, the
DOWs are generated
and they fall to the

ground

Due to gravity force, the
DOWs automatically move

from higher positions to
lower positions (local

optimal positions) and they
are held there

Erosion process happens
when the erosion

condition is satisfied at
the local optimal

positions

The terrain at eroded
positions is smoothed
by the erosion process

Start

End

Perform erosion process
based on erosion capability

and topology parameter
determined

Belong to E-list?

Yes

No

j = MaxPop?

Yes

No

j = j +1

No

Figure 4.2 Flow Chart of the WFA for the PFSP

Chapter 4 WFA for Permutation Flow Shop Scheduling

74

For the WFA, the initialization of the parameter values is given as follows:

MaxCloud = 2, MaxPop =7, MinEro = 3, MaxUIE = 3.

In this illustration, we do not mention to the exploration phase of the WFA, thus we

assume that after doing the exploration phase, UE-list contains a set of two local optimal

job permutations as follows:

Table 4.1 UE-list of Local Optimal Job Permutations

UE-list Job permutations maxC The number of DOWs

#1 [2, 1, 4, 3, 5] 47 5

#2 [1, 4, 5, 2, 3] 46 2

We see that only the first local optimal job permutation in the UE-list has satisfied the

erosion condition (the number of DOWs at the local optimal job permutation is greater

than or equals to MinEro). Hence, the erosion process will be performed at this job

permutation. Firstly, the neighboring job permutations of this local optimal job

permutation will be determined and ranked in the descend order with the objective

function value Cmax. In the WFA, only the neighbors of the eroding local optimal job

permutation are ranked to consider one after another. For the neighboring job

permutations belonging to the search path of the direction chosen, we do not need to rank

the job permutations. As a result, ranking neighbors of the eroding local optimal job

permutation [2, 1, 4, 3, 5] is shown in Table 4.2.

According to the erosion process of water flow described in the WFA, the smallest

topology (or neighboring job permutation) around the eroding local optimal job

permutation will be chosen to perform erosion first. Here, we choose the erosion direction

Chapter 4 WFA for Permutation Flow Shop Scheduling

75

with respect to the neighboring job permutation [1, 2, 4, 3, 5] to perform erosion since its

objective value Cmax = 47 is smallest. In the case that there are many neighbors with the

same best objective value, we can choose randomly one of them to perform erosion.

Table 4.2 Possible Erosion Directions at the Local Optimal Job Permutation

Direction Neighbors maxC

1 [1, 2, 4, 3, 5] 47

2 [2, 1, 4, 5, 3] 47

3 [5, 1, 4, 3, 2] 48

4 [2, 3, 4, 1, 5] 48

5 [3, 1, 4, 2, 5] 49

6 [2, 5, 4, 3, 1] 49

7 [4, 1, 2, 3, 5] 50

8 [2, 1, 5, 3, 4] 50

9 [2, 4, 1, 3, 5] 51

10 [2, 1, 3, 4, 5] 51

Next, we update the eroding local optimal job permutation [2, 1, 4, 3, 5] into the track-

list to prevent the DOWs move back this position. For the erosion direction chosen, if we

cannot find a better job permutation after MaxUIE = 3 iterations, we will consider the

erosion direction with the next smallest objective value of the neighboring job

permutations, i.e., job permutation [2, 1, 4, 5, 3] in Table 4.2. Then, the track-list will be

refreshed, and the first erosion direction is known as blocked direction. This procedure is

iterated until any improvement job permutation (i.e., the objective value of the job

permutation just found is better than that of the eroding local optimal job permutation [2, 1,

Chapter 4 WFA for Permutation Flow Shop Scheduling

76

4, 3, 5]) is found in a direction. If an improvement job permutation is found, the steepest

hill-sliding algorithm is performed to obtain better new local optimal job permutation

from the improvement job permutation just found. Otherwise, if there is no improvement

through all erosion directions, the eroding local optimal job permutation is known as fully

blocked position and recorded into the E-list. Then, the erosion process will consider to

the next local optimal job permutation in the UE-list.

In this example, since we may find an improvement job permutation with respect to

the first erosion direction [1, 2, 4, 3, 5], this direction will be considered as the permanent

erosion direction of the DOWs at the local optimal job permutation [2, 1, 4, 3, 5]. The

steps to determine the improvement job permutation are shown in Table 4.3.

Table 4.3 Steps of Finding Improvement Job Permutation

 Step 2 Step 3

No. Neighbors maxC Remarks Neighbors maxC Remarks

1 [2, 1, 4, 3, 5] 47 in track-list [4, 1, 2, 3, 5] 50

2 [4, 2, 1, 3, 5] 50 [2, 4, 1, 3, 5] 51

3 [3, 2, 4, 1, 5] 48 [3, 4, 2, 1, 5] 46

4 [5, 2, 4, 3, 1] 49 [5, 4, 2, 3, 1] 49

5 [1, 4, 2, 3, 5] 47 chosen [1, 2, 4, 3, 5] 47 in track-list

6 [1, 3, 4, 2, 5] 49 [1, 3, 2, 4, 5] 50

7 [1, 5, 4, 3, 2] 48 [1, 5, 2, 3, 4] 50

8 [1, 2, 3, 4, 5] 50 [1, 4, 3, 2, 5] 48

9 [1, 2, 5, 3, 4] 50 [1, 4, 5, 3, 2] 46 chosen

10 [1, 2, 4, 5, 3] 47 [1, 4, 2, 5, 3] 46

Chapter 4 WFA for Permutation Flow Shop Scheduling

77

In particular, we will determine the neighboring job permutations and choose the best

job permutation among the neighbors without belonging to the track-list in order to

continue searching improvement job permutation. Through steps 2 and 3 in Table 4.3, we

find three improvement job permutations. Here, we choose randomly the job permutation

[1, 4, 5, 3, 2] to start searching better new local optimal job permutation. When applying

the steepest hill-sliding algorithm, we find the local optimal job permutation [1, 4, 3, 5, 2]

whose objective value Cmax = 45. Then, we update it into the UE-list to continue

performing the erosion process as shown in Table 4.4, and also update the eroded local

optimal job permutation [2, 1, 4, 3, 5] into the E-list.

Table 4.4 Updating the UE-list

UE-list Job permutations maxC The number of DOWs

#1 [1, 4, 3, 5, 2] 45 5

#2 [1, 4, 5, 2, 3] 46 2

This erosion process only terminates when fully blocked state is reached. Then, the

next job permutation in the UE-list will be considered to perform the erosion process. If

all job permutations in the UE-list are considered, next cloud will be generated to explore

new search space. In this example, the entire process of both exploration and exploitation

terminates when MaxCloud = 2 is reached. Then, the best job permutation found in the P0-

list is displayed as the output of the WFA.

As for the case that the local optimal job permutation is considered as a fully blocked

position, we can intuitively observe as shown in Figure 4.3. Then, we cannot find any

improvement job permutation through all erosion directions.

Chapter 4 WFA for Permutation Flow Shop Scheduling

78

Figure 4.3 The Case of Fully Blocked Position

4.4 Computational Experiments and Comparisons

4.4.1 Benchmark Problem Sets

To evaluate the performance of WFA for the PFSP, we performed experiments for four

benchmark problem sets, i.e., that of Carlier, Heller, Reeves and Taillard. These are well-

known problem sets in the PFSP taken from the OR Library. In this chapter, a total of 121

instances comprising of 8 instances of Carlier, 2 instances of Heller, 21 instances of

Reeves (odd number instances) and 90 instances of Taillard are used. The best known

upper bounds of these problem sets from the literature were used to compare with the

results obtained by the WFA. Also, the results obtained by Agarwal et al. (2006) and

meta-heuristic algorithms in Nagano et al. (2008) were used to compare with our results.

Agarwal et al. (2006) performed empirically to select the best parameters, but they did not

mention the number of runs of their algorithm for solving the instances; while Nagano et

al. (2008) used the design-of-experiment method to tune their parameters and ran 5

independent replicates for each instance.

New “local optimal”
Old “local optimal”

3MaxUIE =

Chapter 4 WFA for Permutation Flow Shop Scheduling

79

4.4.2 Platform and Parameters

The WFA has been coded using Visual Basic 6.0, and all experiments were performed on

an Intel Centrino Duo 1.60 GHz CPU with 1.5 GB of RAM running on Windows XP

Operating System. The computational complexity of the WFA for the PFSP is determined

based on the neighborhood structure used and the erosion process of this algorithm. In

particular, the WFA used 2-opt neighborhood structure, and the worst possibility of the

erosion process is to find through all n directions. Thus, the computational complexity of

the WFA may be estimated to be O(n3).

The choice of reasonable parameters for the WFA was determined by design-of-

experiment methods and the values are shown in Table 4.5. With the parameter sets, 5

independent replicates were used for each instance. The average or best results obtained

were used to evaluate the performance of the WFA and to compare with other algorithms.

4.4.3 Performance Measure

For comparison of objective values, we used the following average relative percentage

increase in objective value:

()

1 100

K
sol i sol

i sol

Heuristic BN
BN
K

=

−⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = ×

∑
 (4.9)

where Heuristicsol(i) and BNsol denote the makespan value obtained by the algorithm for the

ith replicate and the best known value from the literature, respectively; and K denotes the

number of replicates. If we only use the replicate with the best objective value to compute

the above Δ , then we denote the relative percentage increase in objective value by BestΔ .

Chapter 4 WFA for Permutation Flow Shop Scheduling

80

Table 4.5 Parameter Sets for Benchmark Problem Sets

Benchmark
Problem Sets

Value of Parameters

MaxCloud MaxPop MinEro MaxUIE

Carlier 5 5 2 5
Heller 5 10 2 5

R
ee

ve
s

20J-05M 10 10 2 5
20J-10M 20 20 2 10
20J-15M 50 20 2 10
30J-10M 20 20 2 10
30J-15M 30 10 2 10
50J-10M 10 10 2 10
75J-20M 10 10 2 10

T
ai

lla
rd

20J-05M 5 10 2 10
20J-10M 20 20 2 10
20J-20M 30 20 2 10
50J-05M 20 10 2 10
50J-10M 10 10 2 10
50J-20M 15 10 2 10
100J-05M 5 10 2 5
100J-10M 5 10 2 5
100J-20M 10 10 2 5

The best known values from the literature are used to be the reference points for the

evaluation and comparison of the WFA and other algorithms in this chapter. These values

may be the objective values of the optimal solutions of the benchmark instances used, or

those of the best solutions found by some algorithm so far. Hence, the comparison results

obtained may be negative values if new algorithm finds a better solution. Since we have

used the best known values published and summarized in the leading journal papers, the

comparison results obtain a high reliability.

Chapter 4 WFA for Permutation Flow Shop Scheduling

81

4.4.4 Computational Results

From Table 4.6, it can be seen that the WFA outperforms the NEH-ALA although the

CPU running time of the WFA in some instances is larger. In particular, 55 out of 90

Taillard’s instances solved by the WFA have better results than that solved by the NEH-

ALA. In the rest of the instances, the NEH-ALA only performs better than the WFA in 11

instances, which are mainly 100job-5machine instances. For the instances with smaller

size, i.e., 20 jobs, we obtained results similar to that of the NEH-ALA, but the CPU

running time is smaller. Similar results are also obtained by the WFA when solving

Carlier’s, Heller’s, and Reeves’ benchmark problem sets. The WFA obtained the best

known upper bound for 10 out of 21 instances of Reeves, while the NEH-ALA only

obtained the best known upper bound for 2 instances. Moreover, the WFA has the

average relative percentage increase of 0.77%, while it is 1.51% for the NEH-ALA. For

the Heller benchmark problem sets, the best known results for these instances are provided

in Agarwal et al. (2006), which showed the best makespan value of 136 for the 20job-

10machine instance and 516 for the 100job-10machine instance. When applying the WFA

to solve the 20job-10machine problem, a new upper bound value of 135 was found.

Also, we compared the results obtained by the WFA with other efficient meta-

heuristic algorithms in Nagano et al. (2008) in Table 4.7 and Figure 4.4. From the table

and figure, it can be seen that the WFA dominates the performance of the simulated

annealing algorithm of Osman and Potts (SAOP), tabu search of Widmer and Hertz

(SPIRIT), differential evolutionary method of Onwubolu and Davendra (DE), NEH-ALA

of Agarwal et al., and constructive genetic algorithm of Nagano et al. (CGA). When

compared with the robust genetic algorithm of Ruiz et al. (GARMA) and CGALS of

Chapter 4 WFA for Permutation Flow Shop Scheduling

82

Table 4.6 Comparison Results between the WFA and the NEH-ALA

Benchmarks No. of
instances

WFA NEH-ALA

BestΔ (%) Time (s) BestΔ (%) Time (s)

Car11J-5M 1 0 0.17 0 6.6
Car13J-4M 1 0 0.22 0 2.6
Car12J-5M 1 0 0.25 0 8.6
Car14J-4M 1 0 0.23 0 10.7
Car10J-6M 1 0 0.66 0 6.0
Car8J-9M 1 0 0.25 0 6.4
Car7J-7M 1 0 0.11 0 2.8
Car8J-8M 1 0 0.19 0 4.5
Average 0 0
Hel20J-10M 1 -0.74 23 0 94
Hel100J-10M 1 0 2752 0 2565
Average -0.37 0
Rec20J-5M 3 0 81 0.11 16.5
Rec20J-10M 3 0 218 0.41 34.6
Rec20J-15M 3 0 3732 0.78 49.6
Rec30J-10M 3 0.23 5024 1.54 94.9
Rec30J-15M 3 0.34 4661 1.78 144.3
Rec50J-10M 3 0.27 5223 1.13 423.7
Rec75J-20M 3 4.56 5714 4.81 2876
Average 0.77 1.51
Tai20J-5M 10 0 30 0 34.2
Tai20J-10M 10 0 150 0.39 74.1
Tai20J-20M 10 0 854 0.38 152.3
Tai50J-5M 10 0 2173 -0.01 487.8
Tai50J-10M 10 1.42 2837 2.58 983
Tai50J-20M 10 4.30 3877 5.29 2750.3
Tai100J-5M 10 0.29 6842 0.11 3736
Tai100J-10M 10 0.98 7538 1.03 3837
Tai100J-20M 10 4.22 6836 4.97 8853.5
Average 1.25 1.64

Chapter 4 WFA for Permutation Flow Shop Scheduling

83

Table 4.7 Average Relative Percentage Increase over the Best Known Solution for

Taillard’s Benchmarks Obtained by Meta-heuristic Algorithms

Instances WFA SAOP SPIRIT GARMA DE NEH-ALA CGA CGALS

20x5 0.00 0.93 4.01 0.29 3.98 1.38 1.33 0.05

20x10 0.00 2.59 5.65 0.63 5.86 2.22 2.42 0.19

20x20 0.00 2.33 4.84 0.41 4.53 1.78 2.08 0.08

50x5 0.00 0.48 1.90 0.06 4.28 0.46 0.32 0.02

50x10 1.49 3.34 5.84 1.76 11.48 3.44 3.72 1.65

50x20 4.35 4.47 7.46 2.62 14.73 4.66 4.98 2.67

100x5 0.37 0.28 0.93 0.07 4.27 0.46 0.21 0.02

100x10 1.11 1.53 2.96 0.60 10.42 1.54 1.46 0.60

100x20 4.38 4.68 6.26 2.52 16.08 4.49 4.52 2.84

Average 1.30 2.29 4.43 1.00 8.40 2.27 2.34 0.90

Figure 4.4 Means Plot for Comparing the WFA and Meta-heuristic Algorithms

Chapter 4 WFA for Permutation Flow Shop Scheduling

84

Nagano et al., the WFA performs best on the small and medium instances (from 20job-

5machine to 50job-10machine problems), but for the large instances it performs closer to

the average of the group of algorithms, and the SAOP, NEH-ALA and CGA methods than

CGALS and GARMA.

4.5 Conclusions

In this chapter, we developed the WFA for solving the PFSP. In the algorithm, only three

basic components of the hydrological cycle, i.e., transportation, precipitation, and run-off,

were used in the exploration phase. For the exploitation phase, the erosion process with a

constant erosion capability was used. The WFA is tested and compared with other meta-

heuristic algorithms on the PFSP benchmark problem sets taken from the literature. The

results show that the algorithm is able to obtain good solutions to the benchmark problem

sets. Also, a new best known solution of a Heller benchmark instance is found by the

WFA.

Chapter 5 WFA for Flexible Flow Shop Scheduling

85

CHAPTER 5

WFA FOR FLEXIBLE FLOW SHOP SCHEDULING

In this chapter, we construct the WFA for solving the flexible flow shop scheduling

problem (FFSP), which is one of the NP-hard scheduling problems often encountered in

production environment. Here, we investigate the FFSP with limited or unlimited

intermediate buffers. A common objective of this problem is to find a production schedule

that minimizes the completion time of jobs. Other objectives that we have also considered

are minimizing the total weighted flow time of jobs and minimizing the total weighted

tardiness time of jobs.

While the proposed WFA is inspired by the hydrological cycle in meteorology and the

erosion phenomenon in nature, we have also combined the amount of precipitation and its

falling force to form a flexible erosion capability in this algorithm. This helps the erosion

process of the WFA to focus on exploiting promising regions strongly. Moreover, to

initiate the algorithm, we have used a constructive procedure to obtain a seed job

permutation. We have also proposed an improvement procedure for constructing a

complete schedule from a job permutation that represents the sequence of jobs in the first

Chapter 5 WFA for Flexible Flow Shop Scheduling

86

stage of the FFSP. To evaluate the WFA for this scheduling problem, we have used

benchmark instances taken from the literature and randomly generated instances of the

problem. The computational results demonstrate the efficacy of this algorithm. Also, we

have obtained several improved solutions for the benchmark instances using the proposed

algorithm. We further illustrate the algorithm’s capability for solving problems in practical

applications by applying it to a maltose syrup production problem.

The structure of this chapter is organized as follows. In Section 5.1, we introduce the

FFSP and its important applications in modern production. A brief literature review of

problem classification and solution methods for the problem is also provided in this

section. Next, the details of the FFSP with limited or unlimited buffers are described in

Section 5.2. A full description of the proposed WFA for the FFSP with intermediate

buffers is provided in Section 5.3. An example of the FFSP with limited buffers in maltose

syrup production is presented in Section 5.4. Computational experiments and comparisons

based on benchmark instances of the FFSP with limited or unlimited buffers, randomly

generated instances, and the maltose syrup production problem are shown in Section 5.5.

Finally, some conclusions of this chapter are presented in Section 5.6.

5.1 Introduction

In production, flexible flow shop scheduling is one of the well-known NP-hard scheduling

problems. In this chapter, we focus on the FFSP with limited intermediate buffers. The

problem involves a set of jobs processed through several consecutive operation stages

with parallel identical machines in each stage, and there are limited intermediate buffers

between consecutive stages. The primary objective of this problem is to find a production

Chapter 5 WFA for Flexible Flow Shop Scheduling

87

schedule to minimize the completion time of jobs, known as makespan (Cmax). There are

also other important objectives of this problem, such as to minimize the total weighted

flow time of jobs and to minimize the total weighted tardiness time of jobs. These

objectives help to achieve a high throughput for production. The FFSP with limited

buffers has been encountered in both traditional and modern manufacturing systems, such

as the electrics manufacturing (Wittrock, 1988), the paper production industry (Sherali et

al., 1990), the building industry (Grabowski and Pempera, 2000), the printed circuit board

assembly line in electronics industry (Sawik, 2001), and the continuous casting-hot charge

rolling production in steel industry (Tang and Xuan, 2006). It is also a special case of the

FFSP with unlimited intermediate buffers (Wardono, 2001).

Although many researchers have developed optimization techniques for solving a

variety of flow shop scheduling problems, only a few of them dealt with the FFSP with

limited buffers. A detailed review of the development of scheduling algorithms, as well as

the classification of FFSP, is given in Quadt and Kuhn (2007) and Ribas et al. (2010).

Quadt and Kuhn (2007) proposed the taxonomy of l-stage flexible flow line scheduling

procedures. The taxonomy focuses mainly on heuristic procedures that are split into

holistic and decomposition approaches. The decomposition approaches are further

classified into stage-oriented decomposition, job-oriented decomposition, and problem-

oriented decomposition approaches. Ribas et al. (2010) introduced a new classification for

published papers on FFSP. From a production perspective, this classification is based on

machine and job characteristics, relevant constraints, and objective functions. From a

solution perspective, this classification involves grouping the references into exact

approaches, heuristic procedures, hybrid approaches, and simulation/decision support

Chapter 5 WFA for Flexible Flow Shop Scheduling

88

system procedures. Among these approaches, heuristic and hybrid approaches have

recently received considerable attention by many researchers (Ruiz and Vazquez-

Rodriguez, 2010). Wardono and Fathi (2004) developed a tabu search algorithm together

with a procedure for constructing a complete schedule to solve the FFSP with limited

buffers that minimizes job completion time. This algorithm is based on the stage-oriented

decomposition approach. Tavakkoli-Moghaddam et al. (2009) proposed a memetic

algorithm (MA), which involves a combination of genetic algorithm and nested variable

neighborhood search, for solving the flexible flow line scheduling problem with processor

blocking and without intermediate buffers. The MA obtained some promising results and

it can be considered as an efficient algorithm for solving the FFSP with no available

buffer space. However, there is no formal procedure for constructing a complete schedule

in the MA. Also, the quality of solutions obtained by these algorithms may not be good for

problems with large size.

In this chapter, we construct a water flow algorithm for solving the FFSP with limited

or unlimited intermediate buffers. To evaluate the performance of the WFA, we have

tested it on many instances of FFSP with intermediate buffers from the literature.

Moreover, we also compare the performance of the WFA with that of the tabu search

algorithm of Wardono and Fathi (2004) and MA of Tavakkoli-Moghaddam et al. (2009).

In addition, we introduce a problem encountered in the maltose syrup production industry

and use it to evaluate the efficiency of the WFA for solving problems arising in practical

applications.

Chapter 5 WFA for Flexible Flow Shop Scheduling

89

5.2 FFSP with Intermediate Buffers

The FFSP with limited intermediate buffers is an NP-hard combinatorial optimization

problem (Wardono and Fathi, 2004) that may be formulated as follows. A set of N jobs is

processed on S consecutive production stages with ml parallel identical machines in each

stage l (l = 1,…,S). There are limited buffers between these consecutive stages (refer to

Figure 5.1) and we denote Bl as the capacity of the buffer at stage l. In this problem, jobs

have to be processed successively through all S stages. One machine in each stage can

only process one job at a time, and each job can only be processed on at most one machine

in each stage at the same time. In addition, each job is processed without preemption on

one machine in each stage. Moreover, a job can skip one or more stages but is unable to

go back to a previous stage. Here, we only consider processing time, weight, and due date

of jobs in this problem. Thus, we do not consider other characteristics, such as the

breakdown time of machines and set-up time of jobs in this model.

Figure 5.1 The Schematic of FFSP with Limited Intermediate Buffers

For the FFSP with limited buffers, we can divide it into two cases. The first one is the

case of no available buffer space for completed jobs between consecutive stages. It means

1

2

m1

Stage 1

1

2

m2

Stage 2

1

2

mS-1

Stage S-1

1

2

mS

Stage S

Buffer 1 Buffer S-1

N jobs

Chapter 5 WFA for Flexible Flow Shop Scheduling

90

that after job j is finished by machine i in stage l, if there is no idle machine in the

subsequent stage l+1, then job j must wait on machine i in stage l until there is at least an

idle machine in stage l+1 to start processing job j in this stage. The job j is known as a

blocked job, and the corresponding machine i is known as a blocked machine. This case is

often encountered in maltose syrup production for the confectionery and sugar industries

(Hull, 2010), and the continuous casting-hot charge rolling production for the steel

industry (Tang and Xuan, 2006). The second case is the FFSP with finite buffer capacities

between consecutive stages. In this second case, after a job j is completed on machine i in

stage l, it can either be processed on an available machine in stage l+1 or wait in a

following buffer if there is no available machine in stage l+1. If there is no available

capacity in the following buffer, job j remains on blocked machine i in stage l until there is

available capacity in the following buffer or an available machine in stage l+1. In addition

to the two cases mentioned above, we also consider the FFSP with unlimited buffer

capacities between consecutive stages. In the FFSP with unlimited intermediate buffers,

after a job j is completed by machine i in stage l, the machine i is immediately available to

process awaiting jobs in the buffers of previous stage l-1 even though there is no available

machine in stage l+1.

A Gantt chart illustration of the FFSP with intermediate buffers is shown in Figure 5.2.

The data for this example is displayed in Table 5.1. In this example, we consider the FFSP

with 3 stages in which there is a machine in stage 1 and stage 3, and 3 machines in stage 2.

5 jobs are processed through these stages, in the order of job 1 to job 5 at stage 1. In the

first case of the FFSP with limited buffers (Figure 5.2a), when job 4 is completed on

machine 1 in stage 1, it has to wait in machine 1 until there is at least an idle machine in

Chapter 5 WFA for Flexible Flow Shop Scheduling

91

stage 2. Thus, machine 1 in stage 1 is blocked. Hence, job 5 can only be processed on

machine 1 in stage 1 from time 5 when machine 1 in stage 2 is available. In the second

case of the FFSP with limited buffers (Figure 5.2b), there are buffers with capacity 1 after

stage 1 and stage 2, and they are denoted by B1 and B2 respectively. With B1, we can see

that machine 1 in stage 1 is not blocked from time 4 to 5 as in the first case. This is

because after job 4 is completed on machine 1 in stage 1, it is delivered to buffer 1. Then,

job 5 can be processed on machine 1 in stage 1 from time 4. Also, in Figure 5.2b, job 5 is

blocked on machine 2 in stage 2 from time 10 to 11, since buffer 2 is full and there is no

available machine in stage 3. However, for the FFSP with unlimited buffers (Figure 5.2c),

job 5 is not blocked on machine 2 in stage 2 from time 10 to 11 because it is delivered to

buffer 2 with infinite capacity. This shows a typical difference between the FFSP with

limited buffers and unlimited buffers. With infinite buffer capacities, blocked jobs or

machines do not exist in the problem.

To solve the FFSP with intermediate buffers, we first construct a WFA for solving the

FFSP with no available buffer space. Then, we apply the WFA with a modification of the

input data to solve the FFSP with finite buffer capacities between consecutive stages. The

aim of this modification is to convert the FFSP with finite buffers to one with no available

buffer space (McCormick et al., 1989). To do so, we consider a buffer with a capacity of C

as a stage with C parallel identical machines in which the processing time of jobs through

the machines is zero. We also assume that every job must be processed through all stages,

including the buffer stages. We illustrate the conversion process by an example in Table

5.1. As for the FFSP with unlimited buffers, we also perform a modification procedure of

constructing a complete schedule that is appropriate with the structure of the problem.

Chapter 5 WFA for Flexible Flow Shop Scheduling

92

Stage Machine

1 1 1 2 3 4 b 5 b

2 1 1 4 b
 2 2 5 b
 3 3 b

3 1 1 2 4 5 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 time, t

(a) The FFSP with no available buffer space between consecutive stages

b Blocked Job/Machine

Stage Machine Buffer
 Job at

Buffer

1 1 1 2 3 4 5

 B1= 1 4 5

2 1 1 4
 2 2 5 b
 3 3

 B2 = 1 4 5 3

3 1 1 2 4 5 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 time, t

(b) The FFSP with finite buffer capacities between consecutive stages

Stage Machine Buffer

1 1 1 2 3 4 5

 B1= ∞ 4 5

2 1 1 4
 2 2 5
 3 3

 B2 = ∞ 4 3
 5

3 1 1 2 4 5 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 time, t

(c) The FFSP with unlimited buffer capacities between consecutive stages

Figure 5.2 A Gantt Chart Illustration of the FFSP with Intermediate Buffers

Chapter 5 WFA for Flexible Flow Shop Scheduling

93

Table 5.1 An Example of Converting FFSP with Finite Buffers to FFSP with No
Available Buffer

Processing
time

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
 (buffer stage) (buffer stage)

Job 1 1 0 4 0 2
Job 2 1 0 6 0 3
Job 3 1 0 10 0 1
Job 4 1 0 4 0 1
Job 5 2 0 2 0 2

5.3 WFA for the FFSP with Intermediate Buffers

In this section, we present the operational mechanism of the WFA for solving the FFSP

with intermediate buffers. The proposed algorithm is based on the simulation of spreading

of raindrops into many places on the ground, as well as the property of water flow always

moving from higher positions to lower positions, and the erosion capability of water flow

on the ground.

Firstly, a cloud representing an iteration randomly generates a set of drops of water

(DOWs) onto some positions on the ground, which represent solutions of the FFSP. Next,

due to the gravity force of Earth represented by a heuristic algorithm, the DOWs

automatically move to local optimal positions. They are held at these positions until the

erosion condition is satisfied before performing the erosion process. Then, depending on

the amount of precipitation, the falling force of precipitation and soil hardness at the local

optimal positions, the erosion process helps the DOWs overcome the local optimal

positions to find better or global positions. A flow chart of the WFA for the FFSP with

intermediate buffers is shown in Figure 5.3. The details of the erosion condition, erosion

capability, erosion process, and other operations of the WFA for the FFSP with

intermediate buffers are described in the following subsections.

Chapter 5 WFA for Flexible Flow Shop Scheduling

94

Hydrological cycle processAlgorithm representation

Initialization

Construct a seed job
permutation using the

FFLL algorithm

 Apply the insertion
scheme for the seed job

permutation to
construct a set of job

permutationsBelong to E-list?

Generate a new cloud (iteration)

Generate a new DOW with a
random job permutation using

an encoding scheme

Yes

j = MaxPop?

No

No

j = j + 1

Apply the hill-sliding algorithm to the generated job permutations
with a 2-opt neighborhood structure and the H1-variant procedure to

find their local optimal job permutations

Yes

Evaluate the soil hardness based on the objective value
obtained by the H1-variant procedure and identify the
number of DOWs at the local optimal job permutations

Update P0-list and UE-list

Pick one job permutation
in UE-list

Satisfy erosion
condition?

Identify
erosion

capability at
the job

permutation
Yes

Evaluate topology
parameter around the job

permutation using the
2-opt neighborhood

structure and the
H1-variant procedure

Choose the un-eroded
direction with the
smallest topology

parameter to perform
erosion process

Is a better local optimal
job permutation found?

Have all job permutations
in UE-list been considered?

No

No

Is MaxCloud reached?

Yes

Output the best job permutations in P0-list

Yes

No

Update UE-list to
continue with

performing erosion
process

Yes

No

Have all directions been
chosen?

No

Yes

Update E-list

Ex

pl
or

at
io

n
ph

as
e

h

Ex
pl

oi
ta

tio
n

ph
as

e
h

When it rains, the DOWs are
generated and they fall to

the ground

Due to gravity force, the
DOWs automatically move

from higher positions to
lower positions (local

optimal positions) and they
are held there

Erosion process happens
when the erosion condition

is satisfied at the local
optimal positions

The terrain at eroded
positions is smoothed by the

erosion process

 Generate a set of
DOWs from the set of
job permutations using

an encoding scheme

Figure 5.3 Flow Chart of the WFA for the FFSP with Intermediate Buffers

5.3.1 Encoding Scheme

In the FFSP with intermediate buffers, a DOW is associated with a job permutation. We

consider the job permutations and their single objective value as providing the longitude,

Chapter 5 WFA for Flexible Flow Shop Scheduling

95

latitude, and altitude information for the position of the DOWs on the ground. Given a job

permutation 1(,...,)Nπ σ σ= , we define:

1
2

1
2

(5.1)

(5.2)

longitude() (,...,)

 latitude() (,...,) ,

N

NN

π σ σ

π σ σ

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥+⎢ ⎥⎣ ⎦

=

=

where x⎢ ⎥⎣ ⎦ is the largest integer less than or equal to x. The objective value could be the

makespan, total weighted flow time of jobs, or total weighted tardiness time of jobs.

However, we do not use all the possible objectives at the same time. Depending on the

single objective function adopted, the altitude of DOW is defined as the corresponding

objective value of the given job permutation. Figure 5.4 shows an illustrative example of a

DOW and its positional vector components for the FFSP with 6 jobs.

Figure 5.4 An Example of Solution Representation in the WFA for the FFSP

Note that the job permutations considered here are denoted by vectors of size N, which

represent the sequence of the given set of jobs performed in the first stage. As such vectors

cannot fully determine the schedule of the jobs through all the stages, a procedure for

constructing a complete schedule from such vectors is required to obtain the objective

value. Here, we propose an improvement over the procedure H1 of Wardono and Fathi

Objective value
(makespan)

Job permutation

DOW

Altitude
Latitude Longitude

2 5 3 4 6 127 1

Chapter 5 WFA for Flexible Flow Shop Scheduling

96

(2004), called the H1-variant procedure, to construct a complete schedule associated with

a given job permutation. Our proposed procedure starts from stage 2 and involves

choosing a job waiting in the preceding buffer for an available machine in the current

stage. The criteria for choosing the job, in order of priority, are job weight, due date, total

remaining processing time, processing time at current stage, and length of time at the

buffer. Thus, the job with the largest weight has the highest priority to be chosen. If two or

more jobs have the same largest weight, then the job with the earliest due date will be

chosen first. If there are jobs having the same maximum weight and earliest due date, then

the job with maximum total remaining processing time will be chosen. If there is still a tie,

the job whose processing time at the current stage is largest will be chosen. Any further

ties will be broken by choosing the job that is at the buffer for the longest time. This

procedure is unlike the procedure H1 of Wardono and Fathi (2004), in which only the last

criterion is used to choose the job to be processed. Moreover, the proposed improvement

is applicable to the FFSP with no available buffer space and the FFSP with unlimited

buffers. In the former case, we consider the completed jobs which are blocked at the

preceding stage as the available jobs waiting in buffer. In the latter case, as the buffer

capacities are infinite, the completed jobs are immediately transferred to the buffers to

wait for an available machine in the next stage by following the above mentioned rules of

choosing the jobs.

In addition, another improvement for assigning available machines based on the job

schedule is proposed. The assignment is mainly based on the first available machine

(FAM) rule of Wardono and Fathi (2004). However, for the available machines, we give

higher priority to the machines that have been used before. An example is shown in Figure

Chapter 5 WFA for Flexible Flow Shop Scheduling

97

5.5. According to the modified FAM rule, job 1 is processed on machine 1 instead of

machine 2 at stage 2, even though machine 2 is available earlier and would have been

chosen based on the original FAM rule. This modified FAM rule will help to reduce the

number of machines used. Consequently, it has the advantage of possibly reducing the

resources used in the design problem.

Stage Machine

1 1 1 1
 2 2 3 2 3

2 1 2 3 2 1 3
 2 1

 1 2 3 4 5 6 7 8 9 1011 1 2 3 4 5 6 7 8 9 1011
 time, t time, t
 (a) Procedure H1 (b) Proposed Procedure

Figure 5.5 A Comparison Between the FAM Rule and the Modified FAM Rule

Figure 5.6 shows a comparison of the overall performance between the two procedures

for an example taken from Wardono and Fathi (2004). In this example, since the weight

and due date of jobs are not given, we assume that they are the same for all jobs. Then,

choosing the appropriate job for the idle machines is based mainly on the total remaining

processing time of available jobs. From Figure 5.6, the completion time of all jobs is at

time 31 for the proposed procedure, while the completion time for the schedule of

Wardono and Fathi (2004) is at time 32. This shows a better performance of our proposed

constructive procedure over that of Wardono and Fathi (2004).

Chapter 5 WFA for Flexible Flow Shop Scheduling

98

 Vector representation: {2,6,9,8,7,10,3,4,1,5}

 B1 = B2 = 2

Stage Machine b = Machine is blocked

1 1 2 9 8 10 b 4 5 b
 2 6 7 3 b 1 b

2 1 2 6 8 3 b 5
 2 9 7 10 4 b 1

3 1 2 7 10 5
 2 9 8 4
 3 6 3 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
time, t

(a) Complete schedule obtained by the procedure H1

Stage Machine

1 1 2 9 8 10 b 4 b 5 b
 2 6 7 3 b 1

2 1 2 6 10 1 4 b
 2 9 8 3 7 b 5 b

3 1 2 3 1 7
 2 9 10 4
 3 6 8 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

time, t

(b) Complete schedule obtained by the proposed H1-variant procedure

Figure 5.6 A Comparison Between the Procedure H1 and the H1-Variant Procedure

Based on the constructed complete schedule, the corresponding objective value can

then be determined. We thus incorporate the H1-variant procedure of constructing the

complete schedule in the determination of the objective value to simplify the

computational procedure of the WFA. This simplification is significant because the search

space of the problem is now limited to a set of possible permutations of N jobs and we do

Chapter 5 WFA for Flexible Flow Shop Scheduling

99

not need to look at the number of machines in each stage. Although using the job

permutation representation may not cover the global optimal job permutation of the

scheduling problem, the best job permutation obtained by the WFA or any algorithm with

this representation is very near the global optimal job permutation. Furthermore, the job

permutation representation can be more easily integrated into metaheuristic algorithms

than the matrix representation, which cover the entire solution space but need expensive

computation time to determine whether a solution given in this representation is feasible

or not (Wardono and Fathi, 2004).

5.3.2 Memory Lists

Three memory lists of the WFA to support the search for global optimal positions are used

in the FFSP with intermediate buffers. Firstly, the best positions list, called the P0-list,

stores the job permutations with minimum makespan, minimum total weighted flow time

of jobs, or minimum total weighted tardiness time of jobs. Secondly, the un-eroded list,

called the UE-list, is used to store local optimal job permutations which have not been

eroded because of not satisfying the erosion condition. Its purpose is to record the

potential job permutations for the subsequent erosion process. Thirdly, the eroded list,

called the E-list, is used to store eroded local optimal job permutations. Among these lists,

the E-list plays an important role of preventing DOWs from being regenerated to the

eroded job permutations in the subsequent iterations. It would help to reduce the

computation time needed by the algorithm. The lists are updated in a similar manner as

that in Section 4.3.2.

Chapter 5 WFA for Flexible Flow Shop Scheduling

100

5.3.3 Exploration Phase

In the first iteration of this phase, we generate a seed job permutation using the flexible

flow line loading (FFLL) algorithm (Pinedo, 2005). This is an efficient constructive

algorithm for flexible manufacturing systems with cyclic paths. It consists of three phases:

the machine allocation phase, the sequencing phase, and the release timing phase. The

objective of this algorithm is to minimize the work-in-process so as to reduce blocking

probabilities. Then, we use an insertion scheme to generate a set of job permutations for

the subsequent erosion process. Here, the insertion scheme is based on the seed job

permutation. This scheme is performed by removing a job from its present position and

inserting it at a different position, and then shifting the position of jobs between these two

positions by a unit accordingly. Although the exploration phase of the WFA is mainly

used to explore job permutation search space, the major objective of this phase is to

determine potential regions for performing erosion process in the exploitation phase.

Hence, we have used the generation of the set of initial seed job permutations to improve

the computation time of determining the potential regions. This may also improve the

convergence rate of the WFA, although the best job permutations may not come directly

from these initial seed job permutations.

In the following iterations of this phase, we no longer use the FFLL algorithm. Instead,

only randomly generated job permutations with population size MaxPop are used. In all

the iterations, after generating a population of job permutations for DOWs, a steepest

descent hill sliding algorithm is used to search for local optimal job permutations from

these initial job permutations. The hill sliding algorithm is similar as that described in

Section 4.3.3. In the hill sliding algorithm, a perturbation scheme based on a variant of 2-

Chapter 5 WFA for Flexible Flow Shop Scheduling

101

opt algorithm is used to construct the neighboring job permutations. The 2-opt

neighborhood structure determines the set of all neighboring job permutations that can be

obtained from a current job permutation by exchanging positions of two jobs in the current

job permutation. In particular, if 'π is the job permutation obtained by swapping the

positions of two jobs iσ and jσ in a job permutation π , we can determine 'π by:

[] []
[] [] { }

' '

'

, ,

 for \ , ,
i j j i

k k k N i j

π σ π σ π σ π σ

π σ π σ

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
= ∈ (5.3)

where π[σ] and π’[σ] denote the positions of job σ in the job permutation π and its

neighboring job permutation π’ respectively. The number of neighboring job permutations

obtained by the neighborhood structure is N(N-1)/2. The hill sliding algorithm with this 2-

opt neighborhood structure is used for all three objective functions considered here.

In general, the exploration phase in the WFA for the FFSP results in a set of local

optimal job permutations. They are updated in the UE-list to be considered for performing

the erosion process in the next exploitation phase.

5.3.4 Exploitation Phase

5.3.4.1 Erosion Condition and Capability

In the WFA for the FFSP with intermediate buffers, we perform the erosion process based

on the amount of precipitation. If the amount of precipitation at some local optimal job

permutation increases up to MinEro (the minimum number of DOWs allowed to start the

erosion process), the erosion process would happen at the local optimal job permutation.

Chapter 5 WFA for Flexible Flow Shop Scheduling

102

In the current WFA, we consider the capability of erosion process based on two main

factors, the amount of precipitation and its falling force. In the FFSP with intermediate

buffers, the amount of precipitation is represented by the number of DOWs at the eroding

local optimal job permutation, while its falling force is represented by the objective value

at the job permutation. We assume that clouds are at the same altitude, and the falling

force of precipitation to lower local optimal positions will cause erosion more easily than

that of higher ones, i.e., the erosion capability becomes stronger for local optimal job

permutations with larger amount of precipitation and lower objective values. It creates a

flexible operation scheme for the erosion capability of DOWs in the algorithm, and helps

the erosion process focus on exploiting promising regions strongly while ignoring regions

with poor performance. In particular, the relationship between these two factors and the

control parameter of erosion capability, MaxUIE (the maximum number of iterations for

the erosion process to move to the next erosion direction if the job permutation is not

improved), is expressed as:

* /

1 2() ,LB zMaxUIE Qϕ π ϕ= + (5.4)

where 1ϕ and 2ϕ are parameters representing the effect of precipitation and its falling

force respectively. Also, *()Q π is the number of DOWs at the local optimal job

permutation *π , LB is a known lower bound, and z is the objective value at the eroding

local optimal job permutation. Here, LB can be any lower bound obtained from the

literature, or by solving a relaxation of the problem. For the case of makespan

minimization, we have used the lower bound proposed by Sawik (2000) and Wardono and

Fathi (2004) for LB. As for the cases of minimizing the total weighted flow time of jobs

Chapter 5 WFA for Flexible Flow Shop Scheduling

103

and total weighted tardiness time of jobs, we have used the lower bounds in Azizoglu et al.

(2001) and Akturk and Yildirim (1998) respectively.

In real-life, the falling force of precipitation does not affect the erosion capability as

much as the amount of precipitation. Hence, we formulate the relationship between these

two factors and the erosion capability as shown in equation (5.4). While there could be

other functions to express the property, from the computational experiments, this has

worked well on the scheduling problem. In particular, the effect of the falling force of

precipitation is in the range [1, 2ϕ] by using the function /
2

LB zϕ , due to 1LB
z
≤ . In

addition, when running experiments we set 2ϕ to vary in [1, 4]. As for the effect of the

amount of precipitation, we set 1ϕ to vary in [2, 4], since the erosion process is often

performed at the local optimal job permutation with *() 2Q π ≥ . Then, the falling force of

precipitation will have less effect on MaxUIE than the amount of precipitation. Although

parameters 1ϕ and 2ϕ may be considered as relative weights, we do not require the sum of

the weights to be equal to one.

Based on the preliminary computational experiments by using the design-of-

experiment method and setting other parameters to be constant, i.e., MaxCloud = 10,

MaxPop = 20, and MinEro = 3, the best values for 1ϕ and 2ϕ are determined to be 2 and 3

respectively when the WFA is applied to solve the FFSP with intermediate buffers.

Chapter 5 WFA for Flexible Flow Shop Scheduling

104

5.3.4.2 Erosion Process

The erosion process will be performed when the erosion condition is satisfied. The erosion

capability in this process at local optimal job permutations depends on equation (5.4). The

strategy of erosion process is based on a topological parameter representing the

geographical surface, and whether an erosion direction is blocked.

For the FFSP, the topological parameter dΔ is calculated in the same manner as that

shown in Section 4.3.4. The backtracking strategy of the erosion process presented in

Section 4.3.4 is also used for solving the FFSP by the WFA. Here, we still use the 2-opt

neighborhood structure as in the exploration phase of the algorithm.

The entire process for both exploration and exploitation terminates when the

maximum number of allowed iterations (MaxCloud) is reached.

5.4 An Example of the FFSP in Maltose Syrup Production

In developing countries, confectionery and sugar industries are of great economic

importance. The main raw material used for such industries is maltose syrup, and its

production is thus crucial for these industries (Pedersen and Vang-Hendriksen, 2001). The

production of maltose syrup can be modeled as a FFSP with no available buffer space

between consecutive stages for completed jobs. An example of this problem involves nine

jobs, with each job handling one type of maltose syrup. They are processed through six

consecutive stages representing the six phases in the maltose syrup production process

(see Figure 5.7). Here, the process is continuous with connections through pipes and tanks.

Chapter 5 WFA for Flexible Flow Shop Scheduling

105

The number of parallel identical machines in each stage, processing time of the jobs at

these stages, weight of the jobs, and due date of the jobs are shown in Table 5.2.

The jobs processed at the various stages of maltose syrup production not only depend

on the busy/idle state of consecutive machines as in the standard FFSP with limited

buffers, but also depend on the status of other machines. For example, jobs cannot go to

stage 1 until there is at least one idle machine in stage 2, even if the machine in stage 1 is

idle. Moreover, since the product is a liquid and stages 2 and 3 are connected directly, the

completion time of the jobs in stages 2 and 3 would be the same. As an example, Figure

5.8 illustrates a Gantt chart of the production problem with its data from Table 5.1. Note

that job 4 could have been processed at time 3 for the standard FFSP with no available

buffer space. However, due to some special requirement in maltose syrup production, job

4 can only be processed from time 7 when there is an idle machine in stage 2. As such, we

can consider this as a FFSP with controlled and limited buffers.

Table 5.2 Problem Data for Maltose Syrup Production

Stage No. of
machines

Processing time of jobs (hours)
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9

1 1 6 6 6 6 6 6 6 8 8
2 4 49 49 49 49 49 23 23 11 11
3 1 7 7 7 7 7 7 7 7 7
4 1 2 2 2 2 2 2 2 2 2
5 1 7 5 5 5 5 5 5 7 5
6 1 1 1 1 1 1 1 1 1 1

Due date 120 87 87 172 172 72 72 120 72
Weight 0.10 0.10 0.10 0.05 0.05 0.20 0.20 0.05 0.15

Chapter 5 WFA for Flexible Flow Shop Scheduling

106

Figure 5.7 Maltose Syrup Production Process

Stage Machine

1 1 1 2 3 b 4 b 5

2 1 1 4
 2 2 5
 3 3

3 1 1 2 4 3 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 time, t

Figure 5.8 Illustration of the FFSP with Controlled and Limited Buffers

Cereal grain mixing
phase

Glucose 1

Filtering and cleansing
phase

Resin

Ceramic filtering
phase

Solidifying phase

Maltose tank
1

Maltose tank
2

Glucose 2 Glucose 3 Glucose 4

Chapter 5 WFA for Flexible Flow Shop Scheduling

107

Since the special restrictions in the production model only affect the H1-variant

procedure of constructing a complete schedule, we do not need to adjust the WFA to solve

the maltose syrup production problem. Thus, we consider the restrictions as constraints in

the H1-variant procedure for releasing the selected jobs to stage 1 and freeing the

machines at stage 2. For the former constraint, the selected jobs can only be processed at

stage 1 when at least one machine in stage 1 and one machine in stage 2 are idle. For the

latter constraint, the machine finishing a job at stage 2 is free only if the job at stage 3 is

also finished. The other rules of selecting and assigning jobs/machines in the H1-variant

procedure, as well as the procedure of determining the objective value are unchanged.

5.5 Computational Experiments and Comparisons

In this section, we present the results of computational experiments carried out on the

benchmark instances of Wittrock (1988), the randomly generated instances based on

Wardono and Fathi (2004), the randomly generated instances based on Tavakkoli-

Moghaddam et al. (2009), and an instance of the maltose syrup production problem

mentioned in the previous section. These experiments are used to evaluate the

performance of the WFA for solving the FFSP with limited and unlimited buffers.

5.5.1 Benchmark Instances and Randomly Generated Instances

Here, the benchmark instances of Wittrock (1988) shown in Table 5.3 are modified in a

similar manner as Wardono and Fathi (2004). Thus, where applicable, the transport time

(one minute) for the Wittrock instances is added to the processing time of the jobs at

stages 2 and 3 respectively. In these instances, the number of machines at stages 1, 2, and

Chapter 5 WFA for Flexible Flow Shop Scheduling

108

3 are 2, 3, and 3 respectively. When solving the instances with finite buffers, we set the

buffer capacity to 3 for all stages.

For the instances generated based on Wardono and Fathi (2004), we use the procedure

of generating the type II dataset in that paper. These instances, called the TS instances,

were constructed with the number of jobs N = 20, 30, 40, 50; the number of stages S = 2, 3,

4; and the number of machines ml = 2, 4, 6 for all stages l. For each job, its processing

time is generated randomly as an integer from a uniform distribution [1, 100]. For each set

of parameter values, we construct and solve five instances. When solving the instances

with finite buffers, we set the buffer capacity to 1 for all stages. We compare the results

obtained by the WFA to the lower bounds proposed by Wardono and Fathi (2004). The

results for the Wittrock benchmark instances and the type II dataset obtained by the tabu

search algorithm of Wardono and Fathi (2004) are used to compare against the results

obtained by the WFA. In the comparison, the tabu search algorithms are called TS-H1 and

TS-Z3 for the FFSP with limited and unlimited buffers respectively.

Table 5.3 Problem Data for the Instances in Wittrock (1988)

Job
type

Processing time (min) Production requirement of each instance
Stage 1 Stage 2 Stage 3 1 2 3 4 5 6

A 39 11 14 12 - - - - -
B 13 28 54 1 - - - - -
C 22 56 60 26 - - 14 23 20
D 234 39 0 - - - 2 - -
E 39 25 80 - 6 7 4 - 1
F 13 70 54 - 14 20 16 - -
G 143 66 0 1 4 - - 3 1
H 0 28 14 7 - - - - -
I 26 39 74 - 6 - - - 5
J 18 59 34 - 4 - - - -
K 22 70 40 4 - - - - -
L 13 70 54 - 4 - - - -
M 61 46 34 - - 11 - 14 3

 Total number of jobs 51 38 38 36 40 30

Chapter 5 WFA for Flexible Flow Shop Scheduling

109

The instances generated based on Tavakkoli-Moghaddam et al. (2009) are called the

MA instances. They are constructed with the number of jobs N = 10, 20, 30, 40; and the

number of stages S = 2, 3, 4, 5, 6. Here, the number of machines in every stage is the same,

and the total number of machines in all stages is equal to twice the number of stages. For

each job, its integer processing time is generated by a uniform distribution [1, 10]. With

the combination of the above parameter values, we generate 20 different problem

instances. We compare the results obtained by the WFA to the lower bounds proposed by

Sawik (2000), as well as to the results obtained by Tavakkoli-Moghaddam et al. (2009),

which describes an algorithm for solving the FFSP with no available buffer space.

In addition to comparing with the results reported in Wardono and Fathi (2004) and

Tavakkoli-Moghaddam et al. (2009), we perform computational experiments on the TS

and MA instances with the same CPU and platform for all algorithms, i.e. WFA, TS-

H1/Z3, and MA. As the instances used in Wardono and Fathi (2004) and Tavakkoli-

Moghaddam et al. (2009) do not include the weight and due date of jobs, we also do not

consider these job characteristics in the randomly generated instances, even though the

WFA is capable of solving the FFSP with given weight and due date of jobs.

5.5.2 Platform and Parameters

The WFA has been coded using Visual Basic 6.0, and all experiments have been

performed on an Intel Centrino Duo 1.60 GHz CPU with 1.5 GB of RAM running on

Windows XP Operating System. The computational complexity of the WFA for the FFSP

is determined based on the neighborhood structure used and the erosion process of this

algorithm. In particular, the WFA used 2-opt neighborhood structure, and the worst

Chapter 5 WFA for Flexible Flow Shop Scheduling

110

possibility of the erosion process is to find for all n directions. Hence, the computational

complexity of the WFA is estimated to be O(n3).

The choice of reasonable parameters for the WFA is determined by design-of-

experiment methods. When implementing the design-of-experiment method, we may use

the independent level of values for the parameters, or the dependent ratio among the

parameters, e.g., the ratio of MaxPop and MinEro, to determine which values are best for

solving the scheduling problem. Here, we used the independent level of values for the

parameters since we have solved many types of FFSP data structures this way. The

independent levels of values for parameters were used as follows: MaxCloud = 5, 10, 15,

20; MaxPop = 5, 10, 15, 20; and MinEro = 2, 3, 4, 5. From the preliminary results, the

best parameter sets are summarized in Table 5.4. With these parameter sets, 20

independent replicates are used for each instance of Wittrock (1988), the maltose syrup

production example, and the MA instances as in the case of Tavakkoli-Moghaddam et al.

(2009). However, we only use 1 replicate for the TS instances as in the case of Wardono

and Fathi (2004). Here, Wardono and Fathi (2004), and Tavakkoli-Moghaddam et al.

(2009) performed a preliminary study to determine the best parameter values for TS-

H1/Z3, and MA respectively.

Table 5.4 Parameter Sets for Benchmark Instances

Instances Value of parameters
MaxCloud MaxPop MinEro

Modified Wittrock
 Instance 1 10 20 3
 Instance 2, 3, 5 10 15 3
 Instance 4, 6 10 10 4
Wardono & Fathi 10 20 3
Tavakkoli-Moghaddam 10 20 3
Maltose syrup production 5 10 5

Chapter 5 WFA for Flexible Flow Shop Scheduling

111

5.5.3 Performance Measures

For a comparison of objective values, we have used the following average relative

percentage increase in objective value:

()

1 100.

K
sol i sol

i sol

Heuristic LB
LB
K

=

−⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = ×

∑
 (5.5)

Here, Heuristicsol(i) and LBsol denote the objective value obtained by the algorithm for

the ith replicate and the lower bound value or the best known objective value from the

literature respectively, while K denotes the number of replicates. If we only use the

replicate with the best objective value to compute Δ , the relative percentage increase in

objective value is denoted by BestΔ . The smaller the value of Δ , the better the performance

of the algorithm. In this chapter, the lower bounds are used in all instances and the optimal

solution is only used in the maltose syrup production problem, so that 0Δ = implies that

the algorithm has obtained the optimal solution.

The lower bound value or the best known objective value from the literature is used as

the reference values for the evaluation and comparison of the WFA and other algorithms

in this chapter. The best known objective value may be obtained from the optimal

solutions of the benchmark instances used, or the best solutions found by some algorithm

so far. Hence, the comparison results may be negative values if the proposed algorithm

finds a better solution.

For demonstrating the effect of problem size on the speed of different algorithms, we

use a CPU time ratio measure, denoted simply as ratio. This is the ratio of CPU time for

Chapter 5 WFA for Flexible Flow Shop Scheduling

112

solving an instance under consideration to CPU time for solving the instance with the

smallest size, using the same number of iterations. If the value of ratio of an algorithm

increases quickly with respect to an increase in the problem size, it means that the speed of

the algorithm depends significantly on the problem size.

5.5.4 Computational Results

To compare the algorithms, we performed computational experiments on two sets of

generated TS and MA instances, using the same CPU and platform mentioned in Section

5.5.2 for all the algorithms, i.e., WFA, TS-H1/Z3, and MA. Instead of using the maximum

number of iterations in the experiments, CPU time limits with respect to the number of

jobs in the instances are imposed on all the algorithms. Table 5.5 shows the results of the

WFA, TS-H1/Z3, and MA on the TS instances. Here, we use the lower bound obtained by

Wardono and Fathi (2004) for LBsol in equation (5.5). The CPU time limits for the case of

FFSP with unlimited buffers are equal to one-sixth of the CPU time limits for the other

cases. This is because the procedure for constructing a complete schedule in the FFSP

with unlimited buffers requires a shorter computation time. As the MA is only designed

for the FFSP with no available buffer, we only run experiments for MA on TS instances

with Bl = 0. Table 5.6 shows the results of the WFA, TS-H1, and MA on the MA instances

for the case of FFSP with no available buffer. In this table, SD (Cmax) and SDOFV

represent the standard deviation of objective values obtained by the WFA/TS-H1 and the

MA respectively. Here, we use the lower bound obtained by Sawik (2000) for LBsol in

equation (5.5). From the results in Tables 5.5 and 5.6, we can see that the solution quality

obtained by the WFA outperforms the other algorithms for most instances. In a few

Chapter 5 WFA for Flexible Flow Shop Scheduling

113

Table 5.5 Comparison Results of WFA, TS-H1/Z3, and MA with CPU Time Limit
for the TS Instances

Test problem
CPU
time
limit
(s)

WFA TS-H1/Z3 MA

Δ Δ Δ

No. N × S × ml Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞ Bl = 0

1 20× 2 × 2

300 if
Bl = 0, 1;
50 if
Bl = ∞

0.16 0.04 0.04 0.52 0.04 0.10 5.09
2 20 × 2 × 4 1.14 0.71 1.11 2.51 1.79 2.69 18.58
3 20 × 2 × 6 4.02 4.01 5.39 7.49 6.49 8.11 26.74
4 20 × 3 × 2 0.57 0.25 0.21 2.49 0.29 0.67 8.75
5 20 × 3 × 4 2.04 1.37 1.71 6.37 4.04 2.81 14.94
6 20 × 3 × 6 1.15 0.99 1.61 4.74 2.27 2.96 19.25
7 20 × 4 × 2 4.25 1.99 1.89 4.80 1.94 1.29 17.45
8 20 × 4 × 4 7.48 7.10 6.82 11.81 8.96 7.03 24.77
9 20 × 4 × 6 8.00 6.36 7.60 12.29 10.33 9.09 22.32

10 30 × 2 × 2

600 if
Bl = 0, 1;
100 if
Bl = ∞

0.83 0.07 0.15 1.63 0.27 0.09 5.57
11 30 × 2 × 4 1.77 0.78 0.94 2.69 2.38 1.30 9.28
12 30 × 2 × 6 3.16 2.49 2.52 6.67 3.10 3.78 17.69
13 30 × 3 × 2 1.95 0.09 0.06 2.03 0.04 0.09 15.33
14 30 × 3 × 4 3.72 1.56 1.35 5.19 2.33 1.49 22.79
15 30 × 3 × 6 5.36 5.00 4.16 11.16 8.34 5.97 24.65
16 30 × 4 × 2 4.48 1.57 1.42 4.77 1.97 1.42 21.00
17 30 × 4 × 4 7.18 6.10 6.27 9.01 7.34 6.17 31.51
18 30 × 4 × 6 10.69 9.88 9.61 10.63 9.01 8.68 30.34

19 40 × 2 × 2

1200 if
Bl = 0, 1;
200 if
Bl = ∞

0.68 0.05 0.15 1.04 0.12 0.13 4.44
20 40 × 2 × 4 2.04 0.71 0.71 2.24 0.95 1.12 11.79
21 40 × 2 × 6 2.90 1.68 2.04 3.67 2.74 2.02 18.81
22 40 × 3 × 2 5.22 0.37 0.31 6.62 0.29 0.27 22.02
23 40 × 3 × 4 4.57 1.68 1.94 4.64 1.93 1.42 26.49
24 40 × 3 × 6 6.35 4.86 4.51 6.95 5.86 4.24 32.24
25 40 × 4 × 2 6.57 1.51 1.34 7.27 1.67 0.95 32.09
26 40 × 4 × 4 6.17 4.11 2.92 7.84 4.69 2.53 44.95
27 40 × 4 × 6 8.27 7.36 7.68 8.71 7.34 6.09 40.84

28 50 × 2 × 2

1800 if
Bl = 0, 1;
300 if
Bl = ∞

0.32 0.02 0.04 1.49 0.02 0.07 10.52
29 50 × 2 × 4 0.99 0.29 0.26 1.58 0.86 0.42 14.23
30 50 × 2 × 6 2.07 0.98 0.98 3.06 1.07 2.10 19.76
31 50 × 3 × 2 4.36 0.43 0.34 4.69 0.38 0.31 19.87
32 50 × 3 × 4 3.68 1.64 0.86 3.37 1.39 1.06 27.98
33 50 × 3 × 6 6.39 3.78 3.40 7.72 4.26 3.71 34.31
34 50 × 4 × 2 9.39 1.71 0.69 10.01 2.04 0.68 33.63
35 50 × 4 × 4 7.46 3.97 2.26 9.10 4.12 2.43 47.71
36 50 × 4 × 6 6.91 5.04 3.02 7.39 6.26 3.20 48.98

 Average 4.23 2.51 2.40 5.67 3.25 2.68 22.96

Chapter 5 WFA for Flexible Flow Shop Scheduling

114

Table 5.6 Comparison Results of WFA, TS-H1, and MA with CPU Time Limit for
the MA Instances

Test problem CPU time
limit (s)

WFA TS-H1 MA

No. N × S × ml Δ SD (Cmax) Δ SD (Cmax) Δ SDOFV

1 10 × 2 × 2

120

0.00 0.00 0.00 0.00 0.00 0.00
2 10 × 3 × 2 5.00 0.00 5.00 0.00 8.87 0.60
3 10 × 4 × 2 21.35 0.00 21.35 0.00 24.83 0.83
4 10 × 5 × 2 25.30 0.00 25.30 0.00 33.98 0.82
5 10 × 6 × 2 33.33 0.00 33.33 0.00 40.25 1.51

6 20 × 2 × 2

300

0.00 0.00 0.00 0.00 4.15 0.69
7 20 × 3 × 2 6.75 0.37 6.67 0.41 20.44 1.09
8 20 × 4 × 2 17.26 0.44 17.61 0.51 32.39 0.52
9 20 × 5 × 2 17.90 0.64 18.23 0.66 34.11 2.62

10 20 × 6 × 2 21.97 0.51 22.55 0.51 43.65 2.01

11 30 × 2 × 2

600

1.92 0.44 3.90 0.60 11.98 0.45
12 30 × 3 × 2 1.95 0.47 3.30 0.60 17.62 0.62
13 30 × 4 × 2 11.80 1.03 13.33 1.03 32.08 1.04
14 30 × 5 × 2 20.22 0.68 21.09 0.75 45.76 3.51
15 30 × 6 × 2 22.30 0.79 23.55 0.89 53.11 1.94

16 40 × 2 × 2

1200

0.42 0.00 0.46 0.22 7.85 0.83
17 40 × 3 × 2 5.10 0.67 6.91 1.02 20.60 1.84
18 40 × 4 × 2 11.12 1.00 13.18 1.15 38.26 1.42
19 40 × 5 × 2 15.85 0.83 17.67 0.93 47.71 1.04
20 40 × 6 × 2 13.90 1.09 15.51 1.13 45.20 2.01

 Average 12.67 0.45 13.45 0.52 28.14 1.27

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Problem Number

St
an

da
rd

 D
ev

ia
tio

n

WFA
TS-H1
MA

Figure 5.9 Standard Deviation of the Objective Values Obtained by the WFA, TS-

H1 and MA

Chapter 5 WFA for Flexible Flow Shop Scheduling

115

instances, TS-H1/Z3 obtained slightly better results than WFA, especially in the case of

FFSP with unlimited buffers. However, from Figure 5.9, we can see that the standard

deviation values of WFA are smaller than that of the other algorithms in all instances. This

shows the robustness of the WFA when compared to the other algorithms.

In addition, we also investigate the tendency of the algorithms, i.e., WFA, TS-H1 and

MA, to find better solutions over computation time. The computational experiments are

carried out on the MA instance with 40 jobs, 6 stages, and 2 machines at each stage, as

well as CPU time limit of 1200 seconds for all algorithms. From Figure 5.10, we see that

the WFA may find a very good solution more quickly than TS-H1 and MA. Then, the

WFA improves this solution slowly to obtain a better solution or global optimal solution.

The final best solution obtained by the WFA is better than that of TS-H1 and MA.

Figure 5.10 Trajectory of Solution Improvement of the WFA, TS-H1, and MA

Chapter 5 WFA for Flexible Flow Shop Scheduling

116

A further comparison between the results of the WFA using the maximum number of

allowed iterations and the results of the tabu search algorithms reported in Wardono and

Fathi (2004) on the randomly generated TS instances is performed in Table 5.7. We use

the lower bound obtained by Wardono and Fathi (2004) for LBsol in equation (5.5). From

Table 5.7, we can see that the WFA is more efficient than TS-H1/Z3 when solving all

three FFSP models. For the FFSP with no available buffer, the average relative percentage

increase of the WFA is 3.9% less than that of TS-H1. For the FFSP with finite buffers, the

average relative percentage increase of the WFA is 2.22% less than that of TS-H1. For the

FFSP with unlimited buffers, the average relative percentage increase of the WFA is 1.7%

less than that of TS-Z3. However, for some of the generated instances, the CPU time ratio

of the WFA is more than that of TS-H1/Z3.

A further comparison between the results of the WFA using the maximum number of

allowed iterations and the MA’s results reported in Tavakkoli-Moghaddam et al. (2009)

for solving the randomly generated MA instances is performed in Table 5.8. We use the

lower bound obtained by Sawik (2000) for LBsol in equation (5.5). From the results in

Table 5.8, we can see that the WFA outperforms MA in solution quality for all the

instances. The overall average relative percentage increase of the WFA is 14.63% less

than that of MA. The WFA is also more robust than MA as its average standard deviation

is less than that of MA. However, the CPU time ratio of WFA is larger than that of MA

from instance 12 onwards.

Chapter 5 WFA for Flexible Flow Shop Scheduling

117

Table 5.7 Comparison Results between WFA and TS-H1/Z3 on the Randomly

Generated TS Instances

Test Problem
WFA TS-H1/Z3

Δ ratio Δ ratio

No. N×S×ml Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞ Bl = 0 Bl = 1 Bl = ∞

1 20× 2 × 2 0.31 0.10 0.10 1.00 1.00 1.00 1.45 0.47 0.15 1.00 1.00 1.00
2 20 × 2 × 4 1.00 0.20 0.20 1.54 1.76 1.58 4.78 2.41 1.99 1.09 1.50 1.91
3 20 × 2 × 6 6.56 5.40 4.82 2.16 2.47 2.56 8.72 7.79 8.00 1.59 1.43 2.18
4 20 × 3 × 2 0.08 0.08 0.08 2.57 2.64 2.68 5.85 0.79 0.49 2.62 1.81 2.67
5 20 × 3 × 4 0.43 0.14 0.14 2.91 3.65 2.61 10.24 9.16 8.11 2.67 2.12 2.55
6 20 × 3 × 6 0.00 0.00 0.00 3.46 5.04 3.53 1.52 1.58 1.44 2.23 2.13 2.39
7 20 × 4 × 2 3.91 0.00 0.00 4.08 6.95 5.05 10.56 3.18 2.81 3.04 4.84 3.85
8 20 × 4 × 4 2.27 1.20 1.20 4.68 6.64 4.37 11.88 10.26 10.24 3.41 4.87 5.03
9 20 × 4 × 6 5.29 5.29 5.29 5.27 8.06 5.97 10.35 10.04 9.17 3.80 3.00 4.33

10 30 × 2 × 2 0.15 0.00 0.00 4.55 3.84 3.26 3.84 0.33 0.19 3.34 3.04 2.61
11 30 × 2 × 4 0.43 0.43 0.14 4.93 4.22 4.91 3.09 1.30 0.66 3.46 3.05 3.70
12 30 × 2 × 6 1.21 1.21 0.78 5.22 5.41 8.75 5.13 3.37 2.76 4.23 4.13 6.91
13 30 × 3 × 2 2.29 0.00 0.00 6.13 7.14 9.69 7.93 0.80 0.46 4.86 5.71 5.39
14 30 × 3 × 4 3.86 1.49 0.53 9.72 10.25 12.41 6.38 4.68 3.23 8.03 6.86 8.12
15 30 × 3 × 6 4.95 4.26 4.26 10.55 14.49 15.78 7.30 6.01 4.95 7.89 8.99 9.82
16 30 × 4 × 2 1.31 0.24 0.00 11.03 11.64 11.51 11.51 3.38 2.31 10.15 11.29 8.76
17 30 × 4 × 4 5.73 5.73 5.53 12.44 13.90 15.19 10.33 7.58 5.70 12.10 11.51 13.76
18 30 × 4 × 6 7.55 7.55 6.09 15.69 17.82 18.21 8.97 9.08 8.05 13.52 12.57 12.85
19 40 × 2 × 2 0.76 0.10 0.00 6.20 6.72 8.57 3.30 0.28 0.07 5.07 5.10 5.21
20 40 × 2 × 4 1.18 0.43 0.30 7.97 8.57 10.81 2.69 0.96 0.33 7.16 6.79 8.33
21 40 × 2 × 6 2.09 0.98 0.98 9.48 13.66 12.40 2.94 1.79 1.16 10.57 10.32 11.15
22 40 × 3 × 2 5.19 0.05 0.05 17.50 17.09 15.71 6.41 1.18 0.14 13.93 12.44 11.15
23 40 × 3 × 4 5.21 1.51 0.34 19.93 21.81 23.20 6.12 2.46 1.28 14.80 13.88 15.82
24 40 × 3 × 6 2.40 2.40 2.40 22.89 22.84 25.71 5.72 5.86 2.86 20.44 16.36 26.64
25 40 × 4 × 2 6.42 0.74 0.65 22.65 29.14 25.43 12.63 2.32 1.05 25.48 29.47 18.94
26 40 × 4 × 4 2.82 1.35 1.02 24.70 30.45 31.11 9.90 5.20 2.97 23.86 33.02 30.00
27 40 × 4 × 6 3.89 3.43 3.43 29.63 33.51 31.39 9.06 7.06 6.49 35.04 28.37 26.85
28 50 × 2 × 2 0.81 0.00 0.00 7.34 11.63 11.94 3.39 0.59 0.12 9.96 9.03 7.97
29 50 × 2 × 4 1.65 0.52 0.20 9.11 15.16 12.94 3.73 1.01 1.23 12.56 13.57 13.00
30 50 × 2 × 6 2.04 1.32 1.08 10.07 14.19 14.80 3.71 1.89 1.39 13.58 12.62 19.73
31 50 × 3 × 2 1.84 0.03 0.03 22.66 31.38 22.49 8.30 1.78 0.88 25.04 21.02 12.55
32 50 × 3 × 4 2.08 0.31 0.03 26.03 37.71 32.29 6.93 2.27 1.40 28.71 31.48 25.64
33 50 × 3 × 6 3.90 2.50 1.90 34.29 43.93 44.29 6.88 3.95 3.24 33.67 30.41 36.61
34 50 × 4 × 2 8.76 1.84 0.49 34.99 57.14 35.71 12.80 3.64 1.22 36.50 50.00 25.97
35 50 × 4 × 4 6.75 2.07 0.87 43.49 58.57 58.74 9.39 5.49 3.89 55.44 49.99 51.39
36 50 × 4 × 6 5.49 3.22 1.70 42.22 59.43 61.43 7.04 6.24 5.31 55.42 51.05 55.18

 Average 3.07 1.56 1.24 6.97 3.78 2.94

Chapter 5 WFA for Flexible Flow Shop Scheduling

118

Table 5.8 Comparison Results between WFA and MA on the Randomly Generated

MA Instances

Test problem WFA MA
No. N × S × ml Δ SD (Cmax) ratio Δ SDOFV ratio
1 10 × 2 × 2 0.00 0.00 1.00 0.00 0.00 1.00
2 10 × 3 × 2 5.00 0.00 8.91 11.76 0.00 18.92
3 10 × 4 × 2 21.35 0.00 18.36 39.20 0.60 206.25
4 10 × 5 × 2 25.30 0.00 29.55 44.38 0.90 254.17
5 10 × 6 × 2 33.33 0.00 40.27 55.53 1.30 504.17
6 20 × 2 × 2 0.00 0.00 56.36 13.78 0.56 102.08
7 20 × 3 × 2 6.67 0.16 303.64 14.29 0.94 631.25
8 20 × 4 × 2 16.99 0.09 535.45 20.16 1.40 958.33
9 20 × 5 × 2 16.53 0.39 812.73 29.85 1.30 1650.00
10 20 × 6 × 2 21.02 0.09 1269.09 45.33 2.10 1887.50
11 30 × 2 × 2 1.76 0.24 233.64 5.13 0.90 256.25
12 30 × 3 × 2 1.35 0.19 829.09 15.34 2.30 583.33
13 30 × 4 × 2 10.66 0.19 1426.36 30.83 1.96 702.08
14 30 × 5 × 2 18.80 0.21 2806.36 41.15 3.00 1477.08
15 30 × 6 × 2 20.71 0.75 6539.09 44.36 1.80 2997.92
16 40 × 2 × 2 0.42 0.00 613.64 0.95 0.00 270.83
17 40 × 3 × 2 5.22 0.50 1677.27 14.61 1.30 1250.00
18 40 × 4 × 2 10.83 0.69 3523.64 34.07 2.20 2777.08
19 40 × 5 × 2 14.43 0.69 6541.82 34.40 2.20 2908.33
20 40 × 6 × 2 12.80 1.19 9286.36 40.73 2.50 6995.83
 Average 12.16 0.27 26.79 1.36

The results of comparison between the WFA and the tabu search algorithms of

Wardono and Fathi (2004) on the modified Wittrock benchmark problems are shown in

Tables 5.9, 5.10, and 5.11. We use the lower bound obtained by Wardono and Fathi

(2004) for LBsol in equation (5.5). From these tables, it can be seen that the WFA

outperforms TS-H1 and TS-Z3 both in solution quality and CPU time ratio for most

benchmark instances. Thus, the WFA has obtained improved solutions than that reported

in Wardono and Fathi (2004), except for instance 1 in Table 5.11. For the FFSP with no

available buffer space, the average relative percentage increase in objective value of the

WFA is 0.95% less than that of TS-H1 (see Table 5.9). For the FFSP with finite buffers,

Chapter 5 WFA for Flexible Flow Shop Scheduling

119

the average relative percentage increase of the WFA is 0.94% less than that of TS-H1 (see

Table 5.10). For the FFSP with unlimited buffers, the average relative percentage increase

of the WFA is 0.81% less than that of TS-Z3 (see Table 5.11). When solving instances

with different sizes, it is also observed that the CPU time ratio of the WFA is less than that

of TS-H1 and TS-Z3 for most instances.

Table 5.9 Comparison Results between WFA and TS-H1 for the FFSP with No

Available Buffer Space

Problem Instance LB
WFA TS-H1

Cmax BestΔ ratio Cmax BestΔ ratio
Modified Wittrock 1 746.3 811 8.67 5.73 822 10.14 6.47
 2 758.0 826 8.97 2.89 839 10.69 3.29
 3 758.7 815 7.42 2.25 822 8.35 2.29
 4 755.3 820 8.57 1.46 825 9.22 4.30
 5 961.5 971 0.99 2.51 974 1.30 2.69
 6 666.7 682 2.29 1.00 686 2.90 1.00
Average 6.15 7.10

Table 5.10 Comparison Results between WFA and TS-H1 for the FFSP with Finite

Buffer Capacities

Problem Instance LB
WFA TS-H1

Cmax BestΔ ratio Cmax BestΔ ratio
Modified Wittrock 1 746.3 763 2.24 6.78 776 3.98 8.83
 2 758.0 767 1.19 2.82 774 2.11 3.26
 3 758.7 770 1.49 2.25 777 2.42 2.37
 4 755.3 772 2.21 1.62 775 2.60 1.80
 5 961.5 962 0.05 1.45 969 0.78 1.40
 6 666.7 669 0.34 1.00 675 1.25 1.00
Average 1.25 2.19

Chapter 5 WFA for Flexible Flow Shop Scheduling

120

Table 5.11 Comparison Results between WFA and TS-Z3 for the FFSP with

Unlimited Buffers

Problem Instance LB
WFA TS-Z3

Cmax BestΔ ratio Cmax BestΔ ratio
Modified Wittrock 1 746.3 760 1.83 6.70 760 1.83 6.99
 2 758.0 764 0.79 2.88 773 1.98 2.82
 3 758.7 770 1.49 2.05 776 2.28 1.86
 4 755.3 769 1.81 1.98 776 2.74 2.40
 5 961.5 962 0.05 1.43 969 0.78 1.45
 6 666.7 669 0.34 1.00 677 1.55 1.00
Average 1.05 1.86

In addition, we also compared the results obtained by the WFA for the maltose syrup

production problem to the optimal values obtained by using enumeration. The results are

shown in Table 5.12 with two different LB values being used for the WFA. The first LB is

based on using the optimal objective value, while the second LB is based on using the

lower bounds derived from Wardono and Fathi (2004), Azizoglu et al. (2001) and Akturk

and Yildirim (1998) respectively for the three different objective functions. As for LBsol in

equation (5.5), we only use the optimal objective value. Note that the objective values

obtained by both the WFA and the enumeration method in Table 5.12 correspond to three

different solutions according to the three respective objective functions. The results in this

table show that the WFA is able to obtain the optimal solutions regardless of the two LB

values used. Moreover, the WFA obtained these optimal solutions with significantly

smaller computation time than that of the enumeration method.

From the experimental results for the benchmark instances, the randomly generated

instances, and the instance from maltose syrup production, we conclude that the WFA is

an efficient meta-heuristic algorithm for solving the FFSP with limited as well as

unlimited buffers.

Chapter 5 WFA for Flexible Flow Shop Scheduling

121

Table 5.12 Computational Results of WFA for Maltose Syrup Production Problem

Objectives
used

Optimal solution
obtained by
enumeration

Solution obtained by
WFA when optimal
value is used for LB

Solution obtained by WFA
when lower bound from
literature is used for LB

Optimal
value Time (s) Δ Time (s) LB Δ Time (s)

Makespan 139.00 130 0.00 1.6 109.00a 0.00 1.8

Total weighted flow time 75.95 106 0.00 1.8 63.10b 0.00 2.1

Total weighted tardiness 0.10 105 0.00 1.9 0.00c 0.00 1.9
a Lower bound derived from Wardono and Fathi (2004).
b Lower bound derived from Azizoglu et al. (2001).
c Lower bound derived from Akturk and Yildirim (1998).

5.6 Conclusions

In this chapter, we propose a WFA for solving the FFSP. It involves using an erosion

capability relationship function between the amount of precipitation and its falling force to

create a flexible operation scheme for the erosion process. This helps the erosion process

to focus on exploiting promising regions strongly. We show how this algorithm can be

applied to solve the FFSP with limited as well as unlimited buffers. In addition, we also

propose an improved procedure from that of Wardono and Fathi (2004) for constructing a

complete schedule of the FFSP problem. Computational experiments and comparisons

were carried out to show the performance of the proposed algorithm. The results show that

the WFA is a promising algorithm not only for solving benchmark instances and randomly

generated instances but also for solving problems arising in practical applications.

Improved solutions to benchmark problems are also found by our proposed algorithm.

Some preliminary results were first reported in Tran and Ng (2009), and the full results of

this chapter were then reported in Tran and Ng (2010).

Chapter 6 MOWFA for Multi-Objective Scheduling

122

CHAPTER 6

MOWFA FOR MULTI-OBJECTIVE SCHEDULING

In this chapter, we construct a multi-objective water flow algorithm (MOWFA) for

solving multi-objective scheduling problems. In particular, we investigate the multi-

objective flexible flow shop scheduling problem (MOFFSP) with limited intermediate

buffers. Two objectives of this scheduling problem are the minimization of the

completion time of jobs and the minimization of the total tardiness time of jobs. In the

MOWFA, landscape analysis is performed to determine the weights of objective

functions, which guide the drops of water to exploit potential regions and move

towards the optimal Pareto optimal solution set. We also include the evaporation and

precipitation processes in this algorithm to enhance the solution exploitation capability

of the algorithm in potential neighboring regions. In addition, we propose an

improvement process for reinforcing the final Pareto solution set obtained. The

performance of the MOWFA is tested with benchmark instances taken from the

literature and randomly generated instances. The computational results and

comparisons demonstrate the effectiveness and efficiency of the proposed algorithm.

Chapter 6 is organized as follows. In Section 6.1, we introduce the MOFFSP with

limited intermediate buffers and describe its applications. A brief literature review of

Chapter 6 MOWFA for Multi-Objective Scheduling

123

research works on the multi-objective scheduling problem is also presented in this

section. Section 6.2 describes the details of the MOFFSP with limited intermediate

buffers. Then, the proposed MOWFA for solving the multi-objective scheduling

problem is discussed in detail in Section 6.3. Computational results and comparisons

based on the benchmark instances taken from the literature and randomly generated

instances are shown in Section 6.4. Finally, some conclusions of this chapter are

presented in Section 6.5.

6.1 Introduction

Flexible flow shop scheduling (FFSP) with limited buffers is one of the well-known

scheduling problems due to its important applications in both traditional and modern

manufacturing systems. A brief description of the practical applications of this

scheduling problem can be found in Section 5.1. The FFSP with limited buffers is

known to be an NP-hard problem (Wardono and Fathi, 2004). It becomes even more

complex when we need to solve the problem in real-life production environment where

several conflicting objectives are simultaneously considered. Two primary objectives

of the problem investigated in this chapter are minimization of the completion time of

jobs (makespan or Cmax) and minimization of the total tardiness time of jobs.

Quadt and Kuhn (2007) and Ribas et al. (2010) presented a detailed review of

single-objective scheduling algorithms and the classification of FFSP. Although there

have been a lot of research works on the FFSP, only a few of them dealt with the FFSP

with limited buffers. There are also limited research works on the multi-objective

scheduling problem. An extensive review of multi-objective scheduling problems in

the past 13 years is presented by Lei (2009). From this review, only Wei et al. (2006)

Chapter 6 MOWFA for Multi-Objective Scheduling

124

proposed an evolutionary algorithm for solving the MOFFSP. However, the authors

did not consider the FFSP with limited buffers. Qian et al. (2009) presented a hybrid

differential evolution algorithm for solving the multi-objective permutation flow shop

scheduling problem with limited buffers, in which there is one machine at each stage.

Recently, Rashidi et al. (2010) proposed a hybrid parallel genetic algorithm for the

MOFFSP. In their paper, the authors investigated the FFSP with unrelated parallel

machines, sequence-dependent setup times, and processor blocking to minimize the

makespan and the maximum tardiness. The proposed solution procedure consists of

independent parallel genetic algorithms in which each genetic algorithm searches for

optimal solutions in different directions based on different assigned weights for each

subpopulation. The computational results show that it is an efficient algorithm for the

MOFFSP that was considered. However, assigning different weights to subpopulations

may not be efficient as one individual chromosome could be assigned with more than a

pair of weights. Moreover, the algorithm is dependent on a large parameter set defined

by the user. In addition, the solution representation is based on random keys, which

increases the computation time due to the need for decoding.

In this chapter, we propose the MOWFA for solving the MOFFSP with limited

intermediate buffers. This algorithm integrates several search procedures for solving

the multi-objective scheduling problem efficiently. In particular, in the exploration

phase of the MOWFA, the FFSP is divided into many scheduling sub-problems. Drops

of water (DOWs) in the sub-problems are assigned suitable weights based on landscape

analysis to search for optimal solutions in the corresponding directions. In the

exploitation phase of the MOWFA, the erosion process with local and global

neighborhood structures guides DOWs to overcome obstacles to search for better

Chapter 6 MOWFA for Multi-Objective Scheduling

125

optimal solutions in the region in which they are generated, and in the neighboring

regions, respectively. Also, we include an evaporation process in the algorithm to

enhance the solution exploitation capability of this algorithm in potential neighboring

regions. In addition, we propose an improvement search process for reinforcing the

final Pareto solution set obtained. The Wittrock benchmark instances taken from the

literature, as well as randomly generated instances, are used to evaluate the

performance of the proposed algorithm. The computational results and comparisons

show that the MOWFA is an efficient nature-inspired algorithm for solving the

MOFFSP with limited intermediate buffers.

6.2 MOFFSP with Intermediate Buffers

A detailed description of the FFSP with intermediate buffers has been provided in

Section 5.2. In this chapter, we only consider two cases of the FFSP with intermediate

buffers. The first case is the FFSP with no buffer between consecutive stages. Thus, if

there is no idle machine in the subsequent stage l + 1, a job completed on a machine in

stage l must then wait until at least a machine in stage l + 1 is available. The second

case is the FFSP with finite buffer capacities between consecutive stages. In this case,

if there is no available machine in the subsequent stage l + 1, then a job completed on a

machine in the previous stage l may wait in a following buffer l. If there is no available

buffer space, it remains on the blocked machine in stage l until there is an available

buffer space or an idle machine in stage l + 1.

Since intermediate buffers can be considered as machines with zero processing

time, the FFSP with finite buffers can be converted to one with no available buffer

space (McCormick et al., 1989). As a result, we only need to construct an MOWFA for

Chapter 6 MOWFA for Multi-Objective Scheduling

126

solving the MOFFSP with no buffer. Then, we can apply the MOWFA for solving the

MOFFSP with finite buffers by a modification of the input data described in Section

5.2. In the transformed problem, a buffer at stage l with a storage capacity Bl is

considered as a stage with Bl identical parallel machines (see Figure 6.1). The

processing time of jobs on the machines in the buffer stages is zero. Then, the total

number of stages in this problem becomes 2S – 1. Every job must be processed

through all stages, including the buffer stages.

Figure 6.1 FFSP with Operation Stages Including Intermediate Buffers

Let π denote a job permutation, Cjl denote the completion time of job j at stage l, dj

denote the deadline of job j, and Tj denote the tardiness time of job j. The tardiness

time of job j can be defined as { }max ,0j jS jT C d= − . Then, two objective functions

used in the multi-objective scheduling problem, namely minimizing the completion

time of jobs f1(π) and minimizing the total tardiness time of jobs f2(π), can be

determined by:

 { }1min () max ,jSj N
f Cπ

∈
= (6.1)

 2
1

min () .
N

j
j

f Tπ
=

=∑ (6.2)

These objectives help to achieve a high throughput for production.

1

2

M1

Stage 1

1

2

M2

Stage 2

1

2

MS

Stage S

Buffer 1 Buffer S-1

N jobs

B1 BS-1

1 1

2 2

Chapter 6 MOWFA for Multi-Objective Scheduling

127

The general MOFFSP with the two objectives mentioned earlier can be described as

follows:

 min f(π) = [f1(π), f2(π)], (6.3)

 subject to π ∈Π , (6.4)

where Π denotes the set of possible job permutations.

To solve the multi-objective optimization problem, we use the concepts of Pareto

optimality described below in terms of a minimization problem:

(a). Pareto dominance: a job permutation π1 dominates another job permutation π2,

denoted as 1 2π πf , if and only if we have:

 1 2() (), {1,2}h hf f hπ π≤ ∀ ∈ and 1 2{1, 2}, () ()k kk f fπ π∃ ∈ < .

(b). Pareto optimal job permutation: a job permutation π1 is considered to be a

Pareto optimal job permutation if and only if there is no job permutation

2π ∈Π that dominates π1.

(c). Pareto optimal set: Pareto optimal set is a set of all Pareto optimal job

permutations.

(d). Pareto optimal front: Pareto optimal front is the set of all objective values

corresponding to the job permutations in the Pareto optimal set.

(e). Non-dominated job permutation: a job permutation π is said to be non-

dominated with respect to a given set of job permutations if and only if π is not

dominated by any job permutation in the given set.

Chapter 6 MOWFA for Multi-Objective Scheduling

128

In the Pareto optimal set, the job permutations cannot be improved in any objective

function without degrading the value in at least one other objective function. Hence,

there is no job permutation that is the best for all objectives. As a result, multi-

objective optimization algorithms often need to find a set of good non-dominated job

permutations. To compare the performance of multi-objective optimization algorithms,

three main aspects are considered: the number of non-dominated job permutations in

the Pareto set obtained, the distance of the Pareto front obtained to the Pareto optimal

front, and the spread of non-dominated job permutations in the Pareto set obtained

(Silva et al., 2004).

In addition, we use a single-objective optimization approach to solve the multi-

objective scheduling problem. In this approach, the multi-objective optimization

problem is transformed to a single-objective optimization problem by combining

objective functions and their weights linearly. The main drawback of this approach is

that the weights of the objective functions are subjectively provided. To overcome this

drawback, we have performed landscape analysis of the multi-objective optimization

problem to determine correlation among objective functions. Then, weights are

automatically updated and assigned to corresponding objective functions. The single-

objective optimization approach is used to search for local optimal job permutations of

the multi-objective problem in the MOWFA. The details of performing the procedure

will be described in the next section.

6.3 MOWFA for the MOFFSP with Intermediate Buffers

In this section, we describe the procedure of MOWFA for solving the MOFFSP with

intermediate buffers, including the solution representation, procedure for constructing

Chapter 6 MOWFA for Multi-Objective Scheduling

129

a complete schedule, erosion condition, erosion capability, and erosion process. Other

important operators of the MOWFA for this problem, such as landscape analysis,

evaporation process, and improvement process, are also described.

6.3.1 Encoding Scheme

In the MOFFSP with intermediate buffers, a DOW is associated with a job

permutation. The job permutation provides the longitude and latitude information for

the position of DOW on the ground. Its corresponding objective values provide the

altitude information for the position of the DOW. Given a job permutation

1(,...,)Nπ δ δ= , we define:

 1
1

2 2

longitude() (,...,), and latitude() (,...,),NN Nπ δ δ π δ δ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= = (6.5)

where q⎢ ⎥⎣ ⎦ is the largest integer less than or equal to q. We also define the altitude of

the DOW as comprising of the two objective functions, makespan and total tardiness

time of the job permutation π. In Figure 6.2, we illustrate an example of a DOW and its

positional vector components for the MOFFSP with 8 jobs.

Figure 6.2 An Example of Solution Representation in MOWFA for the MOFFSP

1

N

j
j

T
=
∑ maxC

Objective values Job permutation π

DOW

Altitude(π) Latitude(π) Longitude(π)

8 3 6 5 4 2 1171 7 827

Chapter 6 MOWFA for Multi-Objective Scheduling

130

In the MOWFA, the job permutations providing the longitude and latitude

information represent the sequence of N jobs processed in the first stage. However, the

job permutation cannot fully determine a complete schedule for the jobs going through

all the stages, and thus the corresponding objective values are also not determined. As

such, we use the H1-variant procedure described in Section 5.3.1 to construct a

complete schedule associated with a given job permutation. This procedure has the

advantage that it is applicable to the FFSP with no buffer and the FFSP with unlimited

buffers. Also, with this procedure, the search space of the problem is limited to a set of

possible permutations of N jobs. Then, we do not need to monitor the number of

machines in each stage, and the computational procedure of the MOWFA becomes

simplified. As in the case of the single-objective FFSP in Chapter 5, although using the

job permutation representation for the multi-objective scheduling problem may not

include the global optimal job permutation of this problem, the best job permutation

found by the WFA or any algorithm with this representation is very near the global

optimal job permutation. Moreover, the job permutation representation is more easily

integrated into metaheuristic algorithms than the matrix representation, which can

cover the entire solution space but requires computation time to determine whether a

solution given in this representation is feasible (Wardono and Fathi, 2004).

6.3.2 Memory Lists

In the MOWFA, we use three memory lists in the search for the Pareto optimal set.

The first list, denoted as the Pareto-list, stores the best non-dominated job

permutations. The second list, denoted as the UE-list, is used to store local optimal job

permutations which have not been eroded due to the erosion condition not being

satisfied. The list aims to record the potential job permutations to be considered for

Chapter 6 MOWFA for Multi-Objective Scheduling

131

performing the erosion process. The final list, denoted as the E-list, is used to store

local optimal job permutations eroded. The E-list aims to prevent regenerating DOWs

into the job permutations that are eroded in the next iterations and would thus help to

save the computational time of the algorithm.

In our approach, multiple objective functions are linearly combined into a single

objective function so that the search for the local optimal job permutations is based on

a scalar objective function. Updating the UE-list and the E-list is also based on the

local optimal job permutations with respect to the scalar objective function. However,

updating the Pareto-list is based on the property of Pareto dominance in multi-

objective optimization.

6.3.3 Exploration Phase

Here, we describe the operational mechanism of the components in the exploration

phase of MOWFA. This phase aims to spread the DOWs to many places on the ground

to increase the solution diversification capability of the algorithm. It also helps the

DOWs to select suitable directions to search for the Pareto optimal set by analyzing the

landscape, which represents a set of objective values of feasible solutions.

6.3.3.1 Distinct Regions

In the exploration phase of this algorithm, we divide the MOFFSP with intermediate

buffers into multiple scheduling sub-problems so that the solution space of the problem

is divided into N distinct regions, where N is the instance size. This is achieved by

fixing the first position of a job in a job permutation from 1 to N when generating the

Chapter 6 MOWFA for Multi-Objective Scheduling

132

job permutations of DOWs. The rest of the positions in a job permutation are assigned

randomly. This can be represented with the following notation:

 1 2 { , ,..., }, with { | [1] } for 1,2,.., ,N i i i Nπ πΩ = Ω Ω Ω Ω = = = (6.6)

where Ω denotes the solution space of MOFFSP, and iΩ denotes ith distinct region.

6.3.3.2 Landscape Analysis

Landscape analysis for the distinct regions is performed to determine suitable

searching directions for the DOWs generated in the regions. Here, the searching

direction is defined by a pair of weights (c1, c2) that is used to combine the multiple

objective functions into a single objective function. Thus, the scalar objective function

f(π) is defined as:

 1 1 2 2() () ()f c f c fπ π π= + , (6.7)

where c1 and c2 are the weights of objective function f1(π) and f2(π), respectively.

Based on the pair of weights, DOWs will search for local optimal job permutations in

the corresponding direction.

In this chapter, we use the landscape analysis approach proposed by Tantar et al.

(2008). At an iteration, we randomly generate a sample of MaxPop job permutations

for each distinct region iΩ . An approximation of the enclosing ellipse for the feasible

solution space in the distinct region is then obtained by such a sampling as described in

Tantar et al. (2008). Here, a complete ellipse is defined by the center coordinates (x0,

y0), the orientation angle α, and the major axis a and minor axis b. The orientation

angle provides the correlation degree that exists between the objective functions (see

Figure 6.3). Hence, finding non-dominated job permutations with an appropriate

Chapter 6 MOWFA for Multi-Objective Scheduling

133

orientation angle will lead to the Pareto optimal set. Given the orientation angle α, a

pair of corresponding weights (c1, c2) is determined by:

 2
1 cos (),c α= (6.8)

 2
2 sin ().c α= (6.9)

In the subsequent iterations, the approximation of the enclosing ellipse for region i

is determined based on the cumulative sample set of job permutations generated in the

region. When the sample size increases up to 100, we use the pair of weights (c1, c2)

obtained at the iteration for the corresponding region in the remaining iterations. We

do not need to recalculate the enclosing ellipse since the difference between the 100-

sample set and any larger sample set is almost unnoticeable (Tantar et al., 2008). This

will help to reduce computation time for performing the MOWFA.

Figure 6.3 An Illustration for Finding the Pareto Set Based on the Orientation

Angle in MOWFA

c1
c2

α
y0

x0 f1(π)

f2(π)

0

= Pareto optimal solutions

= Initial solutions generated

Chapter 6 MOWFA for Multi-Objective Scheduling

134

6.3.3.3 Seed Job Permutations

To improve the performance of the MOWFA, we generate a seed job permutation in

the initial iteration by using the flexible flow line loading (FFLL) algorithm (Pinedo,

2005). A brief description of this algorithm is provided in Section 5.3.3. In order to

generate a set of N job permutations corresponding to N distinct regions, we use a

swap scheme based on the seed job permutation. This scheme is performed by

interchanging only the job at the first position with a job at a different position in the

seed job permutation. The FFLL algorithm is only used in the initial iteration. For

subsequent iterations, the FFLL algorithm is no longer used and instead, we use

randomly generated job permutations for each distinct region.

6.3.3.4 Hill-Sliding Algorithm

For the sample set of job permutations generated, including the seed job permutations

obtained by the swap scheme, we apply the single-objective optimization approach to

search for local optimal job permutations. Here, the steepest descent hill-sliding

algorithm described in Section 4.3.3 is used to guide DOWs to reach the local optimal

positions corresponding to the scalar objective function. Note that the pair of weights

(c1, c2), determined by approximating an enclosing ellipse for feasible solution space in

the corresponding distinct region, is used for transforming the multi-objective FFSP

into a single-objective FFSP.

These local optimal job permutations and the number of DOWs at the job

permutations are updated in the UE-list to be considered for performing the erosion

process in the subsequent exploitation phase.

Chapter 6 MOWFA for Multi-Objective Scheduling

135

6.3.4 Neighborhood Structures

In this chapter, the neighborhood structures used consist of the swap scheme described

earlier and the 2-opt neighborhood structure. The 2-opt neighborhood structure

determines all neighboring job permutations that can be obtained from a current job

permutation by exchanging positions of two jobs in the current job permutation. For

example, if π′ denotes the job permutation obtained by exchanging the positions of two

jobs δi and δj in a job permutation π, then π′ can be expressed as:

 [] []
[] [] { }

' '

'

, ,

 for \ , , (6.10)
i j j i

k k k N i j

π δ π δ π δ π δ

π δ π δ

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
= ∈

where π[δ] and π′[δ] denote the position of job δ in the job permutation π and its

neighboring job permutation π′, respectively.

In the MOWFA, we divide the 2-opt neighborhood structure into two types,

namely, local and global 2-opt neighborhood. In the local 2-opt neighborhood, we do

not exchange the job in the first position with a job in any other positions in a job

permutation. The neighborhood structure is used for finding local optimal job

permutations in distinct regions at the exploration phase. It is also used in the erosion

process. The neighborhood structure aims to find the Pareto solution set in a specific

distinct region. With the local 2-opt neighborhood, DOWs only move in the distinct

region in which they are generated. The number of neighboring job permutations

obtained by the neighborhood structure is (N–1)(N–2)/2. Otherwise for the global 2-opt

neighborhood, we can exchange the job in the first position with a job in any other

position of a job permutation. Thus, the global 2-opt neighborhood aims to guide the

DOWs to explore and exploit potential neighboring regions (see Figure 6.4). The

Chapter 6 MOWFA for Multi-Objective Scheduling

136

number of neighboring job permutations obtained by the neighborhood structure is

N(N–1)/2. It is used in the erosion process and the improvement phase.

 Figure 6.4 An Illustration of the Search Direction of DOWs on Two Types of

2-opt Neighborhood

6.3.5 Exploitation Phase

In this section, we present the conditions to perform erosion process for the job

permutations in the UE-list, the determination of erosion capability of DOWs at the job

permutations satisfying the conditions, and two schemes of erosion process. The

erosion process is the main operator of the exploitation phase which guides the DOWs

to overcome the local optimal positions and obtain better or optimal positions.

6.3.5.1 Erosion Condition and Capability

In the MOWFA for the MOFFSP with intermediate buffers, the condition to perform

erosion process is determined based on the amount of precipitation as described in

Region 1

Region i

Region N (NΩ)

Global 2-opt neighborhood
Local 2-opt neighborhood

Chapter 6 MOWFA for Multi-Objective Scheduling

137

Section 4.3.4. Let MinEro denote the minimum amount of precipitation allowed to

start the erosion process. Then, the erosion process will happen at a local optimal job

permutation in the UE-list in which the amount of precipitation reaches MinEro. In the

MOWFA, the amount of precipitation is represented by the number of DOWs at the

eroding local optimal job permutation.

In the MOWFA, the erosion capability is based on two main factors, the amount of

precipitation and its falling force. The amount of precipitation is represented by the

number of DOWs as mentioned earlier, while its falling force depends on the altitude

of positions of DOWs. The falling force of precipitation to lower positions is stronger

than that of higher positions and would thus erode more easily for lower positions.

Hence, the erosion capability becomes stronger for local optimal job permutations with

larger number of DOWs and lower objective values.

Let MaxUIE denote the maximum number of iterations for the erosion process. We

use the following relationship between the erosion capability and the above two factors

as in Section 5.3.4.1:

** / ()

1 2() ,LB fMaxUIE Q πϕ π ϕ= + (6.11)

where 1ϕ and 2ϕ represent the impact of precipitation and its falling force,

respectively. Based on preliminary experimentation, we set the values for 1ϕ and 2ϕ to

2 and 3, respectively. Here, *()Q π is the number of DOWs at the local optimal job

permutation *π , f(π*) is the scalar objective value of the local optimal job permutation,

LB is the scalar lower bound that is defined as:

 1 1 2 2 ,LB c LB c LB= + (6.12)

where (c1, c2) is the corresponding pair of weights used to determine f(π*), and LB1 and

LB2 represent the lower bounds of makespan and total tardiness time of jobs,

Chapter 6 MOWFA for Multi-Objective Scheduling

138

respectively. We have used the lower bound proposed by Wardono and Fathi (2004)

for LB1 and the lower bound proposed by Akturk and Yildirim (1998) for LB2.

6.3.5.2 Erosion Process

In the MOWFA, when the erosion condition at some local optimal job permutation is

satisfied, the erosion process will be carried out. Before performing the erosion

process, the erosion capability of DOWs at the local optimal job permutation is

determined using equation (6.11). Then, the erosion process is performed following an

erosion strategy based on a topological parameter representing the geographical

surface of the optimization problem. For the MOFFSP, the topological parameter hdΔ

is defined as the difference between the scalar objective value of the local optimal job

permutation π* and that of its neighboring job permutation *
hπ :

() ()* * .h hd f fπ πΔ = − (6.13)

In the MOWFA for the MOFFSP, we use the two neighborhood structures

described in Section 6.3.4, i.e., the local and global 2-opt neighborhoods. With each

neighborhood structure, we have a specific erosion scheme for finding better local

optimal job permutations. The erosion scheme I, based on the local 2-opt

neighborhood, only searches for better local optimal job permutations in a given

distinct region, so that the DOWs only exploit a distinct region from which they are

generated (see Figure 6.5). The erosion scheme II, based on the global 2-opt

neighborhood, can search for better local optimal job permutations in other regions, so

that the DOWs can move and exploit neighboring regions different from the region that

they are generated (see Figure 6.6).

Chapter 6 MOWFA for Multi-Objective Scheduling

139

Figure 6.5 An Illustration for Scheme I of the Erosion Process with the Local

2-Opt Neighborhood

Figure 6.6 An Illustration for Scheme II of the Erosion Process with the Global

2-Opt Neighborhood

αi

f1(π)

f2(π)

0

= Initial solution generated in region i

= Local optimal solution in region i

= Solution found in region j after using the global 2-opt

αj

= Local optimal solution in region j

α
y0

x0 f1(π)

f2(π)

0

= Pareto optimal solutions

= Initial solution generated

= Corresponding local optimal solutions

= Intermediate solution with at least one worse objective value

Chapter 6 MOWFA for Multi-Objective Scheduling

140

In this erosion process, the E-list will also prevent the DOWs from moving to

eroded job permutations in other regions. Hence, the DOWs will only move to un-

eroded regions where their scalar objective value is improved.

6.3.6 Evaporation and Precipitation

In the MOWFA, we include an evaporation process in the algorithm to remove poor

local optimal job permutations in the UE-list. A precipitation process is also used to

regenerate the evaporated DOWs into neighboring regions, which reinforces the

erosion possibility in the regions.

In the evaporation process, the local optimal job permutations with one DOW, held

in the UE-list for a pre-specified number of iterations T, will be deleted from the list.

Then, in the next iteration, a precipitation process will generate the number of deleted

DOWs into new positions in neighboring regions. For example, if we remove one

DOW in region i from the UE-list, we will randomly generate DOWs in regions i – 1

and i + 1. In the case of the DOW being deleted from region 1 or N, it will be randomly

generated in regions N and 2, or regions N – 1 and 1, respectively.

6.3.7 Improvement Phase

The two schemes in the erosion process can be applied to a scalar objective function

and they aim to exploit strongly promising regions as well as potential neighboring

regions. However, since such an approach has been restricted to a scalar objective

function, its performance may be limited. Hence, we propose an improvement process

for the Pareto set obtained. This process is still based on the global 2-opt

neighborhood. However, it is performed by directly comparing two job permutations

Chapter 6 MOWFA for Multi-Objective Scheduling

141

based on the original objective functions in a similar manner as Ravindran et al.

(2005), which used the difference between the objective values obtained. To illustrate,

suppose we have two job permutations π and π′. The makespan and total tardiness time

of jobs for these two job permutations are denoted by Cmax, ST, and C′max, ST′,

respectively. Then, we define the following comparison values R and R′ to determine

which job permutation is better:

R = [(Cmax–Min(Cmax,C′max))/Min(Cmax,C′max)]+[(ST–Min(ST,ST′))/Min(ST,ST′)]
 (6.14)

R′= [(C′max–Min(Cmax,C′max))/Min(Cmax,C′max)]+[(ST′–Min(ST,ST′))/Min(ST,ST′)]
 (6.15)

If R is less then R′, then the best job permutation is π. Otherwise, the best job

permutation is π′.

In summary, after the maximum number of allowed iterations (MaxCloud) has been

reached, the exploration and exploitation phases terminate. Then, the final Pareto set

obtained will be improved by the improvement process described above. The

improvement process will terminate after / 3N⎢ ⎥⎣ ⎦ iterations.

A flow chart of the MOWFA for the MOFFSP with intermediate buffers is shown

in Figure 6.7.

6.4 Computational Experiments and Comparisons

6.4.1 Generation of Test Problems and Benchmark Problem Set

Computational experiments have been conducted to evaluate the performance of the

proposed MOWFA. The data required for the MOFFSP with intermediate buffers

Chapter 6 MOWFA for Multi-Objective Scheduling

142

(i = 1)

Hydrological cycle processMOWFA representation

Initialization

Construct a seed job permutation
using the FFLL algorithm

Use the swap scheme for the seed
job permutation to construct
a set of N job permutations

In each distinct region, apply the hill-sliding algorithm to the job permutations of
generated DOWs with a local 2-opt neighborhood structure and the H1-variant procedure

for scalar objective function f(x) to find their local optimal job permutations

Evaluate the falling force of precipitation based on the scalar objective
function value f(x) obtained by the H1-variant procedure and identify the

number of DOWs at the local optimal job permutations

Update the Pareto-list and the UE-list

Pick one job
permutation in UE-list

Satisfy erosion
condition?

Determine erosion
capability at the
job permutation

Yes

Evaluate topology around
the job permutation using
the corresponding 2-opt

neighborhood structure and
weights (c1,c2)

Choose the un-eroded
direction with the smallest

topology parameter to
perform erosion process
corresponding to each

erosion scheme

Is a better
local optimal

job permutation
found?

Have all job
permutations

in UE-list been
considered?

No

No

i = MaxCloud ?

Yes

Perform the improvement phase
for non-dominated job

permutations in the Pareto-list
Yes

No

Update the UE-list to
continue with

performing erosion
process

Yes

No

Have all directions been
chosen?

No

YesUpdate the E-list

Ex
pl

or
at

io
n

ph
as

e
h

Ex
pl

oi
ta

tio
n

ph
as

eh

When it rains, the DOWs are
generated and they fall to

the ground

Due to gravity force, the
DOWs automatically move

from higher positions to
lower positions (local

optimal positions) and they
are held there

Erosion process happens
when the erosion condition

is satisfied at the local
optimal positions

The terrain at eroded
positions is smoothed by the

erosion process

Distribute a set of DOWs
corresponding to the set of job

permutations into N distinct regions

Start

In each distinct region, a cloud randomly generates
MaxPop different positions of DOWs that do not

belong to the E-list

Divide the problem into
N subproblems (distinct regions)

Determine a pair of weights (c1, c2)
for constructing a scalar objective function

corresponding to each distinct region

Perform erosion
schemes I and II

i = i +1

End

Update the Pareto-list

Update the Pareto-list

Perform evaporation process for
DOWs in UE-listSatisfy evaporation

condition?
Yes

No

Perform precipitation process

After a period of time,
DOWs are evaporated into
the atmosphere. They are
generated onto the ground

by precipitation

Im
pr

ov
em

en
t p

ha
se

 h

Figure 6.7 Flow Chart of the MOWFA for the MOFFSP

Chapter 6 MOWFA for Multi-Objective Scheduling

143

consist of the number of jobs, the number of stages, the number of machines at each

stage, the number of buffers between consecutive stages, the processing times of jobs,

and the due date of jobs. We generated the data of the test problems based on the

procedure of generating datasets in Rashidi et al. (2010). We constructed the instances

with the number of jobs N = 20, 40, 60, 80, 100; the number of stages S = 2, 4; and the

number of machines in each stage is uniformly distributed in the interval [1, 4]. For

each job, its processing time is uniformly distributed in the interval [10, 100]. When

solving the instances with finite buffers, the buffer capacity for all stages in all

instances is set to be 3.The due date of a job is set as follows:

 1

1

max ,
10

S

j jlj N l

LBd p U
∈

=

⎧ ⎫
= + ×⎨ ⎬

⎩ ⎭
∑ (6.16)

where pjl denotes the processing time of job j in stage l, and LB1 denotes the lower

bound of makespan obtained by Wardono and Fathi (2004). Here, U denotes a uniform

random number between 0 and 1. This results in a tight due date for the jobs. For each

combination of jobs and stages, we have generated five different instances.

The benchmark problem set of Wittrock (1988), modified by Wardono and Fathi

(2004), was also used to test the performance of the MOWFA. In these instances, the

transport time (one minute) for the Wittrock instances is added to the processing time

of jobs at stages 2 and 3, respectively, where applicable. The number of machines at

stages 1, 2, and 3 are 2, 3, and 3, respectively. When solving the instances with finite

buffers, we set the buffer capacity to be 3 for all stages.

In this chapter, we have compared the results obtained by the MOWFA with those

obtained by the improved hybrid multi-objective parallel genetic algorithm

(IHMOPGA) of Rashidi et al. (2010) for the generated test problems and the

Chapter 6 MOWFA for Multi-Objective Scheduling

144

benchmark instances. The IHMOPGA is designed for solving the FFSP with unrelated

parallel machines, sequence-dependent setup times, and processor blocking, which is

one specific scenario of the general FFSP with intermediate buffers that is considered

in this chapter. Hence when compared with the MOWFA in the multi-objective

problem, the procedure of IHMOPGA is still the same as in Rashidi et al. (2010). The

only change in the IHMOPGA is in the input data. In particular, parallel machines at

each stage are identical, and the setup time is zero for all jobs at all machines in each

stage. Moreover, we also use the approach of converting the FFSP with finite buffers

to one with no available buffer space as described in the MOWFA for the IHMOPGA,

as the algorithm is used to solve the FFSP with finite buffers.

6.4.2 Platform and Parameters

All the computational experiments described in this chapter were performed on an

Intel Centrino Duo 1.60 GHz CPU with 1.5 GB of RAM running on Windows XP

Operating System. The MOWFA and IHMOPGA have been coded using Microsoft

Visual Basic 6.0. Here, the computational complexity of the MOWFA for MOFFSP is

determined based on the neighborhood structure used and the erosion process of this

algorithm. In particular, the MOWFA used 2-opt neighborhood structure, and the

worst possibility of the erosion process is to find for all n directions. Thus, the

computational complexity of the MOWFA is estimated to be O(n3).

The choice of parameters for the MOWFA was determined by design-of-experiment

methods. In particular, we carried out several simulations that test the MOWFA on

instances with various values for the controlled parameters, MaxCloud, MaxPop,

MinEro, and T, and we chose the best values for each instance. These best parameter

Chapter 6 MOWFA for Multi-Objective Scheduling

145

values are shown in Table 6.1. For the IHMOPGA, we used the same parameter values

as Rashidi et al. (2010). In their paper, the authors did not mention exactly what

method is used to choose their parameters.

When comparing with the IHMOPGA, we used the CPU time limit stopping

criterion of 25N M S× × × as presented in Rashidi et al. (2010). Here, M denotes the

average number of machines in S stages. For the Wittrock instances, we ran the

MOWFA and IHMOPFA with 5 independent replicates for each instance. The best

results obtained from these replicates were used to compare the performance of

MOWFA and IHMOPGA. For the randomly generated instances, we have used the

average results of 5 different instances corresponding to a combination of jobs and

stages to compare the performance of MOWFA and IHMOPGA. Rashidi et al. (2010)

also used 5 different replicates for each experiment when they ran the IHMOPGA.

Table 6.1 Parameter Sets of the MOWFA for Instances of the MOFFSP

Instances
Parameter values

MaxCloud MaxPop MinEro T

Modified Wittrock 10 5 3 3

Generated Dataset 10 10 3 3

6.4.3 Performance Metrics

In multi-objective optimization problems, proper comparison of algorithms is complex

and is often based on the non-dominated solution set obtained by the algorithms. Three

main aspects that are usually considered for evaluating the non-dominated solution set

obtained by the algorithms are the number of non-dominated solutions in the Pareto set

obtained, the distance of the Pareto front obtained to the Pareto optimal front, and the

Chapter 6 MOWFA for Multi-Objective Scheduling

146

diversity of non-dominated solutions in the Pareto set obtained (Silva et al., 2004).

Comparison metrics can also be based on other aspects, such as a direct comparison

between two algorithms based on the number of non-dominated solutions obtained by

the algorithms or a comparison based on a union of non-dominated solutions obtained

by the algorithms.

In this chapter, we use four comparison metrics representing all the above aspects.

The first metric, denoted by 1Ψ , is the number of distinct non-dominated solutions

obtained by each algorithm. The second metric, denoted by 2Ψ , is the fraction of the

number of solutions in a non-dominated set obtained by an algorithm that are

dominated by the non-dominated solutions obtained by another algorithm. The third

metric, denoted by 3Ψ , is the percentage of non-dominated solutions obtained by each

algorithm in the Pareto optimal set. The fourth metric, denoted by 4Ψ , is the distance

of the non-dominated front obtained to the Pareto optimal front. As the Pareto optimal

set and Pareto optimal front are usually not known in advance, we would choose

distinct non-dominated solutions from a union of the non-dominated solutions obtained

by all the compared algorithms to form the Pareto optimal set and Pareto optimal

front, which are also the reference points in this comparison. This choice of the

reference points may affect the reliability of the comparison results if the algorithm

used to compare with the WFA has poor performance. Hence, to obtain reliable

comparison results we only choose the IHMOPGA which has been evaluated to have

good performance for solving the multi-objective FFSP.

Let P denote the union of non-dominated solutions obtained by the algorithms.

Since we only compare the MOWFA with the IHMOPGA, P is thus a non-dominated

solution set combined by P1 and P2, which denote the non-dominated solution sets

Chapter 6 MOWFA for Multi-Objective Scheduling

147

obtained by the MOWFA and the IHMOPGA, respectively. According to Van

Veldhuizen (1999), the first metric is defined as |P1| for the MOWFA and |P2| for the

IHMOPGA, respectively. Let D1 and D2 denote the number of solutions in the non-

dominated solution set obtained by the MOWFA and the IHMOPGA that are

dominated by the solutions in the IHMOPGA and the MOWFA, respectively. Then,

the second metric is defined as:

 2 for 1, 2.i i

i

D i
P

Ψ = = (6.17)

Let ND1 and ND2 denote the number of solutions in P1 and P2 which are not dominated

by any other solutions in P, respectively. In particular, ND1 and ND2 are determined as

follows:

 { }| : for 1, 2.i i i i iND P P P iπ π π π= − ∈ ∃ ∈ =f (6.18)

Then, the third metric is defined as:

 3 for 1,2.i iND i
P

Ψ = = (6.19)

For the fourth metric, we use the following distance metric from Knowles and Corne

(2002):

 { }4 ,
1 min | for 1, 2,

i

i
i i

P
d P i

P π π
π

π
∈

Ψ = ∈ =∑ (6.20)

where ,i
dπ π denotes the distance between a solution πi in the corresponding non-

dominated solution set Pi and a reference solution π in the non-dominated solution set

P. This is determined by:

 * * 2 * * 2
, 1 1 2 2(() ()) (() ()) for 1,2,

i i id f f f f iπ π π π π π= − + − = (6.21)

Chapter 6 MOWFA for Multi-Objective Scheduling

148

where *()if π denotes the ith objective normalized by using the reference solution set

P in Ishibuchi et al. (2003).

Among the performance metrics, the first and third ones focus on the diversity of

the non-dominated solution sets obtained, while the second and fourth ones focus on

the closeness of the non-dominated set to the Pareto optimal set. Here, we want to

maximize the diversity and minimize the closeness of the non-dominated solution set.

6.4.4 Computational Results

In this section, we provide the comparison results between the MOWFA and the

IHMOPGA for the MOFFSP with intermediate buffers. Table 6.2 shows the results of

MOWFA and IHMOPGA for the Wittrock instances with no available buffer capacity,

while Table 6.3 shows the results for the instances with finite buffers.

From Tables 6.2 and 6.3, we see that the MOWFA outperforms IHMOPGA in all

instances when we consider the metrics Ψ2, Ψ3, and Ψ4. For metric Ψ1, MOWFA is

worse than IHMOPGA in instance 1 for the case of no buffer (Table 6.2), and in

instances 1 and 6 for the case of finite buffer (Table 6.3). However, metric Ψ1 is not

significant when it is evaluated alone. It can be seen that at least 87.5% of the non-

dominated solutions obtained by the IHMOPGA in instances 1 and 6 are dominated by

the MOWFA (see the Ψ2 metric column of IHMOPGA in Tables 6.2 and 6.3).

Moreover, in instances 1 and 6, 100% of the non-dominated solutions obtained by the

MOWFA cover the final Pareto set (see the corresponding instances in the Ψ3 metric

column of MOWFA in Tables 6.2 and 6.3). From the average values of metrics Ψ1, Ψ2,

Ψ3, and Ψ4 in Tables 6.2 and 6.3, it can also be seen that the MOWFA obtained more

Chapter 6 MOWFA for Multi-Objective Scheduling

149

diversified and competitive Pareto sets than IHMOPGA in both cases of no buffer and

finite buffers.

Table 6.2 Comparison of MOWFA and IHMOPGA for the Wittrock

Benchmarks with No Buffer

Instance N×S MOWFA IHMOPGA

 Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4

1 51×3 8.00 0.00 100.00 0.00 9.00 100.00 0.00 13.67

2 38×3 6.00 0.00 100.00 0.00 5.00 100.00 0.00 24.79

3 38×3 7.00 0.00 100.00 0.00 6.00 100.00 0.00 25.85

4 36×3 6.00 0.00 100.00 0.00 5.00 80.00 16.67 18.26

5 40×3 9.00 0.00 100.00 0.00 9.00 100.00 0.00 10.17

6 30×3 8.00 12.50 87.50 2.24 7.00 85.71 12.50 10.87

Average 7.33 2.08 97.92 0.37 6.83 94.29 4.86 17.27

Table 6.3 Comparison of MOWFA and IHMOPGA for the Wittrock

Benchmarks with Finite Buffers

Instance N×S MOWFA IHMOPGA

 Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4

1 51×3 7.00 0.00 100.00 0.00 8.00 87.50 14.29 16.46

2 38×3 14.00 28.57 76.92 0.86 11.00 72.73 23.08 6.65

3 38×3 8.00 12.50 70.00 1.78 8.00 62.50 30.00 5.23

4 36×3 9.00 0.00 90.00 1.43 9.00 88.89 10.00 8.36

5 40×3 4.00 0.00 100.00 0.00 4.00 75.00 25.00 12.5

6 30×3 7.00 0.00 100.00 0.00 8.00 87.50 14.29 9.38

Average 8.17 6.85 89.49 0.68 8.00 79.02 19.44 9.76

We further illustrate the comparison results between MOWFA and IHMOPGA for

Wittrock instances with no buffer and finite buffers in Figures 6.8 and 6.9,

respectively. It can be seen that the solutions obtained by the MOWFA cover more

area of the Pareto set than those obtained by the IHMOPGA. Also, the solutions of the

MOWFA are closer to the Pareto set than that of IHMOPGA.

Chapter 6 MOWFA for Multi-Objective Scheduling

150

Pareto Solution Set

9000
9500

10000
10500
11000
11500
12000
12500
13000

800 810 820 830 840 850 860

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

a) Instance 1

Pareto Solution Set

6600
6650
6700
6750
6800
6850
6900
6950
7000

818 820 822 824 826 828 830

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

d) Instance 4

Pareto Solution Set

9100

9150

9200

9250

9300

9350

9400

825 830 835 840 845 850

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

b) Instance 2

Pareto Solution Set

10200

10400

10600

10800

11000

11200

11400

11600

11800

12000

960 970 980 990 1000 1010 1020 1030 1040
Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

e) Instance 5

Pareto Solution Set

11100

11150

11200

11250

11300

11350

11400

810 815 820 825 830 835 840 845

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

c) Instance 3

Pareto Solution Set

5200

5250

5300

5350

5400

5450

5500

5550

680 685 690 695 700 705 710

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

f) Instance 6

Figure 6.8 Plot of Pareto Fronts Obtained by MOWFA and IHMOPGA on Wittrock Instances with No Buffer

Chapter 6 MOWFA for Multi-Objective Scheduling

 151

Pareto Solution Set

8400
8600
8800
9000
9200
9400
9600
9800

10000
10200
10400

760 765 770 775 780 785 790 795

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

a) Instance 1

Pareto Solution Set

6000

6100

6200

6300

6400

6500

6600

6700

6800

770 780 790 800 810 820

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

d) Instance 4

Pareto Solution Set

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

760 770 780 790 800 810 820 830

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

b) Instance 2

Pareto Solution Set

9510
9515

9520
9525
9530
9535

9540
9545

960 965 970 975 980 985 990

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

e) Instance 5

Pareto Solution Set

10400

10500

10600

10700

10800

10900

11000

11100

11200

765 770 775 780 785 790 795 800 805

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

c) Instance 3

Pareto Solution Set

4850

4900

4950

5000

5050

5100

5150

5200

5250

5300

668 670 672 674 676 678 680

Cmax

To
ta

l t
ar

di
ne

ss

MOWFA
IHMOPGA

f) Instance 6

Figure 6.9 Plot of Pareto Fronts Obtained by MOWFA and IHMOPGA on Wittrock Instances with Finite Buffers

Chapter 6 MOWFA for Multi-Objective Scheduling

 152

The comparison results for the randomly generated instances are shown in Tables

6.4 and 6.5. Here, Table 6.4 shows the results of MOWFA and IHMOPGA for the

generated instances with no available buffer capacity, while Table 6.5 shows the

results for the generated instances with finite buffers.

From Tables 6.4 and 6.5, we can see that the MOWFA still outperforms IHMOPGA

in all instances. The average values of the metrics Ψ1, Ψ2, Ψ3 and Ψ4 in Tables 6.4 and

6.5 show that the MOWFA can obtain more diversified and competitive Pareto sets

than the IHMOPGA. For the case of no buffer in Table 6.4, although the number of

non-dominated solutions of MOWFA is less than that of IHMOPGA, they cover

96.8% of the area of the Pareto set, while the solutions of IHMOPGA only cover 9.6%

of the area of the Pareto set. Moreover, 88.72% of the solutions obtained by the

IHMOPGA are dominated by that of MOWFA, while the metric value of MOWFA is

only 2.55%. In addition, the distance of the solutions obtained by MOWFA to the

Pareto set is much closer than that of IHMOPGA, i.e., 0.48 and 11.93 for MOWFA

and IHMOPGA, respectively.

For the case of finite buffer in Table 6.5, although the quality of non-dominated

solutions obtained by the IHMOPGA has improved, they are still outperformed by the

non-dominated solutions obtained by the MOWFA. In particular, the dominated

solutions of the IHMOPGA have reduced to 75.72%, and they covered 17.66% of the

area of the Pareto set. They are thus worse than the non-dominated solutions obtained

by the MOWFA.

Through these comparison results, it can be concluded that the MOWFA

outperforms IHMOPGA for the instances tested, and the MOWFA is thus an efficient

algorithm for solving the MOFFSP with intermediate buffers.

Chapter 6 MOWFA for Multi-Objective Scheduling

 153

Table 6.4 Comparison of MOWFA and IHMOPGA for the Randomly

Generated Instances with No Buffer

Instance N×S MOWFA IHMOPGA

 Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4

1 20×2 8.80 0.00 100.00 0.00 10.80 86.91 11.16 4.56

2 40×2 13.80 0.00 100.00 0.00 13.20 88.02 11.65 5.66

3 60×2 3.40 0.00 100.00 0.00 4.80 96.00 5.00 11.22

4 80×2 4.80 0.00 100.00 0.00 4.80 96.00 5.00 13.23

5 100×2 5.20 0.00 100.00 0.00 4.40 96.00 4.00 27.88

6 20×4 11.20 0.00 100.00 0.00 12.40 90.23 10.76 8.06

7 40×4 11.00 25.45 82.00 1.66 11.80 74.55 18.00 6.41

8 60×4 12.20 0.00 100.00 0.00 11.20 82.12 16.41 10.31

9 80×4 7.20 0.00 86.00 3.13 5.20 77.33 14.00 22.71

10 100×4 5.20 0.00 100.00 0.00 6.80 100.00 0.00 9.26

Average 8.28 2.55 96.80 0.48 8.54 88.72 9.60 11.93

Table 6.5 Comparison of MOWFA and IHMOPGA for the Randomly

Generated Instances with Finite Buffers

Instance N×S MOWFA IHMOPGA

 Ψ1 Ψ2 Ψ3 Ψ4 Ψ1 Ψ2 Ψ3 Ψ4

1 20×2 7.80 0.00 100.00 0.00 7.20 60.15 22.86 15.45

2 40×2 7.80 0.00 100.00 0.00 6.20 100.00 0.00 7.66

3 60×2 3.20 0.00 100.00 0.00 3.00 33.33 63.34 0.55

4 80×2 4.80 0.00 100.00 0.00 2.40 93.33 5.00 49.35

5 100×2 2.20 0.00 100.00 0.00 2.00 100.00 0.00 74.79

6 20×4 6.20 0.00 86.07 0.69 7.20 68.72 13.93 12.08

7 40×4 7.20 13.93 75.56 1.64 5.00 60.00 24.44 17.32

8 60×4 7.80 0.00 78.00 1.30 6.00 66.67 22.00 10.98

9 80×4 4.00 0.00 100.00 0.00 4.00 75.00 25.00 20.20

10 100×4 3.00 0.00 100.00 0.00 4.00 100.00 0.00 51.95

Average 5.40 1.39 93.96 0.36 4.70 75.72 17.66 26.03

Chapter 6 MOWFA for Multi-Objective Scheduling

 154

6.5 Conclusions

In this chapter, a MOWFA is proposed for solving the MOFFSP with intermediate

buffers. To solve the problem by the proposed algorithm, we divide the feasible

solution set into multiple distinct regions. Then landscape analysis is performed for

each region to determine the weights for the objectives, which guide the DOWs to

search for local optimal solutions in the corresponding region. Two erosion schemes

are proposed in the MOWFA. The first scheme focuses on exploiting the current

region, while the second scheme helps DOWs exploit other potential regions. We also

incorporate an evaporation process in the MOWFA to enhance the exploitation

capability in potential neighboring regions. The Pareto solution set obtained is

reinforced by an improvement process.

We used the Wittrock benchmark instances and the randomly generated instances to

evaluate the performance of the MOWFA. The proposed algorithm is compared with

other algorithms that can be applied to solve the MOFFSP problem. The comparison

results show that the MOWFA outperforms the other algorithms for the test instances.

These results have been reported in Tran and Ng (2011a).

The MOWFA can be applied to solve the MOFFSP with a large number of

objectives. However, if we use the ellipsoid approximation method to determine the

relative weights of the objectives, the MOWFA can only successfully solve the

MOFFSP with at most three objectives. For the MOFFSP in which the number of

objectives is greater than three, we need to use a linear regression method to determine

the weights.

Chapter 7 WFA for Other Combinatorial Optimization Problems

155

CHAPTER 7

WFA FOR OTHER COMBINATORIAL

OPTIMIZATION PROBLEMS

In this chapter, WFA is used to solve two other well-known combinatorial optimization

problems which are the quadratic assignment problem (QAP) and vehicle routing problem

(VRP). The QAP and VRP are NP-hard optimization problems often encountered in

facility layout design (Sahni, 1976) and the field of logistics and supply chain

management (Toth and Vigo, 2002), respectively.

For the QAP, a systematic precipitation generating scheme is included in the WFA for

spreading raindrop positions on the ground to increase the solution exploration capability

of the algorithm. Efficient local search methods are also used to enhance the solution

exploitation capability of this algorithm. The performance of the proposed algorithm is

tested with the benchmark instances taken from the QAPLIB (Burkard et al., 1997).

Computational results and comparisons show that the WFA is able to obtain good quality

or optimal solutions to the QAP instances in reasonable computation time.

For the VRP, we have developed a two-level WFA (2LWFA). The first level of the

proposed algorithm is to solve the mathematical programming model of the VRP with the

Chapter 7 WFA for Other Combinatorial Optimization Problems

156

relaxation of the integrality constraints. At the second level, a modified WFA is then

applied to search for optimal solutions from the initial solutions obtained from the first

level. Here, we illustrate the performance of the 2LWFA with the capacitated vehicle

routing problem (CVRP). Some preliminary computational results show the efficiency of

this algorithm for the VRP.

Chapter 7 is organized as follows. In Section 7.1, we present the WFA proposed for

solving the QAP. In particular, we introduce the QAP and its important applications. A

literature review of solution methods for the problem is also described. Then, the

implementation of WFA for solving the QAP is presented. Computational experiments

and comparisons based on the QAP benchmark instances are shown in this section. In

Section 7.2, we present the 2LWFA proposed for solving the CVRP. The CVRP is first

introduced and a description of the 2LWFA is then provided. The results of preliminary

experiments carried out on the CVRP benchmark instances from the literature are also

shown. Finally, some conclusions of this chapter are provided in Section 7.3.

7.1 Quadratic Assignment Problem

7.1.1 Introduction

The QAP is one of the well-known NP-hard optimization problems (Sahni, 1976) due to

its important applications in practice, such as parallel and distributed computing (Bokhari,

1987), statistical data analysis (Hubert, 1987), testing of electronic devices (Eschermann

and Wunderlich, 1990), plant layout design (Rossin et al., 1999), data visualization

(Abbiw-Jackson et al, 2006), printed circuit board assembly process (Duman and Or,

Chapter 7 WFA for Other Combinatorial Optimization Problems

157

2007), and website structure improvement (Qahri Saremi et al., 2008). The problem is

often described as follows: Given a set of facilities and a set of locations with the same

size n, assign the facilities to the locations such that the total cost of assignment is

minimized. The total cost w is calculated using the distance between locations and the

flow between facilities. The QAP can then be expressed as the problem of finding a

permutation π of n facilities as follows:

where nΠ denotes the set of possible permutations of N = {1, 2, …, n}, while []iπ

and []jπ denote the location of facilities i and j in the permutation π, respectively.

Furthermore, ijf is the flow between facilities i and j, and [] []i jdπ π is the distance between

locations []iπ and []jπ .

While there are some well solved special cases of the QAP (see for example,

Demidenko et al. (2006)), the QAP is generally difficult to solve (Taillard, 1995), and so

researchers have explored various possible solution methods. These solution methods can

be broadly classified into exact methods and heuristic methods. Exact methods aim to find

the optimal solution to the QAP but they often run into computational difficulties with

large QAP instances (Burkard et al., 1996; Cela, 1998; Hahn et al., 2001; Blanchard et al.,

2003; and Gasimov and Ustun, 2007). Heuristic methods on the other hand can be further

divided into constructive heuristics and improvement heuristics. Constructive heuristics

often construct a feasible solution for the QAP by assigning each facility to a location

according to some principles. Such constructive methods for solving the QAP can be seen

[] []
1 1

(7.1)min () ,
n

n n

ij i j
i j

w f dπ ππ
π

∈Π
= =

= ∑∑

Chapter 7 WFA for Other Combinatorial Optimization Problems

158

in Buffa et al. (1964), Arkin et al. (2001), and Gutin and Yeo (2002). Unlike constructive

heuristics, improvement heuristics attempt to improve an existing solution through some

iterative procedures. Some of the well-known algorithms belonging to this category are

the meta-heuristic algorithms, such as genetic algorithms (Ahuja et al., 2000; and Lim et

al., 2002), ant colony optimization algorithms (Maniezzo and Colorni , 1999; Ramkumar

et al., 2009; and Wong and See, 2010), greedy randomized adaptive search procedure (Li

et al., 1994), memetic algorithm (Merz and Freisleben, 2000), iterated fast local search

algorithm (Ramkumar et al., 2008), simulated annealing algorithm (Singh and Sharma,

2008), and DNA algorithm (Yang et al., 2008).

In this chapter, we develop the WFA for solving the QAP. It uses distributed drops of

water (DOWs) to represent the permutations in the QAP. Benchmark problem instances

drawn from the QAPLIB (Burkard et al., 1997) are used to evaluate the performance of

the proposed algorithm. The computational results and comparisons show that the WFA is

able to obtain good quality or optimal solutions to these instances and is a promising

nature-inspired algorithm for solving QAP problem instances.

7.1.2 WFA for the QAP

In this section, we describe the procedure of solving the QAP by the WFA in detail. The

main phases in the WFA include the exploration phase, the exploitation phase, and the

improvement phase, as well as a systematic precipitation generating scheme. We first

begin with a description of the basic components for the WFA.

Chapter 7 WFA for Other Combinatorial Optimization Problems

159

7.1.2.1 Encoding Scheme and Memory Lists

For the QAP, we consider the permutation π of n facilities in the problem as the longitude

and latitude in the position of DOW on the ground, while the total cost of flow between

the facilities is encoded as the altitude. Given a permutation of n facilities 1(,...,)nπ σ σ= ,

we thus define:

1

2

1
2

longitude() (,...,), (7.2)

 latitude() (,...,), (7.3)

n

nn

π σ σ

π σ σ

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥+⎢ ⎥⎣ ⎦

=

=

where q⎢ ⎥⎣ ⎦ is the largest integer less than or equal to q. Figure 7.1 shows an illustrative

example of a DOW and its positional vector components for the QAP with 8n = facilities.

Figure 7.1 An Example of Solution Representation in the WFA for the QAP

With this encoding scheme, the neighborhood structure used in the WFA for the QAP

is mainly based on exchanging elements in a permutation. An example is the 2-opt

neighborhood structure used in the traveling salesman problem as well as in the QAP

Total cost
Permutation π

DOW

Altitude
Latitude Longitude

3 1 2 5 6 4 9428 8 7

σ4 σ5 σ6 σ3 σ7 σ8 w σ2 σ1

Chapter 7 WFA for Other Combinatorial Optimization Problems

160

(Merz and Freisleben, 2000). Thus if π' is the permutation obtained by exchanging

positions of two facilities i and j in the permutation π, we can determine π' by:

[] [] { }
[] []
[] []

'

'

'

for \ , ,

,

.

k k k N i j

i j

j i

π π

π π

π π

= ∈

=

= (7.4)

In addition, we also consider the neighborhood structure of an extended 2-opt

algorithm called the 2-opt mirror. In this 2-opt mirror algorithm, other than the usual 2-opt

neighboring permutations, we also consider the reflected permutation and its

corresponding 2-opt neighboring permutations. The reflected permutation rπ of a

permutation π can be determined as follows:

 [] []1 for =1,.., .r i n i i nπ π= − + (7.5)

The neighborhood structures are used for both exploration and exploitation phases.

To support the search for global optimal permutations, three sets of memory lists,

namely the best permutations list (P0-list), the un-eroded permutations list (UE-list), and

the eroded permutations list (E-list), have been adopted to solve the QAP. Here the

functions of the lists and the procedure of updating these lists are similar as that described

in Chapter 4.

Let Best
cπ be the best optimal permutation found so far by the WFA at cloud c. Assume

that we have found a local optimal permutation *
1cπ + at cloud c + 1. Updating the P0-list at

the cloud can then be described as follows:

Chapter 7 WFA for Other Combinatorial Optimization Problems

161

* *
1 1

0
if () (),

P -list
otherwise.

Best
c c c
Best
c

w wπ π π
π

+ +⎧ <
= ⎨
⎩ (7.6)

Updating of the UE-list includes two phases, the phase of removing the local optimal

permutations eroded and the phase of adding the ones just found, which are done in

succession. Updating of the E-list is only to add the local optimal permutations eroded.

They are shown as follows:

 ()2 1
1UE-list UE-list \ ,c c c c+ = ∪Π Π (7.7)

1

1E-list E-list .c c c+ = ∪Π (7.8)

where 1
cΠ and 2

cΠ denote the set of local optimal permutations eroded and the set of local

optimal permutations just found from initial permutations generated at each iteration,

respectively.

7.1.2.2 Exploration Phase

Two schemes for generating the initial population of DOW positions in the exploration

phase are proposed below.

The first scheme is the random permutation generator scheme. In this scheme, a

population Ω of permutations of DOWs is generated randomly for each cloud and the

number of such permutations is the maximum population size allowed (MaxPop). Since

the WFA mimics the property of water flow always moving from higher positions to

lower positions due to Earth’s gravity, a steepest descent hill sliding algorithm is then

Chapter 7 WFA for Other Combinatorial Optimization Problems

162

applied to search for local optimal permutations from these initial permutations. In

particular, from an initial solution, the hill sliding algorithm searches for the best

improved solution within the initial solution’s neighbors in terms of objective value. Then,

this process continues to be performed iteratively for the improved solution obtained until

no other improved solution is found.

Due to the random nature of this scheme, the efficiency of WFA for solving the QAP

may fluctuate in instances with large size. To resolve this drawback of the first scheme as

well as to improve the solution exploration capability of WFA for QAP instances with

large size, a second scheme is proposed. This scheme is a systematic DOW generator

scheme that aims to distribute DOWs evenly into divided regions of the solution space.

We first divide the solution space into n regions, where n is the instance size. Then at each

cloud, the WFA generates n DOWs and each DOW is assigned to only one distinct region.

This means that a cloud would consist of n different permutations, which is achieved by

fixing the first position of a facility in a permutation from 1 to n when generating the

permutations of DOW. The rest of the positions in a permutation are assigned randomly.

This can be represented with the following notation:

A steepest descent hill sliding algorithm is also used in the second scheme to search for

local optimal permutations from these initial permutations.

At each cloud, the number of DOWs at the initial permutations is updated as follows:

{ }T1 , ..., , ..., [1] , (1, ...,) , (1,...,). (7.9)i n i
c c c c c i i n c MaxCloudπ π π π⎡ ⎤Ω = = = =⎣ ⎦

Chapter 7 WFA for Other Combinatorial Optimization Problems

163

1

3
1

1
1 if ,

for 1,..., ,
1 otherwise,

i
c

i
c c c

c
Q

Q i MaxPop
π

π π π
+ +

+

⎧ + = ∈Π
= =⎨
⎩ (7.10)

where cQπ is the number of DOWs in permutation π at cloud c, and 1
i
cπ + denotes the

permutation of the ith DOW generated at cloud c + 1, while the set of initial permutations

generated or local optimal permutations found through clouds 1 to c is denoted by 3
cΠ .

After the steepest descent hill sliding algorithm has been applied to find the local

optimal permutation *
1cπ + from the initial permutation 1

i
cπ + , we also update the number of

DOWs at the optimal permutation according to the following equation.

*
1 1

*
1

1

*
1 1

1

1

if UE-list ,

otherwise.

i
c c

c
i
c

c c c
c

c

Q Q
Q

Q

π π
π

π

π+ +

+

+

+ +
+

+

⎧ + ∈⎪= ⎨
⎪⎩ (7.11)

In general, the solution exploration phase of the WFA for the QAP results in a set of

local optimal permutations. They are updated in the UE-list to be considered for the

erosion process in the next exploitation phase.

7.1.2.3 Exploitation Phase

The exploitation phase involves applying the erosion process to overcome the local

optimal permutations found in the exploration phase. Before describing the erosion

process, the erosion condition and capability are first described below:

Chapter 7 WFA for Other Combinatorial Optimization Problems

164

7.1.2.3.1 Erosion Condition and Capability

The erosion process is triggered by the amount of precipitation and so if the number of

DOWs at a local optimal permutation increases to the threshold MinEro, the erosion

process is performed at this local optimal permutation.

Next, we consider the capability L of the erosion process. For the QAP, the erosion

capability is based on a factor, which is the number of DOWs at the eroding local optimal

permutation. In particular, the relationship between the erosion capability and this factor is

a nonlinear function. However, to simplify the computations in the WFA, we have set the

erosion capability to a constant value MaxUIE, so that the relationship can be described as

follows:

 ()
*

* if ,
0 otherwise.

c
c c

c
MaxUIE Q MinEroL Q

π
π ⎧ ≥⎪= ⎨

⎪⎩
 (7.12)

If the erosion process cannot find any improved permutation after MaxUIE search

steps, the erosion process stops and other permutations in the UE-list are considered for

performing the next erosion process.

7.1.2.3.2 Erosion Process

The erosion process is the main operator in the exploitation phase of WFA for solving the

QAP. Its task is to help the DOWs overcome local optimal permutations and obtain better

local optimal or global optimal permutations. In the QAP, the erosion process depends on

a topological parameter hdΔ representing the geographical shape of the surface. It is

Chapter 7 WFA for Other Combinatorial Optimization Problems

165

defined as the difference of total cost between the local optimal permutation and its hth

neighboring permutation:

() () [] [] [] []()* * * *
* *

1 1

(1)for 1,..., ,
2h h

n n

h h ij i j i j
i j

n nd w w f d d h
π π π π

π π
= =

−
Δ = − = − =∑∑

(7.13)

where *π and *
hπ denote the local optimal permutations and its hth neighboring

permutation respectively. In the case of the 2-opt mirror neighborhood, the number of

directions is (1) 1n n− + .

The aim of computing hdΔ is to help the erosion process choose the most suitable

direction to perform erosion. The erosion process will choose the smallest hdΔ to be the

first erosion direction. Searching for this direction will stop if the erosion process for the

erosion direction cannot find a better permutation after MaxUIE steps. Then, the erosion

process will be restarted with another erosion direction with the next smallest hdΔ . If the

erosion process cannot find a better permutation for all the directions, we move the eroded

local optimal permutation into the E-list so that it will not be considered for erosion

process in the next clouds. On the other hand, if the erosion process is able to find a better

permutation than the eroding local optimal permutation, that erosion direction is chosen to

erode the local optimal permutation permanently. Then the new local optimal permutation

is updated in the UE-list to continue with performing the erosion process.

Chapter 7 WFA for Other Combinatorial Optimization Problems

166

7.1.2.4 Improvement Phase

The exploration and exploitation phases of the WFA for the QAP terminate when the

maximum number of clouds (MaxCloud) has been generated. To improve the solutions

obtained by the WFA, we can apply the 3-opt algorithm at a final improvement phase.

This 3-opt algorithm would still use the steepest descent hill sliding method mentioned in

the previous section. A 3-opt list is also used to save the solutions obtained by this

improvement algorithm.

In summary, we have the following variants of WFA:

(1). Random 2-opt WFA: WFA with the random permutation generator scheme and

the 2-opt neighborhood structure.

(2). Systematic generator 2-opt WFA: WFA with the systematic DOW generator

scheme and the 2-opt neighborhood structure.

(3). Random 2-opt mirror WFA: WFA with the random permutation generator

scheme and the 2-opt mirror neighborhood structure.

A flow chart of the WFA for solving the QAP is shown in Figure 7.2.

7.1.3 Computational Experiments and Comparisons

To test the performance of the proposed WFA, we have used the random 2-opt WFA for

solving all the benchmark instances from the QAPLIB (Burkard et al., 1997). The

systematic generator 2-opt WFA and the random 2-opt mirror WFA are used to solve the

benchmark instances when the random 2-opt WFA has not obtained the best known value.

Chapter 7 WFA for Other Combinatorial Optimization Problems

167

Initialization

Belong to E-list?

Generate a new cloud

Generate a new DOW
with permutation in

region i
Yes

Spread to all n regions?

No

No

i = i + 1

Apply the steepest ascent hill sliding algorithm
to search for the local optimal permutations of

DOWs generated in n regions

Yes

Determine the number of DOWs at the local
optimal permutations

Update P0-list and UE-list

Choose one permutation in
UE-list

Satisfy erosion
condition? Yes

Evaluate topology
parameter around the

permutation

Perform erosion process for
un-eroded direction with the
smallest topology parameter

Is a better local
optimal permutation

found?

Have all permutations in UE-list
been chosen?

No

No

Is MaxCloud reached?

Yes

Output the best permutations
in 3-opt list

Yes

No

Update into UE-list to
continue performing

erosion process
Yes

No

Have all directions
been chosen?

No

YesUpdate E-list

Update P0-list

Choose one best permutation in
P0-list

Apply 3-opt algorithm for the
permutation

Find better permutation?

No

Have all permutations
in P0-list been chosen?

No

Yes

Update 3-opt listYes

Algorithm representation Hydrological cycle process

Ex

pl
or

at
io

n
ph

as
e

h

Ex
pl

oi
ta

tio
n

ph
as

e
h

Im
pr

ov
em

en
t p

ha
se

 h

When it rains, the DOWs are
generated and they fall to

the ground

Due to gravity force, the
DOWs automatically move

from higher positions to
lower positions (local

optimal positions) and they
are held there

Erosion process happens
when the erosion condition

is satisfied at the local
optimal positions

The terrain at eroded
positions is smoothed by the

erosion process

Figure 7.2 Flow Chart of the WFA for the QAP

Chapter 7 WFA for Other Combinatorial Optimization Problems

168

7.1.3.1 Benchmark Problem Sets

The 134 instances drawn from the QAPLIB (Burkard et al., 1997) are well-known

benchmark problem sets in QAP with size ranging from 12 to 256. The best known upper

bounds of these problem sets obtained from the literature were used to compare with the

best results obtained by the WFA. In addition, we also compared these results with those

obtained by greedy randomized adaptive search procedure (GRASP) of Li et al. (1994), by

ant system (ANT) of Maniezzo and Colorni (1999), by greedy genetic algorithm (GGA) of

Ahuja et al. (2000), by hybrid genetic algorithm with partial local search (PGA) of

Lim et al. (2002), by iterated fast local search algorithm (IFLS) of Ramkumar et al. (2008),

by two-level modified simulated annealing based approach (MSA) of Singh and Sharma

(2008), and by population-based hybrid ant system (PHAS) of Ramkumar et al. (2009), all

of which are some of the most efficient meta-heuristic algorithms for solving the QAP

instances. Almost all the algorithms used the design-of-experiment method or trial runs to

select their best parameter values. However, the number of runs of each algorithm can be

different, such as 5 runs used for the GRASP, ANT, and PHAS, 7 runs used for GGA, and

10 runs for PGA. Also, some algorithms did not provide information on the number of

runs used, such as IFLS and MSA. Thus, to have a fair comparison, we used the smallest

number of runs that several algorithms have used, i.e., 5 runs.

7.1.3.2 Platform and Parameters

All the computational experiments were performed on an Intel Centrino Duo 1.60 GHz

CPU with 1.5 GB of RAM. The WFA has been coded using Microsoft Visual Basic 6.0.

Here, the computational complexity of the WFA for the QAP is determined based on the

Chapter 7 WFA for Other Combinatorial Optimization Problems

169

neighborhood structures used and the erosion process of this algorithm. In particular, the

WFA used 2-opt neighborhood structure, and the worst possibility of the erosion process

is to find for all n directions. Hence, the computational complexity of the WFA is

estimated to be O(n3). Although the WFA for the QAP used 3-opt neighborhood structure

at the improvement phase, since the 3-opt algorithm is only used once, the computational

complexity of the WFA for the QAP is still O(n3).

The choice of parameters for WFA was determined by the design-of-experiment

method. In particular, we have carried out several simulations that test the WFA on all

types of QAP with various values for the controlled parameters, i.e., the exploration

parameters MaxCloud and MaxPop, and the exploitation parameters MaxUIE and MinEro.

The aim is to determine the best parameters of WFA for QAP that would achieve a

balance between solution exploration and exploitation capabilities in finding the best

solutions within reasonable computation time. Thus, smaller values may be used by the

parameters for larger problem instances. The values that were used are as follows:

MaxCloud = 2, 5, 10, 15, 20; MaxPop = 5, 10, 15, 20; MaxUIE = 5, 10, 15, 20; and

MinEro = 2, 3. From preliminary simulation results, the best parameter sets are shown in

Table 7.1. These parameter sets are then used for the random 2-opt WFA and the random

2-opt mirror WFA. For the systematic generator 2-opt WFA, we have used the parameter

sets (MaxCloud, MaxPop, MaxUIE, MinEro) = (50, n, 20, 2), (20, n, 10, 2), and (5, n, 5, 2)

for instances with size at most 50, more than 50 but at most 100, and more than 100

respectively, in order to allow a reasonable amount of erosion process to occur. With these

parameter sets, 5 independent replicates were used for each instance and the best results

were used to compare the WFA with other meta-heuristic algorithms.

Chapter 7 WFA for Other Combinatorial Optimization Problems

170

Table 7.1 Parameter Sets of WFA for the QAP Benchmark Instances

Benchmarks n
Parameter values

MaxCloud MaxPop MaxUIE MinEro

Burkard 26 5 10 10 2
Christofides 12 – 20 10 10 10 2

22 15 10 10 2
25 20 10 10 2

Elshafei 19 10 10 10 2
Eschermann 16, 64 2 5 5 2

32 (a, b) 5 10 10 2
32 (c, e, g) 2 5 5 2
32 (d, h) 2 10 10 2
128 5 10 5 3

Hadley 12 – 20 10 10 10 2
Krarup 30, 32 20 10 10 2
Li & Pardalos 20, 30 10 10 10 2

40, 50, 60 10 20 10 2
70 10 20 15 2
80, 90 20 20 10 2

Nugent 12 – 28 10 10 5 2
30 20 10 10 2

Roucairol 12, 15 5 10 10 2
20 10 20 10 2

Scriabin 12, 15, 20 5 15 10 2
Skorin-Kapov 42 – 64 15 10 10 2

72, 81, 90 10 20 15 2
100 10 10 10 2

Steinberg 36 20 10 10 2
Taillard

(Taixxxa) 12 5 10 10 2
15, 17 5 20 10 2
20 – 35 20 20 10 2
40, 50 20 20 15 2
60, 80, 100 10 20 10 2

(Taixxxb) 12 – 20 5 5 10 2
25 10 10 10 2
30, 35, 40 20 10 10 2
50, 60, 80 10 10 15 2
100 5 20 10 2
150 5 10 5 2

(Taixxxc) 64 10 20 10 2
256 2 5 5 2

Thonemann 30 10 20 10 2
40 20 10 10 2
150 5 10 10 2

Wilhelm 50 15 20 10 2
100 10 10 10 2

Chapter 7 WFA for Other Combinatorial Optimization Problems

171

7.1.3.3 Performance Measures

For comparison of objective values, we have used the following relative percentage

difference in objective value:

 (7.14)

where Heuristicsol and Optsol denote the best objective function value obtained by the

WFA and the best known value in the literature, respectively.

The best known values from the literature are used as the reference values for the

evaluation and comparison of the WFA and other algorithms for solving the QAP. These

values may be obtained from the optimal solutions of the benchmark instances used, or the

best solutions found by some algorithm so far. Thus, the comparison results may be

negative values if the WFA finds a better solution.

For evaluation and comparison of the overall performance of algorithms, we have used

criteria such as the average relative percentage difference for all instances solved and the

number of the best known solutions obtained in all instances solved. Thus, the algorithm

with a smaller average relative percentage difference and a larger number of the best

known solutions obtained would be considered to be a more effective optimization method.

100,sol sol
Best

sol

Heuristic Opt
Opt

⎛ ⎞−
Δ = ×⎜ ⎟

⎝ ⎠

Chapter 7 WFA for Other Combinatorial Optimization Problems

172

7.1.3.4 Computational Results

The computational results and comparisons with other meta-heuristic algorithms, such as

GRASP, ANT, GGA, PGA, IFLS, MSA, and PHAS, are shown in Tables 7.2a to 7.2e,

while the improvement results obtained by the variants of WFA for the QAP benchmark

instances that have not been solved optimally by the 2-opt WFA are displayed in Table 7.3.

In Tables 7.2a to 7.2e, the column with the best results of WFA shows the best solutions

obtained by the random 2-opt WFA and the variants of WFA. Since the details of the

computation time of applying PHAS to the QAP instances were not shown in Ramkumar

et al. (2009), we did not include this information in Tables 7.2a to 7.2e. In addition, the

symbol “—” in the entries of these tables is used to indicate that the compared algorithms

have not solved the respective benchmark instances. For Table 7.3, the entries displayed in

italic font highlight the best results obtained by the respective variant of the WFA.

From Table 7.3, we can see that the systematic generator 2-opt WFA, the random 2-

opt mirror WFA and the WFA-3-opt have obtained better results than the random 2-opt

WFA for some of the instances when the random 2-opt WFA was unable to obtain the best

known solution. In particular, these variants improved the solution quality for 25 instances.

From the best results obtained by the WFA in Tables 7.2a to 7.2e, it can be seen that

out of the 134 instances from the QAPLIB (Burkard et al., 1997), the best known solutions

for 99 instances have been obtained by the WFA within reasonable computation time. The

WFA is also able to obtain solutions with a relative percentage difference of less than 2%

for all the remaining instances. The average relative percentage difference of WFA for all

the 134 instances is found to be 0.20%.

Chapter 7 WFA for Other Combinatorial Optimization Problems

173

Table 7.2a Comparison Results of the WFA with Other Algorithms for Burkard’s and Christofides’ Instances

Instances
Best

known
value

Random 2-opt WFA Best results of
WFA GRASP ANT GGA PGA IFLS MSA PHAS

Best
solution

Time
(s) BestΔ Time (s) BestΔ Time

(s) BestΔ Time
(s) BestΔ

Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ
Bur26a 5426670 5426670 140.0 0 140.0 0 11.38 0 21.07 0 235 0 125 0 61.27 — — 0
Bur26b 3817852 3817852 108.0 0 108.0 0 59.45 0 35.03 0 225 0 9.5 0 60.27 — — 0
Bur26c 5426795 5426795 80.0 0 80.0 0 5.16 0 19.09 0 227 0 7.42 0 57.78 — — 0
Bur26d 3821225 3821225 126.0 0 126.0 0 15.12 0 19.4 0 213 0 8.42 0 61.27 — — 0
Bur26e 5386879 5386879 145.0 0 145 0 17.63 0 20.53 0 218 0 10.03 0 57.83 — — 0
Bur26f 3782044 3782044 197.0 0 197 0 5.05 0 11.23 0 204 0 6.68 0 59.19 — — 0
Bur26g 10117172 10117172 129.0 0 129 0 22.58 0 18.67 0 194 0 9.99 0 57.72 — — 0
Bur26h 7098658 7098658 97.0 0 97 0 37.58 0 5.67 0 204 0 6.82 0 57.47 — — 0
Chr12a 9552 9552 2.1 0 2.1 — — — — 0 19.6 0 0.54 0 1.09 0 40 0
Chr12b 9742 9742 1.8 0 1.8 — — — — 0 18.4 0 0.42 0 1.11 0 41 0
Chr12c 11156 11156 2.2 0 2.2 — — — — 0 20.2 0 1.29 0 1.02 0.26 38 0.27
Chr15a 9896 9896 11.4 0 11.4 — — — — 0.4 40.6 0 1.5 0 2.97 0 69 0
Chr15b 7990 7990 15.4 0 15.4 — — — — 0 41.8 0 1.31 0 3.08 2.7 72 0
Chr15c 9504 9504 14.3 0 14.3 — — — — 0 44 0 1.30 0 2.64 11.5 69 6.36
Chr18a 11098 11098 40.0 0 40 — — — — 0.4 79 0 2.11 5.14 7.23 1.71 103 14.25
Chr18b 1534 1534 37.0 0 37 — — — — 0 78.8 0 2.62 0 5.30 0 105 0
Chr20a 2192 2192 149.0 0 149 1.82 509 0 331 0 94.6 0.18 3.61 4.38 10.95 0 131 1.82
Chr20b 2298 2298 127.0 0 127 5.92 195 2.79 375 5.13 96.4 3.12 3.32 5.40 8.61 0 127 4.96
Chr20c 14142 14142 72.0 0 72 0.00 9.23 0 29.49 0 97.8 4.51 1.77 0 13.55 0 140 0
Chr22a 6156 6156 285.0 0 285 2.31 201 0 315 0.75 146 0 4.52 0.88 19.11 5.7 164 0.32
Chr22b 6194 6194 283.0 0 283 2.58 213 0.97 162 0 152 1.46 5.26 1.68 17.00 8.5 163 0
Chr25a 3796 3796 455.0 0 455 2.32 115 0 236 0 194 2.27 5.97 11.17 33.59 0 591 0

Chapter 7 WFA for Other Combinatorial Optimization Problems

174

Table 7.2b Comparison Results of the WFA with Other Algorithms for Elshafei’s, Eschermann’s, Hadley’s, and Krarup’s

Instances

Instances
Best

known
value

Random 2-opt WFA Best results
of WFA GRASP ANT GGA PGA IFLS MSA PHAS

Best solution Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ
Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ

Els19 17212548 17212548 67 0 67 — — — — 0 80.6 0 44.46 — — — — 0
Esc16a 68 68 0.1 0 0.1 — — — — 0 47.4 0 5.13 0 3.17 0 61 0
Esc16b 292 292 0.1 0 0.1 — — — — 0 48.2 0 0.19 0 2.75 0 60 0
Esc16c 160 160 0.1 0 0.1 — — — — 0 53.4 0 0.44 0 4.03 0 68 0
Esc16d 16 16 0.1 0 0.1 — — — — 0 53.2 0 0.5 0 3.98 — — 0
Esc16e 28 28 0.1 0 0.1 — — — — 0 46.8 0 0.32 0 2.28 — — 0
Esc16f 0 0 0.1 0 0.1 — — — — 0 46.0 — — 0 1.11 — — 0
Esc16g 26 26 0.1 0 0.1 — — — — 0 49.8 0 0.29 0 2.77 — — 0
Esc16h 996 996 0.1 0 0.1 — — — — 0 48.0 0 0.22 0 2.13 0 65 0
Esc16i 14 14 0.1 0 0.1 — — — — 0 51.6 0 0.16 0 2.05 — — 0
Esc16j 8 8 0.1 0 0.1 — — — — 0 402 0 0.32 0 2.91 — — 0
Esc32a 130 130 866 0 866 1.54 7.03 0 226 0 382 1.52 97.04 0 137 — — 0
Esc32b 168 168 258 0 258 0 2.80 0 40.59 0 400 0 33.61 0 110 — — 0
Esc32c 642 642 2.6 0 2.6 0 0.00 0 0.08 0 389 0 2.01 0 54.7 — — 0
Esc32d 200 200 39 0 39 0 1.92 0 2.13 0 353 0 2.76 0 74.3 — — 0
Esc32e 2 2 1 0 1 0 0.00 0 0.05 0 370 0 0.66 0 46.09 — — 0
Esc32g 6 6 1 0 1 0 0.00 0 0.07 0 371 0 1.27 0 28.41 — — 0
Esc32h 438 438 141 0 141 0 3.41 0 2.64 0 349 0 6.54 0 85.75 — — 0
Esc64a 116 116 47 0 47 — — — — 0 2631 0 194 0 1522 — — 0
Esc128 64 64 6976 0 6976 — — — — — — 0 1631 — — — — 0
Had12 1652 1652 1.1 0 1.1 — — — — — — 0 4.27 0 0.97 0 41 0
Had14 2724 2724 2.7 0 2.7 — — — — — — 0 10.25 0 1.97 0 64 0
Had16 3720 3720 7.4 0 7.4 — — — — — — 0 5.38 0.05 3.64 0 88 0
Had18 5358 5358 23 0 23 — — — — — — 0 18.54 0 6.52 0 118 0
Had20 6922 6922 48 0 48 0 2.8 0 159 — — 0 15.26 0 10.58 0 148 0
Kra30a 88900 88900 2040 0 2040 0.00 292 0 199 0 301 0.89 71 1.34 106 — — 0
Kra30b 91420 91420 2095 0 2095 0.32 268 0 140 0 331 0 123 0.13 102 — — 0.08
Kra32 88700 88700 2052 0 2052 — — — — — — — — 0 172 — — 0

Chapter 7 WFA for Other Combinatorial Optimization Problems

175

Table 7.2c Comparison Results of the WFA with Other Algorithms for Li & Pardalos’ and Skorin-Kapov’s Instances

Instances
Best

known
value

Random 2-opt WFA Best results of
WFA GRASP ANT GGA PGA IFLS MSA PHAS

Best solution Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ
Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ

Lipa20a 3683 3683 65 0 65 0 0.99 0 107 0 74.8 0 0.59 0 16.11 — — 0
Lipa20b 27076 27076 76 0 76 0 0.66 0 0.00 0 74.4 0 0.39 0 16.78 — — 0
Lipa30a 13178 13178 352 0 352 0 46.43 0 54.85 0 345 0 5.66 0 120 — — 0.99
Lipa30b 151426 151426 349 0 349 0 7.31 0 0.00 0 337 0 2.78 0 122 — — 0
Lipa40a 31538 31538 3065 0 3065 1.13 306.00 1.02 281 0.96 1022 0 19.46 0 490 — — —
Lipa40b 476581 476581 1981 0 1981 0 6.21 0 0 0 1026 0 9.52 0 486 — — —
Lipa50a 62093 62619 4099 0.80 4568 — — — — 0.95 1486 0.82 57.32 1.02 1556 — — 0
Lipa50b 1210244 1210244 3578 0 3578 — — — — 0 1509 0 39.96 0 1462 — — 0
Lipa60a 107218 108103 6025 0.79 12396 — — — — 0.77 3057 0.64 137 0.84 3668 — — 0.81
Lipa60b 2520135 2520135 4112 0 4112 — — — — 0 3047 0 86.13 0 3724 — — 0
Lipa70a 169755 170956 8057 0.71 8057 — — — — 0.71 6148 0.62 233 0.77 8067 — — —
Lipa70b 4603200 4603200 8503 0 8503 — — — — 0 6123 15.9 196 0 7762 — — —
Lipa80a 253195 254853 10144 0.63 17685 — — — — 0.61 9519 0.61 373 0.67 15220 — — —
Lipa80b 7763962 7763962 10800 0 10800 — — — — 0 9499 16.56 332 20.33 15965 — — —
Lipa90a 360630 362854 12812 0.57 26123 — — — — 0.58 12358 0.54 592 0.63 27909 — — —
Lipa90b 12490441 12490441 25677 0 25677 — — — — 0 12319 0 503 0 27788 — — —
Sko42 15812 15836 4691 0.03 6961 — — — — 0.25 1006 0.35 365 0.30 614 — — 0
Sko49 23386 23510 5051 0.32 8158 — — — — 0.21 1252 0.19 714 0.45 1318 — — 0.05
Sko56 34458 34568 4792 0.20 8537 — — — — 0.02 2976 0.06 907 0.47 2613 — — 0.12
Sko64 48498 48796 5624 0.31 14405 — — — — 0.22 3788 0.09 1399 0.25 4936 — — 0
Sko72 66256 66660 7454 0.47 19254 — — — — 0.29 5078 0.21 1987 0.73 8663 — — 0.03
Sko81 90998 91452 7449 0.50 7449 — — — — 0.20 10964 0.12 2680 0.43 16960 — — 0.05
Sko90 115534 116922 7640 0.91 21076 — — — — 0.27 12698 0.43 3822 0.45 28787 — — 0.02
Sko100a 152002 153426 8767 0.94 8767 — — — — 0.21 16608 0.22 1486 1.30 309 — — 0.19
Sko100b 153890 155288 6724 0.85 7574 — — — — 0.14 14729 0.30 1405 2.34 274 — — —
Sko100c 147862 149628 7476 1.15 8576 — — — — 0.20 20314 0.06 873 1.50 284 — — —
Sko100d 149576 151196 8335 0.97 19097 — — — — 0.17 20302 0.27 863 1.03 293 — — —
Sko100e 149150 151056 11632 0.90 26534 — — — — 0.24 21127 0.33 745 1.55 301 — — —
Sko100f 149036 150510 9172 0.91 10200 — — — — 0.29 21479 0.41 781 1.73 285 — — —

Chapter 7 WFA for Other Combinatorial Optimization Problems

176

Table 7.2d Comparison Results of the WFA with Other Algorithms for Nugent’s, Roucairol’s, Scriabin’s, Steinberg’s,

Thonemann’s, and Wilhelm’s Instances

Instances
Best

known
value

Random 2-opt
WFA

Best results of
WFA GRASP ANT GGA PGA IFLS MSA PHAS

Best
solution

Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ
Nug12 578 578 1.6 0 1.6 — — — — 0 19 0 6.84 0 1.41 0 36 0
Nug14 1014 1014 2.0 0 2.0 — — — — — — 0 7.71 0.39 3.11 — — 0.2
Nug15 1150 1150 5.8 0 5.8 — — — — 0 41.4 0 8.3 0 4.02 0 73 0
Nug16a 1610 1610 16.3 0 16.3 — — — — — — 0 11.24 0 5.59 — — 0
Nug16b 1240 1240 18.1 0 18.1 — — — — — — 0 11.02 0 5.59 — — 0
Nug17 1732 1732 22.3 0 22.3 — — — — — — 0 11.95 0 7.31 — — 0
Nug18 1930 1930 31.1 0 31.1 — — — — — — 0.31 13.56 0 9.55 — — 0
Nug20 2570 2570 74.6 0 74.6 0 2.53 0 119 0 97.8 0 20.73 0 16.06 0 132 0
Nug21 2438 2438 135 0 135 — — — — — — 0 29.80 0 20.63 — — 0
Nug22 3596 3596 119 0 119 — — — — — — 0 43.82 0 25.84 — — 0
Nug24 3488 3488 183 0 183 — — — — — — 0 33.83 0 39.75 — — 0.06
Nug25 3744 3744 181 0 181 — — — — — — 0 42.10 0 47.66 — — 0
Nug27 5234 5234 225 0 225 — — — — — — — — 0 80.56 — — 0
Nug28 5166 5166 276 0 276 — — — — — — — — 0.12 98.33 — — 0
Nug30 6124 6124 644 0 644 0.42 523 0 181 0.07 354 0.42 109 2.12 117 0.06 887 0.07
Rou12 235528 235528 1.2 0 1.2 — — — — 0 19.6 0 0.30 0 1.06 0 35 0
Rou15 354210 354210 3.4 0 3.4 — — — — 0 34.6 0 0.56 0 2.95 0.71 71 0
Rou20 725522 725522 57.8 0 57.8 0 165 0 245 0.16 75.2 0 1.43 0.02 11.73 0.06 127 0
Scr12 31410 31410 1.3 0 1.3 — — — — 0 18.8 0 0.44 0 1.11 0 38 0
Scr15 51140 51140 4.6 0 4.6 — — — — 0 35.2 0 0.42 0 3.09 0 78 0
Scr20 110030 110030 23.4 0 23.4 0 157 0 46.1 0 79.6 0 1.57 0 12.69 2.13 137 0
Ste36a 9526 9526 3057 0 3057 1.81 276 0.76 295 0.27 710 0 221 0 204 — — —
Ste36b 15852 15852 3425 0 3425 0.92 180 0.25 213 — — 0 235 3.43 222 — — —
Ste36c 8239110 8239110 3696 0 3696 0.89 142 0.33 321 — — 0 24.07 — — — — —
Tho30 149936 149936 1379 0 1379 0.00 216 0 288 0 396 0 132 0.29 119 — — —
Tho40 240516 240620 3704 0.04 3704 1.17 184 0.66 312 0.32 958 0.05 344 0.53 502 — — —
Tho150 8133398 8238058 21600 1.29 21600 — — — — — — 0.41 729 — — — — —
Wil50 48816 48916 3933 0.06 11856 — — — — 0.07 2115 0 695 0.28 1499 — — —
Wil100 273038 274446 15320 0.34 23725 — — — — 0.2 20544 0.15 1252 0.27 51121 — — —

Chapter 7 WFA for Other Combinatorial Optimization Problems

177

Table 7.2e Comparison Results of the WFA with Other Algorithms for Taillard’s Instances

Instances Best known
value

Random 2-opt WFA Best results of
WFA GRASP ANT GGA PGA IFLS MSA PHAS

Best
solution

Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ
Time

(s) BestΔ Time
(s) BestΔ Time

(s) BestΔ Time
(s) BestΔ

Tai12a 224416 224416 0.7 0 0.7 — — — — — — 0 0.18 0 1.05 0 35 0
Tai12b 39464925 39464925 0.5 0 0.5 — — — — — — 0 0.62 0 1.03 0.03 53 0
Tai15a 388214 388214 8.1 0 8.1 — — — — — — 0 0.69 0 2.99 0.39 73 0.01
Tai15b 51765268 51765268 4.2 0 4.2 — — — — — — 0 0.7 0 3.05 0.47 77 0
Tai17a 491812 491812 18 0 18 — — — — — — 0.55 0.96 0.38 5.55 0 86 0.56
Tai20a 703482 703482 860 0 860 0 484 0 160 — — 0.84 1.38 0.47 11.42 0.21 124 0.8
Tai20b 122455319 122455319 22 0 22 — — — — — — 0 2.70 0 12.52 5.6 167 0
Tai25a 1167256 1169030 1157 0 7268 1.43 355 0.55 206 — — 0.77 3.27 2.00 33.03 — — 1.57
Tai25b 344355646 344355646 332 0 332 — — — — — — 0 3.77 5.59 35 — — 0
Tai30a 1818146 1832590 1969 0.57 2623 1.58 265 1.46 332 — — 1.34 6.72 1.11 83.06 — — 1.37
Tai30b 637117113 637117113 3169 0 3169 — — — — — — 0 14.11 2.22 81 — — 0
Tai35a 2422002 2436540 2477 0.59 6185 1.90 531 1.64 232 — — 1.29 12.09 1.24 177 — — 1.3
Tai35b 283315445 283315445 4749 0 4749 — — — — — — 0 23.9 3.54 186 — — 0.19
Tai40a 3139370 3160484 4612 0.67 4612 2.20 325 2.05 253 — — 1.08 18.37 1.85 354 — — 1.7
Tai40b 637250948 637250948 5355 0 5355 — — — — — — 0 36.95 5.60 328 — — 0
Tai50a 4938796 5031472 5354 1.46 11342 — — — — — — 1.31 58.21 2.25 1104 — — 2.48
Tai50b 458821517 458926056 7166 0.02 7166 — — — — — — 0 64.77 0.42 1032 — — 0
Tai60a 7205962 7342990 9962 1.55 14450 — — — — — — 1.79 104 2.75 2740 — — 2.37
Tai60b 608215054 612153786 8584 0.65 8584 — — — — — — 0 148 0.47 2621 — — 0.02
Tai64c 1855928 1855928 5834 0 5834 — — — — — — 0 28.96 0.03 237 — — 0
Tai80a 13511780 13821180 10084 1.87 27967 — — — — — — 1.41 360 2.46 11333 — — 2.37
Tai80b 818415043 827982667 15800 1.17 15800 — — — — — — 0.03 424 2.79 10533 — — 0
Tai100a 21052466 21538854 11274 1.76 36544 — — — — — — 1.29 785 2.33 35781 — — —
Tai100b 1185996137 1198498100 20268 1.05 20268 — — — — — — 0.32 855 0.52 34336 — — —
Tai150b 498896643 508566248 44677 1.94 44677 — — — — — — 0.2 3414 0.38 290186 — — —
Tai256c 44759294 44896638 35434 0.27 367250 — — — — — — 0.16 1956 0.27 73180 — — —

Chapter 7 WFA for Other Combinatorial Optimization Problems

178

Table 7.3 Improved Results of the WFA Variants for the QAP Instances Not Optimally Solved by 2-Opt WFA

Instances
Best

known
value

Random 2-opt WFA Systematic generator
2-opt WFA

Random 2-opt
mirror WFA WFA-3-opt

Best
solution Time (s) Best

solution Time (s) Best
solution Time (s) Best

solution Time (s)

Lipa50a 62093 62619 4099 62703 5099 62666 6481 62593 4568
Lipa60a 107218 108103 6025 108172 10534 108070 12396 108070 12396
Lipa80a 253195 254853 10144 254840 17053 254800 17685 254800 17685
Lipa90a 360630 362854 12812 362906 19905 362673 26123 362673 26123
Sko42 15812 15836 4691 15816 6961 15830 8252 15816 6961
Sko49 23386 23510 5051 23460 8158 23474 8971 23460 8158
Sko56 34458 34568 4792 34528 8537 34558 11047 34528 8537
Sko64 48498 48796 5624 48648 14405 48758 13885 48648 14405
Sko72 66256 66660 7454 66570 19254 66820 15072 66570 19254
Sko90 115534 116922 7640 116968 18859 116632 20212 116590 21076
Sko100b 153890 155288 6724 155728 18431 155398 21747 155204 7574
Sko100c 147862 149628 7476 149862 17480 149990 19819 149564 8576
Sko100d 149576 151196 8335 151186 19884 151022 19097 151022 19097
Sko100e 149150 151056 11632 151140 19147 150588 25371 150498 26534
Sko100f 149036 150510 9172 151032 18680 150794 21531 150390 10200
Tai25a 1167256 1169030 1157 1169030 2453 1167256 7268 1167256 7268
Tai30a 1818146 1832590 1969 1828576 2623 1830918 10287 1828576 2623
Tai35a 2422002 2436540 2477 2436458 6185 2443826 9234 2436458 6185
Tai50a 4938796 5031472 5354 5010798 11342 5026322 15100 5010798 11342
Tai60a 7205962 7342990 9962 7317694 14450 7353798 19163 7317694 14450
Tai80a 13511780 13821180 10084 13790286 12708 13764720 27967 13764720 27967
Tai100a 21052466 21538854 11274 21577638 17538 21422344 36544 21422344 36544
Tai256c 44759294 44896638 35434 44879868 367250 44881948 103680 44879868 367250
Wil50 48816 48916 3933 48856 13800 48846 11856 48846 11856
Wil100 273038 274446 15320 274244 18825 274608 27522 273980 23725

Chapter 7 WFA for Other Combinatorial Optimization Problems

179

84

58

40

Number of
Instances Solved

44 40 110

0.41

0.99

0.13

 Figure 7.3 Comparison of WFA with Other Algorithms on (a). Average Percentage Difference; and (b). Number of Best Known Solutions Obtained

0.14

0.87

0.20
0.28

0.04

44

1.0

0.8

0.6

0.4

0.2

0.0
87 130

0.17

WFA

GRASP
ANT
GGA

0.00

PGA
IFLS

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
iff

er
en

ce

(%
)

0.69

0.04
MSA
PHAS

0.51

0.24

130

44 40 110

80

26

91

66
72

96

33

44

100

80

60

40

20

0
87 130

40

2

94

130

Number of
Instances Solved

N
um

be
r o

f B
es

t K
no

w
n

So
lu

tio
ns

 O
bt

ai
ne

d

40

(a).

(b).

Chapter 7 WFA for Other Combinatorial Optimization Problems

180

When compared with other meta-heuristic algorithms, namely GRASP, ANT, GGA,

PGA, IFLS, MSA, and PHAS, it can be seen from Tables 7.2a to 7.2e that WFA

outperforms GRASP, ANT, and MSA in all the instances, and also outperforms

GGA,PGA, IFLS, and PHAS in many of the instances. When comparing the overall

performance using the average relative percentage difference, as well as the number of the

best known solutions obtained, the WFA dominates these meta-heuristic algorithms as

shown in Figure 7.3, especially when compared with the GRASP, the ANT, the IFLS, and

the MSA. This shows that the WFA is able to obtain good results when compared to other

efficient meta-heuristic algorithms.

7.2 Vehicle Routing Problem

In this section, we present the two-level WFA for solving VRP. In this algorithm, the first

level focuses on solving the VRP with relaxation of integrality constraints. Then at the

second level, a modified WFA uses the initial solutions obtained by the first level to

search for the optimal solutions. Here, we illustrate the performance of the 2LWFA with

the CVRP. The performance of the 2LWFA has been tested on some CVRP benchmark

instances obtained from the literature. The experimental results obtained are compared

with the best known solutions found from the literature, and they demonstrate the

efficiency of the 2LWFA for solving the CVRP.

7.2.1 Capacitated Vehicle Routing Problem

In the field of logistics and supply chain management, how to arrange an appropriate

supplier-to-customer assignment and determine an efficient distribution routing is very

Chapter 7 WFA for Other Combinatorial Optimization Problems

181

important. A good solution can not only improve the efficiency in operation, but also

significantly reduce operating costs. Many problems that originate from these concerns are

classified as VRPs, which are NP-hard problems (Toth and Vigo, 2002).

The CVRP can be considered as one of the typical VRPs. This problem consists of a

fleet of vehicles with pre-specified limited capacity, which has to serve a set of customers

with specific demands. In this thesis, we have focused on the CVRP with one depot.

Hence, the vehicles must start and end at the same depot. The CVRP aims to assign the

vehicles to the customers and to find the efficient routes of the vehicles so that total travel

distance (or time) is minimized. The problem has some important constraints, such as (1)

total demand of the customers served by a vehicle should not exceed the capacity of the

vehicle, (2) one customer can only be served by one vehicle, (3) all customers must be

served, (4) the number of vehicles used cannot exceed the number of given vehicles. In

this problem, the distance between the depot and customers, as well as between a

customer and other customers, are also given.

There are many research works related to the CVRP. Among them, the works that

formulate the CVRP as an integer linear programming problem have generally led to

effective exact solution approaches for this problem. In this research work, we have used

the integer linear programming formulation presented in Kulkarni and Bhave (1985) and

corrected in Imdat et al. (2004). The integrality constraints of the formulation are relaxed

to allow the first level of the 2LWFA to find good initial solutions.

Chapter 7 WFA for Other Combinatorial Optimization Problems

182

7.2.2 Two-level WFA for the CVRP

A 2LWFA has been proposed for solving the CVRP. The first level of this algorithm is to

solve the mathematical programming model of the CVRP with the relaxation of the

integrality constraints. This is to reduce the computation time of obtaining good initial

solutions for the 2LWFA. Then, the obtained optimal solution is adjusted by a check-and-

fit procedure, and a perturbation scheme is applied to generate a set of initial feasible

solutions for the second level of this algorithm. At the second level, a modified WFA is

applied to search for optimal solutions from the initial seed solutions.

7.2.2.1 First Level

The efficiency and effectiveness of solving the CVRP based on the mathematical

programming formulation depends on the solvers used. Most solvers require large

amounts of computation time and may fail to return solutions for problems with large size.

To avoid this problem and reduce the computation effort required, we relax the integrality

constraints of the CVRP. In particular, we focus on the decision variable Xij in the

mathematical programming formulation of the CVRP. It is a binary variable that is equal

to 1 if and only if customers (or depot) i and j are connected. We relax these variables to

real numbers in [0, 1] and solve the resulting relaxed model with the commercial

optimization package LINGO 5.0. This relaxed CVRP model can be described by the

equations from (7.15) to (7.23). In these equations, n is the number of customers, m is the

number of routes, and Cij represents the cost or distance between customers i and j.

Variables Xij or Xji exist only if i jq q Q+ ≤ , where qi and qj represent the demand of

customers i and j respectively, and Q is the maximum capacity of the vehicle. A variable

Chapter 7 WFA for Other Combinatorial Optimization Problems

183

ui is associated with each customer i, which is used to formulate equation (7.20) to ensure

that the solution contains no sub-tours disconnected from the depot. Other equations

represent the common constraints of the CVRP described in Section 7.2.1.

0
1

Min (7.15)

S.t.: , (7.16)

ij ij
i j

n

j
j

C X

X m

≠

=

=

∑

∑

0
1

0

 , (7.17)

 1 for 1,..., , (7.18)

n

i
i

n

ij
j
j i

X m

X i n

=

=
≠

=

= =

∑

∑

0
 1 for 1,..., , (7.19)

 for , 1,..., and , (7.20)

 for

n

ij
i
i j

i j ij j

i i

X j n

u u QX Q q i j n i j

q u Q i

=
≠

= =

− + ≤ − = ≠

≤ ≤

∑

1,..., , (7.21)

 [0;1] for , 0,..., and , (7.22)

 1 and ,

ij

n

X i j n i j

m m Z +

=

∈ = ≠

≥ ∈ (7.23)

For the resulting optimal solution, we arrange the values of decision variables in a

descending order. Those Xij variables with large values can be considered to be potential

connections of customers (or depot) i and j. As such, we will assign these Xij to be 1. Also,

we check the feasibility of the assignment based on the constraints of the CVRP, and fit in

the most appropriate assignment. This check-and-fit procedure is performed iteratively

until a feasible solution of the CVRP is determined. Then, a perturbation scheme based on

the cross-exchange procedure in Taillard et al. (1997) is used to generate a set of seed

solutions from the feasible solution. This cross-exchange procedure can be illustrated by

Chapter 7 WFA for Other Combinatorial Optimization Problems

184

Figure 7.4. In this figure, the square and circles represent the depot and the customers

respectively. Each route begins and ends at the same depot (or square). Firstly, we remove

two edges (A1, A1’) and (B1, B1’) from route 1, and two edges (A2, A2’) and (B2, B2’)

from route 2. Next, the segments (A1’, B1) and (A2’, B2) which may include some

customers are swapped to formulate the new routes, i.e., new route 1 contains the new

edges (A1, A2’) and (B2, B1’), while new route 2 contains (A2, A1’) and (B1, B2’).

These new routes are accepted only when they satisfy all constraints of the CVRP.

Figure 7.4 The Cross-Exchange Procedure (Taillard et al., 1997)

We now describe the check-and-fit procedure in greater detail and illustrate it with a

benchmark instance of Christofides and Eilon (1969) for the CVRP. The instance used is

A1

A1’

B1

B1’

A2

A2’

B2

B2’

A1

A1’

B1

B1’

A2

A2’

B2

B2’

Route 1 Route 2 Route 1 Route 2

Chapter 7 WFA for Other Combinatorial Optimization Problems

185

E-n13-k4, which has 12 customers served by 4 vehicles. Firstly, we use LINGO 5.0 to

solve the problem, and the values of the decision variables obtained are as follows: X0,1 =

X0,2 = X0,6 = X0,9 = X1,0 = X2,0 = X3,0 = X6,0 = X9,12 = X12,3 = 1; X4,7 = X4,11 = X7,8 = X5,10 = X7,4

= X7,10 = X8,5 = X8,11 = X10,5 = X10,7 = X11,4 = X11,8 = 0.5; X2,7 = 0.28; and all the rest of the

variables Xi,j = 0. Here, index 0 denotes the depot. Secondly, we apply the check-and-fit

procedure to obtain a feasible solution. In particular, we consider the decision variables

whose value is 1. The corresponding customers in the decision variables are assigned in

the same route. For example, we have X0,1 = X1,0 = 1, and also we assign customer 1 into

route 1. Similarly, we obtain 4 partial routes, i.e., route 1: (1), route 2: (2), route 3: (6),

and route 4: (9, 12, 3). Route 4 consists of 3 customers since X0,9 = X9,12 = X12,3 = X3,0 = 1.

Next, we consider whether any customer is connected with a customer assigned in the

partial routes. In this case, we see that only X2,7 = 0.28, and thus we assign customer 7 into

route 2. In addition, since X7,4 = X4,11 = 0.5, we also assign customers 4 and 11 into route 2,

i.e., route 2: (2, 7, 4, 11). Although we still have X11,8 = 0.5, we do not assign customer 8

into route 2, since including customer 8 would violate the constraint of maximum capacity

of each vehicle. Moreover, we chose the customer 4 instead of customer 8 to assign into

route 2 after assigning customer 7. This is because we choose based on the minimum

distance between customers. Here, the distance between customers 7 and 4 is shorter than

the distance between customers 7 and 8. Since we do not have any nonzero decision

variable that may connect the unassigned customers with the last customer in the partial

routes, we consider and choose the customer with minimum distance between it and the

last customer in partial routes. Here, we will assign customer 10 into route 3. Because of

X10,5 = 0.5, we also assign customer 5 right after customer 10 in route 3. After applying the

check-and-fit procedure, we construct a feasible solution with 4 complete routes, i.e., route

Chapter 7 WFA for Other Combinatorial Optimization Problems

186

1: (1, 8), route 2: (2, 7, 4, 11), route 3: (6, 10, 5), and route 4: (9, 12, 3). The total

corresponding travel distance is 307. Based on the cross-exchange procedure described

above, the feasible solution is used to generate a set of seed solutions that are then used as

initial solutions in the modified WFA.

A flow chart of the first level of the 2LWFA for the CVRP is shown in Figure 7.5.

Relax the integrality constraints of the
mathematical programming
formulation of the CVRP

Solve the relaxed formulation of the
CVRP

Apply the check-and-fit procedure to
obtain a feasible solution for the CVRP

Use a perturbation scheme to construct
a set of initial seed solutions from the

feasible solution obtained

Assign the number of DOWs
corresponding to the number of initial

seed solutions generated

Start the first level

End the first level

Figure 7.5 Flow Chart of the First Level of the 2LWFA for the CVRP

Chapter 7 WFA for Other Combinatorial Optimization Problems

187

7.2.2.2 Second Level

After constructing a set of seed solutions, a modified WFA is applied to search for optimal

solutions from the seed solutions. Basically, this algorithm is similar to the WFA

described in Chapter 3. However, a new solution representation for the CVRP is being

used in the modified WFA. Also, a variable neighborhood structure based on the k-opt

algorithm is used in the erosion process to enhance the flexibility and efficiency of this

process. From the literature, the k-opt algorithm with 5k ≥ has obtained solutions with

insignificant improved quality compared to the k-opt algorithm with other smaller values

of k, and yet requires a large amount of computation time. Hence, we chose the value of k

to be 3 and 4 for the variable neighborhood structure in the erosion process of the

modified WFA. The implementation of this variable neighborhood search is similar to the

method in Hansen and Mladenovic (2001). For the neighborhood structure in the

exploration phase of the modified WFA, the 2-opt algorithm is used.

The WFA encodes a feasible solution of an optimization problem and its objective

value into a DOW, which is a component of a cloud representing a pool of solutions. For

the CVRP, we consider the values of the coordinates (X, Y) as the longitude and latitude

in the position of DOW on the ground, while the total traveling distance/time is encoded as

the altitude. In some instances when the values of coordinates (X, Y) for the depot and

customers are not known, we use the solution representation of the CVRP with specific

routes for vehicles. Actually, this solution can also be expressed by the values of

coordinates (X, Y) with the corresponding sequences.

Chapter 7 WFA for Other Combinatorial Optimization Problems

188

We use an example to illustrate the solution representation of the CVRP. Here, we

denote integer 0 to be the depot, and other integers from {1, 2,…, n} to be the customers.

For example, a solution representation may then be shown as [0, 2, 1, 3, 0, 5, 4, 6]. This

solution includes two vehicles: a vehicle starts from the depot to serve the customers with

routing 2, 1, and 3, and goes back to the depot; another vehicle starts from the depot to

serve the customers with routing 5, 4, and 6, and goes back to the depot. With this solution

representation, integer 0 can appear many times in the solution depending on the number

of vehicles given, but other integers can only appear once in the solution. This is suitable

for the constraints of the VRP presented in this chapter. Figure 7.6 shows an example of a

DOW and its positional vector components for the CVRP with n = 6 customers and 2

vehicles.

Figure 7.6 An Example of Solution Representation in the 2LWFA for the CVRP

A flow chart of the modified WFA of 2LWFA for the CVRP is shown in Figure 7.7.

Solution to VRPs DOW

130 145 163151 128 146

Total travel distance = 244

159145

3 0 5 1 4 6 2 0

Altitude

Latitude

Longitude

254 215 247264 252 246261215

Coordinate X

Coordinate Y

Objective value

Chapter 7 WFA for Other Combinatorial Optimization Problems

189

Generate a new cloud

Randomly generate the number of
DOWs with feasible solutions of
the CVRP that do not belong to

the E-list

Find the local optimal positions of
the solutions generated by

applying the hill-sliding algorithm

Update the P0-list and the UE-list

Pick one solution in the UE-list

Satisfy erosion condition? Yes

Evaluate topology
parameter with a

corresponding variable
neighborhood structure

Choose the un-eroded
direction with the smallest

topology parameter to
perform erosion process

Is a better
local optimal solution

found?

Have all the solutions in
the UE-list been considered?

No

No

Is the maximum number
of clouds reached?

Yes

Output the best solutions of the CVRP
in the P0-list

Yes

No

Update the UE-list to
continue with performing

the erosion process
Yes

No

Have all directions been
chosen?

No

Yes

Update the E-list

Have all neighborhood
structures been applied?

No

Yes

End the second level

Start the second level

 Figure 7.7 Flow Chart of the Modified WFA for the CVRP

7.2.3 Preliminary Experiments

The 2LWFA has been coded using Visual Basic 6.0 and linked with LINGO 5.0. All

preliminary experiments have been performed on an Intel Centrino Duo 1.60 GHz CPU

with 1.5 GB of RAM. Here, the computational complexity of the 2LWFA for the CVRP is

determined based on the neighborhood structure used and the erosion process of this

Chapter 7 WFA for Other Combinatorial Optimization Problems

190

algorithm. In particular, the 2LWFA used k-opt neighborhood structure (k = 3 or 4), and

the worst possibility of the erosion process is to find for all n directions. Thus, the

computational complexity of the 2LWFA is estimated to be O(n5).

These experiments are carried out on the benchmark instances of Christofides and

Eilon (1969) and Fisher (1994) taken from the literature for the CVRP. The best known

values of the benchmark instances from the literature are also used as reference values for

the evaluation of the WFA for solving the CVRP. These values may be obtained from the

optimal solutions of the benchmark instances used, or the best solutions found by some

algorithm so far. The results obtained are shown in Table 7.4. The choice of parameters

for the 2LWFA was determined by design-of-experiment methods and the best values of

the parameters include MaxCloud = 20, MaxPop = 10, MinEro = 3, and MaxUIE = 5.

From Table 7.4, we see that the 2LWFA can obtain optimal solutions for the instances

with small and medium size within reasonable computation time. For instances with larger

size, i.e., F-n72-k4, E-n76-k7, and E-n101-k8, the proposed algorithm can also find

solutions with a relative deviation of 1.7%, 0.6%, and 4.4% over the optimal/best known

solution, respectively. The average relative percentage difference for all instances is only

0.6%.

The results from Table 7.4 also show that the solution obtained by 2LWFA achieved

an average improvement of 20.97% over the initial solution obtained by applying the

check-and-fit procedure to the solution found using LINGO. We find that these

improvements are more significant for the instances with larger size.

Chapter 7 WFA for Other Combinatorial Optimization Problems

191

Table 7.4 Experimental Results for the CVRP

Instance Optimal/Best
known value

Initial solution
after applying
check-and-fit

procedure

2LWFA

CPU time (secs)

Lingo WFA

E-n13-k4 247 307 247 0.2 0.50

E-n22-k4 375 390 375 0.5 1.75

E-n23-k3 569 623 569 0.6 4.47

E-n30-k3 534 582 534 1.0 7.50

E-n33-k4 835 910 835 1.5 35.25

E-n51-k5 521 627 521 3.0 120.15

E-n76-k7 683 843 687 18.0 1261.72

E-n101-k8 817 1012 853 50.0 4840.14

F-n45-k4 724 839 724 2.6 102.66

F-n72-k4 237 425 241 20.5 1435.72

7.3 Conclusions

In this chapter, the WFA has been developed for solving other combinatorial optimization

problems, such as the QAP and the VRP. To solve the QAP by the proposed algorithm

with enhanced solution diversification and intensification capabilities, a systematic DOW

generator scheme to distribute the positions of DOW is applied, while neighborhood

structures, such as the 2-opt mirror and 3-opt, are used to focus on strong searching of

Chapter 7 WFA for Other Combinatorial Optimization Problems

192

promising regions. The benchmark problem sets from the QAPLIB (Burkard et al., 1997)

are used to evaluate the performance of the WFA. The computational results show that the

WFA is able to generate optimal solutions for many benchmark problems of QAP, and

near-optimal solutions for the remaining problems. The proposed algorithm is also

compared with other meta-heuristic algorithms from the literature. The results of the

comparison show that the WFA compares favorably with other meta-heuristic algorithms

used to solve the QAP. These results have been reported in Ng and Tran (2011).

To solve the CVRP efficiently, we developed a two-level WFA. The first level of the

proposed algorithm is to solve the mathematical programming model of the CVRP with

the relaxation of the integrality constraints. At the second level, a modified WFA is

applied to search for optimal solutions from the initial solutions obtained from the first

level. The results of the preliminary experimentations show the potential of the 2LWFA to

solve the CVRP, as well as other types of VRPs. These results have been reported in Tran

and Ng (2011b).

Chapter 8 Conclusions and Future Research Work

193

CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH WORK

In this thesis, we have introduced a novel nature-inspired algorithm, known as the water

flow algorithm, for solving combinatorial optimization problems. The proposed algorithm

has simulated the hydrological cycle in meteorology and the erosion phenomenon in

nature, which represent the solution exploration and exploitation capabilities of the

algorithm, respectively. Many characteristics of water flow in nature, such as water always

moving to lower positions, distributing onto many places on the ground, and eroding

terrain, are imitated to design the operators of this algorithm. The WFA has been applied

to solve a variety of NP-hard combinatorial optimization problems, i.e., flow shop

scheduling problem, flexible flow shop scheduling problem with intermediate buffers,

quadratic assignment problem, and capacitated vehicle routing problem. Also, this

algorithm has been developed to solve multi-objective scheduling problem, which is an

NP-hard optimization problem with many practical applications in modern production

environment.

Chapter 8 Conclusions and Future Research Work

194

According to the literature review, there are limited meta-heuristic algorithms inspired

by the behaviors of water flow in nature. These works have not demonstrated the

efficiency of the algorithms for solving various optimization problems. Hence, with the

success of the WFAs for solving such single-objective and multi-objective problems as

illustrated in this thesis, we have put forth a new and effective nature-inspired

optimization approach. This approach may be applied to solve other optimization

problems by adjusting the components of the algorithms appropriately.

Chapter 8 is organized as follows. In Section 8.1, we present some conclusions of the

thesis. The contributions of this thesis are also highlighted in this section. Section 8.2

provides some possible future research works.

8.1 Conclusions

This thesis focuses on constructing the general WFA and the implementation of this

algorithm for solving NP-hard combinatorial optimization problems, such as the flow shop

scheduling problem, flexible flow shop scheduling problem with intermediate buffers,

quadratic assignment problem, and vehicle routing problem. Both single-objective and

multi-objective optimization approaches of the WFA were also developed to solve such

optimization problems. From the experimental results, we can conclude that the WFA is a

promising method that is able to obtain good quality solutions to the optimization

problems within reasonable computation time.

The main contributions of this thesis consist of six parts, and they can be outlined as

follows:

Chapter 8 Conclusions and Future Research Work

195

(1). A novel nature-inspired algorithm, known as the water flow algorithm, for solving

NP-hard optimization problems was constructed. The WFA has mostly simulated

the characteristics of water flow in nature and the components of the hydrological

cycle in meteorology. This algorithm consists of two major phases, the solution

exploration and exploitation phases, which are inspired by the hydrological cycle

and the erosion phenomenon, respectively. The WFA has achieved a balance

between the solution exploration and exploitation capabilities to search for optimal

solutions in reasonable computation time. In the algorithm, the number of

controlled parameters defined by users is small. Hence, the computation time

needed by this algorithm is significantly reduced, which helps to increase the

performance of the WFAs.

(2). With some modifications, the WFA could be developed to solve several single-

objective NP-hard optimization problems, such as the permutation flow shop

scheduling problem, flexible flow shop scheduling problem with intermediate

buffers, quadratic assignment problem, and capacitated vehicle routing problem.

For the PFSP, we have used a basic version of the WFA to solve this problem. The

algorithm obtained the best known solutions for almost all the benchmark

instances used, and a new best known solution of a Heller benchmark instance was

found by this algorithm. In addition, the WFA outperforms several meta-heuristic

algorithms used in the computational comparisons.

(3). For the FFSP with intermediate buffers, some components of the WFA were

modified to solve this scheduling problem. In particular, an improved procedure

for constructing a complete schedule of the FFSP was integrated into the algorithm.

Chapter 8 Conclusions and Future Research Work

196

The procedure helps the WFA to ignore the number of machines at each stage,

which decreases the computational complexity of the algorithm for this problem.

Moreover, we combined the amount of precipitation and its falling force to form a

flexible erosion capability in this algorithm. This helps the erosion process to focus

on exploiting promising regions strongly. The experimental results show that the

WFA is an efficient algorithm for solving benchmark instances from the literature

and randomly generated instances. Many improved solutions to the benchmark

problems were found by this algorithm. Also, the results demonstrate the potential

of the algorithm to solve real-world problems, such as in maltose syrup production.

Moreover, the comparison results show that the WFA outperforms other meta-

heuristic algorithms, such as the tabu search and memetic algorithm, for solving

the FFSP with intermediate buffers.

(4). The WFA is able to solve the QAP effectively. In this version of the WFA, a

systematic DOW generator scheme to distribute the positions of DOWs was

proposed to increase the exploration capability of the algorithm, while the

neighborhood structures, such as the 2-opt mirror and 3-opt, were integrated to

focus on strong searching of promising regions. The WFA obtained the best known

solutions for 99 out of the 134 instances from the QAPLIB within reasonable

computation time. The average relative percentage difference of the algorithm for

all the 134 instances was found to be 0.20%. In addition, the WFA outperforms all

the algorithms when compared in terms of average percentage difference and

number of the best known solutions obtained.

Chapter 8 Conclusions and Future Research Work

197

(5). A two-level WFA was developed to solve vehicle routing problems. The first level

of this algorithm is to solve the mathematical programming model of the VRPs

with the relaxation of the integrality constraints. At the second level, a modified

WFA is then applied to search for optimal solutions from the initial solutions

obtained from the first level. In the modified WFA, a variable neighborhood

structure based on the k-opt algorithm was used to enhance the flexibility and

efficiency of the erosion process. In this thesis we illustrated the performance of

the 2LWFA for solving the capacitated vehicle routing problem. The experimental

results show the potential of the 2LWFA to solve this problem as well as other

types of VRPs.

(6). In addition to the capability of solving single-objective optimization problems, the

WFA is also able to solve multi-objective optimization problems by modifying and

integrating some specialized components. In this thesis, the WFA was developed

to solve the multi-objective FFSP with intermediate buffers. In this algorithm,

landscape analysis was performed to determine the weights of objective functions,

which guide DOWs to exploit potential regions and move towards the optimal

Pareto solution set. Also, the evaporation and precipitation processes were

included into this algorithm to enhance the solution exploitation capability of the

algorithm in potential neighboring regions. Moreover, an improvement process for

reinforcing the final Pareto solution set obtained was proposed. The experimental

results, based on benchmark instances taken from the literature and randomly

generated instances, demonstrate the effectiveness and efficiency of the MOWFA.

Chapter 8 Conclusions and Future Research Work

198

The comparison results also show that the MOWFA outperforms other algorithms

for the test instances.

8.2 Future Research Work

In this section, we present some possible future research work and directions for the WFA.

These consist of improvement and application of the algorithms.

Firstly, the choice of parameters for the WFAs can be improved. While the current

choice of parameters used in the WFAs for single-objective and multi-objective

optimization problems has obtained good computational performance, further research on

how to improve the choice of parameters used in the WFAs can still be performed. This

would lead to greater efficiency for the WFAs when solving the optimization problems, as

well as the possibility of obtaining solutions with better quality by the algorithms.

Secondly, when we use the erosion process based on the lower bound of the

optimization problem, i.e. for the flexible flow shop scheduling problem with intermediate

buffers, the performance of this process depends on the quality of lower bound used. In

this thesis, we only used the lower bounds from the literature. Hence, obtaining a good

lower bound for the scheduling problem to be used in the WFA may be considered as

possible future research work.

Thirdly, we have illustrated the potential of the WFAs for solving other optimization

problems in this thesis. The WFA and the MOWFA can be used to solve other types of

single-objective and multi-objective optimization problems respectively, that are similar to

the optimization problems investigated in this thesis, by adapting some components of the

Chapter 8 Conclusions and Future Research Work

199

algorithms appropriately. Depending on the specific structure of optimization problems

considered, we can customize the WFAs to solve the problems efficiently and this would

certainly be part of future research work. Some examples of such potential optimization

problems include the job shop scheduling problem and traveling salesman problem.

In addition, we can apply the WFA to solve the scheduling problems with other

important objective functions, such as minimizing total flow time of jobs, minimax

tardiness, or minimizing total idle time of machines. This helps to allow a more

comprehensive evaluation of the performance of the WFA. We can even develop the

WFA for solving scheduling problems with data noise and uncertainty which are

commonly found in most practical single-objective and multi- objective problems.

Stochastic techniques for dealing with such problems can then be integrated into the

WFA.

Lastly, we can extend the WFA for solving continuous optimization problems by

designing appropriate neighborhood structures for continuous variables. Furthermore,

some smoothing functions or methods in the field of continuous optimization may be

integrated into the erosion process of the WFA to enhance the performance of the

algorithm.

References

200

REFERENCES

[1]. Abbiw-Jackson R., B. Golden, S. Raghavan, and E. Wasil. A Divide-and-Conquer

 Local Search Heuristic for Data Visualization, Computers and Operations

 Research, 33(11), pp. 3070–3087. 2006.

[2]. Abraham A., C. Grosan, and V. Ramos. Stigmergic Optimization. Netherlands:

 Springer-Verlag Berlin Heidelberg. 2006.

[3]. Agarwal A., S. Colak, and E. Eryarsoy. Improvement Heuristic for the Flow Shop

 Scheduling Problem: An Adaptive Learning Approach, European Journal of

 Operational Research, 169(3), pp. 801–815. 2006.

[4]. Ahuja R.K., T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,

 and Applications. New Jersey, US: Prentice Hall. 1993.

[5]. Ahuja R.K., J.B. Orlin, and A. Tiwari. A Greedy Genetic Algorithm for The

 Quadratic Assignment Problem, Computers and Operations Research, 27(10),

 pp.917–934. 2000.

[6]. Akturk M.S, and M.B. Yildirim. A New Lower Bounding Scheme for the Total

 Weighted Tardiness Problem, Computers and Operations Research, 25(4), pp.

 265–278. 1998.

[7]. Applegate D., R.E. Bixby, V. Chvatal, and W. Cook. Finding Cuts in the TSP. A

 Preliminary Report Distributed at the Mathematical Programming Symposium,

 Ann Arbor, Michigan. 1994.

References

201

[8]. Arkin E.M., R. Hassin, and M. Sviridenko. Approximating the Maximum

 Quadratic Assignment Problem, Information Processing Letters, 77(1), pp. 13–16.

 2001.

[9]. Azizoglu M., E. Cakmak, and S. Kondakci. A Flexible Flow Shop Problem with

 Total Flow Time Minimization, European Journal of Operational Research, 132(3),

 pp. 528–538. 2001.

[10]. Banks A., J. Vincent, and C. Anyakoha. A Review of Particle Swarm Optimization

 - Part I: Background and Development, Natural Computation, 6(4), pp.467–484.

 2007.

[11]. Basak A., S. Pal, S. Das, A. Abraham, and V. Snasel. A Modified Invasive Weed

 Optimization Algorithm for Time-Modulated Linear Antenna Array Synthesis,

 IEEE Congress on Evolutionary Computation (CEC’10). 2010.

[12]. Basturk B., and D. Karabogo. An Artificial Bee Colony (ABC) Algorithm for

 Numerical Function Optimization. In: IEEE Swarm Intelligence Symposium 2006,

 May 12-24, Indianapolis, IN, USA. 2006.

[13]. Basu S., C. Chaudhuri, M. Kundu, M. Nasipuri, and D.K. Basu. Text Line

 Extraction from Multi-Skewed Handwritten Documents, Pattern Recognition,

 40(6), pp. 1825–1839. 2007.

[14]. Bitam S., M. Batouche, and E. Talbi. A Survey on Bee Colony Algorithms. In:

 Proceedings of IEEE International Symposium on Parallel & Distributed

 Processing (IPDPSW’ 10), pp. 1–8. 2010.

[15]. Blanchard A., S. Elloumi, A. Faye, and N. Wicker. A Cutting Algorithm for the

 Quadratic Assignment Problem, INFOR, 41(1), pp. 35–49. 2003.

[16]. Bokhari S.H. Assignment Problems in Parallel and Distributed Computing. Kluwer

 Academic Publishers, Boston, MA. 1987.

References

202

[17]. Brodic D., and Z. Milivojevic. Reference Text Line Identification Based on Water

 Flow Algorithm. In: Proceedings of ICEST 2009, SP-2 Sect, Veliko Tarnovo,

 Bulgaria. 2009a.

[18]. Brodic D., and Z. Milivojevic. Modified Water Flow Method for Reference Text

 Line Detection. In: Proceedings of ICCS 2009, Sofia, Bulgaria. 2009b.

[19]. Brodic D., and Z. Milivojevic. An Approach to Modification of Water Flow

 Algorithm for Segmentation and Text Parameters Extraction. In: Proceedings of

 DoCEIS 2010, IFIP AICT 314, pp. 324–331. 2010.

[20]. Buffa E.S., G.C. Armour, and T.E. Vollmann. Allocating Facilities with CRAFT,

 Harvard Business Review, 42(2), pp. 136–158. 1964.

[21]. Burkard R.E., E. Cela, G. Rote, and G.J. Woeginger. The Quadratic Assignment

 Problem with A Monotone Anti-Monge and A Symmetric Toeplitz Matrix: Easy

 and Hard Cases. In: Proceedings of the 5th International Conference on Integer

 Programming and Combinatorial Optimization, Vancouver, British Columbia,

 Canada, pp. 204–218. 1996.

[22]. Burkard R.E., S.E. Karisch, and F. Rendl. QAPLIB - A Quadratic Assignment

 Problem Library, Journal of Global Optimization, 10(4), pp. 391–403. 1997.

[23]. Cela E. The Quadratic Assignment Problem: Theory and Algorithms. In: D.Z. Du,

 P. Pardalos (Eds.), Combinatorial Optimization, Kluwer Academic Publishers,

 London. 1998.

[24]. Chatterjee S., C. Carrera, and L. Lynch. Genetic Algorithms and Traveling

 Salesman Problems, European Journal of Operational Research, 93(3), pp. 490–

 510. 1996.

[25]. Christofides N., and S. Eilon. An Algorithm for the Vehicle Dispatching Problem,

 Operational Research Quarterly, 20(3), pp. 309–318. 1969.

References

203

[26]. Christofides N., A. Mingozzi, P. Toth, and C. Sandi. Combinatorial Optimization.

 John Wiley & Sons. 1979.

[27]. Dantzig G.B., and J.H. Ramser. The Truck Dispatching Problem, Management

 Science, 6(1), pp. 80–91. 1959.

[28]. Darwin C. On the Origin of Species by Means of Natural Selection. John Murray,

 London. 1859.

[29]. Dawkins R. The Selfish Gene. Oxford: Oxford University Press. 1976.

[30]. Demidenko V.M., G. Finke, and V.S. Gordon. Well Solvable Cases of the

 Quadratic Assignment Problem with Monotone and Bimonotone Matrices, Journal

 of Mathematical Modeling and Algorithms, 5(2), pp. 167–187. 2006.

[31]. Deneubourg J.L., S. Goss, J.M. Pasteels, D. Fresneau, and J.P. Lachaud. Self-

 Organization Mechanisms in Ant Societies (II): Learning in Foraging and Division

 of Labor. In: From Individual to Collective Behavior in Social Insects (J.M.

 Pasteels and J.L. Deneubourg, Eds.), Experientia Supplementum, 54, pp. 177–196.

 1987.

[32]. Dorigo M. Optimization, Learning and Natural Algorithms. Ph.D. thesis,

 Politecnico di Milano, Italie. 1992.

[33]. Dorigo M., and L.M. Gambardella. Ant Colony System: A Cooperative Learning

 Approach to the Traveling Salesman Problem, IEEE Transaction on Evolutionary

 Computation, 1(1), pp.53–66. 1997.

[34]. Dorigo M., G.D. Caro, and L.M. Gambardella. Ant Algorithms for Discrete

 Optimization, Artificial Life, 5(2), pp.137–172. 1999.

[35]. Duman E., and I. Or. The Quadratic Assignment Problem in the Context of the

 Printed Circuit Board Assembly Process, Computers and Operations Research,

 34(1), pp. 163–179. 2007.

References

204

[36]. Eschermann B., and H.J. Wunderlich. Optimized Synthesis of Self-Testable Finite

 State Machines. In: Proceedings of the 20th International Symposium Fault-

 Tolerant Computing (FTCS 20), Newcastle Upon Tyne, UK, pp. 390–397. 1990.

[37]. Eusuff M.M., and K.E. Lansey. Optimization of Water Distribution Network

 Design Using the Shuffled Frog Leaping Algorithm, Journal of Water Resources

 Planning and Management, 129(3), pp. 210–25. 2003.

[38]. Farooq M. From the Wisdom of the Hive to Intelligent Routing in

 Telecommunication Networks: A Step towards Intelligent Network Management

 through Natural Engineering, PhD Thesis, University of Dortmund, Germany.

 2006.

[39]. Gasimov R.N., and O. Ustun. Solving the Quadratic Assignment Problem Using F-

 MSG Algorithm, Journal of Industrial and Management Optimization, 3(2), pp.

 173–191. 2007.

[40]. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning.

 Addison-Wesley. 1989.

[41]. Goudie A. The Nature of the Environment. Oxford: Blackwell Science. 1993.

[42]. Grabowski J., and J. Pempera. Sequencing of Jobs in Some Production System,

 European Journal of Operational Research, 125(3), pp. 535–550. 2000.

[43]. Grosan C., and A. Abraham. Stigmergic Optimization: Inspiration, Technologies

 and Perspectives, Studies in Computational Intelligence (SCI), 31, pp. 1–24. 2006.

[44]. Gutin G., and A. Yeo. Polynomial Approximation Algorithms for TSP and QAP

 with A Factorial Domination Number, Discrete Applied Mathematics, 119(1–2),

 pp. 107–116. 2002.

[45]. Haddad O.B., A. Afshar, and M.A. Marino. Honey Bees Mating Optimization

 Algorithm (HBMO): A New Heuristic Approach for Engineering Optimization. In:

References

205

 Proceedings of the First International Conference on Modeling, Simulation and

 Applied Optimization, Sharjah, UAE. 2005.

[46]. Hahn P.M., W.L. Hightower, T.A. Johnson, M. Guignard-Spielberg, and C.

 Roucairol. Tree Elaboration Strategies in Branch and Bound Algorithms for

 Solving the Quadratic Assignment Problem, Yugoslavian Journal of Operational

 Research, 11(1), pp. 41–60. 2001.

[47]. Hansen P., and N. Mladenovic. Variable Neighborhood Search: Principles and

 Applications, European Journal of Operational Research, 130(3), pp. 449–467.

 2001.

[48]. Ho J.C., and Y.L. Chang. A New Heuristic for the N-Job, M-Machine Flow Shop

 Problem, European Journal of Operational Research, 52(2), pp. 194–202. 1991.

[49]. Holland J.H. Adaptation in Natural and Artificial Systems. Ann Arbor: University

 of Michigan Press. 1975.

[50]. Holy M. Erosion and Environment. Elmsford: Pergamon. 1982.

[51]. Hubert L.J. Assignment Methods in Combinatorial Data Analysis. Marcel Dekker

 Inc., New York. 1987.

[52]. Hull P. Glucose Syrups: Technology and Applications. UK, Wiley-Blackwell.

 2010.

[53]. Huynh T.H. A Modified Shuffled Frog Leaping Algorithm for Optimal Tuning of

 Multivariable PID Controllers, IEEE International Conference on Industrial

 Technology (ICIT’08), Chengdu, China, pp. 1–6. 2008.

[54]. Imdat K., L. Gilbert, and B. Tolga. A Note on the Lifted Miller–Tucker–Zemlin

 Tour Elimination Constraints for the Capacitated Vehicle Routing Problem,

 European Journal of Operational Research, 158(3), pp. 793–795. 2004.

References

206

[55]. Ishibuchi H., T. Yoshida, and T. Murata. Balance between Genetic Search and

 Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop

 Scheduling, IEEE Transactions on Evolutionary Computation, 7(2), pp. 204–223.

 2003.

[56]. Johnson S.M. Optimal Two-And Three-Stage Production Schedules with Setup

 Times Included, Naval Research Logistics Quarterly, 1(1), pp. 61–68. 1954.

[57]. Karimkashi S., and A.A. Kishk. Invasive Weed Optimization and Its Features in

 Electromagnetics, IEEE Transactions on Antennas and Propagation, 58(4), pp.

 1269–1278. 2010.

[58]. Kennedy J., and R.C Eberhart. Particle Swarm Optimization. In: Proceedings of

 IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–

 1948. 1995.

[59]. Kim I.K., D.W. Jung, and R.H. Park. Document Image Binarization Based on

 Topographic Analysis Using A Water Flow Model, Pattern Recognition, 35(1), pp.

 265–277. 2002.

[60]. Knowles J.D., and D.W. Corne. On Metrics for Comparing Nondominated Sets.

 In: Proceedings of Congress on Evolutionary Computation, pp. 711–716. 2002.

[61]. Koulamas C. A New Constructive Heuristic for Flow Shop Scheduling Problem,

 European Journal of Operational Research, 105(1), pp. 66–71. 1998.

[62]. Koopmans T., and M.J. Beckmann. Assignment Problems and the Location of

 Economics Activities, Econometric, 25(1), pp. 53–76. 1957.

[63]. Kulkarni R.V., and P.R. Bhave. Integer Programming Formulations of Vehicle

 Routing Problems, European Journal of Operational Research, 20(1), pp. 58–67.

 1985.

[64]. Lei D. Multi-Objective Production Scheduling: A Survey, International Journal of

 Advance Manufacturing Technology, 43(9–10), pp. 926–938. 2009.

References

207

[65]. Li Y., P.M. Pardalos, and M.G.C. Resende. A Greedy Randomized Adaptive

 Search Procedure for the Quadratic Assignment Problem. In: P.M. Pardalos, H.

 Wolkowicz (Eds.), Quadratic Assignment and Related Problems, DIMACS Series

 in Discrete Mathematics and Theoretical Computer Science 16, pp. 237–261. 1994.

[66]. Li W.T., X.W. Shi, Y.Q. Hei, S.F. Liu, and J. Zhu. A Hybrid Optimization

 Algorithm and Its Application for Conformal Array Pattern Synthesis, IEEE

 Transactions on Antennas and Propagation, 58(10), pp. 3401–3406. 2010.

[67]. Liao C.J., C.T. Tseng, and P. Luarn. A Discrete Version of Particle Swarm

 Optimization for Flow Shop Scheduling Problems, Computers and Operations

 Research, 34(10), pp. 3099–3111. 2007.

[68]. Lim M., Y. Yuan, and S. Omatu. Extensive Testing of A Hybrid Genetic

 Algorithm for Solving Quadratic Assignment Problems, Computational

 Optimization and Applications, 23(1), pp. 47–64. 2002.

[69]. Liong S.Y., and M.D. Atiquzzaman. Optimal Design of Water Distribution

 Network Using Shuffled Complex Evolution, Journal of the Institution of

 Engineers, Singapore, 44(1), pp. 93–107. 2004.

[70]. Lukasik S., and S. Zak. Firefly Algorithm for Continuous Constrained

 Optimization Task, ICCCI 2009, Lecture Notes in Artificial Intelligence (Eds. N.T.

 Nguyen, R. Kowalczyk, S.M. Chen), 5796, pp. 97–100. 2009.

[71]. Mallahzadeh A.R., H. Oraizi, and Z. Davoodi-Rad. Application of the Invasive

 Weed Optimization Technique for Antenna Configuration, Progress in

 Electromagnetics Research, 79, pp. 137–150. 2008.

[72]. Maniezzo V., and A. Colorni. The Ant System Applied to the Quadratic

 Assignment Problem, IEEE Transactions on Knowledge and Data Engineering,

 11(5), pp. 769–778. 1999.

[73]. Martello S., and P. Toth. Knapsack Problems: Algorithms and Computer

 Implementations. New York: John Wiley and Sons. 1990.

References

208

[74]. McCormick S.T., M.L. Pinedo, S. Shenker, and B. Wolf. Sequencing in an

 Assembly Line with Blocking to Minimize Cycle Time, Operations Research,

 37(6), pp. 925–936. 1989.

[75]. Mehrabian A.R., and C. Lucas. A Novel Numerical Optimization Algorithm

 Inspired from Weed Colonization, Ecological Informatics, 1(4), pp. 355–366. 2006.

[76]. Mehrabian A.R., and A.Y. Koma. Optimal Positioning of Piezoelectric Actuators

 on A Smart Fin Using Bio-Inspired Algorithms, Aerospace science and technology,

 11(2–3), pp.174–182. 2007.

[77]. Merz P., and B. Freisleben. A Genetic Local Search Approach to the Quadratic

 Assignment Problem. In: Proceedings of the 7th International Conference on

 Genetic Algorithms, San Diego, CA: Morgan Kaufmann, pp. 465–72. 1997.

[78]. Merz P., and B. Freisleben. Fitness Landscape Analysis and Memetic Algorithms

 for the Quadratic Assignment Problem, IEEE Transactions on Evolutionary

 Computation, 4(4), pp. 337–352. 2000.

[79]. Michael P. Fundamentals of Physical Geography (2nd Edition).

 PhysicalGeography.net. Retrieved 2007-03-19. 2006.

[80]. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs.

 Springer Verlag, Berlin. 1992.

[81]. Moscato P. On Evolution, Search, Optimization, Genetic Algorithms and Martial

 Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent

 Computation Program, Report 826, California Institute of Technology, Pasadena,

 California, USA. 1989.

[82]. Moscato P., and C. Cotta. A Gentle Introduction to Memetic Algorithms. In:

 Handbook of Metaheuristics (F. Glover and G. Kochenberger, eds.), pp. 105–144.

 Kluwer Academic Publishers, Boston MA. 2003.

References

209

[83]. Moscato P., and M.G. Norman. A Memetic Approach for the Traveling Salesman

 Problem—Implementation of A Computational Ecology for Combinatorial

 Optimization on Message-Passing Systems. In: International Conference on

 Parallel Computing and Transputer Application, Amsterdam, Holland: IOS Press,

 pp. 177–86. 1992.

[84]. Mostafa S.A., R. Mahnaz, R.K. Ashkan, and C. Lucas. A Study of Electricity

 Market Dynamics Using Invasive Weed Colonization Optimization, IEEE

 Symposium on Computational Intelligence and Games (CIG’08). 2008.

[85]. Nagano M.S., R. Ruiz, and L.A.N. Lorena. A Constructive Genetic Algorithm for

 Permutation Flowshop Scheduling, Computers and Industrial Engineering, 55(1),

 pp. 195–207. 2008.

[86]. Nakrani S., and C. Tovey. On Honey Bees and Dynamic Server Allocation in

 Internet Hosting Centers, Adaptive Behaviors, 12(3–4), pp. 223–240. 2004.

[87]. Nawaz M., E.E. Enscore Jr, and I. Ham. A Heuristic Algorithm for the M-Machine,

 N-Job Flow-Shop Sequencing Problem, OMEGA: International Journal of

 Management Science, 11(1), pp. 91–95. 1983.

[88]. Ng K.M., and T.H. Tran. A Water Flow Algorithm for Solving the Quadratic

 Assignment Problem, Submitted to Applied Mathematics and Computation. 2011.

[89]. Oh H.H., K.T. Lim, and S.I. Chien. An Improved Binarization Algorithm Based on

 A Water Flow Model for Document Image with Inhomogeneous Backgrounds,

 Pattern Recognition, 38(12), pp. 2612–2625. 2005.

[90]. Onwubolu G., and D. Davendra. Scheduling Flow Shops Using Differential

 Evolution Algorithm, European Journal of Operational Research, 171(2), pp. 674–

 692. 2006.

[91]. Osman I.H., and C.N. Potts. Simulated Annealing for Permutation Flow Shop

 Scheduling, OMEGA International Journal of Management Science, 17(6), pp.

 551–557. 1989.

References

210

[92]. Otsu N. A Threshold Selection Method from Gray-Level Histograms, IEEE

 Transaction on Systems, Man, and Cybernetic, 9(1), pp. 62–66. 1979.

[93]. Papadimitriou C.H., and K. Steiglitz. Combinatorial Optimization: Algorithms and

 Complexity. Englewood Cliffs, N.J.: Prentice Hall. 1982.

[94]. Pedersen S., and H. Vang-Hendriksen. Method for Production of Maltose and/or

 Enzymatically Modified Starch. World Intellectual Property Organization,

 International Publication Number: WO 01/16349 A1. 2001.

[95]. Pinedo M. Scheduling: Theory, Algorithms, and Systems. Upper Saddle, N.J.:

 Prentice Hall. 2002.

[96]. Pinedo M. Planning and Scheduling in Manufacturing and Services. New York:

 Springer. 2005.

[97]. Qahri Saremi H., B. Abedin, and A. Meimand Kermani. Website Structure

 Improvement: Quadratic Assignment Problem Approach and Ant Colony

 Metaheuristic Technique, Applied Mathematics and Computation, 195(1), pp.

 285–298. 2008.

[98]. Qian B., L. Wang, D.X. Huang, W.L. Wang, and X. Wang. An Effective Hybrid

 De-Based Algorithm for Multi-Objective Flow Shop Scheduling with Limited

 Buffers, Computers and Operations Research, 36(1), pp. 209–233. 2009.

[99]. Quadt D., and H. Kuhn. A Taxonomy of Flexible Flow Line Scheduling

 Procedures, European Journal of Operational Research, 178(3), pp. 686–698. 2007.

[100]. Rajendran C., and H. Ziegler. Ant-Colony Algorithms for Permutation Flowshop

 Scheduling to Minimize Makespan/Total Flowtime of Jobs, European Journal of

 Operational Research, 155(2), pp. 426–438. 2004.

[101]. Rameshkumar K., R.K. Suresh, and K.M. Mohanasundaram. Discrete Particle

 Swarm Optimization (DPSO) Algorithm for Permutation Flow Shop Scheduling to

References

211

 Minimize Makespan. Lecture Notes in Computer Science, 3612, pp. 572–581.

 2005.

[102]. Ramkumar A.S., S.G. Ponnambalam, and N. Jawahar. Iterated Fast Local Search

 Algorithm for Solving Quadratic Assignment Problems, Robotics and Computer-

 Integrated Manufacturing, 24(3), pp. 392–401. 2008.

[103]. Ramkumar A.S., S.G. Ponnambalam, and N. Jawahar. A Population-Based Hybrid

 Ant System for Quadratic Assignment Formulations in Facility Layout Design,

 International Journal of Advanced Manufacturing Technology, 44(5–6), pp. 548–

 558. 2009.

[104]. Rashidi E., M. Jahandar, and M. Zandieh. An Improved Hybrid Multi-Objective

 Parallel Genetic Algorithm for Hybrid Flow Shop Scheduling with Unrelated

 Parallel Machines, International Journal of Advanced Manufacturing Technology,

 49(9–12), pp. 1129–1139. 2010.

[105]. Ravindran D., A. Noorul Haq, S.J. Selvakuar, and R. Sivaraman. Flow Shop

 Scheduling with Multiple Objective of Minimizing Makespan and Total Flow

 Time, International Journal of Advanced Manufacturing Technology, 25(9–10), pp.

 1007–1012. 2005.

[106]. Reeves C.R. A Genetic Algorithm for Flowshop Sequencing, Computers and

 Operations Research, 22(1), pp.5–13. 1995.

[107]. Resnick M. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

 Microworlds. Bradford Books. 1997.

[108]. Ribas I., R. Leisten, and J.M. Framinan. Review and Classification of Hybrid Flow

 Shop Scheduling Problems from a Production System and a Solutions Procedure

 Perspective, Computers and Operations Research, 37(8), pp. 1439–1454. 2010.

[109]. Richardson P. Bats. Natural History Museum, London. 2008.

References

212

[110]. Rinnooy Kan A.H.G. Machine Scheduling Problems: Classification, Complexity

 and Computations. The Hague: Nijhoff. 1976.

[111]. Rossin D.F., M.C. Springer, and B.D. Klein. New Complexity Measures for the

 Facility Layout Problem: An Empirical Study Using Traditional and Neural

 Network Analysis, Computers and Industrial Engineering, 36(3), pp. 585–602.

 1999.

[112]. Roth M., and S. Wicker. Termite: A Swarm Intelligent Routing Algorithm for

 Mobile Wireless Ad-Hoc Networks, Studies in Computational Intelligence (SCI),

 31, pp. 155–184. 2006.

[113]. Ruiz R., and J.A. Vazquez-Rodriguez. The Hybrid Flow Shop Scheduling Problem,

 European Journal of Operational Research, 205(1), pp. 1–18. 2010.

[114]. Sahni S., and T. Gonzalez. P-complete Approximation Problems, Journal of the

 ACM, 23(3), pp. 555–565. 1976.

[115]. Sawik T. Mixed Integer Programming for Scheduling Flexible Flow Lines with

 Limited Intermediate Buffers, Mathematical and Computer Modeling, 31(13),

 pp.39–52. 2000.

[116]. Sawik T. Mixed Integer Programming for Scheduling Surface Mount Technology

 Lines, International Journal of Production Research, 39(14), pp. 3219–3235. 2001.

[117]. Sayadi M.K., R. Ramezanian, and N. Ghaffari-Nasab. A Discrete Firefly Meta-

 Heuristic with Local Search for Makespan Minimization in Permutation Flow

 Shop Scheduling Problems. International Journal of Industrial Engineering

 Computations, 1, pp. 1–10. 2010.

[118]. Seeley T.D., S. Camazine, and J. Sneyd. Collective Decision Making in Honey

 Bees: How Colonies Choose Among Nectar Sources, Behavioural Ecoloy and

 Sociobiology, 28(4), pp. 277–290. 1991.

References

213

[119]. Sepehri-Rad H., and C. Lucas. A Recommender System Based on Invasive Weed

 Optimization Algorithm. In: IEEE Congress on Evolutionary Computation (CEC

 2007), pp. 4297–4304. 2007.

[120]. Shah-Hosseini H. Problem Solving By Intelligent Water Drops. In: Proceedings of

 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3226–3231. 2007.

[121]. Shah-Hosseini H. Intelligent Water Drops Algorithm: A New Optimization

 Method for Solving the Multiple Knapsack Problem, International Journal of

 Intelligent Computing and Cybernetics, 1(2), pp. 193–212. 2008.

[122]. Shah-Hosseini H. The Intelligent Water Drops Algorithm: A Nature-Inspired

 Swarm-Based Optimization Algorithm, International Journal of Bio-Inspired

 Computation, 1(1–2), pp. 71–79. 2009.

[123]. Sherali H.D., S.C. Sarin, and M.S. Kodialam. Models and Algorithms for a Two-

 Stage Production Process, Production Planning and Control, 1(1), pp. 27–39. 1990.

[124]. Silva J.D.L., E.K. Burke, and S. Petrovic. An Introduction to Multiobjective

 Metaheuristics for Scheduling and Timetabling. In: Lecture Notes in Economics

 and Mathematical Systems, 535, pp. 91–129. 2004.

[125]. Singh S.P., and R.R.K. Sharma. Two-Level Modified Simulated Annealing Based

 Approach for Solving Facility Layout Problem, International Journal of Production

 Research, 46(13), pp. 3563–3582. 2008.

[126]. Suliman S.M.A. A Two-Phase Heuristic Approach to the Permutation Flow-Shop

 Scheduling Problem, International Journal of Production Economics, 64(1–3), pp.

 143–152. 2000.

[127]. Taillard E. Some Efficient Heuristic Methods for the Flow Shop Sequencing

 Problem, European Journal of Operational Research, 47(1), pp. 65–74. 1990.

[128]. Taillard E. Comparison of Iterative Searches for the Quadratic Assignment

 Problem, Location Science, 3(2), pp. 87–105. 1995.

References

214

[129]. Taillard E., P. Badeau, M. Gendreau, F. Guertin, and J.Y. Potvin. A Tabu Search

 Heuristic for the Vehicle Routing Problem with Soft Time Windows,

 Transportation Science, 31(2), pp. 170–186. 1997.

[130]. Tang L.X., and H. Xuan. Lagrangian Relaxation Algorithms for Real-Time Hybrid

 Flowshop Scheduling with Finite Intermediate Buffers, Journal of the Operational

 Research Society, 57(3), pp. 316–324. 2006.

[131]. Tantar E., C. Dhaenens, J.R. Figueira, and E. Talbi. A Priori Landscape Analysis

 in Guiding Interactive Multi-Objective Metaheuristics. In: Proceedings of IEEE

 Congress on Evolutionary Computation (CEC 2008), pp. 4104–4111. 2008.

[132]. Tasgetiren M.F., Y.C. Liang, M. Sevkli, and G. Gencyilmaz. A Particle Swarm

 Optimization Algorithm for Makespan and Total Flowtime Minimization in the

 Permutation Flowshop Sequencing Problem, European Journal of Operational

 Research, 177(3), pp. 1930–1947. 2007.

[133]. Tavakkoli-Moghaddam R., N. Safaei, and F. Sassani. A Memetic Algorithm for

 the Flexible Flow Line Scheduling Problem with Processor Blocking, Computers

 and Operations Research, 36(2), pp. 402–414. 2009.

[134]. Teodorovic D., T. Davidovic, and M. Selmic. Bee Colony Optimization: The

 Applications Survey, ACM Transactions on Computational Logic, pp. 1–20. 2011.

[135]. Toth P., and D. Vigo. Models, Relaxations and Exact Approaches for the

 Capacitated Vehicle Routing Problem, Discrete Applied Mathematics, 123(1–3),

 pp. 487–512. 2002.

[136]. Tran T.H., and K.M. Ng. A Water Flow Algorithm for Flexible Flow Shop

 Scheduling with Limited Intermediate Buffers. In: Proceedings of the 4th

 Multidisciplinary International Conference on Scheduling: Theory and

 Applications (MISTA’09), Dublin, Ireland, pp. 606–616. 2009.

[137]. Tran T.H., and K.M. Ng. A Water-Flow Algorithm for Flexible Flow Shop

 Scheduling with Intermediate Buffers, Journal of Scheduling, In Press. 2010.

References

215

[138]. Tran T.H., and K.M. Ng. A Water Flow Algorithm for Multi-Objective Flexible

 Flow Shop Scheduling with Intermediate Buffers, Submitted to Computers and

 Operations Research. 2011a.

[139]. Tran T.H., and K.M. Ng. Two-Level Water-Flow Algorithm for Vehicle Routing

 Problems, Submitted to the 5th Multidisciplinary International Conference on

 Scheduling: Theory and Applications (MISTA’11), Phoenix, Arizona, USA. 2011b.

[140]. Van Veldhuizen D.A. Multiobjective Evolutionary Algorithms: Classifications,

 Analyses, and New Innovations. PhD dissertation, Department of Electrical and

 Computer Engineering, Graduate School of Engineering, Air Force Institute of

 Technology, Wright-Patterson AFB, Ohio, US. 1999.

[141]. Wang W., B. Wu, Y. Zhao, and D. Feng. Particle Swarm Optimization for Open

 Vehicle Routing Problem, Lecture Notes in Computer Science, 4114, pp. 999–

 1007. 2006.

[142]. Wardono B. Algorithms for the Multi-Stage Parallel Machine Problem with Buffer

 Constraints. Ph.D. Dissertation, North Carolina State University. 2001.

[143]. Wardono B., and Y. Fathi. A Tabu Search Algorithm for the Multi-Stage Parallel

 Machine Problem with Limited Buffer Capacities, European Journal of

 Operational Research, 155(2), pp. 380–401. 2004.

[144]. Wei Z., X.F. Xu, and S.C. Deng. Evolutionary Algorithm for Solving Multi-

 Objective Flow Shop Scheduling Problem, Computers Integrated Manufacturing

 Systems, 12, pp. 1227–1234 (in Chinese). 2006.

[145]. Widmer M., and A. Hertz. A New Heuristic Method for the Flow Shop Sequencing

 Problem, European Journal of Operational Research, 41(2), pp. 186–193. 1989.

[146]. Wittrock R.J. An Adaptable Scheduling Algorithm for Flexible Flow Lines,

 Operations Research, 36(3), pp. 445–453. 1988.

References

216

[147]. Wong K.Y., and P.C. See. A Hybrid Ant Colony Optimization Algorithm for

 Solving Facility Layout Problems Formulated as Quadratic Assignment Problems,

 Engineering Computations: International Journal for Computer-Aided Engineering

 and Software, 27(1), pp. 117–128. 2010.

[148]. Wu T.H., S.H. Chung, and C.C. Chang. A Water Flow-Like Algorithm for

 Manufacturing Cell Formation Problems, European Journal of Operational

 Research, 205(2), pp. 346–360. 2010.

[149]. Yang F.C., and Y.P. Wang. Water Flow-Like Algorithm for Object Grouping

 Problems, Journal of the Chinese of Industrial Engineers, 24(6), pp. 475–488. 2007.

[150]. Yang X., Q. Lu, C. Li, and X. Liao. Biological Computation of the Solution to the

 Quadratic Assignment Problem, Applied Mathematics and Computation, 200(1),

 pp. 369–377. 2008.

[151]. Yang X.S. Engineering Optimization via Nature-Inspired Virtual Bee Algorithms,

 IWINAC 2005, Lecture Notes in Computer Science, 3562, pp. 317–323. 2005.

[152]. Yang X.S. Nature-Inspired Metaheuristic Algorithms. UK: Luniver. 2008.

[153]. Yang X.S. A New Metaheuristic Bat-Inspired Algorithm. In: Nature Inspired

 Cooperative Strategies for Optimization (Eds. J.R. Gonzalez et al.), Studies in

 Computational Intelligence, Springer Berlin, 284, Springer, pp. 65-74. 2010.

[154]. Yu G. Industrial Applications of Combinatorial Optimization. Boston: Kluwer

 Academic Publishers. 1998.

[155]. Zhang X., Y. Wang, G. Cui, Y. Niu, and J. Xu. Application of A Novel IWO to the

 Design of Encoding Sequences for DNA Computing, Computers and Mathematics

 with Applications, 57(11-12), pp. 2001–2008. 2009.

[156]. Zhi X., X. Xing, Q. Wang, L. Zhang, X. Yang, C. Zhou, and Y. Liang. A Discrete

 PSO Method for Generalized TSP Problem. In: Proceedings of International

 Conference on Machine Learning and Cybernetics, pp. 2378–2383. 2004.

	1. Title page_Dec2011.pdf
	2. Acknowledgement_Dec2011.pdf
	3. Chapter 1_Dec2011.pdf
	4. Chapter 2_Dec2011.pdf
	5. Chapter 3_Dec2011.pdf
	6. Chapter 4_Dec2011.pdf
	7. Chapter 5_Dec2011.pdf
	8. Chapter 6_Dec2011.pdf
	9. Chapter 7_Dec2011.pdf
	10. Chapter 8_Dec2011.pdf
	11. Reference List_Dec2011.pdf

