2,065 research outputs found

    Process analytical technology in food biotechnology

    Get PDF
    Biotechnology is an area where precision and reproducibility are vital. This is due to the fact that products are often in form of food, pharmaceutical or cosmetic products and therefore very close to the human being. To avoid human error during the production or the evaluation of the quality of a product and to increase the optimal utilization of raw materials, a very high amount of automation is desired. Tools in the food and chemical industry that aim to reach this degree of higher automation are summarized in an initiative called Process Analytical Technology (PAT). Within the scope of the PAT, is to provide new measurement technologies for the purpose of closed loop control in biotechnological processes. These processes are the most demanding processes in regards of control issues due to their very often biological rate-determining component. Most important for an automation attempt is deep process knowledge, which can only be achieved via appropriate measurements. These measurements can either be carried out directly, measuring a crucial physical value, or if not accessible either due to the lack of technology or a complicated sample state, via a soft-sensor.Even after several years the ideal aim of the PAT initiative is not fully implemented in the industry and in many production processes. On the one hand a lot effort still needs to be put into the development of more general algorithms which are more easy to implement and especially more reliable. On the other hand, not all the available advances in this field are employed yet. The potential users seem to stick to approved methods and show certain reservations towards new technologies.Die Biotechnologie ist ein Wissenschaftsbereich, in dem hohe Genauigkeit und Wiederholbarkeit eine wichtige Rolle spielen. Dies ist der Tatsache geschuldet, dass die hergestellten Produkte sehr oft den Bereichen Nahrungsmitteln, Pharmazeutika oder Kosmetik angehöhren und daher besonders den Menschen beeinflussen. Um den menschlichen Fehler bei der Produktion zu vermeiden, die Qualität eines Produktes zu sichern und die optimale Verwertung der Rohmaterialen zu gewährleisten, wird ein besonders hohes Maß an Automation angestrebt. Die Werkzeuge, die in der Nahrungsmittel- und chemischen Industrie hierfür zum Einsatz kommen, werden in der Process Analytical Technology (PAT) Initiative zusammengefasst. Ziel der PAT ist die Entwicklung zuverlässiger neuer Methoden, um Prozesse zu beschreiben und eine automatische Regelungsstrategie zu realisieren. Biotechnologische Prozesse gehören hierbei zu den aufwändigsten Regelungsaufgaben, da in den meisten Fällen eine biologische Komponente der entscheidende Faktor ist. Entscheidend für eine erfolgreiche Regelungsstrategie ist ein hohes Maß an Prozessverständnis. Dieses kann entweder durch eine direkte Messung der entscheidenden physikalischen, chemischen oder biologischen Größen gewonnen werden oder durch einen SoftSensor. Zusammengefasst zeigt sich, dass das finale Ziel der PAT Initiative auch nach einigen Jahren des Propagierens weder komplett in der Industrie noch bei vielen Produktionsprozessen angekommen ist. Auf der einen Seite liegt dies mit Sicherheit an der Tatsache, dass noch viel Arbeit in die Generalisierung von Algorithmen gesteckt werden muss. Diese müsse einfacher zu implementieren und vor allem noch zuverlässiger in der Funktionsweise sein. Auf der anderen Seite wurden jedoch auch Algorithmen, Regelungsstrategien und eigne Ansätze für einen neuartigen Sensor sowie einen Soft-Sensors vorgestellt, die großes Potential zeigen. Nicht zuletzt müssen die möglichen Anwender neue Strategien einsetzen und Vorbehalte gegenüber unbekannten Technologien ablegen

    Effect of strain rates on tensile properties and fracture toughness determination of extruded Mg-Al-Zn alloys

    Get PDF
    Extruded Mg-Al-Zn alloy is a lightweight and high strength magnesium alloy that is becoming a preferred material to be used as a structural component in automobiles. During a crash event, an automobile structure is subjected to dynamic loading. The magnesium alloy structures must be able to maintain its integrity and provide adequate protection in survivable crashes. Besides static tensile properties, tensile properties at high strain rates of extruded magnesium alloys and their fracture behaviour are some of the important parameters to be considered in design in ensuring the durability and reliability of automobile structures. In this study, the effect of strain rates on tensile properties and work hardening behaviour were evaluated for extruded Mg-Al-Zn alloys. Further, the fracture behaviour at different loading rates and the effect of temperature on fracture toughness of Mg-Al-Zn alloys were investigated. The extruded Mg-Al-Zn alloys used in this study were AZ61 and AZ31 magnesium alloys. Tensile tests under low and high strain rates were carried out using a universal testing machine and high strain rate tensile tester, respectively. The high strain rate tensile tester was designed and fabricated in-house to fulfil the requirement of tensile test under high strain rate ranging from 100 to 600 s -1 . Work hardening behaviour for low strain rate tensile specimen was determined by referring to the ASTM E646. To obtain the fracture behaviour of both alloys at different loading rates, three-point bending fracture test was conducted on pre-cracked specimens. Standard test methods i.e. ASTM E1820 and JSME S001 were referred to determine the elastic-plastic fracture toughness JIC value of AZ31 and AZ61 alloys. The JIC value obtained were then used as a standard reference value to identify a proper groove depth of a single side-grooved specimen. The side-groove depths evaluated were 25%, 35% and 50%. The proper depth of the side-grooves is confirmed after the J value obtained from the side-grooved specimen test method is identical to the JIC value that of the standard test method. The side-grooved specimen with proper groove depth was then used to determine the JIC value of AZ61 alloy at high temperature. From the results, the tensile strengths were gradually increased with increasing strain rates. However, at above 200 s-1 , the tensile strength increased significantly to more than 600 to 800 MPa. In addition, the work hardening rate for AZ61 was found higher compared to that of AZ31. Both alloys exhibited significant elastic-plastic fracture behaviour at different loading rates. It was found that 50% side-grooves depth is appropriate enough to produce valid JIC value using a single specimen. This finding is very useful especially in determining JIC value in a condition where standard multiple specimen test method is difficult to be conducted such as in high temperature environment. The JIC values of AZ31 and AZ61 at room temperature were 19 and 25 kJ/m2 , respectively. Meanwhile, the JIC value of AZ61 at 150 °C was found twice higher than the JIC value at room temperature

    Superheat control for air conditioning and refrigeration systems: Simulation and experiments

    Get PDF
    Ever since the invention of air conditioning and refrigeration in the late nineteenth century, there has been tremendous interest in increasing system efficiency to reduce the impact these systems have on global energy consumption. Efficiency improvements have been accomplished through component design, refrigerant design, and most recently control system design. The emergence of the electronic expansion valve and variable speed drives has made immense impacts on the ability to regulate system parameters, resulting in important strides towards efficiency improvement. This research presents tools and methodologies for model development and controller design for air conditioning and refrigeration systems. In this thesis, control-oriented nonlinear dynamic models are developed and validated with test data collected from a fully instrumented experimental system. These models enable the design of advanced control configurations which supplement the performance of the commonly used proportional-integral-derivative (PID) controller. Evaporator superheat is a key parameter considered in this research since precise control optimizes evaporator efficiency while protecting the system from component damage. The controllers developed in this thesis ultimately provide better transient and steady state performance which increases system efficiency through low superheat set point design. The developed controllers also address the classical performance versus robustness tradeoff through design which preserves transients while prolonging the lifetime of the electronic expansion valve. Another notable contribution of this thesis is the development of hardware-in-the-loop load emulation which provides a method to test component and software control loop performance. This method alleviates the costs associated with the current method of testing using environmental test chambers

    Refrigeration System: Capacity Modulation Methods

    Get PDF
    Energy conservation and reduction of the global warming effect become one of the most important subjects in the world. Since refrigeration system energy consumption is steadily increasing in overall energy consumption, this system is under research. Refrigeration systems are full of energy conservation that is having minimum energy consumption while satisfying the user’s needs. Refrigeration system applications where the load may vary over a wide range, due to lighting, product loading, ambient weather variations, or other factors during operation, can be optimized by capacity modulation. There are many ways to achieve capacity modulation. This paper presents literature review of various capacity modulation methods which reduce the energy consumption of the refrigeration system and decrease CO2 emission indirectly. In this paper, on/off control, digital scroll compressor, cylinder unloading, hot gas bypass, slide valve, multiple compressor, and variable speed capacity control methods are presented. In addition, electrical control techniques for the refrigeration capacity modulation applications are summarized

    Measuring, modelling and controlling the pH value and the dynamic chemical state

    Get PDF
    pH value is a challenging quantity to measure, model and control. In fact, pH value is a mere one-dimensional projection of a multi-dimensional quantity called chemical state and measuring, modelling and controlling the chemical state is much more challenging. This thesis contributes to all aspects of pH processes. A new method for measuring the pH value under difficult conditions (pressure and flow variations in thick pulp) is presented. Classical physico-chemical modelling of chemical systems is extended with a concept of population principle which is a new formulation of the "reaction invariant - reaction variant" structure. Self-organising fuzzy controller (SOC) is modified to suit pH-processes better (high frequency noise and oscillations are damped more efficiently). All the methods described above were tested with practical applications that include a pilot neutralisation process, an industrial ammonia scrubber and a paper machine wet end. The new methods showed such a significant improvement that they were installed permanently on the industrial applications.reviewe

    Practical modelling and control implementation studies on a pH neutralization process pilot plant

    Get PDF
    In recent years the industrial application of advanced control techniques for the process industries has become more demanding, mainly due to the increasing complexity of the processes themselves as well as to enhanced requirements in terms of product quality and environmental factors. Therefore the process industries require more reliable, accurate, robust, efficient and flexible control systems for the operation of process plant. In order to fulfil the above requirements there is a continuing need for research on improved forms of control. There is also a need, for a variety of purposes including control system design, for improved process models to represent the types of plant commonly used in industry. Advanced technology has had a significant impact on industrial control engineering. The new trend in terms of advanced control technology is increasingly towards the use of a control approach known as an “intelligent” control strategy. Intelligent control can be described as a control approach or solution that tries to imitate important characteristics of the human way of thinking, especially in terms of decision making processes and uncertainty. It is also a term that is commonly used to describe most forms of control systems that are based on artificial neural networks or fuzzy logic. The first aspect of the research described in the thesis concerns the development of a mathematical model of a specific chemical process, a pH neutralization process. It was intended that this model would then provide an opportunity for the development, implementation, testing and evaluation of an advanced form of controller. It was also intended that this controller should be consistent in form with the generally accepted definition of an “intelligent” controller. The research has been based entirely around a specific pH neutralization process pilot plant installed at the University Teknologi Petronas, in Malaysia. The main feature of interest in this pilot plant is that it was built using instrumentation and actuators that are currently used in the process industries. The dynamic model of the pilot plant has been compared in detail with the results of experiments on the plant itself and the model has been assessed in terms of its suitability for the intended control system design application. The second stage of this research concerns the implementation and testing of advanced forms of controller on the pH neutralization pilot plant. The research was also concerned with the feasibility of using a feedback/feedforward control structure for the pH neutralization process application. Thus the study has utilised this control scheme as a backbone of the overall control structure. The main advantage of this structure is that it provides two important control actions, with the feedback control scheme reacting to unmeasured disturbances and the feedforward control scheme reacting immediately to any measured disturbance and set-point changes. A non-model-based form of controller algorithm involving fuzzy logic has been developed within the context of this combined feedforward and feedback control structure. The fuzzy logic controller with the feedback/feedforward control approach was implemented and a wide range of tests and experiments were carried out successfully on the pilot plant with this type of controller installed. Results from this feedback/feedforward control structure are extremely encouraging and the controlled responses of the plant with the fuzzy logic controller show interesting characteristics. Results obtained from tests of these closed-loop system configurations involving the real pilot plant are broadly similar to results found using computer-based simulation. Due to limitations in terms of access to the pilot plant the investigation of the feedback/feedforward control scheme with other type of controllers such as Proportional plus Integral (PI) controller could not be implemented. However, extensive computer-based simulation work was carried out using the same control scheme with PI controller and the control performances are also encouraging. The emphasis on implementation of advanced forms of control with a feedback/feedforward control scheme and the use of the pilot plant in these investigations are important aspects of the work and it is hoped that the favourable outcome of this research activity may contribute in some way to reducing the gap between theory and practice in the process control field

    FPGA Controller Design and Simulation of a Portable Dough Mixing Machine

    Get PDF
    Biscuit and chocolate cookies are normally produced by industrial based processes and machinery using analog and IC gate-based Controllers. With the advent of Microcontrollers, Application Specic Integrated Circuits, Digital Signal Processors (DSP) and Programmable Logic Devices, complex industrial systems and controls can now be integrated into portable embedded household electronic systems. In this paper, the design and simulation of a Dough Mixer Controller (DMC) with Proportional Integral Derivative (PID) closed-loop motor feedback control, is undertaken for a home-based biscuit Cookie machine. DC motor behaviour is modelled and simulated with Matlab/Simulink. Synthesizable VHDL Design and Simulation is carried out with Quartus II Web-Edition 9.0 and ModelSIM EDA software tools, using an Altera Field Programmable Gate Array (FPGA) development system to verify the PID algorithm applied. Simulation results show that the PID algorithm programmed into the FPGA-based controller, eectively maintained the Permanent Magnet (PM) DC motor of the mixer at constant torque over an operational 3-speed range. The mixer agitated the 10g dough ingredients fed into the mixing compartment. Subsequently, the mixture resulted in the formation of a proteinous and coherent viscoelastic dough structure, consistent with published works on dough mix-texture. The dough can subsequently be baked into biscuit cookies

    Design and Implementation of an Integrated Fuzzy Logic Controller for a Multi-input Multi-output System

    Get PDF
    The design and real time implementation of an integrated fuzzy logic controller (IFLC) for a multiple-input multiple-output (MIMO) system is presented. The design of IFLC for an uncoupled MIMO system has been discussed. This study develops a combination of fuzzy and PID controllers (PIDC) to improve the control performance of a two-input-two-output (TITO: angular position, and rotational speed) system. These parameters play a vital role in radar-tracking system for military applications. To verify the applicability of proposed controller, two-motor unit plant along with indigenously designed multi-channel analog interface board of 16-bit precision is used. The proposed MIMO control system is interfaced to a PC through its parallel port. The performance of the system is studied by subjecting it to various standard test signals. The IFLC performs better than the other two controllers in tracking the input command for linear as well as nonlinear inputs such as step, square, triangular, and sine waves is observed.Defence Science Journal, 2011, 61(3), pp.219-227, DOI:http://dx.doi.org/10.14429/dsj.61.2

    OPERATION AND PROCESS CONTROL DEVELOPMENT FOR A PILOT-SCALE LEACHING AND SOLVENT EXTRACTION CIRCUIT RECOVERING RARE EARTH ELEMENTS FROM COAL-BASED SOURCES

    Get PDF
    The US Department of Energy in 2010 has identified several rare earth elements as critical materials to enable clean technologies. As part of ongoing research in REEs (rare earth elements) recovery from coal sources, the University of Kentucky has designed, developed and is demonstrating a ¼ ton/hour pilot-scale processing plant to produce high-grade REEs from coal sources. Due to the need to control critical variables (e.g. pH, tank level, etc.), process control is required. To ensure adequate process control, a study was conducted on leaching and solvent extraction control to evaluate the potential of achieving low-cost REE recovery in addition to developing a process control PLC system. The overall operational design and utilization of Six Sigma methodologies is discussed. Further, the application of the controls design, both procedural and electronic for the control of process variables such as pH is discussed. Variations in output parameters were quantified as a function of time. Data trends show that the mean process variable was maintained within prescribed limits. Future work for the utilization of data analysis and integration for data-based decision-making will be discussed

    Comparison of LQR and PID Controller Tuning Using PSO for Coupled Tank System

    Get PDF
    Coupled Tank System is one of the widely used applications in industries. Like other process control, it require suitable controller to obtain the good system performances. Hence, this paper presents the study of Coupled Tank System using LQR and PID controller. Both controller parameters are tuned using Single-Objective Particle Swarm Optimization (PSO). The performance of the system is compared based on the transient response in term of of Rise Time (Tr), SettlingTime (Ts), Steady State Error (ess) and Overshoot (OS).Simulation is conducted within MATLAB environment to verify the performances of the system. The result shows that both controller can be tuned using PSO, while LQR controller give slightly better results compared to PID controller
    corecore